ES2383959T3 - Mezclas de composiciones de elastómeros y métodos para su producción - Google Patents

Mezclas de composiciones de elastómeros y métodos para su producción Download PDF

Info

Publication number
ES2383959T3
ES2383959T3 ES04028180T ES04028180T ES2383959T3 ES 2383959 T3 ES2383959 T3 ES 2383959T3 ES 04028180 T ES04028180 T ES 04028180T ES 04028180 T ES04028180 T ES 04028180T ES 2383959 T3 ES2383959 T3 ES 2383959T3
Authority
ES
Spain
Prior art keywords
carbon black
elastomeric
elastomer
latex
phr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES04028180T
Other languages
English (en)
Inventor
Melinda Ann Mabry
Ivan Zlatko Podobnik
Allan Clark Morgan
Noboru Tokita
Ting Wang
James A. Shell
Bin Chung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/942,449 external-priority patent/US6075084A/en
Application filed by Cabot Corp filed Critical Cabot Corp
Application granted granted Critical
Publication of ES2383959T3 publication Critical patent/ES2383959T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/02Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of crude rubber, gutta-percha, or similar substances
    • B29B15/04Coagulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • C08C1/15Coagulation characterised by the coagulants used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2421/00Characterised by the use of unspecified rubbers

Abstract

Uso de una mezcla de composición elastomérica que comprende (a) un agente de relleno en partículas dispersado finamente en un elastómero, y (b) elastómero adicional, donde la mezcla de composiciones elastomérica es obtenible por un método que comprende las etapas de: alimentar un flujo continuo de un primer fluido que comprende un látex elastomérico a una zona de mezcla de un reactor de coagulación; alimentar un flujo continuo de un segundo fluido que comprende un agente de relleno en partículas bajo presión a la zona de mezcla del reactor de coagulación para formar una mezcla con el látex elastomérico, siendo suficientemente energética la mezcla del primer fluido y el segundo fluido dentro de la zona de mezcla para coagular de forma sustancialmente completa el látex elastomérico en el reactor de coagulación; descargar un flujo continuo de composición elastomérica desde el reactor de coagulación; y mezclar en seco la composición elastomérica con el elastómero adicional para formar una mezcla de composición elastomérica, en aplicaciones para neumáticos y en productos de goma industriales.

Description

Mezclas de composiciones de elastómeros y métodos para su producción
Campo de la invención
La presente invención está dirigida a usos de mezclas de composiciones de elastómeros en la producción de neumáticos y en productos industriales de goma. La invención también está dirigida a productos de neumáticos y productos de gomas industriales que comprenden una mezcla de composición de elastómeros.
Antecedentes
Numerosos productos de significado comercial están formados a partir de composiciones elastoméricas donde un agente de relleno en partículas está dispersado en cualquiera de diversos elastómeros sintéticos, goma natural o mezclas de elastómeros. El negro de carbón, por ejemplo, se utiliza ampliamente como agente de reforzamiento en goma natural y otros elastómeros. Es común producir un lote principal, esto es, una premezcla de agente de relleno, elastómero y diversos aditivos opcionales, tales como aceite de extensión, y entonces en algunos casos mezclar tal lote maestro con elastómeros adicionales en una etapa de mezcla subsecuente. El lote maestro de negro de carbón se prepara con diferentes grados de negro de carbón comercialmente disponible que varían tanto en área superficial por unidad de peso como en "estructura". Numerosos productos de significado comercial se forman a partir de tales composiciones elastoméricas de agente de relleno en partículas de negro de carbón dispersado en goma natural. Tales productos incluyen, por ejemplo, neumáticos para vehículos donde pueden utilizarse diferentes composiciones elastoméricas para la porción de rodamiento, paredes laterales, cubierta de alambre y carcasa. Otros productos incluyen, por ejemplo, soportes para montaje de motores, cintas transportadoras, limpiaparabrisas y similares. Mientras que pueda alcanzarse un amplio rango de características de rendimiento empleando materiales y técnicas de manufactura disponibles actualmente, ha habido una necesidad largamente esperada en la industria para desarrollar composiciones elastoméricas con propiedades mejoradas y para reducir el coste y complejidad de las técnicas de manufactura actuales. En particular, se sabe por ejemplo que el nivel de macrodispersión, esto es, la uniformidad de la dispersión del negro de carbón u otros agentes de relleno dentro del elastómero, puede impactar significativamente en las características de rendimiento. Para composiciones elastoméricas preparadas mezclando intensivamente el negro de carbón u otro agente de relleno con goma natural u otro elastómero (como en un mezclador Banbury o similar), cualquier incremento en la macrodispersión requiere una mezcla más larga o más intensiva, con las desventajas consecuentes de costes de energía, tiempo de manufactura incrementados y preocupaciones similares. Para los agentes de relleno de negro de carbón de cierta área superficial y de características de estructura, la dispersión más allá de un cierto grado no ha sido posible o practicable comercialmente utilizando aparatos y técnicas de mezcla conocidos. Además, tal mezcla prolongada o más intensiva degrada la goma natural por perturbación de las cadenas poliméricas del elastómero de goma natural, y reduce así su peso molecular, haciendo que el compuesto elastomérico terminado sea indeseable para ciertas aplicaciones. Para uso en el rodamiento de neumáticos, por ejemplo, el peso molecular reducido es conocido como una causa de un incremento indeseable en la así llamada resistencia al rodamiento del neumático.
Es bien conocido el empleo de negros de carbón que tienen estructura y área superficial más alta o más baja para manipular las características de rendimiento de una composición elastomérica. Los negros de carbón de área superficial más alta y de estructura más baja son conocidos por el mejoramiento de la resistencia a la aparición de rupturas y la resistencia al corte y desprendimiento así como, también en general, a la resistencia a la abrasión y otras características de comportamiento. Las técnicas de mezcla disponibles comercialmente han sido incapaces de alcanzar una uniformidad excelente de la dispersión de los negros de carbón a través del elastómero, sin embargo, sin degradación inaceptable de la goma natural. En efecto, para niveles de carga de negro de carbón típicas en goma natural, tales como 45 phr a 75 phr y una carga de aceite de 0 phr a 10 phr, los negros de carbón de estructura baja, tales como los negros de carbón de DBPA menor de 110 cc/100 g, particularmente aquellos que tienen un área superficial por encima de aproximadamente 45 m2/g hasta 65 m2/g (CTAB), no ha sido posible alcanzar compuestos que tengan menos de aproximadamente 1% de negro de carbón no dispersado (medido como macrodispersión, tal como se describe más abajo) independientemente de la duración y nivel de intensidad de la mezcla.
Adicionalmente, mientras que un análisis teórico ha indicado mejoras deseables en ciertas características de comportamiento de las composiciones elastoméricas que emplean negros de carbón de área superficial más alta y estructura más baja, no ha sido posible utilizando procesos de molienda física conocidos u otros procesos de trituración obtener tales composiciones elastoméricas en las cuales tanto se conserva bien el peso molecular de la goma natural como se alcanzan niveles de macrodispersión satisfactorios del negro de carbón. En general, se ha encontrado, por ejemplo, que las propiedades de reforzamiento de los elastómeros de un negro de carbón se incrementan a medida que el tamaño de partícula del negro de carbón disminuye. Sin embargo, con negros de carbón extremadamente finos se sabe que se encuentra una condición anómala, en la cual el mejoramiento esperado en las propiedades no se alcanza. Esto se entiende debido al menos en parte a la incapacidad de los
métodos de composición de elastómeros convencionales para dispersar adecuadamente el negro de carbón en la goma natural sin una ruptura indebida del polímero elastomérico. Ha habido, por lo tanto, una incapacidad consecuente para obtener ventajas de la afinidad natural del negro de carbón y la goma natural uno por otro en el caso de tales negros de carbón.
Puesto que una buena dispersión de un negro de carbón en compuestos de goma naturales ha sido reconocida durante algún tiempo como uno de los objetivos más importantes para alcanzar una buena calidad y comportamiento consistente del producto, se ha dedicado un esfuerzo considerable al desarrollo de procedimientos para establecer la calidad de la dispersión en goma. Los métodos desarrollados incluyen, por ejemplo, el Cabot Dispersion Chart y diversos procedimientos de análisis de imágenes. La calidad de la dispersión puede definirse como el estado de mezcla alcanzado. Una dispersión ideal de negro de carbón es el estado en el cual los aglomerados de negro de carbón (o pellas) se rompen en agregados (conseguido mediante mezcla dispersiva) separados uniformemente uno de otro (logrado mediante mezcla distributiva), con las superficies de todos los agregados de negro de carbón humedecidas completamente por la matriz de goma (denominado usualmente como incorporación).
Los problemas comunes en la industria de la goma que se relaciona frecuentemente con una pobre macrodispersión pueden clasificarse en cuatro categorías principales: comportamiento del producto, defectos de superficie, apariencia de la superficie y eficiencia de la dispersión. El rendimiento y durabilidad funcional de una formulación de goma que contiene negro de carbón, tal como resistencia a la tensión, vida frente a la fatiga y resistencia al desgaste, se afectan sustancialmente por la calidad de la macrodispersión. El negro de carbón no dispersado también puede producir defectos de superficie en los productos terminados, incluyendo defectos visibles. La eliminación de la presencia de defectos de superficie es de importancia crítica en partes delgadas moldeadas por razones funcionales y en perfiles extrudidos por razones tanto estéticas como funcionales.
Un analizador de imágenes comercial tal como el analizador de imágenes modelo IBAS Compact disponible de Kontron Electronik GmbH (Munich, Alemania) puede ser utilizado para medir la macrodispersión de negro de carbón
o de otro agente de relleno. Típicamente, en pruebas de macrodispersión cuantitativas utilizadas en la industria de la goma, el tamaño de corte crítico es 10 micrones. Defectos superiores a aproximadamente 10 micrones de tamaño consisten típicamente de negro de carbón u otro agente de relleno no dispersado, así como cualquier cuerpo extraño u otros contaminantes, los cuales pueden afectar el comportamiento tanto visual como funcional. Así, la medición de la macrodispersión involucra medición de los defectos sobre una superficie (generados por microcortes, extrusión o cortado) superiores a 10 micrones en tamaño por área total de tales defectos por unidad de área examinada utilizando un procedimiento de análisis de imágenes. La macrodispersión D (%) se calcula como sigue:
donde Am = Área superficial de muestra total examinada
Nl = Número de defectos con tamaño de Di
Di = Diámetro de círculo que tiene la misma área que la del defecto (diámetro circular equivalente).
m = número de imágenes
La macrodispersión de negro de carbón u otros agentes de relleno en goma natural no curada u otros elastómero adecuado puede establecerse utilizando análisis de imágenes de muestras de superficie cortadas. Típicamente, se toman de cinco a diez imágenes ópticas seleccionadas arbitrariamente de la superficie de corte para el análisis de imágenes. Las marcas de la cuchilla y similares se retiran preferiblemente utilizando una técnica de filtrado numérico. El análisis de imágenes de la superficie cortada proporciona así información relativa a la calidad de la dispersión del negro de carbón dentro de un compuesto de goma natural. Específicamente, el porcentaje de área no dispersa D (%) indica la calidad de la macrodispersión del negro de carbón. A medida que se degrada la calidad de la macrodispersión, se incrementa el porcentaje de área no dispersada. La calidad de la dispersión puede ser mejorada, por lo tanto, produciendo el porcentaje de área no dispersada. Como se anotó anteriormente, las operaciones de mezcla tienen un impacto directo sobre la eficiencia de la mezcla y sobre la macrodispersión. En general, una macrodispersión mejor de negro de carbón se logra en el elastómero, por ejemplo en un lote maestro madre de goma natural, mediante una mezcla más larga y mediante una mezcla más intensivo. Desafortunadamente, sin embargo, alcanzar una macrodispersión por una mezcla más larga, más intensiva, degrada el elastómero en el cual está siendo dispersado el negro de carbón. Esto es especialmente problemático en el caso de la goma natural, la cual es altamente susceptible de degradación mecánica/térmica. Una mezcla más larga y más intensiva utilizando técnicas y aparatos de mezcla conocidos, tal como un mezclador Banbury, reduce el peso molecular de la composición del lote maestro de goma natural. Así, la macrodispersión mejorada del negro de carbón en goma natural según se sabe se alcanza con una reducción correspondiente, generalmente indeseable en el peso molecular de la goma.
Además de las técnicas de mezcla en seco, es conocido alimentar de forma continua látex y una pasta de negro de carbón a un tanque de coagulación con agitación. Tales técnicas "húmedas" se utilizan comúnmente con elastómeros sintéticos, tales como SBR. El tanque de coagulación contiene un coagulante tal como sal o una solución acuosa ácida con un pH típicamente de aproximadamente 2.5 a 4. El látex y la pasta de negro de carbón se mezclan y coagulan en el tanque de coagulación en pequeñas esferas (típicamente unos pocos milímetros de diámetro) denominadas como grumos húmedos. El grumo y el efluente ácido son separados, típicamente por medio de un tamiz agitador con vibración o similares. El grumo se sumerge entonces en un segundo tanque con agitación donde es lavado para alcanzar un pH neutro o cercano a neutro. Después de esto el grumo se somete a un tamiz con vibración adicional y etapas de secado y similares. Se han sugerido variaciones sobre este método para la coagulación de elastómeros naturales y sintéticos. En la patente de los Estados Unidos 4,029,633 de Hagopian et al, la cual como la presente invención está asignada a Cabot Corporation, se describe un proceso continuo para la preparación de un lote maestro de elastómero. Se prepara una pasta acuosa negro de carbono y se mezcla con un látex elastomérico natural o sintético. La mezcla sufre una llamada operación de encremado, utilizando opcionalmente uno de diversos agentes encremadores conocidos. Después del encremado de la mezcla de negro de carbón/látex, se somete a una etapa de coagulación. Específicamente, la mezcla de negro de carbón/látex encremada se introduce en una corriente sencilla coherente en el núcleo de una corriente de líquido coagulante. La corriente sólida de la mezcla encremada de negro de carbón /látex sufre desgarre y atomización por parte de la corriente del líquido de coagulación antes de la coagulación, siendo pasada entonces a una zona de reacción adecuada para terminación de la coagulación. Después de tal etapa de coagulación, el resto del proceso es sustancialmente convencional, involucrando la separación del grumo del producto "suero" residual y lavando y secando el grumo. Un proceso en alguna forma similar se describe en la patente de los Estados Unidos No. 3,048,559 de Heller et al. Una pasta acuosa de negro de carbón se mezcla continuadamente con una corriente de elastómero natural o sintético o látex. Las dos corrientes se mezclan bajo condiciones descritas involucrando una turbulencia hidráulica e impacto violentos. Como en el caso de la patente de Hagopian et al mencionada anteriormente, la corriente combinada de la pasta de negro de carbón y látex elastomérico se coagula subsecuentemente mediante la adición de una solución coagulante ácida o salina.
Ha habido una necesidad prolongada en diversas industrias por compuestos elastoméricos de agente de relleno en partículas dispersado en un elastómero adecuado que tengan macrodispersión mejorada, especialmente, por ejemplo, negro de carbón dispersado en goma natural mezclada con otro elastómero. Como se discutió anteriormente, la macrodispersión mejorada puede proveer características estéticas y funcionales mejoradas correspondientemente. Especialmente deseables son nuevos compuestos elastoméricos de negro de carbón en una mezcla de goma natural y elastómero sintético, donde la dispersión mejorada se alcanza junto con un peso molecular más alto de la goma natural. Es un objetivo de la presente invención satisfacer algunas o todas de estas necesidades largamente sentidas.
Resumen de la invención
Se divulga un método para preparar mezclas de composiciones elastoméricas que comprenden primero preparar un lote maestro elastomérico alimentando simultáneamente un fluido de relleno en partículas y un fluido de látex elastomérico a una zona de mezcla de un reactor de coagulación. Preferiblemente, el reactor de coagulación tiene una zona de coagulación elongada que se extiende desde la zona de mezcla, lo más preferiblemente con un área transversal que se incrementa progresivamente en la dirección corriente abajo hacia un extremo de descarga del reactor de coagulación. El látex elastomérico puede ser bien natural o sintético y el fluido del agente de relleno en partículas comprende negro de carbono u otro agente de relleno efectivo en partículas para coagular el látex. El fluido de agente de relleno en partículas se alimenta a la zona de mezcla preferiblemente como un chorro continuo de alta velocidad de fluido inyectado, mientras que el fluido de látex es alimentado a una velocidad baja. La velocidad, rata de flujo y concentración en partículas del fluido de agente de relleno en partículas son suficientes para producir la mezcla con alto desgarramiento del fluido de látex y turbulencia del flujo en la mezcla dentro de una porción corriente arriba al menos de la zona de coagulación de tal forma que sustancialmente se coagule de forma completa el látex elastomérico con el agente de relleno en partículas antes del extremo de descarga. Sustancialmente la coagulación completa puede alcanzarse así, de acuerdo con realizaciones preferidas, sin necesidad de emplear un agente de coagulación ácido o salino. El producto coagulado de tal etapa de mezcla en húmedo se seca entonces mezclado con elastómero adicional para formar una mezcla de composición elastomérica. Tal elastómero adicional puede ser el mismo que o diferente del elastómero utilizado en la etapa de mezcla en húmedo. Opcionalmente, puede agregarse agente de relleno adicional durante la etapa de mezcla en seco. Tal agente de relleno adicional puede ser el mismo, o diferente de, el agente de relleno en partículas utilizado en la etapa de mezcla en húmedo.
También se divulgan mezclas de composición elastomérica provistas como un producto del proceso divulgado aquí. Las mezclas de composición elastomérica se proveen con un nivel de macrodispersión del agente de relleno en partículas, peso molecular del elastómero, nivel de carga en partículas, selección del agente de relleno en partículas (incluyendo, por ejemplo, agentes de relleno de negro de carbón de área superficial y excepcionalmente alta y estructura baja) y/o otras características no logradas previamente. En este respecto, las mezclas de composición elastomérica divulgadas aquí tienen excelente macrodispersión, incluso de ciertos agentes de relleno, tales como negros de carbono que tienen una relación de estructura a área superficial DBP:CTAB menor de 1.2 e incluso menor de 1, en elastómeros tales como goma natural, etc., con poca o ninguna degradación del peso molecular del elastómero. Se divulgan productos intermedios así como productos finales que se forman a partir de las mezclas composición elastomérica producidos por el método divulgado aquí. Macrodispersión significa aquí la macrodispersión D (%) del agente de relleno en partículas medida como porcentaje de área no dispersada para defectos más grandes de 10 micrones. En las mezclas de composición elastomérica divulgadas aquí que comprenden goma natural, el peso molecular de la goma natural, esto es el MWsol (peso promedio) de la porción sol, preferiblemente es al menos aproximadamente 300,000, más preferiblemente al menos aproximadamente 400,000, estando en algunas realizaciones preferida entre 400,000 y 900,000. Las mezclas de composición elastomérica comprenden opcionalmente aceites extensores, tales como aceite extensor de aproximadamente 0 a 20 phr, más preferiblemente de aproximadamente 0 a 10 phr, y/o otros ingredientes tales como son bien conocidos para uso opcional en la composición de gomas naturales y/o otros elastómeros con negro de carbón y/o otros agentes de relleno. Tal como se discute más adelante en relación con ciertas realizaciones preferidas y de ejemplo, las mezclas de composición elastomérica divulgadas aquí pueden proveer propiedades físicas y características de comportamiento altamente deseables. De acuerdo con lo anterior, se divulga un avance tecnológico significativo.
También se divulga un método para producir una mezcla de composición elastomérica que comprende elastómero, agente de relleno en partículas y opcionalmente otros ingredientes, caracterizado por:
alimentar un primer flujo de un primer fluido que comprende látex elastomérico a una zona de mezcla de un reactor de coagulación;
alimentar un flujo continuo de un segundo fluido que comprende un agente de relleno en partículas bajo presión a la zona de mezcla del reactor de coagulación para formar una mezcla con el látex elastomérico, siendo efectivo el agente de relleno en partículas para coagular el látex elastomérico y siendo suficientemente energética la mezcla del primer fluido y el segundo fluido dentro de la zona de mezcla para completar para sustancialmente la coagulación del látex elastomérico con el agente de relleno en partículas en el reactor de coagulación;
descargar un flujo sustancialmente continuo de composición elastomérica desde el reactor de coagulación; y
mezclar en seco la composición elastomérica con elastómero adicional para formar la mezcla de composición elastomérica.
El látex elastomérico y el elastómero adicional pueden ser seleccionados independientemente de goma natural, goma natural clorada, Homopolímeros, terpolímeros copoliméricos de 1,3-butadieno, estireno, isopreno, isobutileno, 2,3-dimetil-1,3-butadieno, acrilonitrilo, etileno y propileno, los derivados de aceites extendidos de cualquiera de ellos, y mezclas de cualquiera de ellos; y
El agente de relleno en partículas puede ser seleccionada de negro de carbón, sílica ahumada, sílica precipitada, negros de carbón recubiertos, negros de carbón funcionalizados químicamente, negros de carbono tratados con silicio y mezclas de cualquiera de ellos.
Un agente de relleno en partículas adicional puede agregarse durante la mezcla en seco de la composición elastomérica con el elastómero adicional.
El agente de relleno en partículas adicionales puede mezclarse con el elastómero adicional antes de la mezcla en seco de la composición elastomérica con el elastómero adicional.
El método puede comprender adicionalmente la alimentación de un aditivo a la zona de mezcla del reactor de coagulación, seleccionado de antiozonizantes, antioxidantes, plastificantes, auxiliares del proceso, resinas, retardantes de llama, aceites extensores, lubricantes y mezclas de cualquiera de ellos.
El látex elastomérico y el elastómero adicional pueden seleccionados independientemente de látex de goma natural, látex de goma SBR y látex de goma de butadieno;
El elastómero adicional puede ser presente en una cantidad igual a 50% hasta 90% en peso del elastómero total en la mezcla de composición elastomérica; y
La mezcla de composición elastomérica puede tener negro de carbono de 30 a 85 PHR.
El reactor de coagulación puede definir una zona de coagulación elongada que se extiende con área de sección transversal que se incrementa progresivamente desde la zona de mezcla a un extremo de descarga.
Se divulga adicionalmente una mezcla de composición elastomérica que comprende un agente de relleno en partículas dispersado finamente en elastómero, caracterizada porque la composición elastomérica se forma mediante un método que comprende las etapas de:
Alimentar un flujo continuo de un primer fluido que comprende un látex elastomérico a una zona de mezcla de un reactor de coagulación;
Alimentar un flujo continuo de un segundo fluido que contiene un agente de relleno en partículas bajo presión a la zona de mezcla del reactor de coagulación para formar una mezcla con el látex elastomérico, siendo la mezcla del primer fluido y el segundo fluido dentro de la zona de mezcla suficientemente energética para coagular completamente de forma sustancial el látex elastomérico en el reactor de coagulación;
Descargar un flujo sustancialmente continuo de composición elastomérica desde el reactor de coagulación: y
Mezclar en seco la composición elastomérica con el elastómero adicional para formar la mezcla de composición elastomérica.
La mezcla de composición elastomérica puede ser caracterizada adicionalmente por la macro dispersión de (porcentaje del agente de relleno en partículas menor de 0.2% de área no dispersada en una primera fase del elastómero de la mezcla de composición elastomérica, comprendiendo dicha primera fase del elastómero esencialmente solo el elastómero del látex elastomérico.
Se divulga adicionalmente un vulcanizado que comprende composición elastomérica de acuerdo con los dos parágrafos precedentes, caracterizados porque tienen una rata de crecimiento de fractura no mayor de 1.20 cm/millón de ciclos, medida de acuerdo con ASTM de 3629-94.
También se divulga una mezcla de composición elastomérica la cual puede comprender al menos un agente de relleno en partículas de 30 PHR disperso en un elastómero de fases múltiples, siendo seleccionado el agente de relleno en partículas de negro de carbono, negro de carbono recubierto con silicio, negro de carbono tratado con silicio, sílica ahumada, sílica precipitada, o una mezcla de cualquiera de ellos, y siendo seleccionada cada fase del elastómero de acuerdo con múltiples independientemente de goma natural, un derivado clorado de goma natural, homopolímero, copolímero o terpolímero de butadieno, estireno, isopreno, isobutileno, 3,3-dialquil-1.3-butadieno donde el grupo alquilo es alquilo C1 a C3, acrilonitrilo, etileno y propileno, un derivado de un aceite extensor de cualquiera de ellos una mezcla de cualquiera de ellos donde la macrodispersión D (porcentaje) del agente de relleno en partículas la mezcla de composición elastomérica es menor de 0.2% de área no dispersada. De acuerdo con primer aspecto, se provee el uso de una mezcla de composición elastomérica en la aplicación y en productos de materia industrial, tal como se define en la reivindicación. De acuerdo con un aspecto adicional se proporciona un producto o en un producto de materia industrial que comprende una mezcla de composición elastomérica tal como se define en la reivindicación 6.
Estos y otros aspectos y ventajas de diversas realizaciones de la invención serán entendidos adicionalmente a la vista de la siguiente discusión detallada de ciertas realizaciones preferidas.
Breve descripción de los dibujos
En lo siguiente se discuten ciertas realizaciones preferidas que hacen referencia a los dibujos anexos donde:
La Figura 1 es una ilustración en diagrama de flujo esquemático del aparato y método para preparar un lote maestro del elastómero;
La Figura 2 es una vista en elevación, parcialmente esquemática, de una realización consistente con la ilustración en diagrama de flujo esquemático de la Figura 1;
La Figura 3 es una vista en elevación, parcialmente esquemática, de una realización alternativa consistente con la ilustración en diagrama de Flujo esquemática de la Figura 1;
La Figura 4 es una vista en elevación, parcialmente en sección, del ensamblaje de cabeza de mezcla/reactor de coagulación de la realización de la Figura 3;
La Figura 5 es una vista en elevación, parcialmente en sección, correspondiente a la vista de la Figura 4, que ilustra una realización alternativa;
La Figura 6 es una vista en sección tomada a través de la línea 6-6 de la Figura 5;
La Figura 7 es una vista en sección de una cabeza de mezcla adecuada para uso en una realización alternativa;
La Figura 8 es una gráfica que muestra las propiedades de área superficial y estructura (CTAB y DBPA) de negros de carbón empleados en ciertas composiciones de lote maestro divulgadas;
Las Figuras 9-25 son graficas que muestran la macrodispersión, peso molecular de la goma natural y/o otras características de las composiciones elastoméricas divulgadas que comprenden negros de carbón mostradas en la Figura 8, en algunos casos junto con datos relativos a las muestras de control para comparación, ejemplificando los mejoramientos significativos en las características físicas y en las propiedades de comportamiento alcanzadas por las composiciones elastoméricas;
Las Figuras 26-29 son graficas que muestran propiedades morfológicas de negros de carbón, esto es, estructura (DBPA) y área superficial (CTAB) y que identifica regiones o zonas de negros de carbón (debido a tales propiedades morfológicas) que son adecuadas para aplicaciones de producto especificas; y
Las Figuras 30 y 31 son graficas que muestran la macrodispersión y el peso molecular de la goma natural de composiciones elastoméricas divulgadas, junto con muestras de control para comparación.
Debe entenderse que los dibujos anexos no son necesariamente a escala precisa. Ciertas características pueden haber sido agrandadas o reducidas para conveniencia o claridad de la ilustración. Las referencias direccionales utilizadas en las siguientes discusiones se basan en la orientación de los componentes ilustrados en los dibujos a menos que se establezca otra cosa o se aclare otra cosa a partir del contexto. En general, los aparatos de acuerdo con diferentes realizaciones de la invención pueden emplearse en diversas disposiciones. Estará dentro de la capacidad de las personas experimentadas en la técnica, dado el beneficio de la presente divulgación; para determinar emisiones y orientaciones apropiadas para los aparatos de la invención empleando habilidades técnicas de rutina y teniendo en cuenta factores bien conocidos particulares para la aplicación pretendida, tales como volúmenes de producción deseados, selección de material, ciclo de rutina, y similares. Los números de referencia utilizados en un dibujo pueden ser utilizados en otros dibujos para la misma característica o elemento.
Descripción detallada de ciertas realizaciones preferidas
En virtud del método y aparatos divulgados aquí, las mezclas de composición elastoméricas se producen, comprendiendo (i) un lote maestro de elastómero producido en un proceso de flujo continuo que involucra la mezcla de látex elastomérico y fluidos con agentes de relleno en partículas a niveles de turbulencia y condiciones de control de flujo suficientes para alcanzar la coagulación incluso sin el uso de agentes coagulantes tradicionales, y (ii) un elastómero adicional agregado a tal lote maestro de elastómero en una etapa de mezcla en seco. En efecto, se reconocerá inmediatamente que es de gran beneficio comercial: (A) que se logre la formación de grumos en el lote
maestro del elastómero, esto es, que se logre el látex coagulado de acuerdo con la etapa de “mezcla en húmedo”
del presente método, sin necesidad de una trituración intensiva en seco del elastómero con agente de relleno o la exposición de una composición de látex líquido/partículas a una corriente o tanque de coagulante, y (B) que la mezcla de composición elastomérica se logre mediante la etapa de “mezcla en seco” involucrando la mezcla de tal lote maestro con el elastómero adicional. Así, en la implementación de rutina puede evitarse el coste y complejidad del empleo de soluciones de coagulación ácidas. Las técnicas anteriores que involucran la premezcla de látex y las partículas, tales como en la patente antes mencionada de Heller et al y en la patente de Hagopian et al no siempre reconocen la posibilidad de lograr la coagulación sin exponer la mezcla de látex/partículas a la solución coagulante usual con sus correspondientes desventajas de coste y disposición de residuos.
Se logra una flexibilidad ventajosa con el método de mezcla en húmedo/seco divulgado aquí para hacer una mezcla de composición elastomérica. En particular, se proporciona flexibilidad puesto que la selección del elastómero o
elastómeros empleados en el fluido o en la etapa de “mezcla en húmedo” y la selección del elastómero o elastómeros utilizados en la etapa de “mezcla en seco” subsecuente. El mismo elastómero (o mezcla de elastómeros) puede ser usado en las etapas de mezcla en húmedo y seco o, alternativamente, pueden utilizarse diferentes elastómeros en cualquier proporción de peso relativa adecuada. Se proporciona flexibilidad adicional puesto que el agente de relleno adicional puede ser agregado opcionalmente durante la etapa de mezcla en seco. Tal agente de relleno adicional puede ser el mismo o diferente del agente de relleno en partículas utilizado en la etapa de mezcla en húmedo. Ventajosamente, en realizaciones preferidas del método divulgado aquí, la excelente macrodispersión del agente de relleno en partículas lograda en el lote maestro de elastómero producido por la etapa de mezcla en húmedo se mantiene o incluso se mejora adicionalmente en la etapa de mezcla en seco subsecuente. Sin querer ser limitados por una teoría, se entiende actualmente que, al menos en ciertas realizaciones preferidas, se produce una mezcla de composición elastomérica de fases múltiples mediante el método en húmedo/seco divulgado aquí. Esto es, aunque es difícil de identificar u observar el uso de técnicas que actualmente están en uso general en la industria de los elastómeros, se entiende que la mezcla de composición elastomérica comprende al menos una fase elastomérica producida durante la etapa de mezcla en húmedo y una subsecuente fase elastomérica producida durante la etapa de mezcla en seco. El grado de intermezcla de las dos fases y el grado en el cual las capas fronterizas entre las dos fases son más o menos distintivas dependerá de numerosos factores incluyendo, por ejemplo, la afinidad mutua del elastómero de la etapa de mezcla en húmedo y la de la etapa de mezcla en seco, el nivel de carga de partículas, la selección de los agentes de relleno en partículas y si el agente de relleno adicional fue agregado durante la etapa de mezcla en seco, la proporción en peso relativa del elastómero en la etapa de mezcla en húmedo y el elastómero en la etapa de mezcla en seco, etc.
La flexibilidad ventajosa lograda por la presente invención, y su uso para controlar mejor la distribución del agente de relleno entre las dos fases elastoméricas en una mezcla de composición elastomérica se ve en el ejemplo de una mezcla de composición elastomérica que comprende goma natural, goma de butadieno (denominada en esta
discusión, en algunos casos como “BR”) y el agente de relleno de negro de carbón. Para ciertas aplicaciones se
prefiere tener el agente de relleno de negro de carbón primariamente en la fase de la goma natural de la mezcla de la composición elastomérica. De acuerdo con técnicas de mezcla seco/seco de la técnica anterior, el negro de carbón puede ser mezclado con la goma natural utilizando una técnica de mezcla en seco, seguida por la adición y posterior mezcla en seco del BR. Una porción desventajosamente grande de negro de carbón migrará hacia la fase de BR, debido a su afinidad por la fase de BR y la menos que deseable macrodispersión del negro de carbón en la fase de goma natural. En comparación, las propiedades mejoradas de comportamiento de las mezclas de composición elastoméricas comparables comparadas por el método de mezcla en húmedo/en seco divulgado aquí indica que más negro de carbón es retenido en la fase de goma natural cuando el negro de carbón es mezclado con la goma natural en la etapa de mezcla en húmedo inicial, seguida por la adición de BR en una etapa de mezcla en seco subsecuente.
De conformidad con la etapa de mezcla en húmedo del método divulgado aquí, las ratas de alimentación del fluido de látex y del fluido de relleno en partículas en la zona de mezcla del reactor de coagulación puede medirse con precisión para alcanzar altas ratas de rendimiento, con poco látex libre y poco agente de relleno no dispersado en el grumo del producto en el extremo de descarga del reactor de coagulación. Sin querer limitarse a la teoría, se entiende actualmente que un sistema cuasimonofásico se establece en la zona de mezcla excepto que los sólidos de coagulación están siendo formados allí y/o corriente debajo de la misma en la zona de coagulación. Una velocidad de alimentación extremadamente alta del fluido del agente de relleno en la zona de mezcla del reactor de coagulación y una velocidad diferencial con respecto a la alimentación del fluido de látex se consideran como significativos para alcanzar una turbulencia suficiente, esto es, desgarre energético suficientemente del látex por el impacto del fluido de agente de relleno en partículas en chorro a través de la mezcla y dispersión de las partículas en el fluido de látex y la coagulación. Altas energías de mezcla producen un producto de lote maestro en grumos con excelente dispersión, junto con una producción de producto controlada. El coágulo se crea y luego se conforma en un extrudido deseable. El fluido de agente de relleno en partículas y el látex de elastómero se alimentan preferiblemente de forma continua, significando que se establece un flujo en marcha del lote maestro coagulado a partir de la zona de mezcla hasta el extremo de descarga del reactor de coagulación mientras que se mantiene un flujo ininterrumpido de los fluidos de alimentación. Típicamente, el flujo no interrumpido de los fluidos de alimentación y la descarga simultánea del lote maestro coagulado se mantienen durante una o más horas, preferiblemente, por ejemplo, más de 24 horas, y aún tal vez durante una semana o más.
Se discute más abajo ciertas realizaciones preferidas, de métodos y aparatos para producir las mezclas de composición elastomérica divulgadas aquí. Mientras que diversas realizaciones preferidas pueden emplear una variedad de diferentes agentes de relleno y elastómeros, ciertas porciones de la siguiente descripción detallada de aspectos del método y aparato de la invención en algunos casos, describirán, por conveniencia un lote maestro que contiene goma natural y negro de carbón. Estará dentro de la habilidad de las personas experimentadas en la técnica, dado el beneficio de esta divulgación, emplear el método y aparato divulgados aquí de acuerdo con los principios de operación discutidos aquí para producir un lote maestro y mezclas de composición elastomérica que comprenden un cierto número de elastómeros, agentes de relleno y otros materiales alternativos o adicionales. En resumen, los métodos preferidos para preparar un lote maestro de elastómero involucran la alimentación simultánea de una pasta de negro de negro de carbón u otro agente de relleno y un fluido de látex de goma u otro fluido elastomérico adecuado a una zona de mezcla de un reactor de coagulación. Una zona de coagulación se extiende desde la zona de mezcla, preferiblemente de manera progresiva incrementando el área transversal en la dirección corriente abajo desde un extremo de entrada hasta un extremo de descarga: La pasta se alimenta a la zona de mezclado preferiblemente a una velocidad de chorro alta, continua de fluido inyectado, mientras que el fluido de látex de goma natural se alimenta a una velocidad relativamente baja. La alta velocidad, rata de flujo y concentración en partículas de la pasta de agente de relleno son suficientes para producir la mezcla y un alto desgarramiento del fluido de látex, turbulencia de flujo de la mezcla con al menos una porción corriente arriba de la zona de coagulación y sustancialmente una coagulación completa del látex elastomérico antes del extremo de descarga. Así puede alcanzarse sustancialmente una coagulación completa, de acuerdo con realizaciones preferidas, sin necesidad de emplear un agente de coagulación ácido o salina. El método de flujo continuo preferido para producir composiciones elastoméricas comprende la alimentación continua y simultánea del fluido de látex y de la pasta de agente de relleno a la zona de mezcla del reactor de coagulación, estableciendo un flujo semiconfinado continuo de una mezcla del látex y de la pasta de agente de relleno en la zona de coagulación. El grumo de la composición elastomérica en la forma de "gusanos" o glóbulos se descarga desde el extremo de descarga del reactor de coagulación en forma de un flujo sustancialmente constante concurrentemente con la alimentación en marcha de las corrientes de látex y de pasta de negro de carbón en la zona de mezcla del reactor de coagulación. De manera notable, el flujo tipo tapón y las condiciones de presión atmosférica o cercana a la atmosférica en el extremo de descarga del reactor de coagulación son altamente ventajosos para facilitar el control y la recolección del producto de composición elastomérica, así como para etapas de procesamiento intermedias o subsecuentes adicionales. Las ratas de alimentación del fluido de látex de goma natural y de la pasta de negro de carbón en la zona de mezcla del reactor de coagulación pueden medirse de manera precisa para alcanzar altas ratas de rendimiento, con poco látex libre y poco negro de carbón no dispersado en los grumos de producto en el extremo de descarga del reactor de coagulación. Sin querer limitarse a la teoría, se entiende actualmente que se establece un sistema cuasimonofásico en la zona de mezcla excepto que los coágulos del sólido están siendo formados allí y/o corriente debajo de la misma en la zona de coagulación. Una velocidad de alimentación extremadamente alta de la pasta de negro de carbón en la zona de mezcla del reactor de coagulación y una velocidad diferencial con respecto al fluido de látex de goma natural, se consideran como significativos para alcanzar una turbulencia suficiente, esto es, suficiente desgarre energético del látex por el impacto del chorro de fluido del agente de alimentación en partículas a través de la mezcla y dispersión de las partículas en el fluido de látex y la coagulación. Altas energías de mezcla producirán el producto novedoso con excelente macrodispersión, junto con un suministro de producto controlado. El coágulo se crea y luego se conforma en un extruido deseable.
La composición elastomérica preparada por la técnica y aparato de mezcla en húmedo antes descritos se conforma en mezclas de composición elastomérica usadas en la invención mediante mezclado en seco subsecuente con un elastómero adicional. Así, la presente invención puede ser descrita como aquella que involucra un método húmedo/seco, mientras que las técnicas conocidas anteriormente emplean un método seco/seco en el cual se forma primero un lote maestro por mezclado en seco y se agrega un elastómero adicional por mezclado en seco adicional. La etapa de mezcla en seco del método de mezcla en húmedo/seco de la presente invención puede llevarse a cabo con aparatos y técnicas comercialmente disponibles incluyendo, por ejemplo, mezcladores Banbury y similares. El elastómero adicional agregado durante la etapa de mezcla en seco del método de mezcla en húmedo/seco divulgado aquí puede ser uno o más elastómeros que son los mismos o diferentes de los elastómeros empleados para formar el lote maestro. También pueden agregarse otros ingredientes junto con el elastómero adicional durante la etapa de mezcla en seco, incluyendo, por ejemplo, aceite extensor, agente de relleno en partículas adicional, agentes de curado, etc., en aquellas realizaciones donde se agrega agente de relleno en partículas adicional durante la etapa de mezcla en seco tal agente adicional puede ser el mismo o diferente de los agentes de relleno utilizados en el lote maestro formado por la etapa de mezcla en húmedo.
Los aparatos y técnicas preferidos antes mencionados para producir las mezclas de composición elastoméricas divulgadas aquí se discuten junto con los dibujos anexos, donde una etapa de mezcla en húmedo de flujo continuo para producir lote maestro elastomérico emplea un flujo continuo semiconfinado de látex elastomérico, por ejemplo, látex de goma natural (látex de campo o concentrado) mezclado con una pasta de agente de relleno, por ejemplo, una pasta acuosa de negro de carbón, en un reactor de coagulación conformando una zona de coagulación elongada la cual se extiende preferiblemente con una sección transversal que se incrementa progresivamente, desde un extremo de entrada hasta un extremo de descarga. El término flujo "semiconfinado" se refiere a una característica altamente ventajosa. Tal como se utiliza aquí el término intenta indicar que la ruta de flujo seguida por el fluido de látex mezclado y la pasta de agente de relleno dentro del reactor de coagulación está cerrado o sustancialmente cerrado corriente arriba de la zona de mezcla y se abre en el extremo opuesto corriente abajo del reactor de coagulación, esto es, en el extremo de descarga del reactor de coagulación. Las condiciones de turbulencia en la porción corriente arriba de la zona de coagulación se mantienen en marcha, al menos en forma de un estado cuasibalanceado concurrentemente con condiciones sustancialmente de tipo flujo de tapón en el extremo de descarga del reactor de coagulación. El extremo de descarga está "abierto" al menos en el sentido de que permite la descarga de los coágulos, generalmente en o cerca a la presión atmosférica y, típicamente, por simple caída por gravedad (opcionalmente dentro con una ruta de flujo interna o disimulada) en medios de recolección adecuados, tales como el saltador de alimentación de un extrusor desaguador. Así, el flujo los semiconfinado da como resultado un gradiente de turbulencia que se extiende axial o longitudinalmente dentro de al menos una porción del reactor de coagulación. Sin querer ceñirse estrictamente a la teoría, se entiende actualmente que la zona de coagulación es significativa al permitir una mezcla y coagulación a alta turbulencia en una porción corriente arriba del reactor de coagulación, junto con un flujo de descarga sustancialmente del tipo tapón de un producto sólido en el extremo de descarga. La inyección del negro de carbón u otra pasta de agente de relleno en forma de un chorro continuo en la zona de mezcla ocurre en una forma en marcha simultáneamente, con facilidad de recolección de los grumos del lote maestro elastomérico descargados bajo condiciones de flujo sustancialmente tipo tapón y generalmente a presión ambiente en el extremo de descarga del reactor de coagulación. De la misma forma, las velocidades axiales de la pasta a través de la boquilla de la pasta en la zona de mezcla y, típicamente, en el extremo corriente arriba de la zona de coagulación son sustancialmente más altas que en el extremo de descarga. La velocidad axial de la pasta típicamente será de varios cientos de pies por segundo a medida que entra en la zona de mezcla, preferiblemente a partir de un tubo de alimentación de calibre pequeño, orientado axialmente de acuerdo con realizaciones preferidas discutidas más adelante. La velocidad axial del flujo resultante en el extremo de entrada de un reactor de coagulación con un área transversal en expansión en una aplicación típica puede ser, por ejemplo, de 5 a 20 pies por segundo, y más usualmente de 7 a 15 pies por segundo. En el extremo de descarga, en contraste de nuevo, la velocidad axial del producto de grumo de lote maestro que está siendo descargada allí en una aplicación típica será de aproximadamente 1 a 10 pies por segundo, y más generalmente de 2 a 5 pies por segundo. Así, el flujo turbulento semiconfinado antes mencionado logra la ventaja altamente significativa de que la goma natural u otro látex elastomérico es coagulado por mezcla con negro de carbón u otro agente de relleno incluso en ausencia de un tratamiento subsecuente en una corriente o tanque de ácido, sal u otra solución de coagulación, con un suministro de producto controlado, preferiblemente cuasimoldeado desde el reactor de coagulación para procesamiento subsiguiente.
Debe entenderse en este aspecto que la referencia de "abierto" con respecto al reactor de coagulación en el extremo de descarga no pretende indicar que el extremo de descarga esté necesariamente expuesto a la vista o tenga fácil acceso por mano. En vez de eso puede estar conectado de forma permanente o liberable a un dispositivo de recolección o un dispositivo de procesamiento subsecuente, tal como un divisor (discutido adicionalmente más adelante), secador, etc. El extremo de descarga del reactor de coagulación está abierto en el sentido importante de que el flujo turbulento dentro de la zona de coagulación del reactor de coagulación, el cual está bajo alta presión y se sellado contra cualquier retroceso significativo (esto es, corriente arriba) que viaja en la zona de mezclado, permite establecer la presión antes mencionada y/o el gradiente de velocidad a medida que se desplaza hacia y sale desde el extremo de descarga.
También debe reconocerse en este aspecto que la turbulencia del flujo disminuye a lo largo del reactor de coagulación hacia el extremo de descarga. Un flujo de tapón sustancial de un producto sólido se alcanza antes del extremo de descarga, dependiendo de factores tales como el porcentaje de utilización de capacidad, selección de materiales y similares. Las referencias a que el flujo es sustancialmente un flujo de tapones en o antes del extremo de descarga del reactor de coagulación debe entenderse a la luz del hecho de que el flujo en el extremo de descarga está compuesto primaria o completamente de grumos del lote maestro, esto es, glóbulos o "gusanos" del lote maestro de elastómero coagulado. El grumo es típicamente cuasimoldeado a la forma interior de la zona de coagulación en el punto a lo largo de la zona de coagulación en la cual el flujo se hace sustancialmente un flujo en tapones. La masa siempre en avance de "gusanos" o glóbulos tienen ventajosamente un flujo tipo tapón en el sentido de que viaja generalmente o primariamente en dirección axial hacia el extremo de descargue y en cualquier punto en el tiempo en una sección transversal dada de la zona de la coagulación cerca del extremo de descarga tiene una velocidad uniforme regularmente, de tal manera que se recoleta y se controla fácilmente para procesamiento posterior. Así, el aspecto de mezcla de la fase fluida divulgado aquí puede llevarse a cabo ventajosamente en un estado de balance o en condiciones de estado de cuasibalance, dando como resultado altos niveles de uniformidad del producto.
Una realización preferida de la etapa de mezcla en húmedo del método y aparato divulgados aquí se ilustra esquemáticamente en la Figura 1. Los experimentados en la técnica reconocerán que los diversos aspectos de la configuración sistema, selección de componentes y similares dependerán hasta cierto grado de las características particulares de la aplicación buscada. Así, por ejemplo, factores tales como la capacidad máxima de rendimiento del sistema y la flexibilidad en la selección del material influirán en el tamaño y disposición de los componentes del sistema. En general, tales consideraciones encajarán bien dentro de la capacidad de las personas experimentadas en la técnica dado el beneficio de la presente divulgación. Se ve que el sistema ilustrado en la Figura 1 incluye medios para alimentar látex de goma natural u otro fluido de látex elastomérico a baja presión y baja velocidad continuamente a una zona de mezcla de un reactor de coagulación. Más particularmente, se muestra un tanque 10 de látex a presión, para mantener el suministro de alimentación de látex bajo presión. Alternativamente, puede utilizarse un tanque de almacenamiento de látex, equipado con una bomba peristáltica o series de bombas u otros medios de alimentación adecuados adaptados para mantener el fluido de látex elastomérico alimentado a través de la línea de alimentación 12 a una zona de mezcla de un reactor de coagulación 14. El fluido de látex en el tanque 10 puede mantenerse bajo presión de aire o nitrógeno o similares, de tal manera que el fluido de látex se alimente la zona de mezcla a una presión lineal de preferiblemente menor de 10 psig, más preferiblemente alrededor de 2 -8 psig, y típicamente alrededor de 5 psig. La presión de alimentación de látex y las líneas de flujo, conexiones, etc., de los medios de alimentación de látex deben disponerse de manera que produzcan desgarre en el fluido de látex que fluye tan bajo como sea razonablemente posible. Preferiblemente todas las líneas de flujo, por ejemplo, son lisas, con giros solamente de radio grande, si lo hay, e interconexiones línea a línea suaves o suavizadas. La presión se selecciona para producir la velocidad de flujo deseada en la zona de mezcla; un ejemplo de velocidad de flujo útil es no más de aproximadamente 12 pies por segundo.
Los fluidos de látex elastoméricos adecuados incluyen tanto redes elastoméricas naturales como sintéticas y mezclas de látex. El látex debe, desde luego, ser adecuado para coagulación mediante el agente de relleno en partículas seleccionado y debe ser adecuado para el propósito o aplicación buscado del producto de goma final. Estará dentro de la capacidad de los experimentados en la técnica seleccionar un látex elastomérico adecuado o una mezcla adecuada de redes elastoméricas para uso en los métodos y aparatos divulgados aquí, dado el beneficio de esta divulgación. Elastómeros de ejemplo incluyen, pero no se limitan a, gomas, polímeros (por ejemplo, homopolímeros, copolímeros y/o terpolímeros) de 1,3-butadieno, estireno, isopreno, isobutileno, 2,3-dimetil1,3-butadieno, acrilonitrilo, etileno y propileno y similares. El elastómero puede tener una temperatura de transición vítrea (Tg) medida por calorimetría diferencial de barrido (DSC) que varía desde aproximadamente -120ºC hasta aproximadamente 0ºC. Ejemplos incluyen, pero no se limitan a, goma estireno-butadieno (SBR), goma natural y sus derivados tales como el goma clorada, polibutadieno, poliisopreno, poli(estireno-co-butadieno) y los derivados de aceites extensores de cualquiera de ellos. Pueden utilizarse mezclas de cualquiera de los anteriores. El látex puede estar en un líquido portador acuoso. Alternativamente, el líquido portador puede ser un solvente hidrocarburo. En cualquier evento, el fluido de látex elastomérico debe ser adecuado para una alimentación controlada continua a una velocidad, presión y concentración apropiadas en la zona de mezcla. Las gomas sintéticas adecuadas en particular incluyen: copolímeros que van desde aproximadamente 10 hasta aproximadamente 70 por ciento en peso de estireno y desde aproximadamente 90 hasta aproximadamente 30 por ciento en peso de butadieno, tales como un copolímero de 19 partes de estireno y 81 partes de butadieno, un copolímero de 30 partes de estireno y 70 partes de butadieno, un copolímero de 43 partes de estireno y 57 partes de butadieno y un copolímero de 50 partes de estireno y 50 partes de butadieno; los polímeros y copolímeros de los dienos conjugados tales como polibutadieno, poliisopreno, policloropreno, y similares, y los copolímeros de tales dienos conjugados con un monómero que contiene un grupo etilénico copolimerizable con el mismo tales como estireno, metil estireno, cloroestireno, acrilonitrilo, 2-vinil-piridina, 5-metil-2-vinilpiridina, 5-etil-2-vinilpiridina, 2-metil-5-vinilpiridina, acrilatos sustituidos con alquilo, vinil cetona, metil isopropenil cetona, metil vinil éter, ácidos carboxílicos alfametileno y los ésteres y amidas de los mismos tales como ácido acrílico y amida del ácido dialquilacrílico. También son adecuados para uso aquí copolímeros de etileno y otras olefinas alfa altas tales como propileno, buteno-1 y penteno-1.
El elastómero adicional agregado durante la etapa de mezcla en seco del método de mezcla en húmedo/seco divulgado aquí puede emplear un elastómero o mezcla de elastómeros adecuados para el uso o aplicación buscados, incluyendo los listados anteriormente para uso en la etapa de mezcla en húmedo. De acuerdo con ciertas realizaciones preferidas, el látex elastomérico empleado en la etapa de mezcla en húmedo es látex de goma natural y el elastómero adicional empleado en la etapa de mezclado en seco es goma de butadieno (BR). En tales realizaciones preferidas, la goma de butadieno forma preferiblemente la fase o constituyente menor de la mezcla de composición elastomérica, lo más preferiblemente de 10% a 50% en peso del elastómero total en la mezcla de composición elastomérica. De acuerdo con ciertas otras realizaciones preferidas, el látex elastomérico empleado en la etapa de mezcla en húmedo es látex de goma natural y el elastómero adicional empleado en la etapa de mezcla en seco es goma de estireno-butadieno (SBR). En tales realizaciones preferidas, el SBR forma preferiblemente la fase o constituyente principal de la mezcla de composición elastomérica, siendo lo más preferiblemente de 50% a 90% en peso del elastómero total en la mezcla de composición elastomérica. De acuerdo con ciertas otras realizaciones preferidas, el elastómero adicional es goma natural. De acuerdo con ciertas otras realizaciones preferidas, el látex elastomérico empleado en la etapa de mezcla en húmedo es látex de goma de butadieno y el elastómero adicional empleado en la etapa de mezcla en seco es SBR. En tales realizaciones preferidas, el SBR preferiblemente es del 10% al 90% en peso del elastómero total en la mezcla de composición elastomérica. De acuerdo con ciertas otras realizaciones preferidas, el látex elastomérico empleado en la etapa de mezcla en húmedo es látex de goma de butadieno y el elastómero adicional empleado en la etapa de mezcla en seco es goma natural. En tales realizaciones preferidas, la goma natural es preferiblemente el constituyente o fase menor de la mezcla de composición elastomérica, lo más preferiblemente de 10% a 50% en peso del elastómero total en la mezcla de composición elastomérica. De acuerdo con ciertas otras realizaciones preferidas al emplearse de látex de goma de butadieno en la etapa de mezcla en húmedo, el elastómero adicional es adicionalmente goma de butadieno. De acuerdo con ciertas otras realizaciones preferidas, el látex elastomérico empleado en la etapa de mezcla en húmedo es SBR y el elastómero adicional es goma de butadieno. En tales realizaciones preferidas, la goma de butadieno preferiblemente va de 10% a 90% en peso del elastómero total en la mezcla de composición elastomérica. De acuerdo con ciertas otras realizaciones preferidas, el látex elastomérico empleado en la etapa de mezcla en húmedo es SBR y el elastómero adicional es goma natural. En tales realizaciones preferidas, la goma natural preferiblemente es el constituyente o fase principal, lo más preferiblemente de 50% a 90% en peso del elastómero total en la mezcla de composición elastomérica. En ciertas otras realizaciones preferidas se emplea SBR tanto en las etapas de mezcla en húmedo como de mezcla en seco, siendo así esencialmente el 100% del elastómero en la mezcla de composición elastomérica.
Como se anotará adicionalmente más abajo, las composiciones de goma pueden contener, además del elastómero y el agente de relleno, agentes de curado, un agente de acoplamiento y opcionalmente, diversos auxiliares de procesamiento, extensores oleosos y antidegradantes. En este aspecto, deberá entenderse que las mezclas de composición elastomérica divulgadas aquí incluyen composiciones vulcanizadas (VR), vulcanizados termoplásticos (TPV), elastómeros termoplásticos (TPE) y poliolefinas termoplásticas (TPO). Los materiales TPV, TPE y TPO se clasifican adicionalmente por su capacidad de ser extrudidos y moldeados varias veces sin pérdida sustancial de las características de rendimiento. Así, al realizar mezclas de composición elastomérica pueden utilizarse uno o más agentes de curado tales como, por ejemplo, azufre, donadores de azufre, activadores, aceleradores, peróxidos y otros sistemas utilizados para efectuar la vulcanización de la composición elastomérica.
Cuando el látex elastomérico empleado en la etapa de mezcla en húmedo comprende látex de goma natural, el látex de goma natural puede comprender látex de campo o concentrado de látex (producido, por ejemplo, por evaporación, centrifugación o encremado). El látex de goma natural debe, desde luego, ser adecuado para la coagulación por parte del negro de carbón. El látex es provisto típicamente en un líquido portador acuoso. Alternativamente, el líquido portador puede ser un solvente hidrocarburo. En cualquier caso, el fluido de látex de goma natural debe ser adecuado para la alimentación continua controlada a una velocidad, presión y concentración apropiadas en la zona de mezcla. La inestabilidad bien conocida del látex de goma natural se ajusta de manera ventajosa, en cuanto que es sometido a una presión relativamente baja y bajo desgarramiento a través del sistema hasta que entra en el flujo turbulento semiconfinado antes mencionado al encontrar la velocidad y la energía cinética extraordinariamente altas de la pasta de negro de carbón en la zona de mezcla. En ciertas realizaciones preferidas, por ejemplo, la goma natural se alimenta a la zona de mezcla a una presión de aproximadamente 5 psig, a una velocidad de alimentación en el rango de aproximadamente 3 -12 pies por segundo, más preferiblemente a aproximadamente 4 - 6 pies por segundo. La selección de un látex o mezcla de látex adecuados caerá bien dentro de la habilidad de las personas experimentadas en la técnica dado el beneficio de la presente divulgación y el conocimiento de los criterios de selección generalmente bien reconocidos en la industria.
El fluido de agente de relleno en partículas, por ejemplo, pasta de negro de carbón, se alimenta a la zona de mezcla en el extremo de entrada del reactor de coagulación 14 a través de la línea de alimentación 16. La pasta puede comprender cualquier agente de relleno adecuado en un fluido portador adecuado. La selección del fluido portador dependerá principalmente de la selección del agente de relleno en partículas y de los parámetros del sistema. Pueden utilizarse tanto los líquidos acuosos como no acuosos, siendo preferida el agua en muchas realizaciones en vista de su coste, disponibilidad y adecuabilidad de uso en la producción de negro de carbón y ciertas otras pastas de agentes de relleno.
Cuando se utiliza un agente de relleno de negro de carbón, la selección del negro de carbón dependerá principalmente del uso buscado para la mezcla de composición elastomérica. Opcionalmente, el agente de relleno de negro de carbón puede incluir también cualquier material que pueda ser convertido en una pasta y alimentado a la zona de mezcla de acuerdo con los principios divulgados aquí. Agentes de relleno en partículas adicionales adecuados adicionales incluyen, por ejemplo, agentes de relleno conductores, agentes de relleno reforzantes, agentes de relleno que comprenden fibras cortas (típicamente que tiene una relación de aspecto L/D menor de 40), hojuelas, etc. Así, los agentes de relleno en partículas de ejemplo pueden emplearse en la producción de un lote maestro elastomérico de acuerdo con los métodos y aparatos divulgados aquí, y son negro de carbón, sílica ahumada, sílica precipitada, negro de carbón recubierto, negros de carbón funcionalizados químicamente, tales como los que tienen unidos grupos orgánicos, y negro de carbón tratado con silicio, bien sea solos o en combinación uno con otro. Negros de carbón funcionalizados químicamente adecuados incluyen los divulgados en la Solicitud Internacional No. PCT/US9516194 (WO9618688), cuya divulgación se incorpora aquí como referencia. En un negro de carbón tratado con silicio, una especie que contiene silicio tal como óxido o carburo de silicio, se distribuye a través de al menos una porción del agregado de negro de carbón como parte intrínseca del negro de carbón. Los negros de carbón convencionales existen en la forma de agregados, consistiendo cada agregado de una fase sencilla, la cual es carbono. Esta fase puede existir en la forma de una cristalita grafítica y/o carbono amorfo, y usualmente es una mezcla de las dos formas. Tal como se discute aquí en otro lugar, los agregados de negro de carbón puede modificarse depositando especies que contienen silicio, tales como sílica, sobre al menos una porción de la superficie de los agregados de negro de carbón. El resultado puede ser descrito como negros de carbón recubiertos con silicio. Los materiales descritos aquí como negros de carbón tratados con silicio no son agregados de negro de carbón que han sido recubiertos o modificados de alguna otra manera, sino que realmente representan una clase diferente de agregado. En los negros de carbón tratados con silicio, los agregados contienen dos fases. Una fase es carbón, la cual aún está presente como cristalita grafítica y/o carbón amorfo, mientras que la segunda fase es sílica (y posiblemente otras especies que contienen silicio). Así, la fase de las especies que contienen silicio del negro de carbón tratado con silicio son una parte intrínseca del agregado; está distribuida a través de al menos una porción del agregado. Será evidente que los agregados de fase múltiple son bastante diferentes de los negros de carbón recubiertos con sílica mencionados anteriormente, que consisten de agregados de negro de carbón de fase sencilla preformados que tienen especies que contienen silicio depositadas sobre su superficie. Tales negros de carbón pueden ser tratados en su superficie con el fin de colocar una funcionalidad sílica sobre la superficie del agregado de negro de carbón. En este proceso, se trata un agregado existente de tal manera que se deposite i se recubra con sílica (así como posiblemente otras especies que contienen silicio) sobre al menos una porción de la superficie del agregado. Por ejemplo, puede utilizarse una solución acuosa de silicato de sodio para depositar sílica amorfa sobre la superficie de los agregados de negro de carbón en una pasta acuosa a un pH alto, tal como 6 o superior, tal como se discute en la publicación de patente abierta Japonesa no examinada (Kokai) No. 63-63755. Más específicamente, el negro de carbón puede ser dispersado en agua para obtener una pasta acuosa que consiste, por ejemplo, de aproximadamente 5% en peso de negro de carbón y 95% en peso de agua. La pasta se calienta hasta por encima de aproximadamente 70ºC, tal como a 85-95ºC, y el pH se ajusta por encima de 6, tal como hasta un rango de 10-11 con una solución alcalina. Se hace una preparación separada de solución de silicato de sodio, que contiene la cantidad de sílica que se desea depositar sobre el negro de carbón, y una solución ácida para llevar la solución de silicato de sodio a un pH neutro. El silicato de sodio y las soluciones ácidos se agregan gota a gota a la pasta, la cual se mantiene en su valor de pH de partida con solución de ácido o álcalis según sea apropiado. La temperatura de la solución también se mantiene. Una rata sugerida para adición de la solución de silicato de sodio es calibrar la adición gota a gota para agregar aproximadamente 3 por ciento en peso de ácido silícico, con respecto a la cantidad total de negro de carbón, por hora. La pasta debe ser agitada durante la adición, y después de terminarla, durante varios minutos (tales como 30) hasta unas pocas horas (esto es, 2-3). En contraste, los negros de carbón tratados con silicio pueden ser obtenidos manufacturando negro de carbón en presencia de compuestos volatilizables con contenido de silicio. Tales negros de carbón se producen preferiblemente en un reactor de negros de carbón de horno modular o "por etapas" que tienen una zona de combustión seguida por una zona de diámetro convergente, una zona de inyección de alimentación de materias primas con un diámetro restringido, y una zona de reacción. Se localizan una zona de enfriamiento corriente abajo de la zona de reacción. Típicamente, se asperja un líquido de enfriamiento, generalmente agua en la corriente de partículas de negro de carbón recién formadas que fluyen desde la zona de reacción. En la producción de negro de carbón tratado con silicio el compuesto volatilizable que contiene silicio antes mencionado se introduce en el reactor de negro de carbón en un punto corriente arriba de la zona de enfriamiento. Compuestos útiles son compuestos volatilizables a temperaturas del reactor de negro de carbón. Ejemplos incluyen, pero no se limitan a, silicatos, tal como tetraetoxi ortosilicato (TEDS) y tetrametoxi ortosilicato, silanos, tales como, tetraclorosilano, y tricloro metilsilano; y polímeros de silicona volátiles tales como octametilciclotetrasiloxano (OMTS). La rata de flujo del compuesto volatilizable determinará el porcentaje en peso de silicio en el negro de carbón tratado. El porcentaje en peso de silicio en el negro de carbón tratado varía típicamente desde aproximadamente 0.1 por ciento a 25 por ciento, preferiblemente desde aproximadamente 0.5 por ciento hasta aproximadamente 10 por ciento, y más preferiblemente desde aproximadamente 2 por ciento hasta aproximadamente 6 por ciento. El compuesto volatilizable puede ser premezclado con la materia prima de alimentación formadora del negro de carbón e introducido con la materia prima de alimentación en la zona de reacción. Alternativamente, el compuesto volatilizable puede ser introducido a la zona de reacción separadamente, bien sea corriente arriba o corriente abajo del punto de inyección de la materia prima de alimentación.
Como se anotó anteriormente, pueden utilizarse los aditivos, y en este aspecto los agentes de acoplamiento útiles para el acoplamiento de la sílica sobre el negro de carbón pueden considerarse como útiles con los negros de carbón tratados con silicio. Los negros de carbón y numerosos agentes de relleno en partículas adecuados están disponibles comercialmente y son conocidos por los expertos en la técnica.
La selección del agente de relleno en partículas o mezclas de agentes de relleno en partículas dependerá principalmente del uso buscado para las mezclas de composición elastomérica. Tal como se utiliza aquí, el agente de relleno en partículas puede incluir cualquier material que pueda ser convertido en una pasta y alimentado a la zona de mezcla de acuerdo con los principios divulgados aquí. Agentes de relleno en partículas adecuados incluyen, por ejemplo, agentes de relleno conductores, agentes de relleno de refuerzo, agentes de relleno que comprenden fibras cortas (que tiene típicamente una relación de aspecto L/D menor de 40), hojuelas, etc. Además de negro de carbón y de los agentes de relleno tipo sílica mencionados anteriormente, pueden conformarse agentes de relleno a partir de arcilla, vidrio, polímeros, tales como fibra de aramida, etc. Estará dentro de la capacidad de las personas experimentadas en la técnica el seleccionar agentes de relleno en partículas adecuados para uso en el método y aparato descritos aquí dado el beneficio de la presente divulgación, y se espera que cualquier agente de relleno adecuado para uso en composiciones elastoméricas puede incorporarse en las composiciones elastoméricas que utilizan las enseñanzas de la presente divulgación. Desde luego, pueden utilizarse también mezclas de los diversos agentes de rellenos en partículas discutidos aquí.
Realizaciones preferidas consistentes con la Figura 1 están adaptadas especialmente para la preparación de un fluido de agente de relleno en partículas que comprende pastas acuosas de negro de carbón. De acuerdo con principios conocidos, se entenderá que los negros de carbón que tienen área superficial inferior por unidad de peso deben ser utilizados en concentraciones más altas en la pasta de partículas para alcanzar la misma eficacia de coagulación que concentraciones inferiores de negro de carbón que tienen mayor área superficial por unidad de peso. El tanque de mezcla con agitación 18 recibe agua y negro de carbón, por ejemplo, negro de carbón opcionalmente en pellas, para preparar un fluido de mezcla inicial. Tal fluido de mezcla pasa a través de la puerta de descarga 20 hacia la línea de fluido 22 equipada con medios de bombeo 24, tal como una bomba de diafragma o similares. La línea 28 pasa el fluido de mezcla a un molino coloidal 32, o alternativamente a un triturador en línea o similares, a través de la perta de entrada 30. El negro de carbón se dispersa en el líquido portador acuoso para formar un fluido de dispersión el cual pasa a través de la puerta de salida 31 y la línea de fluido 33 hacia un homogenizador 34. Los medios de bombeo 36, que preferiblemente comprenden una bomba de cavidad progresiva
o similar están provistos en la línea 33. El homogenizador 34 dispersa más finamente el negro de carbón en el líquido portador para formar la pasta de negro de carbón que se alimenta a la zona de mezcla del reactor de coagulación 14. Tiene un puerto de entrada 37 en comunicación fluida con la línea 33 desde el molino coloidal 32. El homogenizador 34 puede comprender preferiblemente, por ejemplo, un sistema Microfluidizer® disponible comercialmente de Microfluidics International Corporation (Newton, Massachusetts, Estados Unidos). También son adecuados homogenizadores tales como los modelos de las series MS18 y MS45 MC120 disponibles de la APV Homogenizer Division de APV Gaulin. Inc. (Wilmington, Massachusetts, Estados Unidos). Otros homogenizadores adecuados están disponibles comercialmente y serán evidentes para las personas experimentadas en la técnica, dado el contenido de la presente divulgación. Típicamente, el negro de carbón en agua preparado de acuerdo con el sistema anteriormente descrito tendrá al menos aproximadamente 90% de aglomerados menores de aproximadamente 30 micrones, más preferiblemente al menos 90% de aglomerados menores de aproximadamente 20 micrones de tamaño. Preferiblemente, el negro de carbón es roto hasta un tamaño promedio de 5 - 15 micrones, por ejemplo, aproximadamente 9 micrones. La puerta de salida 38 pasa la pasta de negro de carbón desde el homogenizador a la zona de mezcla a través de la línea de alimentación 16. La pasta puede alcanzar 10,000 a 15,000 psi en la etapa de homogenización y salir del homogenizador a aproximadamente 600 psi o más. Preferiblemente, se utiliza un alto contenido de negro de carbón para reducir la tarea de eliminar el exceso de agua u otro vehículo. Típicamente, se prefiere aproximadamente 10 a 30 por ciento en peso de negro de carbón. Los experimentados en la técnica reconocerán, dado el beneficio de esta divulgación, que el contenido de negro de carbón (en porcentaje en peso) de la pasta y la velocidad de flujo de la pasta hacia la zona de mezcla deberían coordinarse con la rata de flujo del látex de goma natural hacia la zona de mezcla para alcanzar un contenido deseado de negro de carbón (en phr) en el lote maestro. El contenido de negro de carbón se seleccionará de acuerdo con principios conocidos para alcanzar las características y propiedades de comportamiento del material adecuadas para la aplicación buscada para el producto. Típicamente, por ejemplo, se utilizan negros de carbón de valor CTAB de 10 o más en cantidad suficiente para alcanzar un contenido de negro de carbón en el lote maestro de de al menos aproximadamente 30 phr.
La pasta preferiblemente se utiliza en la producción de lotes maestros inmediatamente después de ser preparada. Los conductos de fluido que portan la pasta y cualquier tanque de almacenamiento opcional y similares, deberían establecer o mantener condiciones que sustancialmente conserven la dispersión del negro de carbón en la pasta. Esto es, la reaglomeración o deposición sustancial del agente de relleno en partículas en la pasta debe evitarse o reducirse hasta un grado razonablemente práctico. Preferiblemente todas las líneas de flujo, por ejemplo, son lisas, con interconexiones lisas línea a línea. Opcionalmente, se utiliza un acumulador entre el homogenizador y la zona de mezcla para reducir fluctuaciones en presión o velocidad de la pasta en la punta de la boquilla de pasta en la zona de mezcla.
El fluido de látex de goma natural u otros fluidos de látex elastoméricos que pasan a la zona de mezcla a través de la línea de alimentación 12 y la pasta de negro de carbón alimentada a la zona de mezcla a través de la línea de alimentación 16 bajo parámetros apropiados del proceso tal como se discutieron anteriormente, pueden producir una nueva composición elastomérica, específicamente, grumos del lote maestro elastomérico. También se proporcionan medios para incorporar diversos aditivos en el lote maestro de elastómero. Un fluido de aditivos que comprende uno
o más aditivos puede ser alimentado a la zona de mezcla en forma de una corriente de alimentación separada. Uno
o más aditivos también pueden ser premezclados, si es adecuado, con la pasta de negro de carbón o, más típicamente, con el fluido de látex elastomérico. Los aditivos también pueden mezclarse en el lote maestro subsecuentemente, esto es, durante la etapa de mezcla en seco. Numerosos aditivos son bien conocidos para los experimentados en la técnica e incluyen, por ejemplo, antioxidantes, antiozonizantes, plastificantes, auxiliares del proceso (por ejemplo, polímeros líquidos, aceites y similares), resinas, retardantes de llama, aceites extensores, lubricantes y un mezcla de cualquiera de ellos. El uso general y selección de tales aditivos es bien conocido para los experimentados en la técnica. Su uso en el sistema divulgado aquí se entenderá fácilmente con el beneficio de la presente divulgación. De acuerdo con ciertas realizaciones alternativas, también pueden incorporarse agentes de curado de manera similar, para producir una composición de elastómero curable la cual puede ser denominada como compuesto base curable.
El grumo de lote maestro elastomérico se pasa a través del extremo de descarga del reactor de coagulación 14 a un aparato de secado adecuado. En la realización preferida de la Figura 1 el grumo de lote maestro sufre un secado en etapas múltiples. Pasa primero a un extrusor desaguador 40 y luego a través de un transportador por simple caída por gravedad u otros medios adecuados 41 a un extrusor de secado 42. En realizaciones de rutina preferidas consistentes con lo que se ilustra en la Figura 1, en la producción de un lote maestro de goma natural con un agente de relleno de negro de carbón, la operación de desaguado/secado reducirá típicamente el contenido de agua a aproximadamente 0 a 1 por ciento en peso, más preferiblemente, .0 a .5 por ciento en peso. Secadores adecuados son bien conocidos y están disponibles comercialmente, incluyendo, por ejemplo, secadores extrusores, secadores de lecho fluidizado, secadores de aire caliente u otros secadores de horno, y similares, tales como French Mills disponible de la French Oil machinery Co., (Piqua, Ohio, Estados Unidos).
Los grumos del lote maestro seco del extrusor de secado 42 se llevan mediante un transportador de enfriamiento 44 a un embalador 46. El embalador es una característica opcional ventajosa del aparato de la Figura 1, donde los grumos del lote maestro seco se comprimen dentro de una cámara para formar bloques estables comprimidos o similares. Típicamente, cantidades de 25 a 75 libras del lote maestro de elastómero se comprimen en bloques o balas para transporte, procesamiento posterior, etc. Alternativamente, el producto se provee como pellas por ejemplo, cortando los grumos.
Las dimensiones y características de diseño particulares del reactor de coagulación 14, incluyendo la zona de mezcla/ensamblaje de la zona de coagulación, adecuados para una realización de acuerdo con la Figura 1, dependerá en parte de factores de diseño tales como la capacidad de producción deseada, la selección de materiales que se va a procesar, etc. Una realización preferida está ilustrada en la Figura 2 donde un reactor de coagulación 48 tiene una cabeza de mezcla 50 unida a una zona de coagulación 52 con un sello a prueba de fluidos en la unión 54. La Figura 2 ilustra esquemáticamente un primer subsistema 56 para alimentar látex de elastómero a la zona de mezcla, un subsistema 57 para alimentar pasta de negro de carbón u otro fluido de agente de relleno en partículas a la zona de mezcla, y el subsistema 58 para alimentar un fluido de aditivos opcional, aire presurizado, etc., a la zona de mezclado. Se ve que la cabeza de mezcla 50 tiene tres diferentes canales de alimentación 60, 61,
62. El canal de alimentación 60 está provisto para el fluido de látex de goma natural y el canal de alimentación 62 está provisto para la alimentación directa de gas y/o fluido de aditivos. En conexión con las realizaciones preferidas que emplean la inyección directa de aditivos, se logra una ventaja significativa en relación con los aditivos de hidrocarburos o, más generalmente, con aditivos no miscibles con agua. Mientras que es bien conocido emplear intermediarios de emulsión para crear emulsiones de aditivos adecuadas para premezclado con un látex elastomérico, las realizaciones preferidas de acuerdo con la presente divulgación que emplean inyección directa de aditivos puede eliminar no solamente la necesidad de intermediarios de emulsión, sino también el equipo tales como tanques, equipos de dispersión, etc., utilizados previamente en la formación de las emulsiones. Pueden alcanzarse por lo tanto, reducciones en los costes y complejidad de la manufactura. Tal como se discute más adelante adicionalmente, el canal de alimentación 61 a través del cual se alimenta la pasta a la zona de mezcla es preferiblemente coaxial con la zona de mezcla y la zona de coagulación del reactor de coagulación. Mientras que solamente se muestra un canal de alimentación individual para recibir el fluido de látex elastomérico, puede disponerse cualquier número adecuado de canales de alimentación alrededor del canal de alimentación central a través del cual la pasta es alimentada a la zona de mezcla. Así, por ejemplo, en la realización de la Figura 2 puede proveerse un cuarto canal de alimentación a través del cual se alimentan aire atmosférico o aire a alta presión u otro gas a la zona de mezcla. El aire presurizado puede ser inyectado de la misma forma con la pasta a través del canal de alimentación 61 axial central. Los canales de alimentación auxiliares pueden sellarse temporal o permanentemente cuando no están en uso.
Se ve que la zona de coagulación 52 del reactor 48 tiene una primera porción 64 que tiene una longitud axial la cual puede seleccionarse dependiendo de los objetivos de diseño para la aplicación en particular buscada. Opcionalmente, la zona de coagulación puede tener un área de sección transversal constante todo a lo largo o sustancialmente todo a lo largo de su longitud axial. Así, por ejemplo, el reactor de coagulación puede definir un canal de flujo tubular recto simple desde la zona de mezcla hasta el extremo de descarga. Preferiblemente, sin embargo, por las razones discutidas anteriormente, tal como se ve en la realización preferida ilustrada en los dibujos, el área transversal de la zona de coagulación 52 se incrementa progresivamente desde el extremo de entrada 66 hasta el extremo de descarga 68. Más específicamente, el área transversal se incrementa en dirección longitudinal desde el extremo de entrada hasta el extremo de descarga. En la realización de la Figura 2, la zona de coagulación se incrementa en el área de sección transversal progresivamente en el sentido de que incrementa continuamente siguiendo la porción de sección transversal 64 constante. Las referencias al diámetro y al área de sección transversal del reactor de coagulación (o, más apropiadamente, la zona de coagulación definida dentro del reactor de coagulación) y otros componentes, a menos que se establezca otra cosa, se deben entender como el área en sección transversal del pasaje de flujo abierto y el diámetro interior de tal pasaje de flujo.
La composición de elastómero, específicamente, el látex elastomérico coagulado en la forma de un grumo de lote maestro 72, se ve cuando está siendo descargado desde el reactor de coagulación 48 a través de un divisor 70. El divisor 70 es un conducto ajustable conectado al reactor de coagulación en el extremo de descarga 68. Es ajustable de tal manera que pase selectivamente el grumo del lote maestro de elastómero 72 a cualquiera de diversos sitios de recepción diferentes. Esta característica facilita ventajosamente la eliminación de grumos del lote maestro de la corriente de producto, por ejemplo, para pruebas o al comienzo de una producción cuando la inestabilidad inicial del proceso puede dar como resultado temporalmente un producto inferior. Además, el divisor proporciona flexibilidad en el diseño al producto directo desde el reactor de coagulación a diferentes rutas de procesamiento posterior. De acuerdo con la realización preferida de la Figura 1, el grumo del lote maestro 72 que está siendo descargado desde el reactor de coagulación 48 a través del divisor 70 se recibe en un secador 40.
La dimensión en sección transversal del reactor de coagulación 48 se ve incrementar en un ángulo global α entre el extremo de entrada 66 y el extremo de descarga 68. El ángulo es mayor de 0º y en realizaciones preferidas es menor de 45º, más preferiblemente menor de 15º, lo más preferiblemente de 0.5º a 5º. Se anota que el ángulo α es la mitad de un ángulo, en cuanto se mide a partir del eje longitudinal central de la zona de coagulación hasta un punto A en la circunferencia exterior de la zona de coagulación al final del reactor de coagulación. En este aspecto, debe entenderse que el área transversal de la porción corriente arriba del reactor de coagulación, esto es, la porción cercana al extremo de entrada 66, se incrementa preferiblemente de forma suficientemente lenta para alcanzar un cuasimoldeo del coágulo de acuerdo con los principios discutidos anteriormente. Un ángulo demasiado grande de expansión de la zona de coagulación puede dar como resultado que el lote maestro de elastómero no se produzca en forma en forma de grumos deseables de glóbulos o gusanos y simplemente se asperje a través del reactor de coagulación. El incremento del calibre del reactor de coagulación muy lentamente puede dar como resultado, en ciertas realizaciones, un retroceso o acumulación de los productos alimentados y del producto de reacción en la cabeza de mezcla. En una porción corriente abajo de la zona de coagulación, donde el látex se ha coagulado suficientemente y el flujo se ha hecho esencialmente un flujo de tapones, la zona de coagulación puede extenderse bien sea con o sin incremento en el área transversal. Así, cualquier referencia aquí a la zona de coagulación en realizaciones preferidas que tienen un área transversal que se incrementa progresivamente debe entenderse como referencia primariamente a esa porción de la zona de coagulación donde el flujo no es sustancialmente un flujo de tapón.
El área transversal de la zona de coagulación (esto es, al menos la porción corriente arriba de la misma, tal como se discute inmediatamente más arriba) puede incrementarse a manera de etapas, más que en la forma continua ilustrada en la realización de la Figura 2. En la realización ilustrada en la Figura 3, se ve que un sistema de flujo continuo para la producción de un lote maestro elastomérico de acuerdo con el método de aparatos descrito aquí, incluye una zona de cabeza de mezcla/coagulación donde el área transversal de la zona de coagulación se incrementa a manera de etapas. Preferiblemente, las secciones individuales en la zona de coagulación en tal realización por etapas tienen una conexión fácil a secciones adyacentes. Esto es, se combina generalmente para formar una superficie de zona de coagulación generalmente continua y suave, en oposición por ejemplo, a un incremento agudo o instantáneo en el diámetro de una sección a la siguiente. La zona de coagulación de la Figura 3 se incrementa en tres etapas, de tal forma que hay cuatro secciones diferentes o subzonas 74-77. En consistencia con los principios de diseño discutidos inmediatamente más arriba, el área transversal de la zona de coagulación 53 se incrementa desde el extremo de entrada 66 hasta el punto A en el extremo de descarga 68 en un ángulo global el cual alcanza el control de flujo necesario en la porción corriente arriba del reactor de coagulación. La primera sección 74 puede considerarse incluyendo (a) la porción de diámetro constante de la cabeza de mezcla 50 inmediatamente corriente abajo de la forma de mezcla, y (b) la misma o similar porción de diámetro conectada allí en la unión 54 en el extremo de entrada 66. Esta primera sección tiene un diámetro de sección transversal constante D1 y una dimensión axial de longitud L1. En esta primera sección 74 la longitud L, debe ser mayor que tres veces el diámetro D1, más preferiblemente mayor que cinco veces D, y lo más preferiblemente desde aproximadamente 12 a 18 veces D1. Típicamente, esta sección tendrá una longitud de aproximadamente 15 veces D1. Cada sección subsecuente tiene preferiblemente una dimensión transversal constante y un área transversal aproximadamente el doble de la sección precedente (esto es, corriente arriba) así, por ejemplo, la sección 75 tiene una dimensión transversal constante binaria transversal que es dos veces la de la sección 74. En la misma forma, el área transversal de la sección 76 es el doble de la sección 75, y el área transversal de la sección 77 es el doble de la sección 76. En cada una de las secciones 75-77, la longitud es preferiblemente mayor que tres veces su diámetro, más preferiblemente alrededor de 3 a 7 veces su diámetro en general alrededor de cinco veces su diámetro. Así, por ejemplo, en la sección 76 la dimensión longitudinal L3 es preferiblemente aproximadamente cinco veces su diámetro D3.
Un ensamblaje de cabeza de mezcla y zona de coagulación correspondiente a la realización de la Figura 3 se muestra en la Figura 4 parcialmente en vista de sección. La cabeza de mezcla 50 integrada con el extensor 53 de la zona de coagulación a través de la unidad 54. Define una zona de mezcla donde los multicanales múltiples de alimentación 60, 61, 62 forman una unión, con un canal elongado sustancialmente cilíndrico 80 sustancialmente coaxial con la porción de la zona de coagulación dentro del extensor 53. Se reconocerá que no es esencial para la operatividad del método y aparato descritos aquí, definir precisamente los límites de la zona de mezcla y/o de la zona de coagulación. Son posibles numerosas variaciones en el diseño de los canales de flujo, área de unión, como será evidente para aquellas personas experimentadas en la técnica dado el beneficio de la presente divulgación. En este aspecto, a manera de una guía preferida en general, en realizaciones del tipo ilustrado en la Figura 4, por ejemplo, la punta para pastas 67 está corriente arriba del inicio de la porción cilíndrica 80, estando centrada aproximadamente de forma longitudinal en la unión de los canales de alimentación. En tales realizaciones, preferiblemente, el área transversal mínima definida por el cono imaginario desde la punta para pastas 67 hasta el perímetro circunferencial al comienzo de la porción cilíndrica 80 es ventajosamente mayor que, o al menos igual a, el área transversal del canal de alimentación de látex 60. Preferiblemente, tanto el canal 80 y al menos la porción corriente arriba de la zona de coagulación donde existe turbulencia de flujo antes de completar sustancialmente la coagulación de látex elastomérico, tiene una sección transversal circular.
Los medios para alimentar la pasta de negro de carbón u otro fluido de agente de relleno en partículas según se ve comprende un tubo de alimentación 82 que se extiende sustancialmente de forma coaxial con la cámara de mezcla a una abertura o punta de boquilla para pasta 67 la cual se abre hacia la zona de coagulación. Esta es una característica altamente ventajosa de las realizaciones preferidas discutidas aquí. La pasta de negro de carbón, como se anotó anteriormente, se alimenta a la zona de mezcla a una velocidad muy alta con respecto a la velocidad de alimentación del látex, y la disposición axial del tubo de alimentación 82 de calibre estrecho da como resultado un excelente desarrollo de turbulencia de flujo. El diámetro Dm del canal 80 (el cual, como se anotó anteriormente, es de manera preferible sustancialmente igual al diámetro D1 de la porción que sigue inmediatamente de la sección 74 de la zona de coagulación) es preferiblemente al menos dos veces el diámetro interno del tubo de alimentación de pasta 82, más preferiblemente de forma aproximada de 4 a 8 veces el diámetro del tubo de alimentación 82, típicamente alrededor de 7 a 8 veces ese diámetro. Se ve que el tubo de alimentación 82 forma un sello hermético a los fluidos con el puerto de entrada 83 en el extremo corriente arriba del canal de alimentación 61 de la cabeza de mezcla 50. El diámetro del tubo de alimentación axial 82 está determinado principalmente por la rata de flujo volumétrica requerida y la velocidad axial de la pasta a medida que pasa a través de la punta de boquilla de pasta 67 hacia la cámara de mezcla. El volumen y velocidad correctos y requeridos pueden determinarse fácilmente por las personas experimentadas en la técnica dado el beneficio de esta divulgación, y será una función, en parte, de la concentración y selección de los materiales. Realizaciones tales como la ilustrada y divulgada aquí, en donde el tubo de alimentación para la pasta de negro de carbón es removible, proporciona una flexibilidad deseable en la manufactura de diferentes composiciones del lote maestro en tiempos diferentes. El tubo de alimentación usado en una producción puede retirarse y ser reemplazado por un tubo de calibre mayor o menor apropiado para una producción subsecuente. A la vista de la presión y velocidad a las cuales la pasta sale del tubo de alimentación, puede denominarse como una aspersión o chorro en la zona de mezcla. Esto debe entenderse con el significado de en al menos en ciertas realizaciones, de una inyección a alta velocidad de la pasta en un área ya sustancialmente llena con fluido. Esto es, una aspersión en el sentido de su distribución inmediata a medida que pasa a través de la punta de la boquilla de pasta, y no necesariamente en el sentido de gotitas de material que vuelan libremente en una trayectoria simple de aspersión.
Los canales de alimentación adicionales 60 y 62 según se ve forman una unión 84, 85, respectivamente, con el canal de alimentación 60 y el canal 80 corriente abajo en un ángulo β. El ángulo β puede en muchas realizaciones tener un valor desde mayor de 0º hasta menos de 180º. Típicamente, β puede ser, por ejemplo, de 30º-90º. Es deseable evitar una presión negativa, esto es, una cavitación del fluido de látex a medida que es arrastrado por la pasta a alta velocidad que sale en la punta de la boquilla de pasta 67, puesto que esto puede causar desventajosamente una mezcla inconsistente que lleva a un producto de lote maestro inconsistente. Puede inyectarse aire u otro gas o alimentarse de alguna otra manera en la zona de alimentación para ayudar en la ruptura de cualquier tal vacío. Además, una línea de alimentación expandida para el látex de goma natural que lleva al puerto de entrada 86 del canal de alimentación 60 es deseable para actuar como un reservorio de fluido de látex. En la realización preferida de la Figura 4, el canal de alimentación de látex 60 intersecta la zona de mezcla adyacente a la punta de boquilla de pasta 67. Alternativamente, sin embargo, el canal de alimentación de látex puede intersectar la corriente arriba o corriente abajo del canal de mezcla de la punta de la boquilla de pasta 67.
La pasta de negro de carbón u otro fluido de agente de relleno en partículas se suministra típicamente al tubo de alimentación 82 a una presión por encima de aproximadamente 300 psig, tal como aproximadamente 500 a 5000 psig, por ejemplo aproximadamente 1000 psig. Preferiblemente la pasta de líquido es alimentada en la zona de mezcla a través de la punta de boquilla de pasta 67 a una velocidad por encima de 100 pies por segundo, preferiblemente de aproximadamente 100 hasta aproximadamente 800 pies por segundo, más preferiblemente aproximadamente 200 a 500 pies por segundo, por ejemplo, aproximadamente 350 pies por segundo. Las flechas 51 en la Figura 4 representan la dirección general de flujo del látex elastomérico y de los materiales de alimentación auxiliares a través de los canales de alimentación 60 y 62 hacia el canal 80 por debajo de la punta de la boquilla de pasta 67. Así los fluidos de pasta y látex son alimentados a las zonas de mezcla a velocidades de corriente de alimentación enormemente diferentes, de acuerdo con los números establecidos anteriormente. Sin querer estar limitados por la teoría, se entiende actualmente que la alimentación diferencial alcanza condiciones de desgarramiento del látex en la zona de mezcla que llevan a una buena macrodispersión y coagulación.
Una realización preferida alternativa se ilustra en las Figuras 5 y 6, donde el tubo de alimentación axial sencillo 82 en la realización de la Figura 4 es reemplazado por tubos de alimentación múltiples que se extienden axialmente 90
92. Pueden emplearse incluso números mayores de tubos de alimentación, por ejemplo, hasta aproximadamente 6 u 8 tubos de alimentación que se extienden axialmente. Ventajosamente, la flexibilidad en la producción se alcanza utilizando diferentes tubos de alimentación de diámetro diferente para la producción de formulaciones diferentes. También, pueden utilizarse simultáneamente tubos de alimentación múltiple para alcanzar una buena turbulencia de flujo dentro de la zona de mezcla y zona de coagulación del reactor de coagulación.
Una realización alternativa de la cabeza de mezcla se ilustra en la Figura 7. Se ve que la cabeza de mezcla 150 define una zona de mezcla 179. Un canal de alimentación axial 161 recibe un tubo de alimentación 182 adaptado a para alimentar pasta de negro de carbón u otro fluido de agente de relleno en partículas a alta velocidad en la cámara de mezcla 179. Puede verse que el orificio central en el tubo de alimentación 182 termina en la punta de la boquilla de pasta 167. Un territorio de boquilla de diámetro constante 168 está inmediatamente corriente arriba de la punta de la boquilla de pasta 167, llevando a un área de orificio mayor 169. Preferiblemente la dimensión axial del terreno 168 es de aproximadamente 2 a 6, por ejemplo, aproximadamente 5 veces su diámetro. Un segundo canal de alimentación 160 forma una unión 184 con la zona de mezcla 179 a un ángulo de 90º para alimentar el fluido de látex elastomérico a la zona de mezcla. El diámetro transversal del canal de alimentación de fluido de látex 160 es sustancialmente mayor que el diámetro transversal de la punta de la boquilla de pasta 167 y el terreno 168. Sin querer limitarse a la teoría, la elongación axial del territorio de boquilla 168, acoplada con la sección de orificio de diámetro expandido corriente arriba del terreno de la boquilla, se considera por proveer estabilidad ventajosa en el flujo de pasta a través del tubo de alimentación 182 en la zona de mezcla 179. Se encuentra que el orificio del tubo de alimentación 182 funciona bien con un bisel de 20º, esto es, un área cónica 169 que se expande en la dirección corriente arriba a aproximadamente un ángulo de 20º. Corriente abajo de la zona de mezcla 179 hay una zona de coagulación elongada. Consistente con los principios discutidos anteriormente, tal zona de coagulación necesita ser elongada sólo marginalmente. Esto es, su dimensión axial necesita ser solamente marginalmente más grande que su diámetro. Preferiblemente, sin embargo, se utiliza una zona de coagulación progresivamente agrandada.
Como se discutió anteriormente, la coagulación del lote maestro elastomérico es sustancialmente completa en o antes del extremo del reactor de coagulación. Esto es, la coagulación ocurre sin la necesidad de agregar una corriente de solución coagulante o similar. La coagulación puede ocurrir en la zona de mezcla. La zona de mezcla puede ser considerada toda o porción de la zona de coagulación para este propósito. También, con referencia a la coagulación sustancialmente completa antes de que el lote maestro de elastómero salga del reactor de coagulación no implica que se excluya la posibilidad de un procesamiento subsecuente y de etapas de tratamiento subsiguientes, para cualquiera de los diversos propósitos apropiados para el uso buscado del producto final. En este aspecto, la coagulación sustancialmente completa en realizaciones preferidas del nuevo método divulgado aquí empleando látex de goma natural significa que al menos aproximadamente 95 por ciento del hidrocarburo de la goma del látex es coagulado, más preferiblemente al menos aproximadamente 97 por ciento en peso, y lo más preferiblemente al menos aproximadamente 99 por ciento en peso es coagulado.
El lote maestro (u otra composición de elastómero) producido por la etapa de mezcla en húmedo sufre opcionalmente cualquier procesamiento adicional adecuado antes de la adición del elastómero adicional en la etapa de mezcla en seco del método en húmedo/seco divulgado aquí. Un aparato adecuado para la etapa de mezcla en seco es obtenible comercialmente y será evidente para los experimentados en la técnica dado el beneficio de esta divulgación. Un aparato de mezcla en seco adecuado incluye, por ejemplo, mezcladores Banbury, molinos, mezcladores de rodillo, etc. Los coágulos de la etapa de mezclado en húmedo, con o sin procesamiento intermediario adicional, se introducen en el mezclador Banbury u otros dispositivos de mezcla junto con el elastómero adicional en cualquier orden adecuado y en proporción relativa adecuada para el uso aplicación pretendidos. Estará dentro de la habilidad de los experimentados en la técnica, dado el beneficio de esta divulgación determinar un orden adecuado de adición y proporción relativa para el producto de mezcla en húmedo y el elastómero adicional. De la misma forma, caerá dentro de la habilidad de los experimentados en la técnica dado el beneficio de esta divulgación seleccionar ingredientes adicionales adecuados para adicionar durante la etapa de mezcla en seco adecuados para el uso o aplicación pretendidos, por ejemplo, aceites extensores, agentes de curado, y otros aditivos conocidos para su uso en composiciones elastoméricas y mezclas de composiciones elastoméricas del tipo general divulgado aquí.
El método y el aparato divulgados y descritos aquí producen mezclas de composiciones elastoméricas que tienen excelentes propiedades físicas y características de rendimiento. Las mezclas de composición elastomérica divulgadas aquí incluyen composiciones de lote maestro producidas por los métodos y aparatos antes mencionados, así como compuestos intermediarios y productos terminados hechos a partir de tales composiciones de lote maestro. Principalmente, pueden producirse lotes maestros elastoméricos utilizando látex de goma natural (concentrado de látex o látex de campo), junto con diversos grados de agente de relleno de negro de carbón, que tienen excelentes propiedades físicas y características de rendimiento. Los negros de carbón actualmente en amplio uso comercial para aplicaciones tales como rodamiento de neumático han sido usados exitosamente, así como negros de carbón considerados hasta ahora inadecuados para uso comercial en aparatos y métodos de producción conocidos. Aquellos no adecuados debido a su alta área superficial y baja estructura los hacen imprácticos para alcanzar niveles aceptables de macrodispersión en niveles de carga comercialmente rutinarios para los negros de carbón y/o para preservar el peso molecular del elastómero y son altamente preferidos para ciertas aplicaciones de las mezclas de composición elastomérica divulgadas aquí. Tales mezclas de composición elastomérica se encuentran con una excelente dispersión de negro de carbón en el elastómero. Además, estos resultados ventajosos fueron alcanzados sin necesidad de una etapa de coagulación que involucre un tanque de tratamiento o una corriente de solución ácida u otro coagulante. Así, no solamente se evita el costo y complejidad de tales tratamientos con coagulantes, sino que también se evita la necesidad de manejar corrientes de efluente de tales operaciones.
Las técnicas de trituración en seco conocidas anteriormente de podrían lograr una dispersión igual de los agentes de relleno en mezclas de composiciones elastoméricas sin una degradación significativa del peso molecular y, por lo tanto, no podían producir las composiciones de goma natural hechas de acuerdo con ciertas realizaciones preferidas divulgadas. En este aspecto, las mezclas de composiciones elastoméricas divulgadas aquí tienen excelente macrodispersión del negro de carbón en goma natural, incluso de negros de carbón que tienen una relación de estructura a área superficial DBPA: CTAB menor de 1.2 e incluso menor de 1.0, con alto peso molecular de la goma natural. Las técnicas de mezcla conocidas en el pasado no alcanzan tal excelente macrodispersión del negro de carbón sin degradación significativa del peso molecular de la goma natural y, por lo tanto, no producen las composiciones de lote maestro y otras composiciones elastoméricas divulgadas. Las mezclas de composiciones elastoméricas preferidas de acuerdo con esta divulgación, que tienen niveles de macrodistribución de negro de carbón no alcanzados hasta ahora, pueden utilizarse en lugar de materiales elastoméricos conocidos anteriormente que tienen macrodispersión más pobre. Así, las mezclas de composición elastomérica divulgadas aquí pueden ser utilizadas como compuestos curados de acuerdo con técnicas conocidas. Tales compuestos curados se encuentran en realizaciones preferidas que tienen características físicas y propiedades de rendimiento en general comparables con, y en algunos casos significativamente mejores que, aquellas de compuestos curados comparables que comprenden lotes maestros de macrodispersión más pobre. Las mezclas de composición elastomérica pueden producirse de acuerdo con la presente invención, con tiempo de mezcla reducido, consumo de energía reducido y/o otros ahorros de costes.
Tal como se utiliza aquí, la estructura de negro de carbón puede medirse como el valor de adsorción de ftalato de dibutilo (DBPA), expresado como centímetros cúbicos de DBPA por 100 gramos negro de carbón, de acuerdo con el procedimiento definido en ASTM D2414. El área superficial de negro de carbón puede medirse como CTAB expresado como metros cuadrados por gramo de negro de carbón, de acuerdo con el procedimiento establecido en ASTM D3765-85. Se reconocerá que otros factores que afectan el nivel de dispersión alcanzable utilizando los métodos y aparatos descritos aquí, incluyen la concentración del negro de carbón en la pasta, el consumo de energía total en la pasta y consumo de energía durante la mezcla de las corrientes de fluidos, etc.
La calidad de la macrodispersión del negro de carbón en los lotes maestros de goma natural divulgados aquí es significativamente mejor que en los lotes maestros conocidos previamente de MWsol aproximadamente igual (peso promedio). En algunas realizaciones preferidas se logra una excelente distribución de negro de carbón con MWsol aproximadamente igual al de la goma natural en el estado de látex de campo, (por ejemplo, aproximadamente 1,000,000) una condición no alcanzada previamente. La ventaja de la calidad de la dispersión es especialmente significativa en las realizaciones preferidas antes mencionadas utilizando negro de carbón con baja estructura y alta área superficial, por ejemplo, DBPA menor de 110 cc/100 g. Un CTAB superior a 45 a 65 m2/g, y DBPA: CTAB menor de 1.2 y preferiblemente menor de 1.0.
Ejemplos
Procedimientos de prueba
Los siguientes procedimientos de prueba fueron utilizados en los ejemplos y comparaciones presentados más adelante.
1.
Goma enlazada: Una mezcla que pesa 0.5 g. ± 0.025 g. se pesa y coloca en 100 ml tolueno en un matraz sellado y se almacena a temperatura ambiente durante aproximadamente 24 horas. El tolueno se reemplaza entonces con 100 ml de tolueno fresco y el matraz se almacena durante 4 días. Se retira entonces la muestra del solvente y se seca al aire bajo una cabina a temperatura ambiente durante 24 horas. La muestra se seca entonces adicionalmente un horno al vacío a temperatura ambiente durante 24 horas. Se pesa entonces la muestra y la goma enlazada se calcula a partir de los datos de pérdida de peso.
2.
MWsol: Tal como se utiliza en esta divulgación y en las reivindicaciones, MWsol se refiere al peso molecular promedio en peso de la porción sol de la goma natural. Las técnicas GPC estándar para la medición del peso molecular fueron seguidas de acuerdo con lo siguiente:
2.1 Dos columnas 10 µm 106° Å, una columna 10 µm 500 Å y una columna de lecho mixto de 10 µm de Polymer Laboratories, UK.
2.2 Detección UV a 215 nm.
2.3 Solvente: Tetrahidrofurano (THF)
2.4 Concentración, nominalmente 2 mg/ml en THF.
2.5 Las muestras se dejan disolver en THF durante 3 días, estabilizadas con BHT.
2.6 Las soluciones se centrifugan para separar cualquier gel y el sobrenadante se inyecta sobre la columna.
2.7 Preparaciones de muestras. La preparación de muestra se diseña para preparar concentraciones sol en el rango de 0.5 a 0.05 por ciento en peso para proveer una buena respuesta en el detector para medición exacta de la distribución de peso molecular. Dependiendo de la carga del agente de relleno, el peso de la muestra se ajusta de acuerdo con la siguiente fórmula:
Peso de muestra = (100 + carga de agente de relleno (phr))*20/100 mg +/- 2 mg
Las muestras se colocan en viales protegidos al UV y disueltas en 4 ml de tetrahidrofurano estabilizado (THF) que contiene 0.02% hidroxitolueno butilado (BHT) durante tres días. El sobrenadante de la etapa de disolución, que contiene principalmente la porción de sol, se transfiere a tubos de centrífuga en teflón y se centrifuga en una centrífuga Avanti 30 (Beckman) durante 60 minutos a 26,000 revoluciones por minuto (correspondiente a una fuerza de campo máxima de 57,500 g). Con esta fuerza de campo, la mayor parte de la fase en gel se sedimenta dejando un sobrenadante libre de gel. Esta solución libre de gel se diluye a 1:5, de nuevo utilizando THF estabilizado. En
este punto, las muestras se transfieren a viales de GPC y se colocan dentro de un Waters 717 Auto-Muestrar (Water Corporation, Milford, Massachusetts, Estados Unidos) en preparación para la prueba de GPC.
Determinación del peso molecular. El peso molecular promedio en peso de la porción de sol MWsol se determina entonces. Utilizando el software Millenium (disponible de Waters Corporation, Milford, Massachusetts, Estados Unidos) se define una línea base utilizando el modo valle a valle dentro de incrementos de tiempo de 15 y 35 minutos. Este incremento de tiempo es apropiado para el conjunto de columnas descrito anteriormente en el parágrafo 2.1 con una rata de flujo de fase móvil definida en 0.75 ml/minuto. Una vez que se establece una línea base razonable puede determinarse la distribución. El tiempo de elución se convierte en peso molecular. Las soluciones de poliestireno hechas a partir de estándares comercialmente disponibles (EasiCal: Polymer Laboratories, Reino Unido) se preparan con un contenido de una serie de pesos moleculares con distribuciones muy estrechas. La conversión del peso molecular de poliestireno a equivalentes de peso molecular de poliisopreno se basa en el método de calibración universal de Benoit y colaboradores. El radio hidrodinámico es proporcional al producto del peso molecular por la viscosidad intrínseca. Después de convertir los pesos moleculares de poliestireno en equivalentes de poliisopreno, la curva de calibración relaciona el peso molecular absoluto con el tiempo de elución. Los estándares son analizados bajo condiciones idénticas a las muestras, y los estándares se integran para asignar el peso molecular apropiado para un tiempo de elución dado, con base en la mejor coincidencia de los datos de los estándares. Una vez que la distribución basada en el tiempo se convierta apropiadamente en peso molecular, los promedios de peso molecular apropiados se calculan mediante el software Millenium de Waters.
3.
Viscosidad de Mooney: Se siguieron los procedimientos estándar para ML (1+4)@100ºC.
4.
Condiciones de curado en muestra de prueba: Se curaron muestras de prueba a 150ºC durante los períodos de tiempo indicados más abajo:
4.1 Lámina Ténsil: 20 minutos.
4.2 Resiliencia: 23 minutos.
4.3 Dureza: 23 minutos.
4.4
Configuración por calor: 25 minutos.
5.
Dispersión: Se utiliza el método de Cabot Dispersion Chart con evaluación subjetiva de micrografías ópticas 50x. (Método ASTM D2663).
6.
Tensión-estiramiento: Probado de acuerdo con BS903: A2 e ISO 37.
7.
Dureza: Probado de acuerdo con ISO 48 (1994), temperatura 23ºC.
8.
Resiliencia: Probado de acuerdo con BS903: A8 (1990), Método A, temperatura 23ºC (pieza de prueba en disco moldeado de 8 mm).
9.
Configuración por calor: Probado de acuerdo con la ASTM D623, Método A.
9.1 Temperatura de Inicio: 23ºC
9.2 Carga estática: 24 libras.
9.3 Impacto: 0.225 pulgadas.
9.4 Frecuencia: 30 Hz.
9.5 Recorrido durante 30 minutos.
10.
Tan δ: medida en Rheomebics® modelo RDS II. Los valores reportados son máximos para barridos de estiramiento. Los barridos de estiramiento a 0º, 30º, y 60ºC, 1 Hz, y 0.1% a 60% de estiramiento.
11.
Resistencia al Crecimiento de Fracturas: Medido de acuerdo con ASTM D3629-94
Ejemplo A
Se produjo un lote maestro de elastómero (lote maestro producido para su uso con la presente invención) para uso que la presente invención. Específicamente, se produjo un lote maestro elastomérico que comprende látex de campo de goma natural estándar de Malasia con 52.5 de agente de relleno consistente de negro de carbón de grado comercial N234 disponible en Cabot Corporation. Las propiedades del látex de campo de goma natural se proveen en la Tabla 1 más abajo.
Tabla 1 Propiedades de látex de goma natural
Aditivos
% de goma seco % de Sólidos Totales % Cenizas Nitrógeno ppm Ácidos Grasos Volátiles ML(1+4) @100 C
0.15% HNSa 0.3% NH3, ZnO, TMTDb
28.4 34.2 0.38 0.366 0.052 68
a. HNS: hidroxilamina neutra al sulfato, estabilizador de viscosidad Mooney. b. ZnO/TMTD: Utilizado para conservación biológica, típicamente 0.025 % de una mezcla 1:1.
La formulación del compuesto completo se muestra en la Tabla 2 más abajo, y es representativa del rodamiento para neumáticos de camión comercial que tiene excelente resistencia a la reversión durante el curado.
Tabla 2 Formulación de Lote Maestro
Ingrediente
Partes en peso
Goma
100
Negro de Carbón
52.5
ZnO
4.0
Ácido Esteárico
2.0
6PPD (antioxidante)
2.0
Mejorado a prueba de Sol (cera)
2.0
Ennerflex 74 (aceite aromático)
3.0
Total 165.5
El aparato de producción de lote maestro elastomérico fue sustancialmente idéntico al aparato descrito anteriormente con referencia a las Figuras 1 y 7 de los dibujos. La punta de boquilla para pasta (véase referencia Nº 167 en la Figura 7) tenía 0.039 pulgadas de diámetro y un cubrimiento (véase referencia No. 168 en la Figura 7) con una longitud axial de 0.2 pulgadas. La zona de coagulación fue 0.188 pulgadas de diámetro y tenía 0.985 pulgadas de longitud axial de diámetro constante entre la zona de mezcla y su extremo de descarga. La preparación del lote maestro se describe en mayor detalle inmediatamente a continuación.
1. Preparación de la pasta de negro de carbón. Se mezclaron bolsas de negro de carbón con agua desionizada en un tanque para pasta de negro de carbón equipado con un agitador. El agitador rompe las pellas en fragmentos y se forma una pasta cruda con 12.5 en peso de negro de carbón. Durante la operación, esta pasta se bombeó continuamente mediante una bomba de diafragma de aire hacia un molino coloidal para una dispersión inicial. La pasta fue alimentada entonces mediante una bomba de cavidad de avance hacia un homogenizador, específicamente homogenizador modelo M3 de APV Gaulin, Inc. El homogenizador produjo una pasta finamente triturada. La velocidad de flujo de pasta desde el homogenizador a la zona de mezcla fue definida por la velocidad del homogenizador, actuando el homogenizador como una bomba de desplazamiento positivo de alta presión. La rata de flujo de pasta fue monitoreada con un medidor de flujo de masa Micromotion®. La pasta de negro de carbón fue alimentada al homogenizador a una presión que varía de 50 a 100 psig y la presión de homogenización fue definida en 4000 psig, de tal forma que la pasta fue introducida como un chorro en la zona de mezcla a una velocidad de flujo de 4.1 hasta 4.4 lb/minuto y a una velocidad de aproximadamente 130 pies/segundo.
2.
Suministro de látex. El látex fue cargado en un tanque de alimentación presurizado de 100 galones. Se agregó emulsión antioxidante al látex antes de la carga. Se agregaron los antioxidantes consistentes de 0.3 phr de tris nonil fenil fosfito (TNPP) y 0.4 phr de Santoflex® 134 (mezcla de alquil-aril p-fenilendiamina). Cada uno de los antioxidantes fue preparado como una emulsión al 15% en peso utilizando 3 partes de oleato de potasio por 100 partes de antioxidante junto con hidróxido de potasio para ajustar la emulsión a un pH de aproximadamente 10. También, se agregó un aceite extensor a 3 phr. Se utilizó una presión de aire (51 psig) para mover el látex desde el tanque de alimentación a la zona de mezcla del reactor de coagulación. La rata de flujo del látex fue de 3.2 a 3.4 libras/minuto y aproximadamente 3.8 pies por segundo, y se midió y controló automáticamente con un medidor de flujo de masa Micromotion® y una válvula de pinza de tubo de goma. La carga deseada de negro de carbón de 52.5 phr fue obtenida manteniendo una relación apropiada de la velocidad de alimentación de látex a la velocidad de alimentación de la pasta de negro de carbón.
3.
Mezcla de negro de carbón y látex. La pasta de negro de carbón y el látex fueron mezclados arrastrando el látex hacia la pasta de negro de carbón. Durante el arrastre, el negro de carbón fue mezclado íntimamente con el látex y la mezcla fue coagulada. Del reactor de coagulación salieron "gusanos" de coágulo suaves, húmedos esponjosos.
4.
Desaguado. El grumo húmedo descargado del reactor de coagulación tenía aproximadamente 79% de agua. El grumo húmedo fue desaguado hasta aproximadamente 5 a 10% de humedad con un extrusor de desaguado (The French Oil Mill Machinery Company; 3½ pulgadas de diámetro). En el extrusor, el grumo húmedo fue comprimido y se exprimió el agua desde el grumo y a través de un barril con ranuras del extrusor.
5.
Secado y enfriamiento. El grumo desaguado se dejó caer en un segundo extrusor donde fue comprimido de nuevo y calentado. El agua fue eliminada por expulsión del grumo a través de la placa de molde del extrusor. La temperatura de salida del producto fue aproximadamente de 300ºF y el contenido de humedad fue aproximadamente
0.5 a 1% en peso. El grumo caliente, seco fue enfriado rápidamente (aproximadamente en 20 segundos) hasta aproximadamente 100ºC mediante un transportador de vibración con aire forzado. El grumo seco resultante tenía aproximadamente 66% en peso de sólidos de goma y aproximadamente 33% en peso de negro de carbón.
Ejemplo B (Comparativo)
Se preparó un lote maestro de control por trituración en seco. El control empleó la misma formulación que en el Ejemplo A (véase Tabla 2 más arriba), excepto que la goma natural fue SMR 10 en vez de látex. Se preparó por pretrituración de la goma en un mezclador OOC Banbury (aproximadamente 3 kg) a 50 rpm utilizando negro de carbón de 10 phr. La pretrituración se llevó a cabo durante aproximadamente 3 minutos hasta un total de 800 MJ/m3.
Comparaciones del Ejemplo A y el Ejemplo B (Comparativo)
El lote maestro del Ejemplo A y el lote maestro de control del Ejemplo B fueron compuestos en una operación de mezcla de dos etapas en un mezclador OOC Banbury (aproximadamente 3 kg). La Tabla 3 más abajo muestra la programación de mezcla para la primera etapa. Puede verse que el Ejemplo A el lote maestro siguió una programación de mezcla modificada.
Tabla 3 Etapa 1 Programación de Mezcla (continuación)
Tiempo (minutos)
Ejemplo A Ejemplo B Control de Mezcla en Seco
0.0
Todos los ingredientes Goma pretriturada
0.5
Negro de carbón y aceite
1.0
Barrido
1.5
Ingredientes restantes
2.0
2.5
Barrido
3.0
Tiempo (minutos)
Ejemplo A Ejemplo B Control de Mezcla en Seco
X
Descarga a aproximadamente 700 MJ/m3 Descarga a aproximadamente 1,000 MJ/m3
En la segunda etapa, los agentes de curado listados en la Tabla 4 más abajo fueron agregados con un ciclo de mezclado adicional de 500 MJ/m3.
Tabla 4 Adición de Agentes de Curado en Etapa Final
Ingrediente Partes en Peso
Etapa 1 compuesto 165.5 Goodyear Winstay 100 (antioxidante) 1.0 TBBS (acelerador de azufre) 1.8 Azufre 1.0
Total 169.3
Así, la energía de mezclado Banbury para la composición del lote maestro del Ejemplo A fue aproximadamente el 53% de la energía de mezclado Banbury requerida para la pretrituración y composición del material de control del Ejemplo B. A pesar del consumo de energía reducido, se encontró que el material del Ejemplo A tiene muy buena
10 macrodispersión, y el peso molecular (promedio de peso) de su porción de sol MWsol fue sustancialmente mayor que el del control. Estos datos se resumen en la Tabla 5 a continuación.
Tabla 5 Datos de Composición y Curado
Muestra
Energía de Mezcla (MJ/m3) ML (1+4, 100C) MW
Pretrituración
Etapa 1 Final Total Etapa 1 Final Promedio de peso
Ejemplo A
0 694 300 1.194 102 72 444,900
Ejemplo B
800 965 500 2,263 92 67 327,000
Los resultados adicionales de prueba del Ejemplo A no curado (no envejecido) y el material de control se muestran 15 en la Tabal 6 a continuación.
Tabla 6 Datos de Prueba Adicionales
Muestra
Dureza Modulus 100% (MPa) Modulus 300% (Mpa Ténsil (MPa)
Ejemplo A
71 2.82 16.1 28.7
Ejemplo B
72 3.12 16.2 28.5
Muestra
Elongación en Ruptura (%) Resiliencia (%) Configuración con calor (ºC) Max Tan Delta 60ºC 30ºC 0ºC
Ejemplo A
526 56.5 70.5 0.203 0.240 0.290
Ejemplo B
511 57.6 76.5 0.206 0.236 0.286
Ejemplo C (Lote maestro producido para uso con la presente invención)
Se produjo un lote maestro elastomérico para uso con la presente invención. Específicamente, se produjo un lote elastomérico que comprende látex de campo de goma natural estándar de Malasia con un agente de relleno 55 phr consistente de negro de carbón de grado comercial Regal® 660 obtenible de Cabot Corporation. La formulación de la composición (excluyendo aditivos de látex ordinarios menores) se presenta en la Tabla 7 más abajo.
Tabla 7 Formulación de Lote Maestro
Ingrediente
Partes en peso
Goma
100
Negro de Carbón
55
Santoflex 134 (antioxidante)
0.4
TNPP (antioxidante)
0.3
Total 155.7
El aparato de producción de lote maestro elastomérico era sustancialmente idéntico al aparato descrito anteriormente con referencia a las Figuras 1, 3 y 7 de los dibujos. La punta de la boquilla para pasta (véase referencia No. 167 en la Figura 7) fue 0.025 pulgadas de diámetro y con un cubrimiento (véase referencia No. 168 en la Figura 7) con una longitud axial de 0.2 pulgadas. La zona de coagulación (Véase número 53 en la Figura 3) incluía una primera porción de 0.188 pulgadas de diámetro y aproximadamente 0.985 pulgadas de longitud axial (estando parcialmente dentro de la cabeza de mezcla y parcialmente dentro del extensor sellado a la misma); una segunda porción de 0.266 pulgadas de diámetro y 1.6 pulgadas de longitud axial; una tercera porción de 0.376 pulgadas de diámetro y 2.256 de longitud axial; y una cuarta porción de 0.532 pulgadas de diámetro y 3.190 pulgadas de longitud axial. Además, hay interconexiones suaves axialmente cortas entre las porciones antes mencionadas. La preparación del lote maestro se describe en más detalle inmediatamente a continuación.
1. Preparación de la pasta de negro de carbón. Se mezclaron bolsas de negro de carbón con agua desionizada en un tanque para pasta de negro de carbón equipado con un agitador. El agitador rompe las pellas en fragmentos y se forma una pasta cruda con 14.9% en peso de negro de carbón. La pasta cruda se recircula utilizando un triturador de tubería. Durante la operación, esta pasta se bombea continuamente mediante una bomba de diafragma de aire a hacia un molino coloidal para una dispersión inicial. La pasta se alimenta entonces mediante una bomba de cavidad de avance hacia un homogenizador, específicamente, un microfluidizador Modelo M210 de Microfluidics International Corporation para presurización y desgarre, para producir una pasta finamente triturada. La rata de flujo de la pasta
desde el microfluidizador hacia la zona de mezcla fue definida por la velocidad del microfluidizador, actuando el microfluidizador como una bomba de desplazamiento positivo de alta presión. La rata de flujo de la pasta fue monitoreada con un medidor de flujo de masa Micromotion®. La pasta de negro de carbón fue alimentada al microfluidizador a una presión de aproximadamente 130 psig y la presión de salida fue definida a 3000 psig a un acumulador predefinido a 450 psig de presión de salida, de tal forma que la pasta fue introducida como un chorro en la zona de mezcla a una rata de flujo de aproximadamente 3.9 libras/minuto y a una velocidad de aproximadamente 300 pies/segundo.
2.
Suministro de látex. El látex fue cargado a un tanque, específicamente un tambor de alimentación de 55 galones. La emulsión antioxidante fue agregada al látex antes de la carga. Los antioxidantes fueron agregados consistiendo de 0.3 phr de tris nonil fenil fosfito (TNPP) y 0.4 phr de Santoplex® 134 (mezcla de alquil-aril p-fenilendiamina). Cada uno de los antioxidantes fue preparado en forma de una emulsión al 40% utilizando 4 partes de oleato de potasio por 100 partes de antioxidante junto con hidróxido de potasio para ajustar la emulsión a un pH de aproximadamente 10. Se utilizó una bomba peristáltica para mover el látex desde el tanque de alimentación hacia la zona de mezcla del reactor de coagulación. La rata de flujo de látex fue de 3.2 a 3.3 libras por minuto y aproximadamente 3.9 pies por segundo, y fue medida con un medidor de flujo de masa Endress + Hauser (Greenwood, Indiana, Estados Unidos). La carga de negro de carbón deseada de 55 phr fue obtenida manteniendo una proporción apropiada de la velocidad de alimentación de látex a la velocidad de alimentación de la pasta de negro de carbón.
3.
Mezcla de negro de carbón y látex. La pasta de negro de carbón y el látex fueron mezclados arrastrando el látex hacia la pasta de negro de carbón. Durante el arrastre, el negro de carbón se mezcló íntimamente con el látex y la mezcla se coaguló. Del reactor salieron “gusanos” de coágulo suaves, húmedos esponjosos.
4.
Desaguado. El grumo húmedo descargado del reactor de coagulación tenía aproximadamente 78% de agua. El grumo húmedo fue desaguado hasta aproximadamente 12 a 13% de humedad con un extrusor de desaguado (The French Oil Mill Machinery Company; 3½ En diámetro). En el extrusor, el grumo húmedo fue comprimido y se exprimió el agua desde el grumo y se pasó a través de un barril con ranura del extrusor.
5.
Secado y enfriamiento. El grumo desaguado se arrojó en un segundo extrusor donde fue comprimido de nuevo y calentado. El agua fue eliminada por expulsión del grumo a través de la placa de molde del extrusor. La temperatura de salida del producto fue aproximadamente 280ºF hasta 370ºF y el contenido de humedad fue de aproximadamente
0.3 a 0.4 en peso. El grumo caliente, seco fue enfriado rápidamente (aproximadamente 20 segundos) hasta aproximadamente 100ºF mediante un transportador con vibración de aire forzado.
Ejemplos D y E (Comparativos)
Se prepararon dos lotes maestros de control por mezcla en seco mediante trituración en seco. Los controles emplearon la misma formulación que en el Ejemplo C (véase Tabla 7 más arriba), excepto que en el Ejemplo D la goma fue RSS1 NR en lugar de látex. En el Ejemplo E la goma era SMR 10 NR. Cada uno fue preparado por pretrituración de la goma en un mezclador BR Banbury. La goma del Ejemplo D fue triturada a 118 rpm durante 10 minutos. La goma del Ejemplo E fue triturada a 77 rpm durante 4 minutos.
Comparación de los Ejemplos C, D y E (Comparativo)
El lote maestro del Ejemplo C y dos lotes maestros de control de los Ejemplos D y E fueron compuestos en un mezclador BR Banbury. La Tabla 8 más abajo muestra las programaciones de composición.
Tabla 8 Programaciones de Composición
Lote maestro
Pretrituración Etapa I Mezcla Etapa II (Final) Mezcla
Ejemplo C
No No BR Banbury 77 rpm, 4.5 minutos.
Ejemplo D
Mezclador BR Banbury 118 rpm, 10 minutos. Mezclador BR Banbury 77 rpm, 3 minutos. BR Banbury 77 rpm, 4.5 minutos.
Ejemplo E
Mezclador BR Banbury 77 rpm, 4 minutos. Mezclador BR Banbury 77 rpm, 8 minutos. BR Banbury 77 rpm, 4.5 minutos.
La formulación de composición se da en la Tabla 9 a continuación Tabla 9 Etapa II Adición de Agentes de Curado Ingrediente Partes en peso
Lote maestro Ejemplo 4 o Ejemplo 5 o 6 Etapa 1 Mezcla en seco 155 Azo 66 (óxido de zinc) 4.0 Histrene 5016 (ácido esteárico) 2.0 Santoflex 13 (antioxidante) 2.0 Mejorado a prueba de sol (cera) 2.0 Wingstay 100 (antioxidante) 1.0 Santocure NS (acelerador de azufre) 1.8 Azufre 1.0
Total: 168.8
Todos los tres compuestos exhibieron un curado bien llevado con mínima reversión. A pesar del consumo de energía reducido, el material del Ejemplo C mostró tener una macrodispersión significativamente menor que los controles de mezcla en seco, y el peso molecular (promedio de peso) de su porción sol MWsol fue sustancialmente más alto que el de los controles. Estos datos se resumen en la Tabla 10 más abajo.

Tabla 10 Lote Maestro y Propiedades de Composición
Ejemplo C
Ejemplo D Ejemplo E
Propiedades de lote maestro
Viscosidad Mooney ML(1+4)@100C
125 124 126
Goma enlazada (%)
50 32 44
MW sol (x10-4)
0.678 .466 .463
Porcentaje de área no dispersa (D%)
12 1.48 2.82
Propiedades de Composición
Dureza
62 65 62
Modulus 100% (psi)
239 315 270
Modulus 300% (psi)
1087 1262 1216
Resistencia Ténsil (psi)
4462 4099 4344
(continuación)
Ejemplo C
Ejemplo D Ejemplo E
Propiedades de Composición
Elongación , %
673 5S91 600
Máximo Tan Delta @ 60 C (Barrido de Estiramiento)
0.189 .237 .184
Velocidad de Crecimiento de fracturas (cm/por millón de ciclos)
0.8 5.0 5.8
Ejemplos y comparaciones adicionales
Las composiciones elastoméricas altamente preferidas fueron producidas de acuerdo con el método y aparato descritos anteriormente. En particular, se formaron las composiciones de lote maestro de látex de goma natural y agente de relleno de negro de carbón, que tienen niveles de macrodispersión significativamente mejores y/o peso molecular de goma natural que las composiciones conocidas encontradas hasta ahora de los mismos o similares materiales de partida. La Figura muestra el área superficial y la estructura de diversos agentes de relleno de negro de carbón utilizados en las presentes composiciones de lote maestro, específicamente, el área superficial CTAB expresada como metros cuadrados por gramo de negro de carbón según ASTM D3765-85 y el valor de absorción de ftalato de dibutilo (DBPA) expresado como centímetros cúbicos de DBP por cien gramos de negro de carbón según norma ASTM D2414. La Figura 8 se encuentra dividida en tres regiones diferentes de negros de carbón. La región I contiene negros de carbón que tienen estructura más baja y área superficial más alta, siendo estos los más difíciles de dispersar en goma natural y otros elastómeros utilizando técnicas de mezcla en seco tradicionales. Por lo tanto, los negros de carbón de la Región I no se utilizan comercialmente tan ampliamente como otros negros de carbón. Las composiciones elastoméricas de lote maestro y curadas hechas con negros de carbón de la Región I utilizando técnicas de mezcla en seco tradicionales tienen macrodispersión más pobre y típicamente un MWsol más bajo. Los negros de carbón de la Región II tienen una estructura más alta que los de la Región I. Típicamente, alcanzan razonablemente una buena dispersión en goma natural para productos de neumáticos de vehículos y similares si se someten a una mezcla en seco extendida tal que el MWsol de la goma natural se degrade significativamente. Los negros de carbón de la Región III de la Figura 8 tienen un área superficial inferior con respecto a su estructura. De acuerdo con lo anterior se han utilizado con una dispersión aceptable en goma natural a través de mezcla en seco, pero de nuevo, con una degradación indeseable de MWsol. La dispersión de negros de carbón de todas las tres regiones de la Figura 8, específicamente, la macrodispersión, se mejora significativamente en las composiciones elastoméricas divulgadas aquí, y puede alcanzares con MWsol significativamente más alto de la goma natural de acuerdo con realizaciones preferidas.
Muestras de Control 1 - 443
Las muestras de control del lote maestro fueron preparadas por mezcla en seco de acuerdo con los procedimientos siguientes, para propósitos de comparación con las composiciones elastoméricas de la presente invención.
1. Trituración de goma natural
Con el fin de producir lotes maestros secos con un amplio rango de peso molecular, se pretrituraron balas de goma natural comercial (RSS1, SMR CV, y SMR 10) en un mezclador BR Banbury utilizando las condiciones siguientes (factor de llenado: 0.75):

Tabla 11 Condiciones de Trituración de Goma Natural
Código de Muestra
Trituración Velocidad de Rotor (rpm) Agua de Enfriamiento Tiempo de Trituración (minutos)
M1
No
M2
Si 77 Activada 4
(continuación)
Código de Muestra
Trituración Velocidad de Rotor (rpm) Agua de Enfriamiento Tiempo de Trituración (minutos)
M3
Si 118 Activada 6
M4
Si 118 Activada 10
2. Mezcla de negro de carbón con goma natural pretriturada
Con el fin de preparar lotes maestros en seco de goma natural con diferentes niveles de calidad de macrodispersión, se utilizaron los siguientes procedimientos de mezcla en un mezclador BR Banbury. El facto de llenado fue 0.70. Los ingredientes del lote maestro y los procedimientos de mezcla se describen como sigue en la Tabla 12.

Tabla 12 Formulación de Lote Maestro Seco con Goma Natural
Ingrediente
phr (Partes por cien partes de goma en peso)
Goma Natural
100
Negro de Carbón
Véase Tablas más Abajo
Aceite
Véase Tablas más Abajo
Santofex (antioxidante)
0.4
TNPP (antioxidante)
0.3
Procedimientos de mezcla: 0 minutos: 1 minuto: Se agrega goma natural pretriturada (77 rpm 45 C) Se agrega negro de carbón, aceite y antioxidantes
Se produjeron diferentes niveles de macrodispersión mezclando muestras de goma natural pretriturada M1 a M4
10 durante diferentes tiempos de mezcla, tal como se muestra en la Tabla 13, a continuación. Por ejemplo, el código de muestra M2D1 en la Tabla 13 indica una muestra de control de goma natural M2 pretriturada (véase Tabla 11, más arriba) mezclado durante 10 minutos de acuerdo con la formulación de la Tabla 12.

Tabla 13 Tiempos de Mezcla
Código de Muestra de Lote Maestro Seco NR
NR Pretriturado Tiempo de Mezcla
M1D4
M1 4
M1D3
M1 6
M1D2
M1 8
M1D1
M1 10
(continuación)
Código de Muestra de Lote Maestro Seco NR
NR Pretriturado Tiempo de Mezcla
M2D4
M2 4
M2D3
M2 6
M2D2
M2 8
M2D1
M2 10
M3D4
M3 4
M3D3
M3 6
M3D2
M3 8
M3D1
M3 10
M4D4
M4 4
M4D3
M4 6
M4D2
M4 8
M4D1
M4 10
3. Mezcla Final de Muestras de Control de Lote Maestro de Goma Natural
Para evaluar el rendimiento de la composición, se agregaron ingredientes adicionales a las muestras de control del lote maestro de goma natural triturada en seco de la Taba 13 de acuerdo con la formulación mostrada en la Tabla
14.

Tabla 14 Ingredientes Adicionales para Mezcla Final
Ingrediente
Cantidad (phr)
Azo 66 (óxido de zinc)
4.0
Histere 5016 (ácido esteárico)
2.0
Santoflex 13 (antioxidante)
2.0
Mejorado a prueba de sol (cera)
2.0
Wingstay 100 (antioxidante)
1.0
Santocure NS (acelerador de azufre)
1.8
Azufre
1.0
Los compuestos fueron curados de acuerdo con técnicas de curado estándar a 150ºC hasta un curado al menos 10 sustancialmente completo, típicamente entre 10 y 30 minutos. En este aspecto, se utilizaron los mismos o sustancialmente los mismos procedimientos de mezcla final, incluyendo la formulación dada más arroba en la Tabla
14, para todas las muestras de control, así como todas las muestras de composiciones elastoméricas de la invención preparadas de la manera descrita más abajo (véase "Ejemplos de Realizaciones Preferidas) los cuales fueron curados y probados en cuanto a las propiedades de composición y características de comportamiento.
Las siguientes tablas 15 - 23 presentan el peso molecular de sol MWsol y la macrodispersión D (%) de las muestras
5 de control 1 a 443. Las muestras están agrupadas en las tablas de acuerdo con la selección de negro de carbón. Dentro de una tabla dada, las muestras están agrupadas por selección de goma natural y por la carga de negro de carbón y la carga de aceite. Los encabezamientos de las tablas muestran esta información de acuerdo con la nomenclatura estándar. Así, por ejemplo, el encabezamiento para la Tabla 15 "N330/55phr/0" indica un negro de carbón de 55 phr N330 sin aceite. Los subencabezamientos de la Tabla muestran la selección de goma natural.
10 Específicamente, las muestras de control 1 a 450 están hechas según se ve a partir de goma natural grado estándar RSS1, SMRCV y SMR10. La descripción técnica de estas gomas naturales está disponible ampliamente, tal como en Rubber World Magazine’s Blue Book publicada por Lippincott and Peto, Inc. (Akron, Ohio, USA). El peso molecular MWsol de la goma natural antes de cualquier pretrituración (M1) y después de diversos niveles de pretrituración (M2-M4) también se muestran más abajo en las Tablas 15 - 23.
15 Tabla 15
Código
N330/55phr/0
RSS1
SMRCV
Muestra No.
Mwsol (K) D(%) Nuestra No. Mwsol (K) D(%)
M1
1300 971
M2
932 725
M3
684 598
M4
485 482
M1D1
1 485 4.24 17 428 4.35
M1D2
2 571 3.70 18 467 3.89
M1D3
3 706 4.79 19 488 4.86
M1D4
4 770 4.52 20 535 4.78
M2D1
5 445 3.66 21 350 2.44
M2D2
6 480 268 22 398 371
M2D3
7 512 3.68 23 433 4.30
M2D4
8 581 3.93 24 498 5.81
M3D1
9 373 1.33 25 342 3.79
M3D2
10 402 250 26 358 4.35
M3D3
11 407 2.98 27 371 5.55
M3D4
12 452 3.35 28 408 5.01
M4D1
13 311 3.63 29 311 3.68
(continuación)
Código
N330/55phr/0
RSS1
SMRCV
Muestra No.
Mwsol (K) D(%) Nuestra No. Mwsol (K) D(%)
M4D2 M4D3 M4D4
14 15 16 337 362 382 3.40 5.03 5.23 30 31 32 325 344 369 5.31 5.91 5.67

Tabla 16 Tabla 17
Tabla 18A
Código
Regal 250/55phr/C
RSS1
SMRCV
Muestra No.
Mwsol (K) D(%) Muestra No. Mwsol (K) D (%)
M1
1332 1023
M2
896 748
M3
603 581
(continuación) Tabla 18B
Código
Regal 250/55phr/C
RSS1
SMRCV
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol (K) D (%)
M4
408 504
M1D1
33 585 6.95 49 609 1.93
M1D2
34 669 8.03 50 634 3.29
M1D3
35 759 10.5 51 681 2.21
M1D4
36 896 14.1 52 702 4.09
M2D1
37 580 2.71 53 539 2.14
M2C2
38 602 2.61 54 569 2.72
M2D3
39 631 3.61 55 587 4.75
M2D4
40 667 5.43 56 595 6.25
M3D1
41 457 1.53 57 466 288
M3D2
42 478 2.09 58 449 3.19
M3D3
43 493 2.32 59 464 4.53
M3D4
44 495 3.4 60 500 5.89
M4D1
45 372 1.53 61 423 289
M4D2
46 382 209 62 433 3.42
M4D3
47 381 232 63 437 4.39
M4D4
48 403 3.54 64 447 4.73
Código
Regal 250/65/0 Regal 250/75/0 Regal250/65/10
RSS1
RSS1
RSS1
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol(K) D (%)
M1
1138 1138 1138
M2
901 901 901
M3
660 660 660
M4
483 483 483
M1D1
65 570 1.50 81 539 2.87 97 661 1.89
M1D2
66 622 3.25 82 624 4.50 98 702 2.69
M1D3
67 707 7.50 83 685 4.17 99 741 3.14
M1D4
68 788 4.77 84 763 14.35 100 822 5.24
M2D1
69 534 1.62 85 484 4.32 101 593 0.91
M2D2
70 548 4.19 86 512 2.96 102 572 3.48
M2D3
71 585 4.31 87 557 4.71 103 642 4.23
M2D4
72 621 6.21 88 605 4.85 104 664 5.35
M3D1
73 459 3.64 89 429 2.27 105 507 2.65
M3D2
74 469 5.79 90 446 2.68 106 544 2.96
M3D3
75 511 5.30 91 466 3.46 107 535 3.69
M3D4
76 541 9.13 92 491 6.22 108 524 3.27
M4D1
77 380 2.34 93 368 2.11 109 416 1.85
M4D2
78 392 2.86 94 372 3.13 110 413 3.18
M4D3
79 399 4.59 95 375 292 111 418 6.96
M4D4
80 395 4.57 96 388 2.92 112 441 6.46
Tabla 20 Tabla 21 (B)

Tabla 22 (A)
Código
Regal 660/55phr/0
RSS1
SMRCV SMR10
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol(K) D (%)
M1
1110 836 746
M2
844 709 632
M3
609 584 492
M4
522 513 416
M1D1
177 674 8.35 193 564 1.87 209 501 9.54
M1D2
178 792 7.89 194 611 2.50 210 572 6.68
M1D3
179 891 8.53 195 708 3.08 211 681 7.37
M1D4
180 676 7.46 196 671 231 212 594 7.18
M2D1
181 598 8.56 197 520 528 213 463 2.82
M2D2
182 602 3.89 198 558 4.85 214 483 4.57
M2D3
183 697 6.40 199 603 288 215 565 3.92
M2D4
184 659 5.71 200 541 4.25 216 550 5.68
M3D1
185 473 2.03 201 486 279 217 395 213
M3D2
186 506 1.66 202 482 278 218 393 1.98
M3D3
187 562 1.94 203 504 3.54 219 443 2.49
M3D4
188 559 4.33 204 526 241 220 449 1.90
M4D1
189 401 218 205 415 3.16 221 335 1.49
M4D2
190 426 1.72 206 418 2.92 222 345 1.71
M4D3
191 466 1.48 207 446 2.80 223 363 1.78
M4D4
192 449 3.57 208 465 3.13 224 374 2.35
Tabla 22B
Código
Regal 660/45/0 Regal 660/65/0 Regal 660/65/10
RSS1
RSS1
RSS1
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol(K) D (%)
M1
1245 1245 1245
M2
876 876 876
M3
625 625 625
M4
482 482 482
M1D1
225 646 3.45 241 563 14.55 257 639 1.63
M1D2
226 697 3.04 242 638 14.09 258 699 3.55
M1D3
227 762 7.70 243 691 13.64 259 814 5.44
M1D4
228 830 6.75 244 790 11.26 260 764 11.25
M2D1
229 574 4.79 245 469 5.88 261 572 2.77
M2D2
230 589 3.02 246 507 7.31 262 580 4.39
M2D3
231 636 6.41 247 558 9.72 263 610 5.51
M2D4
232 675 6.55 248 543 10.59 264 638 7.29
M3D1
233 474 2.66 249 420 5.48 265 474 4.10
M3D2
234 481 5.17 250 426 6.97 266 485 5.72
M3D3
235 510 7.78 251 468 8.81 267 502 6.24
M3D4
236 518 7.89 252 47.1 9.55 268 495 7.13
M4D1
237 388 3.20 253 335 5.19 269 390 5.02
M4D2
238 392 5.65 254 344 6.06 270 365 5.88
M4D3
239 397 5.14 255 344 5.59 271 410 7.45
M4D4
240 403 7.54 256 361 8.54 272 388 7.59

Tabla 23 (A)
Código
N234/55/phr/0
RSS1
SMRCV SMR10
Muestra No.(K) Mwsol D(%)
Muestra No. Mwsol (K) D(%) Muestra No. (K) Mwsol D (%)
M1
1060 845 743
M2
811 712 621
M3
595 577 445
M4
466 477 388
M1D1
273 350 1.88 289 312 0.61 305 325 0.78
M1D2
274 476 3.40 290 317 0.64 306 363 1.66
M1D3
275 459 270 291 361 1.03 307 400 1.89
M1D4
276 665 270 292 419 1.56 308 459 1.73
M2D1
277 323 0.40 293 304 0.76 309 294 0.54
M2D2
278 371 0.73 294 306 0.72 310 321 1.24
M2D3
279 398 0.74 295 318 0.74 311 354 1.28
M2D4
280 464 1.42 296 357 1.30 312 363 1.39
M3D1
281 278 0.47 297 260 0.53 313 280 0.68
M3D2
282 304 0.83 298 272 0.65 314 268 0.48
M3D3
283 323 0.82 299 295 0.58 315 289 1.38
M3D4
284 360 1.06 300 302 1.14 315 303 0.78
M4D1
285 251 0.61 301 244 0.53 317 236 1.00
M4D2
286 266 0.51 302 253 0.81 318 239 0.77
M4D3
287 273 0.64 303 266 0.62 319 257 0.72
M4D4
288 282 0.53 304 296 0.80 320 268 1.30

Tabla 23 (B)
Código
N234/45/0 N234/65/0 N234/65/10
RSS1
RSS1
RSS1
Ejemplo No. Mwsol (K) D(%)
Ejemplo No. Mwsol (K) D(%)
Ejemplo No. Mwsol(K) D (%)
M1
1185 1185 1185
M2
828 828 828
M3
623 623 623
M4
462 462 462
M1D1
321 507 7.33 337 336 3.44 353 395 5.51
M1D2
322 598 8.15 338 458 5.09 354 478 7.68
M1D3
323 731 8.97 339 479 8.17 355 555 9.46
M1D4
324 772 12.02 340 706 9.90 356 637 8.39
M2D1
325 486 3.48 341 255 3.22 357 295 0.58
M2D2
326 479 5.44 342 288 3.34 358 352 1.23
M2D3
327 527 5.51 343 295 4.65 359 394 1.35
M2D4
328 566 7.70 344 393 5.45 360 449 237
M3D1
329 419 0.88 345 237 1.50 361 292 0.86
M3D2
330 423 124 346 252 1.78 362 286 1.14
M3D3
331 431 2.55 347 270 288 363 313 2.19
M3D4
332 458 4.03 348 304 3.92 364 340 2.51
M4D1
333 341 0.62 349 226 1.18 365 265 0.83
M4D2
334 338 1.13 350 214 1.81 365 273 0.99
M403
335 319 1.37 351 233 2.97 367 291 1.39
M4D4
336 354 2.06 352 258 3.83 368 307 2.41
Ejemplos de realizaciones preferidas
Se prepararon muestras adicionales de composiciones elastoméricas de acuerdo con la presente divulgación 5 provista aquí. Específicamente, se produjo una serie de composiciones elastoméricas de goma natural No. 1 - 32 de acuerdo con la presente divulgación utilizando aparatos y procedimientos en general de acuerdo con los del Ejemplo A más arriba. Las composiciones de elastómero comprenden látex de campo de goma natural de Malasia con las propiedades mostradas en la Tabla 24 más adelante. Las composiciones elastoméricas están compuestas adicionalmente de negro de carbón con propiedades morfológicas (estructura y área superficial) de regiones I, II o III 10 en la Figura 8. Específicamente, se usaron los siguientes negros de carbón: Regal® 660, N234, N326, N110, Regal® 250, N330, Black Pearl® 800, Sterling® 6740 y N351. Las cargas de negro de carbón variaron de 30 a 75
phr y las cargas de aceite extensor estuvieron en una cantidad de 0 a 20 phr. Los detalles de producción para las muestras de composición elastomérica Nos. 1 - 32 se muestran más abajo en la Tabla 25.
Como anotó anteriormente, el aparato y procedimientos utilizados para preparar las composiciones elastoméricas Nos. 1 - 32 estuvieron en general de acuerdo con los del Ejemplo A, incluyendo los aditivos para la formulación del lote maestro mostradas en la Tabla 2. Más abajo se presenta una descripción más detallada del aparato y procedimientos utilizados para las composiciones elastoméricas Nos. 1 - 32.
1.
Aparato
Se prepararon las muestras divulgadas Nos. 1 - 32 utilizando un aparato de producción de lote maestro sustancialmente de acuerdo con el aparato divulgado descrito anteriormente con referencia a las Figuras 1, 4 y 7. El diámetro de la punta de la boquilla para pasta (véase ítem 167 en la Figura 7) y la longitud de la cobertura (véase ítem 168 en la figura 7) se dan en la Tabla 25 para cada una de las muestras No. 1 - 32. La zona de coagulación del aparato tiene cuatro zonas de diámetro progresivamente mayor desde la zona de mezcla hasta el extremo de descarga. El diámetro y la longitud axial de cada una de las cuatro zonas (estando la primera zona parcialmente dentro de la cabeza de mezcla y parcialmente dentro del extensor sellado de la misma) se definen en la Tabla 25. Había interconexiones axialmente cortas regulares entre las zonas.
2.
Preparación de la pasta de negro de carbón
Se mezclaron bolsas de negro de carbón con agua desionizada en un tanque para pasta de negro de carbón equipado con un agitador. El agitador rompe los pellas en fragmentos para formar una pasta de negro de carbón cruda. La concentración de negro de carbón (como porcentaje en peso) en la pasta de negro de carbón para cada una de la muestra se da en la Tabla 25. Durante la operación, esta pasta se bombeó de forma continua mediante una bomba de diafragma de aire a un triturador para dispersión inicial. Luego la pasta fue alimentada a través de una bomba de diafragma de aire a un molino coloidal el cual luego alimentó una bomba de cavidad progresiva hacia un homogenizador, específicamente, Microfluidizer Modelo M210 de Microfluidics International Corporation. El microfluidizador produjo una pasta finamente triturada. La velocidad de flujo de la pasta desde el microfluidizador a la zona de mezcla fue definida por la presión del microfluidizador, actuando el microfluidizador como una bomba de desplazamiento positivo de alta presión. La velocidad de flujo de la pasta fue monitoreada con un medidor de flujo de masa Micromotion®. La presión a la cual la pasta de negro de carbón fue alimentada el homogenizador y la presión de salida del homogenizador (todas las presiones están en psig) se definen para cada muestra en la Tabla 25. Desde el homogenizador la pasta de negro de carbón fue alimentada a un acumulador para reducir cualquier fluctuación en la presión de la pasta y en la punta de boquilla para pasta en la zona de mezcla. La presión en la punta de la boquilla para pasta y la velocidad de flujo a la cual la pasta fue alimentada a la zona de mezcla para cada muestra se dan en la Tabla 25.
3.
Suministro de látex
El látex fue cargado a un tambor de alimentación de 55 galones. Se agregó entonces emulsión antioxidante al látex y se mezcló antes de la carga. Los antioxidantes fueron agregados consistiendo de tris nonil fenil fosfito (TNPP) y Santoflex® 134 (mezcla de alquil aril p-fenilen diamina) en las cantidades mostradas en la Tabla 25. Cada uno de los antioxidantes fue preparado como una emulsión al 40% en peso usando 4 partes de oleato de potasio por 100 partes de antioxidante junto con hidróxido de potasio para ajustar la emulsión a un pH de aproximadamente 10. Se agregó aceite extensor y según el caso, en la cantidad mostrada en la Tabla 25. Se utilizó una bomba peristáltica para mover el látex desde el tambor de alimentación hasta la zona de mezcla del reactor de coagulación. La rata de flujo de látex y la velocidad se muestran en la Tabla 25. El flujo de látex se midió automáticamente con un medidor de flujo de masa Endress + Hauser. La carga de negro de carbón deseada fue obtenida manteniendo una relación apropiada de la rata de alimentación de látex frente a la rata de alimentación de la pasta de negro de carbón.
4.
Mezcla de negro de carbón y látex
La pasta de negro de carbón y el látex fueron mezclados arrastrando el látex hacia la pasta de negro de carbón. Durante el arrastre, el negro de carbón se mezcló íntimamente con el látex y la mezcla coaguló. Del reactor de coagulación salieron "gusanos" de coágulo suaves muy esponjosos.
5.
Desaguado
El contenido de agua del grumo húmedo descargado desde el reactor de coagulación se muestra en la Tabla 25. Los grumos húmedos fueron desaguados con un extrusor de desaguado (The French Oil Mill Machinery Company; 3½ pulgadas de diámetro). En el extrusor, se comprimió el grumo húmedo y se exprimió el agua desde el grumo y a través de un barril con ranuras del extrusor. El contenido final de humedad del grumo se muestra en la Tabla 25 para cada una de las muestras de la divulgación.
5. Secado y enfriamiento
El grumo desaguado fue depositado en un segundo extrusor donde de nuevo fue comprimido y calentado. El agua fue extraída por expulsión del grumo a través de la placa de molde del extrusor. La temperatura de salida del producto y el contenido de humedad se muestran en la Tabla 25. El grumo caliente, seco fue enfriado rápidamente (aproximadamente 20 segundos) hasta aproximadamente 100ºF mediante un transportador vibrador de aire forzado.

Tabla 24 Propiedades de látex de goma natural
Tipo de látex
Fuente Aditivos % de goma seca % de sólidos totales % de cenizas Nitrógeno ppm Ácidos grasos volátiles
Concentrado
TITI Látex SDN. BHD. 0.35%NH3 ZnO, TMTD 0.1%HHS 60 62.0 0,15 0.29 0.022
Látex de campo
RRIMa. 9/94 0.15% HNSa 0.3%NH3, ZnO. TMTDb 28.4 34.2 0.38 0.366 0.052
a. RRIM es el Rubber Research Institute of Malaysia b. ZnO/TMTD: utilizado para conservación biológica, típicamente 0.025% de una mezcla 1:1 c. HNS: sulfato neutro de hidroxilamina, Estabilizador de viscosidad Mooney

Tabal 25 Detalles de producción de muestra de la invención
MuestraNo.
Composición Elastomérica Cabot Punta de boquilla para pasta Microfluidizador
Tipo de látex
Negro de carbón Carga en aceite(phr) Dia. (pulgadas) Longitud de cubrimiento (pulgadas) Presióndenetrada (psi) Presión desalida (psi)
Tipo
Carga (phr)
1
Latex de campo N330 55 0 0.25 0.5 190 3000
2
Latex de campo N330 55 0 0.39 1 300 0
3
Latex de campo N330 55 0 0.39 1 300 0
4
Latex de campo REGAL 250 55 0 0.25 0.5 180 3500
5
Latex de campo REGAL 250 65 0 0.25 0.5 300 10000
6
Latex de campo REGAL 250 75 0 0.25 0.5 200 13000
7
Latex de campo REGAL 250 65 10 0.25 0.5 250 12000
8
Latex de campo BLACK PEARL 800 55 0 0.25 0.5 200 4000
9
Latex de campo N326 55 0 0.25 1 250 3000
10
Latex de campo REGAL 660 55 0 0.25 1 - -
11
Latex de campo REGAL 660 45 0 0.25 0.5 200 12500
12
Latex de campo REGAL 660 65 0 0.25 0.5 260 15000
13
Latex de campo REGAL 660 65 10 0.25 0.5 200 12000
14
Latex de campo N234 55 0 0.25 1 180 5500
15
Latex de campo N234 55 0 0.25 0.5 - 14500
16
Latex de campo N234 55 0 0.25 0.5 - 14500
17
Latex de campo N234 55 0 0.25 0.5 - 14500
18
Latex de campo N234 45 0 0.25 0.5 200 13000
19
Latex de campo N234 65 0 0.25 0.5 220 13000
20
Latex de campo N234 65 10 0.25 0.5 300 14500
21
Latex de campo N110 55 0 0.25 1 120 4500
22
Concentrado de latex N351 33 20 0.25 0.5 250 12500
23
Latex de campo STERLING 6740 55 0 0.25 0.5 250 12000
24
Latex de campo N234 48 5 0.23 0.5 250 11000
25
Latex de campo N234 53 5 0.23 0.5 250 11000
26
Latex de campo N234 58 5 0.23 0.5 250 11000
27
Latex de campo N234 63 5 0.23 0.5 250 11000
28
Latex de campo N234 68 5 0.23 0.5 250 11000
29
Concentrado de latex N234 49 5 0.23 0.5 - -
30
Concentrado de latex N234 54 5 0.23 0.5 - 11000
31
Concentrado de latex N234 63 5 0.23 0.5 - 11000
32
Concentrado de latex N234 65 5 0.23 0.5 - 11000

Tabal 25 (Continuación)
MuestraNo.
Zona de Coágulo Pasta CBConcentración CB (% en peso)
1ª Porción
2ª Porción 3ª Porción 4ª Porción
Diá. (pulgadas)
Longitud (pulgadas) Diá. (pulgadas) Longitud (pulgadas) Diá. (pulgadas) Longitud (pulgadas) Diá. (pulgadas) Longitud (pulgadas)
1
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 15.2
2
0.19 1.1 0.27 1.6 0.38 2.3 0.53 3.2 14.9
3
0.19 1.1 0.27 1.6 0.38 2.3 0.53 3.2 14.9
4
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 19.0
5
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 21.0
6
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 21.0
7
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 21.0
8
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 15.0
9
0.19 1.1 0.27 1.6 0.38 2.3 0.53 3.2 14.8
10
0.19 1.1 0.27 1.6 0.38 2.3 0.53 3.2 14.9
11
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 15.2
12
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 15.2
13
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 15.2
14
0.19 1.1 0.27 1.6 0.38 2.3 0.53 3.2 14.8
15
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 13.7
16
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 13.7
17
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 13.7
18
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 14.6
19
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 14.6
20
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 14.6
21
0.19 1.1 0.27 1.6 0.38 2.3 0.53 3.2 11.8
22
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 15.0
23
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 14.7
24
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 13.5
25
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 13.5
26
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 13.5
27
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 13.5
28
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 13.5
29
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 12.8
30
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 12.8
31
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 12.8
32
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2 12.8

Tabla 25 (Continuación)
MuestraNo
Presión punta de boquilla para pasta (psi) Zona de mezcla
Rata de flujo de pasta (lb/min)
Velocidad de pasta (pie/seg) Antioxidante Rata de flujo de látex(lbs/min) Velocidad de látex (pie/min)
TNPP (phr)
Santoflex (phr)
1
1400 4.6 338 0.3 0.4 4.7 6.8
2
425 8.2 247 0.3 0.4 6.9 13.2
3
425 8.2 247 0.3 0.4 6.9 13.2
4
1500 4.8 344 0.3 0.4 6.7 9.7
5
1500 5.2 370 0.3 0.4 6.8 9.8
6
1575 5.2 370 0.3 0.4 5.9 8.5
7
1550 5.2 370 0.3 0.4 6.9 10.0
8
1800 5.2 380 0.3 0.4 4.9 7.1
9
600 4.2 308 0.3 0.4 4.0 5.6
10
- 4.0 293 0.3 0.4 3.6 5.2
11
1500 5.1 373 0.3 0.4 7.0 10.1
12
1300 4.8 351 0.3 0.4 4.6 6.7
13
1375 4.9 358 0.3 0.4 4.8 6.9
14
900 5.3 388 0.3 0.4 4.8 6.9
15
1400 5.7 420 0.3 0.4 5.4 7.8
16
1400 5.7 420 0.3 0.4 5.4 7.8
17
1400 5.7 420 0.3 0.4 5.4 7.8
18
1600 5.2 381 0.3 0.4 6.5 9.4
19
1850 5.3 386 0.3 0.4 4.5 6.5
20
1625 5.3 388 0.3 0.4 4.6 6.7
21
900 5.3 394 0.3 0.4 4.1 5.9
22
1550 5.1 373 0.3 0.4 5.1 7.6
23
1550 5.2 361 0.3 0.4 5.7 8.3
24
2270 5.1 444 0.3 0.4 6.1 8.8
25
2250 5.1 444 0.3 0.4 5.5 7.9
26
2270 5.1 444 0.3 0.4 5.0 7.2
27
2260 5.1 444 0.3 0.4 4.6 6.6
28
- 5.1 444 0.3 0.4 4.2 6.1
29
2350 5.3 463 0.3 0.4 2.6 3.8
30
2380 5.3 463 0.3 0.4 2.3 3.4
31
2350 5.3 463 0.3 0.4 2.1 3.1
32
2420 5.3 483 0.3 0.4 2.1 3.0

Tabla 25 (Continuación)
Muestra No
Desaguado Secado y enfriamiento
Humedad inicial de grumo (%)
Humedad final de grumo (%) Temperatura deproducto (ºF) Humedad deproducto (%)
1
77.6 8.5 312 0.3
2
78.7 - 450 0.2
3
78.7 7.8 400 0.2
4
74.9 - 350 0.3
5
78.2 7.9 310 0.2
6
76.4 11.4 - 0.2
7
75.6 8.8 335 0.3
8
77.7 8.5 310 0.2
9
77.9 8.9 345 0.2
10
77.8 - - 0.4
11
78.7 9.7 285 0.5
12
79.7 - 335 0.2
13
79.1 - - 0.9
14
77.9 8.4 330 0.1
15
79.2 - Secado en horno -
16
79.2 10.3 Secado en horno -
17
79.2 11.2 Secado en horno -
18
79.0 15.0 370 0.4
19
80.0 3.6 325 0.3
20
79.5 9.4 345 0.5
21
80.5 9.5 350 0.2
22
85.1 9.1 280 0.3
23
78.1 6 330 0.8
24
77.4 - 380 0.3
25
77.8 - 390 0.4
26
78.1 - 400 0.7
27
78.4 - 410 0.4
28
78.7 - 420 1.1
29
71.2 - 400 0.6
30
72.3 - 420 0.4
31
73.3 - 400-450 0.9
32
74.1 - 400-450 0.2
Debe notarse que las muestras 2 y 3 fueron producidas aproximadamente sin presión de salida en la salida del microfluidizador, etc., para determinar la macro-dispersión bajo condiciones adversas del proceso.
La excelente dispersión del negro de carbón en los lotes maestros resultantes se demuestra por su calidad de
5 macrodispersión y peso molecular de la porción sol MWsol. La Tabla 26 más abajo muestra los valores de MWsol y macrodispersión para las muestras de la divulgación 1 - 32, junto con el negro de carbón y el aceite (si lo hay) utilizado en cada una de las muestras. La carga de negro de carbón y la carga de aceite se muestran como valores phr en la Tabla 26.
Tabla 26 Peso molecular de sol y área no dispersa de las muestras de la invención
Ejemplo No.
CB/ Carga/ Aceite Mwsol (K) D (%)
N330/55/0
305 0.26
N330/55/0 N330/55/0 R250/55/0 R250/65/0 R250/75/0 R250/65/10 BP800/55/0 N326/55/0 R660/55/0 R660/45/0 R660/65/0 R660/65/10 N234/55/0 N234/65/0 N234/55/0 N234/55/0 N234/45/0 N234/65/0 N234/65/10 N110/55/0 N351/33/20 S6740/55/0 N234/48/9 N234/53/5 N234/58/5 N234/63/5 N234/88/5
726 544 676 670 655 519 394 668 678 733 568 607 433 1000 500 550 495 359 350 612 800 630 569 485 447 403 378 0.54 0.40 0.08 0.16 0.03 0.02 0.14 0.20 0.12 0.05 0.04 0.02 0.15 0.10 0.15 0.10 0.17 0.20 0.11 0.17 0.10 0.10 0.05 0.12 0.12 0.13 0.16
(continuación)
Ejemplo No.
CB/ Carga/ Aceite Mwsol (K) D (%)
29
N234/49/5 618 0.12
30
N234/54/5 482 0.16
31
N234/83/5 390 0.17
32
N234/65/5 325 0.20
Los resultados para todas las muestras de la divulgación que tienen carga de negro de carbón de 55 phr se muestran en región semilogarítmica de la Figura 9 junto con los valores de macrodispersión y de MWsol para una 5 serie correspondiente de las muestras de control de goma natural antes descritas producidas por técnicas de mezcla en seco. Al menos un punto de datos para la muestra divulgación que comprende una carga de 55 phr de cada negro de carbón se muestra en la Figura 9, junto con todas las muestras de control que tienen carga de negro de carbón de 55 phr. (Muestras de control 401 a 412, también mostradas en la Figura 9, utilizaron 33 phr de negro de carbón N351 y 20 partes de aceite extensor.) Puede verse en la Tabla 26 y en la Figura 9 que las muestras de la 10 divulgación tienen excelente macrodispersión. Específicamente, las muestras de divulgación tiene valores de D (%) generalmente por debajo de 0.2%, incluso con valores de MWsol por encima de 0.85 x 106 mientras que las muestras de control nunca alcanzan tal excelente macrodispersión con cualquier MWsol. Así, los datos mostrados en la Figura 9 claramente revelan que la calidad de la macrodispersión de las composiciones elastoméricas en un amplio rango de valores de MWsol es significativamente superior que lo que se puede lograr utilizando ingredientes comparables
15 en los métodos de mezcla en seco conocidos anteriormente. Los símbolos utilizados para los diversos puntos de datos mostrados en la Figura 9 y los utilizados en las Figuras 10 – 25 discutidas subsecuentemente se explican en los párrafos más abajo.
Leyendas de las Figuras
Figura 9 Calidad de dispersión y MW sol de lotes maestro NR Figura 10 Calidad de dispersión y MW sol de lotes maestro NR (Región I )
muestras de control 177 a 224
muestras de control 273 a 320
muestras de control 145 a 176
muestras de control 369 a 400
muestras de control 33 a 64
muestras de control 1 a 32
muestras de control 113 a 144
muestras de control 412 a 443
muestras de control 401 a 412
muestras de divulgación
Figura 11 Calidad de dispersión y MW sol de lotes maestro NR (Región II)
muestras de control 177 a 224
muestras de divulgación 10
muestras de control 145 a 176
muestras de divulgación 9
muestras de control 33 a 64
muestras de divulgación 4
muestras de control 1 a 32
muestras de divulgación 1
muestras de control 113 a 144
muestras de divulgación 8
Figura 12 Calidad de dispersión y MW sol de lotes maestro NR (Región III)
muestras de control 273 a 320
muestras de divulgación 14
muestras de control 369 a 400
muestras de divulgación 21
muestras de control 401 a 412
muestras de divulgación 22
muestras de control 412 a 443
muestras de divulgación 23
Figura 13 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón N330, 55 phr)
Figura 14 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón REGAL 250)
muestras de control 1 a 32
muestras de divulgación 1 a 3
muestras de control 33 A 64
muestras de divulgación 4
muestras de control 65 A 80
muestras de divulgación 5
muestras de control 81 A 96
muestras de divulgación 6
muestras de control 97 A 112
muestras de divulgación 7
muestras de control 113 a 144
muestras de divulgación 8
Figura 15 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón BLACK PEARL 800, 55 phr)
10 Figura 16 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón N326, 55 phr)
muestras de control 145 a 176
muestras de divulgación 9
Figura 17 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón REGAL 660)
Figura 18 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón N 234)
muestras de control 177 A 224
muestras de divulgación 10
muestras de control 225 a 240
muestras de divulgación 11
muestras de control 241 a 256
muestras de divulgación 12
muestras de control 257 a 272
muestras de divulgación 13
muestras de control 273 a 320
muestras de divulgación 14 a 17
muestras de control 337 a 352
muestras de divulgación 19
muestras de control 321 a 336
muestras de divulgación 18
muestras de control 353 a 368
muestras de divulgación 20
muestras de control 369 a 400
muestras de divulgación 21
Figura 19 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón N 110, 55 phr)
Figura 20 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón N351, 33 phr)
Figura 21 Calidad de dispersión y MW sol de lotes maestro NR (Negro de Carbón STERLING 6740, 55 phr)
muestras de control 401 a 412
muestras de divulgación 22
muestras de control 412 a 443
muestras de divulgación 23
Figura 22 Efecto de MW sol sobre rata de crecimiento de fracturas (Compuestos NR que contiene Negro de Carbón N234 @ a una carga de 55 phr)
muestras de control 273 a 288
muestras de divulgación 16
10 Figura 23 Efecto de MW sol sobre rata de crecimiento de fracturas (Compuestos NR que contiene Negro de Carbón N326 @ a una carga de 55 phr)
muestras de control 145 a 160
muestras de divulgación 9
Figura 24 Efecto de MW sol sobre rata de crecimiento de fracturas (Compuestos NR que contiene Negro de Carbón REGAL 660@ a una carga de 55 phr)
muestras de control 177 a 192
muestras de divulgación 10
Figura 25 Máxima Tan (Barrido de estiramiento @60 C) de compuestos NR que contienen Negro de Carbón N234 con cargas diferentes
muestras de divulgación 24 a 28
muestras de divulgación 29 a 32
muestras de control 444 a 450
Figura 30 Calidad de macrodispersión y MW de la porción sol de lote maestro NR que contiene agregados de doble fase (Negro de Carbón/Sílica)
muestras de control 451 a 458
muestras de divulgación 33
muestras de control 459 a 466
muestras de divulgación 34
Figura 31 Calidad de macrodispersión y MW de la porción sol de lote maestro NR que contiene mezcla de negro de carbón y sílica
muestras de control 491 a 496
muestras de divulgación 38
muestras de control 483 a 490
muestras de divulgación 37
muestras de control 475 a 482
muestras de divulgación 36
muestras de control 487 a 474
muestras de divulgación 35
Los valores de macrodispersión para las composiciones elastoméricas de la invención mostrados en la Figura 9 se describen mediante las siguientes ecuaciones:
10 donde MWsol es menor de 0.45 x 106; y
cuando 0.45 x 106 < MWsol < 1.1 x 106.
Se reconocerá a partir de la discusión anterior, que la macrodispersión D (%) en la ecuación anterior (1) es el porcentaje de área no dispersa medida por defectos superiores a 10 micrones. Puede verse en la figura. 9 que D (%) 15 igual a 0.2% es el umbral de calidad de la macrodispersión para todos los negros de carbón en las Regiones I, II y III para lotes maestros secos de goma natural. Esto es, ninguno de los lotes maestros triturados en seco alcanzaron una calidad de macrodispersión de 0.2% a cualquier MWsol, incluso después de mezclar suficientemente para degradar el MWsol, por debajo de 0.45 x 106, tal como se describe mediante la ecuación (1) más arriba. Cuando el MWsol de las muestras de control de lote maestro seco mostrado en la Figura 9 está entre 0.45 x 106 y 1.1 x 106, la 20 calidad de la dispersión es incluso más pobre mientras que, en contraste, la calidad de la dispersión de las muestras de la invención que tienen MWsol en ese rango sigue siendo excelente. Ninguna de las realizaciones preferidas mostradas en la Figura 9 que tienen MWsol entre 0.45 x 106 y 1.1 x 106 excede el límite preferido de macrodispersión de 0.2%. En este aspecto, debe entenderse que los puntos de datos para realizaciones preferidas que se ven en la
Figura 9 (y en otras Figuras discutidas más abajo) que caen en el eje X (esto es, en un valor D (%) de 0.1%) pueden tener una calidad de macrodispersión de 0.1% o incluso un valor mejor (esto es inferior) D (%).
Muestras de negro de carbón de la Región I
Las muestras de la divulgación que comprenden negros de carbón que tienen propiedades morfológicas (esto es, estructuras y área superficial) de la Región I en la Figura 8, y las muestras de control correspondientes descritas más arriba hechas con tales negros de carbón de la Región I, se comparan con la gráfica semilogarítmica de la Figura 10. Específicamente, la Figura 10 muestra los valores de macrodispersión y los valores de MWsol de las muestras de divulgación y las muestras de control correspondientes que comprenden los negros de carbón Regal® 660, N326, Regal® 250, N330 y Black Pearl® 800, en una carga de negro de carbón que varía de 30 phr a 75 phr y una carga de aceite extensor que caría de 0 phr a 20 phr. Se observa una excelente dispersión del negro de carbón en la Figura 10 para todas las muestras de la divulgación, representando realizaciones preferidas de las composiciones elastoméricas de acuerdo con la presente divulgación. Todas las muestras de la divulgación están ventajosamente por debajo de la línea 101 en la Figura 10, mientras que todas las muestras de control tienen una dispersión más pobre, estando por encima de la línea 101. En efecto, las realizaciones preferidas mostradas en la Figura 10, aunque comprenden negros de carbón de la Región I, la más difícil de dispersar, caen todas por debajo de un valor D (%) de 0.3%. Las realizaciones más preferidas tienen todas un valor de D (%) que no excede 0.2%, incluso con un valor de MWsol que excede ventajosamente a 0.7 x 106. Los datos mostrados en la Figura 10 revelan claramente que la calidad de la macrodispersión de las composiciones elastoméricas divulgadas aquí comprenden negros de carbón de la Región I, en un amplio rango de valores de MWsol, es significativamente superior a lo que se puede alcanzar utilizando ingredientes comparables mediante métodos de mezcla por trituración en seco anteriores. Los valores de macrodispersión para las composiciones elastoméricas mostradas en la Figura 10 se describen mediante las siguientes ecuaciones:
cuando MWsol es menor de 0.7 x 106; y
cuando 0.7 x 106 es menor que MWsol < 1.1 106
Se reconocerá que la (%) es el porcentaje de área no dispersa medido por defectos superiores a 10 micrones y 1% es el umbral de la calidad de macrodispersión para todos los negros de carbón en la Región I para lotes maestros de goma natural divulgados aquí. Esto es, ninguno de los lotes maestros triturados en seco alcanzaron una calidad de macrodispersión de 1.0% o mejor y cualquier MWsol, incluso después de mezclar en seco suficientemente para degradar el MWsol por debajo 0.7 x 106, tal como se describe mediante la ecuación (3) anterior. Cuando el MWsol de las muestras de control del lote maestro seco mostrado en la Figura 10 está entre 0.7 x 106 y 1.1 x 106, la calidad de dispersión es incluso más pobre. En contraste, la calidad de dispersión de las muestras de divulgación que tienen MWsol en ese rango sigue siendo excelente. La realización preferida mostrada en la Figura 10 que tiene MWsol entre
0.7 x 106 y 1,1 x 106 cae bien por debajo del límite de macrodispersión de 0.2%. Puede verse que las composiciones elastoméricas divulgadas que comprenden negros de carbón de la Región I proporcionan un balance hasta ahora inalcanzado entre calidad de macrodispersión y MWsol.
Muestras de negro de carbón de la Región II
Las muestras de la divulgación que comprenden negros de carbón que tienen propiedades morfológicas (esto es, estructura y área superficial) la Región II en la Figura 8, y las correspondientes muestras de control descritas más arriba hechas con negros de carbón de tal Región II se comparan en la gráfica semilogarítmica de la Figura 11. Específicamente, la Figura 11 muestra los valores de macrodispersión y los valores de MW de las muestras de la divulgación y las correspondientes muestras de control que comprenden los negros de carbón N234 y N110 en una carga de negros de carbón que varía de 40 phr a 70 phr y una carga de aceite extensor que varía de 0 phr a 10 phr. Se ve una excelente dispersión de negro de carbón en la Figura 11 para todas las muestras de la divulgación, representando realizaciones preferidas de las composiciones elastoméricas de acuerdo con la presente divulgación. Las muestras de la divulgación están ventajosamente por debajo de la línea 111 en la Figura 11, mientras que todas las muestras de control tienen una dispersión más pobre, estando por encima de la línea 111. En efecto, las realizaciones preferidas mostradas en la Figura 11 que comprenden negros de carbón de la Región II caen por debajo de un valor D (%)de 0.3%. Las realizaciones más preferidas tienen un valor D (%) que no excede 0.2% en ningún valor de MWsol. Los datos mostrados en la Figura 11 revelan claramente que la calidad de la macrodispersión de las composiciones elastoméricas novedosas divulgadas aquí que comprenden negros de carbón de la Región II,
a lo largo de un amplio rango de valores de MWsol, es significativamente superior a lo que se puede alcanzar utilizando ingredientes comparables con los métodos de mezcla en seco anteriores. Los valores de macrodispersión para las composiciones elastoméricas de la presente divulgación mostradas en la Figura 11 se describe mediante las siguientes ecuaciones:
cuando MWsol es menor de 0.35 x 106; y
cuando 0.35 x 106 < MWsol < 1.1 x 106.
Se reconocerá que D (%) de 0.30% es la calidad umbral de macrodispersión para todos los negros de carbón en la Región II para lotes maestros de goma natural de acuerdo con la presente divulgación y 0.35 x 106 es el umbral del valor de MWsol. Esto es, ninguno de los lotes maestros secos lograron una calidad de macrodispersión de 0.30% o mejor con ningún MWsol incluso después de mezclar en seco suficientemente para degradar el MWsol por debajo de
0.35 x 104, tal como se describe mediante la ecuación (5) más arriba. Cuando el MWsol de las muestras de control del lote maestro en secos mostrado en la Figura 11 está entre 0.35 x 106 y 1.1 x 106, la calidad de la dispersión es aún más pobre. En contraste, la calidad de la dispersión de las muestras de la divulgación que tienen MWsol en ese rango sigue siendo excelente. Las realizaciones preferidas mostradas en la Figura 11 que tienen MWsol entre 0.35 x 106 y 1.1 x 106 caen por debajo del límite de macrodispersión preferido de 0.2%. Puede verse que las composiciones elastoméricas de la presente divulgación que comprenden negros de carbón de la Región II proporcionan un balance hasta ahora no logrado entre la calidad de la macrodispersión y el MWsol.
Muestras de negro de carbón de la Región III
Las muestras de la divulgación que comprenden negros de carbón que tengan propiedades morfológicas (esto es, estructuras y área superficial) de la Región III en la Figura 8, y las muestras de control correspondientes descritas anteriormente hechas con tales negros de carbón de la Región III se comparan en la gráfica semilogarítmica de la Figura 12. Específicamente, la Figura 12 muestra los valores de macrodispersión y los valores de MWsol de las muestras de la divulgación y las muestras de control correspondientes que comprenden negros de carbón N351 y Sterling 6740, con una carga de negros de carbón que varía de 30 phr a 70 phr y una carga de aceite extensor que varía de 0 phr a 20 phr. Se ve una excelente dispersión del negro de carbón en la Figura 12 para todas las muestras de la divulgación, representando realizaciones preferidas de las composiciones elastoméricas de acuerdo con la presente divulgación. Todas las muestras de la divulgación están ventajosamente por debajo de la línea 121 en la Figura 12, mientras que todas las muestras de control tienen dispersión más pobre, estando por encima de la línea
121. En efecto, las realizaciones mostradas en la Figura 12, que comprenden negros de carbón de la Región III, caen todas o están por debajo de un valor de D (%) del 1%, aún con una calidad de macrodispersión de las composiciones elastoméricas divulgadas aquí que comprenden negro de carbón de la Región II, a lo largo de un amplio rango de valores de MWsol que es significativamente superior al alcanzable utilizando ingredientes comparables en los métodos de mezcla en seco anteriores. Los valores de macrodispersión para las composiciones elastoméricas de la divulgación mostrados en la Figura 12 se describen mediante las siguientes ecuaciones:
cuando MWsol es menor de 0.35 x 106;
cuando 0.30 x 106 < MWsol < 1.1 x 106
Se reconocerá que D (%) de 0.1% es el umbral de la calidad de macrodispersión para todos los negros de carbón en la Región III para lotes maestros de goma natural de acuerdo con la presente divulgación, y 0.3 x 106 es el umbral del valor MWsol. Esto es, ninguno de los lotes maestros en seco alcanzó la calidad de macrodispersión de 0.1% a ningún MWsol, incluso después de mezclar suficientemente para degradar el MWsol por debajo de 0.35 x 106, tal como se describe mediante la ecuación (7) anterior. Cuando el MWsol de las muestras de control de lote maestro secas mostradas en la Figura 12 está entre 0.30 x 106 y 1.1 x 106, la calidad de la dispersión es aún más pobre. En
contraste, la calidad de la dispersión de las muestras de la divulgación que tienen MWsol en ese rango sigue siendo excelente. Las realizaciones mostradas en la Figura 12 que tienen un MWsol entre 0.30 x 106 y 1.1 x 106 caen por debajo de los límites de macrodispersión preferidos de 0.2%, y, en efecto, están en o por debajo del valor de D (%) de 0.1%. Puede verse que las composiciones elastoméricas de la presente divulgación que comprenden negros de carbón de la Región III proporcionan un balance no alcanzado antes entre la calidad de la macrodispersión y el MWsol.
Comparaciones de muestras adicionales
Los valores de macrodispersión para las muestras de la divulgación se muestran gráficamente en las gráficas semilogarítmicas de las Figuras 13 a 21, como una función de sus valores MWsol, como en las Figuras 8 a 12 discutidas anteriormente. Más específicamente, en las Figuras 13 a 21 todas las muestras de divulgación descritas anteriormente que comprenden un negro de carbón en particular (limitándose a aquellos de una carga de negro de carbón específico cuando así se indica) se muestran juntas en una gráfica semilogarítmica sencilla con las correspondientes muestras de control. (Véase las leyendas anteriores que dan los números de referencia de las muestras de la divulgación y las muestras de control incluidas en cada figura.) Así, la Figura 13 muestra la calidad de la dispersión y el MWsol de las muestras de la divulgación y de control descritas anteriormente, que comprenden negro de carbón N330 a 55 phr. Los datos mostrados en la Figura 13 revelan claramente que la calidad de la macrodispersión de las composiciones elastoméricas de la divulgación que comprende el negro de carbón N330, en un amplio rango de valores MWsol, es significativamente superior a la de las muestras de control. La macrodispersión para las composiciones elastoméricas de la divulgación que comprende negro de carbón N330, como se muestra en la Figura 13 está descrita por las siguientes ecuaciones:
cuando MWsol < 0.6 x 106; y
cuando 0.6 x 106 < MWsol < 1.1 x 106.
Ninguna de los lotes maestros triturados en seco alcanzaron una calidad de macrodispersión de 1.0% a ningún MWsol, después de mezclar suficientemente en seco para degradar el MWsol por debajo de 0.6 x 106 (véase Ecuación 9, más arriba). En las muestras de control que contienen negro de carbón N330 de 55 phr en las cuales el MWsol se mantuvo entre 0.6 x 106 y 1,1 x 106, el valor D (%) es aún más alto, tal como más de 4% de área no dispersada.
La Figura 14 muestra la calidad de dispersión y el MWsol de las muestras de divulgación y control descritas anteriormente que comprende negro de carbón REGAL® 250. Las muestras de la divulgación y de control seleccionadas mostradas en la Figura 14 comprenden aceite, tal como se estableció anteriormente. Los datos mostrados en la Figura 14 revelan claramente que la calidad de la macrodispersión de las composiciones elastoméricas de la presente divulgación que comprenden negro de carbón REGAL® 250, en un amplio rango de valores de MWsol, es significativamente superior a la de las muestras de control. Los valores de macrodispersión para las composiciones elastoméricas de la presente divulgación que comprenden negro de carbón REGAL® 250, tal como se muestra en la Figura 14 se describen mediante las siguientes ecuaciones:
cuando MWsol < 0.6 x 106 ; y
cuando 0.6 x 106 < MWsol < 1.1 x 106.
Ninguna de las muestras de control alcanzó una calidad de macrodispersión de 1.0% o mejor a ningún MWsol incluso después de mezclar suficiente en seco para degradar el MWsol por debajo de 0.6 x 104 En contraste, las composiciones elastoméricas de la presente divulgación que comprende negro de carbón o Regal® 250 y que tienen un MWsol por encima de 0.6 x 106 tienen excelente macrodispersión, tal como un D (%) menor de 0.2%. Las propiedades de las composiciones las y características de comportamiento para las muestras de la divulgación y de control mostradas en la Figura 14 que comprenden negro de carbón REGAL® 250, se presentan en la Tabla 27 más adelante. Puede verse que la muestra No. 4 de la invención tiene excepcionalmente una buena resistencia al crecimiento de fracturas, tal como se indica por su valor de velocidad y crecimiento de rupturas muy bajo de
5 solamente 0.92 cm/millón de ciclos. En efecto, la muestra de la divulgación es bastante superior a las correspondientes muestras de control. Se cree que esto se debe principalmente al mejor MWsol y a la mejor macrodispersión del negro de carbón en la muestra de la divulgación, tal como se discutió anteriormente.

Tabla 27 Propiedades de composición de los compuestos NR que contienen negro de carbón REGAL 250 a una carga de 55 phr
Muestra No.
Mooney ML Dureza E100 (psi) E300 (psi) Ténsil (psi) EB(%)
(1+4))
@100c
control 33
60.63 55.35 181.28 899.82 4090.24 675.0
control 34
73.59 57.80 235.14 1293.99 3978.24 595.0
control 35
81.49 58.65 243.68 1265.26 4103.41 613.0
control 30
84.04 59.95 244.23 1215.87 3980.32 614.0
control 37
57.35 38.75 218.70 1259.99 4119.85 502.0
control 38
60.10 57.05 216.75 1208.80 4023.65 820.0
control 39
68.28 57.25 225.44 1256.23 4134.06 621.0
control 40
77.40 59.10 255.15 1330.87 4059.01 597.0
control 41
44.40 58.25 216.00 1214.78 4038.68 818.0
control 42
47.98 58.80 214.53 1202.93 3944.03 613.0
control 43
49.84 57.05 221.28 1229.07 4018.24 611.0
control 44
50.10 56.60 210.50 1140.90 4056.33 638.0
control 45
36.82 52.90 177.47 982.88 3790.56 533.0
control 48
38.23 54.50 198.63 1111.04 3880.56 629.0
control 47
35.36 54.60 199.03 1110.00 3871.49 505.0
control 48
40.58 55.50 204.52 1139 94 3981.08 632.0
divulgación 4
71.97 57.00 218.18 1230.30 4038.30 611.0
Muestra No.
Re-unión Rata de Crecimiento de fractura (cm/millón de ciclos) Pérdida por abrasión (g) Tan δ@0°C Tan δ @ 60°C
control 33
64.50 2.00 0.191 0.167 0.091
(continuación)
Muestra No.
Re-unión Rata de Crecimiento de fractura (cm/millón de ciclos) Pérdida por abrasión (g) Tan δ@0°C Tan δ @ 60°C
control 34
64.58 1.83 0.182 0.155 0.083
control 35
63.75 2.38 0.192 0.150 0.091
control 36
83.30 1.42 0.180 0.162 0.091
control 37
64.88 3.00 0.168 0.178 0.100
control 38
63.46 2.99 0.183 0.184 0.099
control 39
63.90 2.17 0.188 0.170 0.092
control 40
62.30 1.69 0.182 0.175 0.093
control 41
64.20 2.84 0.190 0.189 0.102
control 42
64.20 3.24 0.182 0.168 0.103
control 43
84.50 3.52 0.177 0.183 0.101
control 44
63.90 3.50 0.179 0.186 0.104
control 45
63.80 3.86 0.199 0.197 0.104
control 46
64.30 3.94 0.191 0.184 0.107
control 47
64.35 3.81 0.192 0.106
control 48
63.65 3.48 0.180 0.182 0.110
divulgación 4
64.70 0.92 0.190 0.148 0.096
La Figura 15 muestra la calidad de dispersión y MWsol de las muestras de divulgación y de control descritas anteriormente que comprenden negro de carbón Black Pearl® 800 a una carga de 55 phr. Los datos mostrados en la Figura 15 revelan claramente que la calidad de la macrodispersión de las composiciones elastoméricas elastómeros de la divulgación que comprende negro de carbón Black Pearl®800, es significativamente superior a la de las muestras de control. Los valores de macrodispersión para las composiciones elastoméricas de la divulgación que comprenden negro de carbón Black Pearl® 800, tal como se muestra en la Figura 15, están descritas por las siguientes ecuaciones:
cuando MWsol < 0.65 x 106 ; y
cuando 0.65 x 106 < MWsol < 1.1 x 106.
Ninguna de las muestras de control alcanzaron la calidad de macrodispersión de 1.0% o mejor con ningún MWsol, 15 incluso después de mezclar en seco suficientemente para degradar el MWsol por debajo de 0.65 x 106. En contraste, las composiciones elastoméricas de la divulgación que comprenden negro de carbón Black Pearl® 800 y que tienen MWsol por encima de 0.65 x 106 tienen excelente macrodispersión, tal como D (%) inferior a 0.2%. Las propiedades de la composición y las características del comportamiento para las muestras de la divulgación y de control mostradas en la Figura 15, que comprenden negro de carbón Black Pearl® 800, se presentan en la Tabla 28 más
5 adelante. Puede verse que la muestra de la divulgación No. 8 tiene una resistencia excepcionalmente buena al crecimiento de las fracturas, tal como se indica por su valor muy bajo de rata de crecimiento de fracturas de solamente 0.27 cm/millón de ciclos. En efecto, las muestras de la divulgación son bastante superiores a las correspondientes muestras de control. Se cree que esto se debe principalmente al mejor MWsol y a la mejor macrodispersión del negro de carbón en la muestra de la divulgación, tal como se discutió anteriormente.
10 Tabla 28 Propiedades de la composición de compuestos NR que contienen negro de carbón BLACK PEARL 800 con carga de 55 phr
Muestra No.
Mooney ML (1+4)@100C Dureza E100 (psi) E300 (psi) Ténsil (psi) EB (%)
control 113
110.5 66.4 345.0 1333.0 3878.0 598
control 114
109.0 67.3 367.0 1427.0 4033.0 608
control 115
106.4 67.2 363.0 1311.0 3898.0 610
control 116
105.7 69.0 322.0 1202.0 3856.0 626
control 117
110.8 67.1 316.0 1400.0 4180.0 616
control 118
118.9 67.1 310.0 1398.0 3967.0 607
control 119
111.9 67.7 309.0 1323.0 4149.0 634
control 120
110.6 67.6 373.0 1188.0 4199.0 653
control 121
114.7 68.3 287.0 1262.0 4329.0 667
control 122
110.8 65.8 288.0 1223.0 4217.0 659
control 123
115.0 67.5 280.0 1282.0 4071.0 624
control 124
116.5 66.5 309.0 1388.0 4168.0 623
control 125
113.4 65.4 281.0 1274.0 3978.0 631
control 126
101.4 66.8 280.0 1222.0 4206.0 656
control 127
105.5 68.4 282.0 1150.0 4167.0 670
control 128
110.7 66.8 292.0 1301.0 4209.0 643
divulgación 8
131.3 62.5 227.0 1291.0 3418.0 532
(continuación)
Ejemplo No.
Re-unión Rata de Crecimiento de fractura (cm/millón de ciclos) Pérdida por abrasión (g) Tan δ @ 0°c Tan δ @ 60°C
control 113
44.7 3.14 0.148 0.281 0.184
control 114
45.0 2.72 0.125 0.274 0.185
control 115
47.0 2.54 0.163 0.233 0.171
control 116
48.8 2.41 0.194 0.244 0.163
control 117
40.9 4.56 0.086 0.327 0.214
control 118
41.8 2.80 0.112 0.335 0.225
control 119
41.7 4.33 0.091 0.321 0.216
control 120
42.1 3.89 0.095 0.301 0.207
control 121
39.2 3.38 0.075 0.312 0.256
control 122
38.7 4.58 0.108 0.344 0.236
control 123
40.2 4.79 0.103 0.329 0.232
control 124
41.7 3.78 0.102 0.321 0.209
control 125
38.9 3.40 0.078 0.352 0.248
Muestra No.
Re-unión Rata de Crecimiento de fractura (cm/millón de ciclos) Pérdida de Abrasión (g) Tan δ @ 0°c Tan δ @ 60°C
control 126
38.1 5.57 0.070 0.355 0.241
control 127
38.2 4.79 0.073 0.348 0.254
control 128
39.4 3.40 0.113 0.357 0.23
divulgación 6
44.8 0.27 0.130 0.297 0.199
La Figura 16 muestra la calidad de dispersión y MWsol de las muestras de divulgación y control descritas anteriormente que comprenden negro de carbón en N326 a una carga de 55 phr. Los datos mostrados en la Figura 16 revelan claramente que la calidad de macrodispersión de las composiciones elastoméricas de la divulgación que comprenden negro de carbón N326 es significativamente superior a la de las muestras de control. Los valores de macrodispersión para las composiciones elastoméricas de la divulgación que comprenden negro de carbón N326, tal como se muestra en la Figura 16, están descritos por las siguientes ecuaciones:
10 cuando MWsol < 0.7 x 106; y
cuando 0.7 x 106 < MWsol < 1.1 x 106.
Ninguna de las muestras de control alcanzaron calidad de macrodispersión de 1.0% o mejor con ningún MWsol, incluso después de mezclar suficientemente en seco para degradar el MWsol por debajo de 0.7 x 106. En contraste, las composiciones elastoméricas de la divulgación que comprenden negro de carbón N326 y que tienen MWsol por encima de 0.7 x 106 tienen excelente macrodispersión, tal como D (%) no superior a 0.2%. Las propiedades de 5 composición y las características de comportamiento para las muestras de divulgación y control mostradas en la Figura 16, que comprenden negro de carbón N326 se presentan en la Tabla 29 más adelante. Puede verse que la muestra de divulgación No. 9 tiene una resistencia excepcionalmente buena al crecimiento de fracturas, tal como lo indica su valor de rata de crecimiento de fracturas muy bajo de solamente 0.77 cm/millón de ciclos. En efecto, la muestra de la divulgación es bastante superior a las correspondientes muestras de control. Se cree que esto se
10 debe principalmente al mejor MWsol y a la mejor macrodispersión del negro de carbón en la muestra de la divulgación, tal como se discutió anteriormente.

Tabla 29 Propiedades de la composición de compuestos NR que contienen negro de carbón N328 con carga de 65 phr
Muestra No.
Mooney ML Dureza E100 (psi) E300 (psi) Ténsil (psi) EB (%)
(1+4)
@100°C
control 145
64.8 60.5 289 1713 3921 548
control 148
88.2 62.4 340 1802 4094 553
control 147
91.7 63.3 391 1917 3991 528
control 148
96.8 64.3 326 1664 4045 572
control 149
62.4 61.5 310 1763 4029 552
control 150
67.7 62.6 326 1855 4055 551
control 151
76.5 60.6 287 1641 4015 575
control 152
79.4 63.6 329 1720 3980 559
control 153
57.2 60.1 282 1623 3968 579
control 154
57.2 62.8 354 1889 3879 525
control 155
57.3 62.2 323 1763 3975 556
control 156
60.1 61.9 310 1667 3918 564
control 157
45.1 61.2 328 1748 3768 533
control 158
50.1 60.6 315 1740 3817 546
control 159
53.2 61.3 308 1675 3888 563
control 160
50.5 62.6 331 1752 3884 549
divulgación 9
77.8 60.9 277 1563 4167 593
(continuación)
Muestra No.
Re-unión Rata de Crecimiento de fractura (cm/millón de ciclos) Pérdida de Abrasión (g) Tan δ @ 0°C Tan δ @ 60°C
control 145
57.8 2.84 0.0952 0.225 0.129
control 146
58.1 2.52 0.0887 0.217 0.128
control 147
57.6 2.03 0.0948 0.205 0.123
control 148
58.3 1.83 0.0927 0.221 0.129
control 149
57.2 3.39 0.0827 0.234 0.142
control 150
58.8 2.77 0.0888 0.234 0.150
control 151
55.6 2.61 0.0933 0.241 0.149
control 152
54.5 2.79 0.0857 0.249 0.155
control 153
55.4 3.12 0.0911 0.258 0.170
control 154
56.0 3.35 0.0858 0.241 0.147
control 155
55.4 3.63 0.0811 0.254 0.152
control 156
54.9 . 3.55 0.0906 0.261 0.153
control 157
55.5 3.02 0.0931 0.254 0.149
control 158
55.4 3.81 0.0914 0.249 0.150
control 159
54.9 3.23 0.0933 0.240 0.158
control 160
55.2 3.19 0.0942 0.246 0.163
divulgación 9
58.4 0.77 0.0939 0.225 0.136
Fig. 17 muestra la calidad de la dispersión y el MWsol de la divulgación y las muestras de control descritas anteriormente que comprenden Negro de carbón REGAL (marca comercial) 660. Muestras de la divulgación 5 seleccionadas y de control mostradas en la Fig. 17 comprenden aceite, como se estableción más arriba. Losdatos mostrados en Fig. 17 revelan claramente que la calidad de la macrodispersión de las composiciones del elastómero de la divulgación que comprende Negro de carbón REGAL ® 660, a lo largo de un amplio rango de valores de MWsol, es significativamente superior a la de las muestras de control. Los valores de macrodispersión para las composiciones de elastómero de la divulgación que comprenden Negro de carbón REGAL ® 660, como se muestra
10 en la Fig. 17 son descritos por las siguientes ecuaciones:
cuando MWsol > 0.6 x 106; y
cuando 0.6 x 106 < MWsol < 1.1 x 106.
Ninguna de las muestras de control alcanzó una calidad de macrodispersión de 1.0% o mejor a ningún MWsol, aun después de mezclar en seco suficientemente para degradar el MWsol por debajo de 0.6 x 106. En contraste, las composiciones de elastómero de la divulgación que comprenden Negro de carbón Regal® y que tienen MWsol por encima de 0.6 x 106 tienen excelente macrodispersión, tal como D(%) menor de 0.2%. Las propiedades y 5 características de desempeño de los compuestos para la muestra de la divulgación No. 10 y diversas muestras de control mostradas en la Fig. 17, que comprenden Negro de carbón Regal®, se establecen en la Tabla 30 más abajo. Puede verse que la muestra de divulgación No. 10 tiene una resistencia excepcionalmente buena al crecimiento de fracturas, como lo indica su valor de rata de crecimiento de fractura muy bajo de solamente 0.69 cm/millones de ciclos. En efecto, las muestras de la divulgación son bastante superiores a las muestras de control correspondientes.
10 Se cree que esto se debe principalmente a los mejores WWsol y macrodispersión del negro de carbón en la muestra de la invención, como se discutió más arriba.
Tabla 30 Propiedades de compuesto de Compuestos NR que contienen negro de carbón Regal 660 a 55 phr de carga
Muestra No.
Mooney ML Dureza E100 (psi) E300 (psi) Ténsil (psi) EB (%)
(1+4)
@100°C
control 177
61.0 213 942 702
control 178
87.6 63.2 232 943 4002 694
control 179
87.1 64.9 285 1134 4018 644
control 180
85.6 64.0 271 1198 4058 618
control 181
80.1 61.0 206 945 4098 661
control 182
93.4 59.0 192 835 3924 733
control 183
89.0 81.0 215 920 4134 698
control 184
83.4 824 223 998 4238 694
control 185
70.1 60.0 178 794 3768 717
control 186
69.8 60.3 196 920 4051 666
control 187
78.7 63.5 166 866 4157 720
control 188
72.1 62.0 191 883 4182 704
control 189
54.3 61.2 222 1079 4240 674
control 190
55.7 61.1 193 942 4125 692
control 191
65.0
control 192
61.1 60.4 191 902 4189 710
disclosure 10
88.1 62.9 249 1202 4292 634
(continuación)
Muestra No.
Re-unión Rata de Crecimiento de fractura (cm/millón de ciclos) Pérdida de Abrasión (g) Tan δ@ 0°C Tan δ @ 60°C
control 177
54.6 0.131
control 178
55.6 2.34 0.1849 0.194 0.129
control 179
53.7 2.78 0.1620 0.200 0.140
control 180
52.9 2.98 0.1385 0.220 0.153
control 181
51.0 3.41 0.1189 0.267 0.185
control 182
49.9 3.11 0.1076 0.270 0.194
control 183
50.1 3.15 0.1086 0.264 0.192
control 184
48.0 3.11 0.1085 0.284 0.208
control 185
47.5 4.59 0.0937 0.308 0.209
control 186
48.5 4.06 0.1008 0.296 0.211
control 187
47.7 3.53 0.1041 0.297 0.198
control 188
47.8 3.79 0.0985 0.285 0.207
control 189
47.5 3.71 0.0957 0.308 0.203
control 190
46.8 4.14 0.0962 0.300 0.200
control 191
47.4 0.228
control 192
46.5 4.78 0.0897 0.301 0.226
disclosure 10
48.2 0.89 0.0942 0.271 0.178
Fig. 18 muestra la calidad de la dispersión y el MWsol de la divulgación y las muestras de control descritas
5 anteriormente que comprenden Negro de carbón N234. Muestras de la divulgación seleccionadas y de control mostradas en la Fig. 18 comprenden aceite, como se estableción más arriba. Losdatos mostrados en Fig. 18 revelan claramente que la calidad de la macrodispersión de las composiciones del elastómero de la divulgación que comprende Negro de carbón N234, a lo largo de un amplio rango de valores de MWsol, es significativamente superior a la de las muestras de control. Los valores de macrodispersión para las composiciones de elastómero de
10 la divulgación que comprenden Negro de carbón N234, como se muestra en la Fig. 18 son descritos por las siguientes ecuaciones:
cuando MWsol < 0.35 x 106; y
15 cuando 0.35 x 106 < MWsol < 1.1 x 106.
Ninguna de las muestras de control alcanzó una calidad de macrodispersión de 0.3% o mejor a ningún MWsol, aun después de mezclar en seco suficientemente para degradar el MWsol por debajo de 0.35 x 106. En contraste, las composiciones de elastómero de la divulgación que comprenden Negro de carbón N234 y que tienen MWsol mayor de 0.35 x 106 tienen excelente macrodispersión, tal como D(%) no mayor de 0.3% o incluso 0.2%. Las propiedades
5 de compuesto y características de desempeño para la muestra de la divulgación No. 14 y diversas muestras de control mostradas en la Fig. 18, que comprenden Negro de carbón N234, se presentan en la Tabla 31 más abajo. Puede verse que la muestra de divulgación No. 14tiene buena resistencia al crecimiento de la fractura, como lo indica su valor de rata de crecimiento de la fracctura de solamente 2.08 cm/millones de ciclos.
Tabla 31 Propiedades de compuesto de Compuestos NR que contienen Negro de carbón N234 a 55 phr de 10 carga
Muestra No.
Mooney Dureza E100 E300 (psi) Ténsil (psi) EB (%)
ML (1+4)
(psi)
@100°C
control 273
94.5 88.0 388 2077 3718 511
control 274
121.6 69.8 464 2299 3825 501
control 275
121.4 72.5 564 2545 3994 472
control 270
132.2 71.9 511 2259 3964 520
control 277
79.6 68.6 468 2453 3857 469
control 278
96.3 70.0 531 2499 3874 469
control 279
108.8 89.0 406 2131 3883 532
control 280
120.3 71.5 478 2273 3852 502
control 281
78.4 69.7 558 2723 4027 451
control 282
89.8 69.8 553 2574 3898 465
control 283
93.6 69.6 506 2416 3887 475
control 284
108.7 71.8 528 2384 3788 484
control 285
73.3 69.3 529 2588 3831 444
control 286
79.2 69.5 531 2574 3858 456
control 287
77.8 70.7 544 2488 3834 461
control 288
82.8 71.2 485 2295 3799 499
divulgación 14
82.8 71.5 500 2440 3883 531
(continuación)
Muestra No.
Reunión Rata de Crecimiento de fractura (cm/millón de ciclos) Pérdida de Abrasión (g) Tan δ @ 0°C Tan δ @ 60°C
control 273
45.9 2.14 0.0583 0.285 0.183
control 274
47.2 1.84 0.0583 0.274 0.173
control 275
46.1 1.70 0.0538 0.284 0.172
control 276
46.9 1.21 0.0620 0.270 0.173
control 277
47.1 2.22 0.0628 0.305 0.173
control 278
45.8 2.40 0.0634 0.299 0.198
control 279
45.4 2.00 0.0680 0.306 0.198
control 280
44.2 1.81 0.0646 0.298 0.198
control 281
48.3 3.10 0.0598 0.293 0.174
control 282
46.5 2.33 0.0537 0.307 0.182
control 283
46.4 2.41 0.0594 0.309 0.188
control 284
44.2 1.99 0.0579 0.304 0.190
control 285
47.0 2.99 0.0554 0.295 0.178
control 286
45.8 2.85 0.0551 0.294 0.172
control 287
45.4 2.93 0.0569 0.305 0.187
control 288
44.0 2.39 0.0847 0.316 0.198
divulgación 14
45.1 2.08 0.0698 0.310 0.198
Fig. 19 muestra la calidad de la dispersión y el MWsol de la divulgación y las muestras de control descritas anteriormente que comprenden Negro de carbón N110 a 55 phr de carga. Los datos mostrados en Fig. 19 revelan claramente que la calidad de la macrodispersión de las composiciones del elastómero de la divulgación que comprende Negro de carbón N110, a lo largo de un amplio rango de valores de MWsol, es significativamente superior a la de las muestras de control. Los valores de macrodispersión para las composiciones de elastómero de la divulgación que comprenden Negro de carbón N110, como se muestra en la Fig. 19, son descritos por las siguientes ecuaciones:
cuando MWsol < 0.35 x 106; y
cuando 0.35 x 106 < MWsol < 1.1 x 106.
Ninguna de las muestras de control alcanzó una calidad de macrodispersión de 0.5% a ningún MWsol, aun después de mezclar en seco suficientemente para degradar el MWsol por debajo de 0.35 x 106. En contraste, las composiciones de elastómero de la divulgación que comprenden Negro de carbón N110 y que tienen MWsol por encima de 0.35 x 106 tienen excelente macrodispersión, tal como D(%) menor de 0.2%.
Fig. 20 muestra la calidad de la dispersión y el MWsol de la muestra de la divulgación 22 y las muestras de control descritas más arriba que comprenden Negro de carbón N351 a 33 phr de carga. Los datos mostrados en Fig. 20 revelan claramente que la calidad de la macrodispersión de las composiciones elastoméricas de la divulgación que comprenden Negro de carbón N351, a lo largo de un amplio rango de valores de MWsol, es significativamente superior a la de las muestras de control. Los valores de macrodispersión para las composiciones de elastómero de la divulgación que comprenden Negro de carbón N351, como se muestra en la Fig. 20, son descritos por las siguientes ecuaciones:
cuando MWsol < 0.55 x 106; y
cuando 0.55 x 106 < MWsol < 1.1 x 106,
[0124] Ninguna de las muestras de control alcanzó una calidad de macrodispersión de 1.0% a ningún MWsol, even after dry mixing sufficiently to degrade MWsol, más abajo 0.35 x 106. En contraste, las composiciones de elastómero de la divulgación que comprenden Negro de carbón N351 y que tienen MWsol por encima de 0.35 x 106 tienen excelente macrodispersión, tal como D(%) menor de 0.2%.
[0125] Fig. 21 muestra la calidad de la dispersión y el MWsol de la muestra de la divulgación No. 23 y las muestras de control descritas más arriba que comprenden Negro de carbón STERLING® 6740 a 55 phr de carga. Los datos mostrados en Fig. 21 revelan claramente que la calidad de la macrodispersión de las composiciones del elastómero de la divulgación que comprende Negro de carbón STERLING® 6740, a lo largo de un amplio rango de valores de MWsol, es significativamente superior a la de las muestras de control. Los valores de macrodispersión para las composiciones de elastómero de la divulgación que comprenden Negro de carbón STERLING® 6740, como se muestra en la Fig. 21 son descritos por las siguientes ecuaciones:
cuando MWsol < 0.3 x 106; y
cuando 0.3 x 106 < MWsol < 1.1 x 106.
[0126] Ninguna de las muestras de control alcanzó una calidad de macrodispersión de 0.1% o incluso 0.2% a ningún MWsol, aun después de mezclar en seco suficientemente para degradar el MWsol por debajo de 0.3 x 106. En contraste, las composiciones de elastómero de la divulgación que comprenden Negro de carbón STERLING® 6740 y que tienen MWsol por encima de 0.3 x 106 tienen excelente macrodispersión, tal como D(%) menor de 0.2% e incluso menor de 0.1%. Las propiedades de compuesto y características de desempeño para la muestra de la divulgación No. 23 y las muestras de control mostradas en Fig. 21, que comprenden Negro de carbón STERLING® 6740, se presentan en la Tabla 32 más abajo. Puede verse que la muestra de la invención No. 23tiene buena resistencia al crecimiento de la fractura, como lo indica su valor de rata de crecimiento de la fracctura de solamente
0.91 cm/millones de ciclos. En efecto, la muestra de la divulgación es bastante superior a las muestras de control correspondientes. Se cree que esto se debe principalmente a los mejores MWsol y macrodispersión de negro de carbón en la muestra de la divulgación, como se discutió anteriormente.

Tabla 32 Propiedades de composiciones de Compuestos NR que contienen negro de carbón STERLING 6740 a 55 phr de carga
Muestra No.
Mooney ML Dureza E100 (psi) E300 (psi) Ténsil (psi) EB (%)
(1+4)
@100°C
control 412
75.50 65.1 467.0 2308.0 3519 451
control 413
85.70 65.7 469.0 2314.0 3855 479
control 414
92.70 67.7 462.0 2243.0 3613 472
control 415
99.60 66.9 492.0 2260.0 3572 477
control 416
74.50 65.8 521.0 2468.0 3584 445
control 417
78.20 67.1 502.0 2372.0 3448 438
control 418
82.00 88.0 534.0 2418.0 3604 453
control 419
88.10 67.8 540.0 2330.0 3820 475
control 420
66.70 68.0 515.0 2382.0 3468 444
control 421
78.30 87.8 488.0 2310.0 3375 4.40
control 422
78.30 65.8 548.6 2440.0 3549 442
control 423
82.10 86.5 487.0 2219.0 3452 466
control 424
64.80 66.5 541.0 2448.0 3397 425
control 425
67.50 66.5 524.0 2374.0 3474 445
control 426
70.30 66.9 546.0 2351.0 3428 446
control 427
71.00 68.1 554.0 2340.0 3322 435
divulgación 23
110.50 64.8 453.6 2241.0 3324 443
Muestra No.
Re-Unión Rata crecimiento fractura (cm/ millones de ciclos) Pérdida abrasión (g) Tan δ@0°C Tan δ @ 60°C
control 412
59.8 5.04 0.127 0.202 0.107
control 413
60.0 3.63 0.128 0.203 0.108
control 414
59.3 3.98 0.126 0.208 0.114
control 415
58.8 4.58 0.12 0.217 0.118
(continuación)
Muestra No.
Re-Unión Rata crecimiento fractura (cm/ millones de ciclos) Pérdida abrasión (g) Tan δ@0°C Tan δ @ 60°C
control 416
60.3 5.67 0.117 0.188 0.094
control 417
60.0 4.67 0.112 0.202 0.104
control 418
59.3 4.23 0.125 0.204 0.105
control 419
57.5 3.22 0.122 0.218 0.117
control 420
60.0 4.23 0.131 0.204 0.099
control 421
58.8 3.84 0.127 0.206 0.105
control 422
59.8 3.98 0.126 0.210 0.106
control 423
56.8 3.85 0.12 0.213 0.117
control 424
58.3 4.54 0.131 0.200 0.104
control 425
58.8 3.65 0.129 0.207 0.100
control 426
58.0 3.07 0.134 0.211 0.110
control 427
58.9 3.25 0.126 0.217 0.115
divulgación 23
57.3 0.91 0.1642 0.204 0.124
Ejemplos de adición: Muestras curadas
Un cierto número de las muestras de lote maestro descritas anteriormente, incluyendo tanto muestras de la
5 divulgación seleccionadas como las correspondientes muestras de control, fueron curadas y probadas. Específicamente, las muestras fueron mezcladas con la Etapa II en la Tabla 8, anteriormente, utilizando la formulación de la Tabla 9, para producir un compuesto final. El compuesto final en cada fase fue curado entonces en un molde utilizando técnicas estándar a aproximadamente 150ºC hasta que se alcanzó un curado sustancialmente completo. Las características de comportamiento de las muestras curadas fueron determinadas midiendo sus
10 respectivas ratas de crecimiento de fractura de acuerdo con las técnicas de medición definidas anteriormente, esto es, utilizando una máquina de flexionamiento rotatorio según ASTM D3629-94. La máquina de flexionamiento tipo rotatorio utilizada para medir el crecimiento de la fractura está disponible comercialmente y es bien conocida. Se discute, por ejemplo, en los Proceedings of the International Rubber Conference, 1995 (Kobe, Japan), Paper No. 27A - 6 (p. 472 -475). Los compuestos fueron probados a 100ºC y a un ángulo de flexión de 45º. Se acepta
15 generalmente por las personas experimentadas en la técnica que la rata de crecimiento de fractura en tales compuestos es afectada por el peso molecular de la goma natural y la calidad de dispersión del negro de carbón, esto es, por los valores MWsol y D (%)de los compuestos. Un MWsol más alto y un D (%) más bajo se correlacionan bien con la rata de crecimiento de fractura reducida. La rata de crecimiento de fractura y otra información para las muestras de divulgación números 9, 10 y 16 se presentan en la Tabla 33 más abajo. Los correspondientes
20 resultados de prueba para las correspondientes muestras de control se presentan en la Tabla 34 más adelante, agrupados según la selección del negro de carbón. También se midió Tan δmax @ 60ºC para las muestras de la divulgación números. 24 - 32 y para las correspondientes muestras de control. Los valores Tan δmax @ 60ºC para las muestras de la divulgación se presentan en la Tabla 35 más abajo. Los resultados de pruebas correspondientes para las muestras de control se presentan en la Tabla 36 más adelante.
25 Las muestras de control No. 444 - 450 mostradas en la Tabla 36 se hicieron de acuerdo con los procedimientos descritos anteriormente para el código de muestra de control M2D1 utilizando goma natural RSS1. Todas usaron negro de carbón N234 a nivel de carga (phr) mostrado en la Tabla 36, junto con 5 phr de aceite extensor.

Tabla 33 Ratas de crecimiento de fractura de muestras de la divulgación
Muestra de invención No.
CB/ Carga/Aceite Mwsol(K) CGR(cm/millón de ciclos)
9 10 16
N 3 26/ 55/0 R 6 60/ 55/0 N 2 34/ 55/0 6 66 6 78 5 00 0.77 0.69 0.88

Tabla 34 Rata de crecimiento de fractura de muestras de control
Código
N234/55phr/0 Código N326/ 35phr/ 0
RSS1
RSS1
Muestra No. Mwsol (K) CGR (cm/millón de ciclos)
Muestra No. Mwsol (K) CGR (cm/millón de ciclos)
M1D1
273 585 2.14 M1D1 145 550 2.84
M1D2
274 669 1.84 M1D2 146 636 2.52
M1D3
275 759 1.70 M1D3 147 650 2.03
M1D4
275 896 1.21 M1D4 148 724 1.83
M2D1
277 580 2.22 M2D1 149 517 3.39
M2D2
278 602 2.40 M2D2 150 572 2.77
M2D3
279 631 2.00 M2D3 151 613 2.61
M2D4
280 667 1.81 M2D4 152 696 2.79
M3D1
281 457 3.10 M3D1 153 489 3.12
M3D2
282 476 2.33 M3D2 154 521 3.35
M3D3
283 493 2.41 M3D3 155 504 3.83
M3D4
384 495 1.99 M3D4 156 538 3.55
M4D1
285 372 2.99 M4D1 157 415 3.02
M4D2
256 382 2.55 M4D2 158 447 3,81
M4D3
287 381 2.93 M4D3 159 488 3.23
M4D4
288 403 2.39 M4D4 160 469 3.19
(continuación)
Código
Regal 660/55phr/0 Código Regal 660/55phr/0
RSS1
RSS1
Muestra No. Mwsol (K) CGR (cm/millón de ciclos)
Muestra No. Mwsol (K) CGR (cm/millón de ciclos)
M1D1 M1D2 M1D3 M1D4 M2D1 M2D2 M2D3 M2D4
177 674 178 792 2.34 179 891 2.78 180 676 2.98 181 598 3.41 182 602 3.11 183 697 3.15 184 659 3.11 M3D1 M3D2 M3D3 M3D4 M4D1 M4D2 M4D3 M404 185 186 187 188 189 190 191 192 473 506 562 559 401 426 466 449 4.59 4.06 3.53 3.79 3.71 4.14 4.78

Tabla 35 Tan a 60ºC para muestras de la divulgación
Muestra de la Invención No.
Carga de N234/aceite (phr) Mwsol(K) Max. Tan δ@60°C
24 25 26 27 28 29 30 31 32
48/5 53/5 58/5 63/5 68/5 49/5 54/5 63/5 65/5 569 485 447 403 378 618 482 390 325 0.169 0.176 0.191 0.219 0.227 0.159 0.171 0.228 0.224

Tabla 36 Tan δ a 60ºC para Muestras de Control
Muestra No.
MW (K) D(%) Carga de N234/Aceite (phr) Max. Tan D(@60C)
444
428 0.25 37/5 0.154
445
409 0.37 42/5 0.170
446
379 0.42 46/5 0.179
447
361 0.58 51/5 0.195
448
366 0.27 53/5 0.212
449
290 0.39 58/5 0.215
450
296 0.64 63/5 0.245
Puede verse a partir de una comparación de las Tablas 33 y 34 que la rata de crecimiento de fractura inferior se alcanza ventajosamente en las muestras de la divulgación, en comparación con las muestras de control. Una rata de crecimiento de fracturas más bajas se correlaciona con una buena durabilidad y características relacionadas para numerosas aplicaciones, incluyendo aplicaciones en neumáticos y similares. Además, puede verse a partir de una comparación de las Tablas 35 y 36 que los mejores valores de Tan δmax se logran en las muestras de la invención, esto es, valores que son inferiores a los valores de la muestra de control. De acuerdo con lo anterior, se alcanza un rendimiento mejorado en las muestras de la divulgación para numerosas aplicaciones de producto incluyendo, por ejemplo, aplicaciones en neumáticos y similares que requieren una baja histéresis para una resistencia al rodamiento correspondientemente baja.
Las características de comportamiento ventajosas para las composiciones elastoméricas de la divulgación se ejemplifican por la rata de crecimiento de ruptura de la muestra de la divulgación No. 16 que comprende negro de carbón N234 y los resultados de pruebas correspondientes para las muestras de control Nos. 273 a 288 mostradas gráficamente en la Figura 22. Específicamente, la Figura 22 demuestra claramente una correlación entre MWsol y la rata de crecimiento de fractura para las muestras de control, así como el impacto ventajoso de una excelente macrodispersión en las composiciones elastoméricas de la divulgación. Debe entenderse que los valores MWsol de las Figuras 22 - 24 y en las Tablas 33 - 36 son para materiales de lote maestro antes del curado. Se entiende que el peso molecular del material curado se correlaciona bien con el valor MWsol de el lote maestro no curado. La rata de crecimiento de fracturas de las muestras de control en un rango de MWsol de aproximadamente 0.25 x 106 hasta 0.6 x 106 se ve que encaja bien a lo largo de una correlación de línea recta con MWsol. En contraste, la muestra de la divulgación No. 16 con MWsol de 0.5 x 106 tiene una rata de crecimiento de la fractura significativamente mejor (esto es, inferior) que cualquiera de las correspondientes muestras de control, debido a la mejor macrodispersión D (%) de la muestra de la divulgación. Esto se establece adicionalmente mediante la presentación similar en la Figura 23, donde la rata de crecimiento de la fractura de la muestra de la divulgación No. 9 que comprende negro de carbón N326 se ve significativamente inferior que cualquiera de las correspondientes muestras de control Nos. 145 a 160, y está bien por debajo de la línea de correlación. De la misma forma en la Figura 24 la excelente macrodispersión de la muestra de la divulgación No. 10 se ve que da como resultado de nuevo un valor de crecimiento de fractura que cae bastante por debajo de la línea de correlación entre la rata de crecimiento de fractura y el MWsol establecido por las correspondientes muestras de control Nos. 177 a 192. En la Figura 25, se muestra que gráficamente que es mejor la máxima tan δ a 60ºC, esto es inferior, para las muestras de la divulgación Nos. 24 a 28 y las muestras de la divulgación Nos. 29 a 32 que para las correspondientes muestras de control Nos. 444 a 450.
Los resultados de crecimiento de fractura superiores discutidos anteriormente para las composiciones elastoméricas de la divulgación no solamente demuestran ventajosas propiedades frente a la fatiga, sino que también indican propiedades de fractura ventajosas, tales como una excelente resistencia al desgarramiento y al corte y separación. Los resultados de histéresis superiores discutidos anteriormente para las composiciones elastoméricas de esta invención no solamente demuestran una resistencia ventajosamente baja al rodamiento (y correspondientemente una economía más alta de combustible) para aplicaciones en neumáticos de vehículos a motor, sino que también indica una mejora ventajosa en las propiedades de comportamiento relacionadas, tales como generación reducida de calor. Una o más de estas propiedades superiores, fatiga y resistencia a la fractura, baja histéresis, baja generación de calor, etc., producen composiciones elastoméricas de la divulgación bien apropiadas para uso en aplicaciones comerciales tales como aplicaciones en neumáticos y en productos de goma industriales. Con respecto a las aplicaciones en neumáticos, diversas realizaciones preferidas de la divulgación son particularmente bien adecuadas para su uso como: rodamiento de neumáticos, especialmente rodamiento para neumáticos radiales y de desplazamiento para camiones, neumáticos off-the-road ("OTR"), neumáticos para aeroplanos y similares; subrodamientos; coraza de alambre; paredes laterales; cojines de goma para neumáticos reencauchados; y similares aplicaciones en neumáticos. Las características de comportamiento superiores alcanzadas por diversas realizaciones preferidas de la divulgación pueden proveer una durabilidad mejorada para los neumáticos, una vida de rodamiento y una vida de estructura, mejor economía de combustible para el vehículo a motor y otras ventajas. Con respecto a los productos de goma industrial, diversas realizaciones preferidas de la divulgación son particularmente bien apropiadas para uso como: montajes para motores, hidromontajes, soportes de puente y aisladores sísmicos, rodaduras o rodamientos para tanques, cintas para minería y aplicaciones en productos similares. Las características de comportamiento superior alcanzadas por las diversas realizaciones preferidas de la divulgación pueden proveer una vida mejorada frente a la fatiga, durabilidad y otras ventajas para tales aplicaciones de producto.
Las Figuras 26 - 29 son representaciones gráficas de la morfología del negro de carbón, estructura (DBPA) y área superficial (CTAB), que corresponden en general a la Figura 8. La región morfológica en negro de carbón 261 en la Figura 26 incluye negros de carbón que actualmente están en uso comercial para aplicaciones para rodamientos de neumáticos OTR. La flecha 262 indica la dirección en la cual la región 261 puede extenderse ventajosamente de acuerdo con la presente invención. Las características de comportamiento tales como resistencia al corte y separación, resistencia al crecimiento de fracturas y resistencia al desgarre se entiende que se mejoran en general en la dirección de la flecha de tendencia 262, sin embargo, en el pasado, la degradación de desprendimiento de éstas y otras características debidas a peso molecular reducido de la goma natural y/o una macrodispersión más pobre resultante del uso de tales áreas superficiales más altas, al uso de tales negros de carbón de áreas superficiales más altas de estructura inferior. Las composiciones elastoméricas de la presente divulgación pueden emplear negro de carbón de estructura más baja, de área superficial más alta, indicado por la flecha de tendencia 262 para alcanzar materiales OTR significativamente mejorados a la vista de sus excelentes macrodispersión y MWsol.
De la misma forma, la región de morfología 271 del negro de carbón en la Figura 27 incluye negros de carbón actualmente en uso comercial para aplicaciones en rodamientos de neumáticos para camiones y autobuses (T/B). La Flecha 272 indica la dirección en la cual la región 271 puede ser extendida ventajosamente de acuerdo con la presente invención. Las características de comportamiento, tales como resistencia al desgaste, se entiende que mejoran en general en la dirección de la flecha de tendencia 272, sin embargo, en el pasado, para controlar la degradación de estas y otras características debido a un peso molecular reducido de la goma y/o una macrodispersión más pobre resultante del uso de tales negros de carbón de área superficie más alta. Las composiciones elastoméricas de la presente divulgación pueden emplear tales negros de carbón de área superficial más alta indicados por la flecha de tendencia 272 para alcanzar materiales de rodamiento T/B mejorados, a la vista de sus excelentes macrodispersión y MWsol.
De la misma forma, las regiones de morfología 281 y 283 de negro de carbón en la Figura 28 muestran negros de carbón actualmente en uso comercial para bases de rodamiento y bases para neumáticos para coches de pasajeros (PC), respectivamente. Las flechas de tendencia 282 y 284 indican la dirección en la cual las regiones 281 y 283, respectivamente, pueden extenderse ventajosamente de acuerdo con la presente invención. Las características de comportamiento tales como la generación de calor (HBU) y resistencia al rodamiento se entiende que mejoran para la base de rodamiento en la dirección de la flecha de tendencia 282, sin embargo, en el pasado, para disminuir la degradación de estas y otras características debido al peso molecular reducido de la goma y/o a la macrodispersión más pobre resultante del uso de tales negros de carbón de área superficial más alta y estructura más baja. De la misma forma, las características de comportamiento tales como la resistencia en rodamiento se entiende que mejoran el rodamiento en PC en la dirección de la flecha de tendencia 284, sin embargo, en el pasado, para controlar la degradación de estas y otras características debida al peso molecular reducido de la goma y/o a una macrodispersión más pobre resultante del uso de negros de carbón con áreas superficiales más altas y estructuras más bajas. Las composiciones elastoméricas de la presente divulgación pueden emplear negros de carbón de áreas superficiales más altas y estructuras más bajas indicadas por las flechas 282 y 284 para alcanzar una base de rodamiento mejorada y una base de rodamiento para PC, respectivamente, a la vista de la excelente macrodispersión y la conservación óptima del peso molecular alto en tales composiciones elastoméricas.
De la misma forma, las regiones de morfología 291, 293 y 294 de negro de carbón en la Figura 29 muestran negros de carbón actualmente en uso comercial para paredes laterales, ápices y aplicaciones en neumáticos con cinturón de acero, respectivamente. Las flechas de tendencia 292 y 295 indican la dirección en la cual la región 291 y la 294, respectivamente, pueden extenderse ventajosamente de acuerdo con la presente invención. Las características de comportamiento tales como la generación de calor (HBU) y la vida frente a la fatiga se entiende que mejoran para paredes laterales en la dirección de la flecha de tendencia 292, sin embargo, en el pasado, para controlar la degradación de estas y otras características debidas al peso molecular de la goma y/o a la macrodispersión más pobre resultante del uso de tales negros de carbón de estructura reducida. Sin embargo, las características de comportamiento tales como generación de calor, procesamiento y adhesión del alambre se entiende que mejoran para materiales elastoméricos con cinturón de acero en la dirección de la flecha de tendencia 295, sin embargo, en el pasado, para controlar la degradación de estas y otras características debidas al peso molecular reducido de la goma y/o a la macrodispersión más pobre resultante del uso de tales negros de carbón de área superficial más alta, de estructura más baja. Las composiciones elastoméricas de la presente divulgación pueden emplear negros de
5 carbón de área superficial más alta y/o estructura más baja como se indica mediante las flechas 292 y 295 para logras materiales para paredes laterales y gomas con cinturón de acero mejoradas, respectivamente, a la vista de las excelentes macrodispersión y preservación opcional del alto peso molecular en tales composiciones elastoméricas.
Ejemplos adicionales: realización preferida y muestras de control que comprenden otros agentes de relleno
10 Se prepararon muestras adicionales de composiciones elastoméricas de acuerdo con ciertas realizaciones preferidas de la presente divulgación, y muestras de control correspondientes. Un primer grupo de estas emplearon un agente de relleno agregado de fases múltiples del tipo denominado anteriormente como negro de carbón tratado con silicio.
Específicamente, las muestras de la divulgación número 33 - 34 emplearon negro de carbón tratado con silicio
15 ECOBLACK® comercialmente disponible en Cabot Corporation (Billerica Massachusetts). Tal agente de relleno ECOBLACK® tiene propiedades morfológicas, esto es, estructura y área superficial, similares a las del negro de carbón N234. La muestra número 33 empleó agente de relleno ECOBLACK® de 45 phr y no empleó aceite extensor. La muestra número 34 empleó agente de relleno ECOBLACK® de 68 phr y no empleó aceite extensor. Los usos típicos para agentes de relleno y aceites extensores para diversas aplicaciones de productos se muestran en la
20 Tabla 37, para composiciones elastoméricas de la divulgación que comprenden goma natural y una mezcla de negro de carbón y agente de relleno de sílica. Debe entenderse que el uso del agente de relleno de sílica en las composiciones mostradas en la Tabla 37 reemplazaría típicamente una cantidad similar del agente de relleno de negro de carbón.

Tabla 37 Formulaciones típicas NR para aplicaciones en neumáticos
Aplicación
Tipo de negro de carbón Carga de negro de carbón Carga de aceite Carga de sílica
Rodamientos para camión/autobús
N110,N115,N121,N134,N220,N299 40 - 60 phr 0 -20 phr 0 -10 phr
Rodamiento OTR
N110,N115,N220,N231 45 - 55 phr 5 - 10 phr 5 -20 phr
Recubrimiento en acero
N326 50 - 75 phr 0 -5 phr 0 -20 phr
Base para rodamiento camión/autobús
N330,N550 40 - 60 phr 0 - 20 phr
Cubierta de carcasa
N328,N330,N550 40 - 60 phr 5 - 30 phr
Pared lateral
N330,N351,N550 30 - 60 phr 5 - 30 phr
(continuación)
Aplicación
Tipo de negro de carbón Carga de negro de carbón Carga de aceite Carga de sílica
Ápice
N326,N330,N351 50 - 90 phr 0 - 20 phr
Rodamiento LRR PC
N234,N299,N339,N343,N347,N351 40 - 60 phr 0 - 30 phr
Un segundo grupo de muestras empleó una combinación o mezcla de sílica y negro de carbón. En realizaciones de la presente divulgación que emplean una combinación de agentes de relleno de negro de carbón y sílica, se prefiere 5 generalmente que se usen en proporciones en peso de al menos aproximadamente 60:40. Esto es, el negro de carbón comprende preferiblemente al menos 60% en peso del agente de relleno para alcanzar una buena coagulación del elastómero y reducir o eliminar la reaglomeración de la sílica en el lote maestro. En particular, en los ejemplos número 35 - 38, como se muestra en la Tabla 40, se utiliza negro de carbón junto con agente de relleno de SiO2 en partículas HiSil® 233 disponible de PPG industries (Pittsburgh, Penssylvania, Estados Unidos), que tiene un
10 área superficial BET de 150 m2/g, área superficial DBPA de 190 milésimas/100 g, pH de 7 y un tamaño de partículas primarias de 19 nanómetros.
Todas las muestras de la invención, esto es las muestras de la divulgación adicionales números 33 - 38 fueron preparadas de acuerdo con los procedimientos y aparatos utilizados para las muestras de la divulgación 1 - 32, como se describe anteriormente. Los detalles de proceso y aparato para cada una de las muestras de divulgación
15 números 33 -38 se dan en la Tabla 38, más abajo. El látex de campo o el concentrado empleado en las muestras números 33 - 38, según sea el caso, son los mismos como se describió anteriormente con referencia a la Tabla 24. Será evidente que los datos en la Tabla 38 son paralelos a los provistos en la Tabla 25 anteriormente, para las muestras de la divulgación números 1 - 32. El agente de relleno de negro de carbón “CRX2000” que aparece en la Tabla 38 es el negro de carbón tratado con silicio ECOBLACK® descrito anteriormente.
20 Tabla 38 Detalles de producción de muestras
Muestra No.
Composición elastomérica Cabot Punta de boquilla para pasta Pasta CB Concentrado CB (% en peso)
Tipo de látex
Negro de carbón Carga de HiSll 233 (phr) Carga de aceite (phr) Diámetro (pulgada) Longitud cobertura (pulgadas)
Tipo
Carga (phr)
33
Látex de campo CRX200 46 0 0 0.020 0.5 14.5
34
Látex de campo CRX200 58 0 0 0.020 0.5 14.5
35
Látex de campo N220 43 10 5 0.025 0.5 13.9
38
Látex de campo N234 41 9 0 0.020 0.5 13.5
37
Látex de campo N234 31 20 0 0.020 0.5 14.0
38
Concentrado de látex STERUNG 6740 28 20 0 0.020 0.5 15.5
(continuación)
Muestra No.
Zona de coagulación
1ª porción
2ª porción 3ª porción 4ª porción
Diámetro (pulgadas)
Longitud (pulgadas) Diámetro (pulgadas) Longitud (pulgadas) Diámetro (pulgadas) Longitud (pulgadas) Diámetro (pulgadas) Longitud (pulgadas)
33
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2
34
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2
35
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2
36
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2
37
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2
38
0.19 3.0 0.27 1.6 0.38 2.3 0.53 3.2
Muestra No.
Zona de mezcla Microfluidizador
Rata de flujo de pasta lb/min
Velocidad de pasta (pie/segundo) Antioxidante Rata de flujo de látex (lbs/min) Velocidad de látex (pies/segundo) Presión de entrada (psi) Presión de salida (psi)
TNPP (phr)
Santoflex (phr)
33
6.2 710 0.3 0.4 campo 7.4 10.7 17000
34
6.2 710 0.3 0.4 campo 5.8 8.3 17000
35
5.2 380 0.3 0.4 campo 4.9 7.1 14500
36
5.0 576 0.3 0.4 campo 4.3 6.2 10000
37
4.6 550 0.3 0.4 campo 4.1 5.9 9500
38
5.1 580 0.3 0.4 Conc 2.2 3.2 9000
Muestra No.
Presión en punta de boquilla de pasta Desaguado Secado y enfriamiento Tipo de mezclador Rata de producción (lb/hr) Muestra de invención No.
Humedad inicial de grumo (%)
Humedad final de grumo (%) Temperatura de producto (ºF) Humedad de producto (%)
33
- 77.5 >8.0 435 0.2 Bloque T 66
33
34
- 78.0 1.6 470 0.3 Bloque T 52
34
35
1650 77.9 >4.0 360 0.4 Bloque T 64
35
36
3000 79.2 1.0 475 0.5 Bloque T 39
36
37
2930 78.9 12.3 435 0.4 Bloque T 34
37
38
2600 69.7 4.2 455 0.2 Bloque T 46
38
Las muestras de control 451-498 fueron preparadas de acuerdo con los procedimientos y aparato descritos anteriormente para la muestras de control 1-450. El código de procesamiento (véase Tabla 13 anteriormente), la carga de agente de relleno, goma, MWsol y la macrodispersión para los lotes maestros 451-466 se definen más abajo en la Tabla 39. El código de procesamiento, la carga de agente de relleno, goma, MWsol y los valores de macrodispersión para las muestras de la divulgación números 33-38 (junto con el agente de relleno y las cargas de aceite para referencia conveniente) se muestran en la Tabla 40. Se verá a partir de la Tabla 39 que las muestras de control 451-466 corresponden en composición a las muestras de la divulgación números 33 y 34. De la misma forma, las muestras de control números 467-498 corresponden a las muestras de la divulgación números 35-38
Tabla 39 Tabla 41
Código
CRX 2000/44/0 CRX 2000/58/0
RSS1
RSS1
Muestra No. Mwsol (K)
D(%) Muestra No. Mwsol (K) D(%)
M2 M3
909 590 909 590
M2D1 M2D2 M2D3 M2D4 M3D1 M3D2 M3D3 M3D4
451 461 452 474 453 489 454 515 455 393 456 422 457 435 458 449 3.48 3.68 7.17 6.28 2.89 2.87 4.15 3.23 459 333 460 392 461 388 452 394 463 280 464 298 465 350 468 379 6.61 5.71 9.48 8.05 2.23 2.13 4.05 7.22

Tabla 40 Peso molecular de Sol y área no dispersada de muestras
Muestra No.
CB/Carga/Aceite Mwsol(K) D(%)
33 34 35 36 37 38
CRX 2000/44/0 CRX 2000/58/0 N220/Hilsil 233/43/10/5 N234/Hilsil 233/40/10/0 N234/Hilsil 233/30/20/0 STERLING 6740/Hilsil 233/30/20/0 380 448 500 490 399 354 0.18 0.10 0.14 0.36 0.23 0.39
Código
N220/HilsII Z33/43/10/5 N234/nilsII 233/10/10/0
RSS1
RSS1
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol (K) D(%)
M2
803 809
M3
601 590
M2D1
457 493 1.51 475 443 8.74
M2D2
468 537 2.61 476 517 10.9
M2D3
469 523 2.82 477 569 12.5
M2D4
470 615 2.95 476 592 8.25
M3D1
471 417 0.95 479 358 6.85
M3D2
472 438 1.40 480 420 13.8
M3D3
473 433 2.15 481 518 13.9
M3D4
474 485 2.22 482 447 7.25
Código
N234/HilsII 233/30/20/0 STERLING 6740/HilsII 233/30/20/0
RSS1
RSS1
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol (K) D(%)
M2
909 909
M3
590 590
M2D1
483 394 4.37 491 430 3.77
M2D2
484 507 5.66 492 488 4.39
M2D3
485 526 4.7 493 517 5.37
M2D4
486 568 5.94 494 563 4.66
(continuación)
Code
N234/HilsII 233/30/20/0 STERLING 6740/HilsII 233/30/20/0
RSS1
RSS1
Muestra No. Mwsol (K) D(%)
Muestra No. Mwsol (K) D(%)
M3D1 M3D2 M3D3 M3D4
487 377 8.39 488 363 4.49 489 376 5.07 490 432 5.26 495 375 3.5 496 380 2.73 497 419 2.72 498 448 3.29
La excelente dispersión del negro de carbón en los lotes maestros de las muestras de la divulgación 33-38 está demostrada por comparación de los valores de la calidad de macrodispersión y MWsol mostrados en las Tablas 39
41. Las muestras de la divulgación números 33-34 hechas con negro de carbón tratado con silicio ECOBLACK®, y las correspondientes muestras de control se comparan en la gráfica semilogarítmica de la Figura 30. Se observa una excelente dispersión de negro de carbón en la Figura 30 para las muestras de la divulgación, que representan realizaciones preferidas de las composiciones elastoméricas de acuerdo con la presente divulgación. Las muestras de la divulgación ventajosamente están por debajo de la línea 301 en la Figura 30, mientras que todas las muestras de control tienen una dispersión más pobre, estando por encima de la línea 301. En efecto, las realizaciones preferidas mostradas en la Figura 30 caen por debajo de un valor D (%) de 0.2% incluso con un valor de MWsol que excede ventajosamente 0.4 x 106. Los datos mostrados en la Figura 30 revelan claramente que la calidad de la macrodispersión de las composiciones elastoméricas divulgadas aquí, que comprenden negro de carbón tratado con silicio es significativamente superior a lo que se puede lograr utilizando ingredientes comparables en métodos de mezcla en seco anteriores. Los valores de macrodispersión para las composiciones elastoméricas de la invención mostrados en la Figura 30 están descritos por las siguientes ecuaciones:
cuando MWsol es menor de 0.4 x 106; y
cuando 0.4 x 106 < MWsol < 1.1 x 106.
Se reconocerá que D (%) es el porcentaje de área no dispersa medido para defectos superiores a 10 micrones y 1% es el umbral de la calidad de macrodispersión para los lotes maestros de acuerdo con estas realizaciones preferidas de la presente divulgación. Esto es, ninguno de los lotes maestros triturados en seco alcanzaron una calidad de macrodispersión de 1.0% o mejor con ningún MWsol aún después de mezclar suficientemente en seco para degradar el MWsol por debajo 0.4 x 106. Las realizaciones preferidas mostradas en la Figura 30 caen bien por debajo del umbral. Puede verse que las composiciones elastoméricas de la divulgación que comprenden negro de carbón tratado con silicio proveen un balance hasta ahora no alcanzado entre la calidad de la macrodispersión y el MWsol.
Las muestras de la divulgación números 35-38 que comprenden negro de carbón mezclado con agente de relleno de sílica y las correspondientes muestras de control se comparan en la gráfica semilogarítmica de la Figura 31. Específicamente, la Figura 31 muestra los valores de macrodispersión y los valores de MWsol de las muestras de la divulgación números 35-38 y las correspondientes muestras de control números 467-498. Se observa una excelente dispersión del negro de carbono en la Figura 31 para las muestras de la divulgación, que representan una realización preferida de las composiciones elastoméricas de acuerdo con la presente divulgación. Las muestras de la divulgación ventajosamente están por debajo de la línea 311 en la Figura 31, mientras que todas las muestras de control tienen una dispersión más pobre, estando por encima de la línea 311. En efecto, todas las realizaciones preferidas mostradas en la Figura 31 caen por debajo de un valor D (%) de 0.4%. Los datos mostrados en la Figura
31 revelan claramente que la calidad de la macrodispersión de las composiciones elastoméricas, divulgadas aquí, que comprenden mezclas de negro de carbón/sílica sobre un rango de valores de MWsol, es significativamente superior a lo que se puede obtener utilizando ingredientes comparables en métodos de mezcla por trituración en seco anteriores. Los valores de macrodispersión de las composiciones elastoméricas de la invención mostrados en la Figura 31 están descritos por las siguientes ecuaciones:
cuando MWsol es menor de 0.5 x 10-6; y
cuando 0.5 x 106 < MWsol < 1.1 x 106.
Se reconocerá que D (%) es el porcentaje de área no dispersa medido para efectos superiores a 10 micrones y 0.8% es el umbral de calidad de macrodispersión para lotes maestros de acuerdo con estas realizaciones preferidas de la presente divulgación. Esto es, ninguno de los lotes maestros triturados en seco alcanzaron una calidad de macrodispersión de 0.8% o mejor con ningún MWsol incluso después de mezclar suficientemente para degradar el MWsol por debajo de 0.4 x 106. Las realizaciones preferidas mostradas en la Figura 31 caen bien por debajo del umbral de valor de macrodispersión de 0.8%, e incluso por debajo de 4%. Puede verse que las composiciones elastoméricas de la divulgación que comprenden agente de relleno en mezcla de negro de carbón/sílica proporcionan un balance hasta ahora no alcanzado entre la calidad de la macrodispersión y el MWsol.
Ejemplos adicionales relativos a la producción de la mezcla de composición elastomérica que están de acuerdo a o con la invención.
Las mezclas de composiciones elastoméricas fueron preparadas de acuerdo con la presente divulgación y comparadas con mezclas correspondientes hechas utilizando técnicas de mezcla seco/seco conocidas anteriores, tal como se describe ahora. Las mezclas de composición elastomérica fueron preparadas con muestras de
composiciones elastoméricas denominadas más abajo como “CEC” o lotes maestros “CEC”.
Los lotes maestros CEC fueron hechos utilizando goma natural de látex de campo y negro de carbón Vulcan 7H (negro de carbón ASTM N234) como sigue:
Preparación de composición elastomérica (etapa de mezcla en húmedo). El lote maestro elastomérico fue producido de acuerdo con la presente divulgación. Específicamente, se produjo un lote elastomérico que comprende el látex de campo de goma natural estándar de Malaysia con 71 phr de agente de relleno consistente de negro carbón de grado comercial N234 disponible en Cabot Corporation. La formulación de la composición (excluyendo los aditivos para látex ordinarios menores) se presenta en la tabla 7 a continuación.
Tabla 7A Formulación de lote maestro
Ingrediente
Partes en peso
Goma
100
Negro de carbón
71.
Santoflex 134 (antioxidante)
0.4
TNPP (antioxidante)
0.3
Total
171.7
El aparato de producción del lote maestro elastomérico fue sustancialmente idéntico al aparato descrito anteriormente con referencia a las Figuras 1, 3 y 7 de los dibujos. La punta de boquilla para pasta (véase referencia número 167 en la Figura 7) fue de 0.18 pulgadas de diámetro y una cobertura (véase referencia número 168 en la Figura 7) que tiene una longitud axial de 0.2 pulgadas. La zona de coagulación (véase número 53 en la Figura 3) incluyó una primera porción de un diámetro de 0.188 pulgadas y aproximadamente 0.985 pulgadas de longitud axial (estando parcialmente dentro de la cabeza de mezcla y parcialmente dentro del extensor sellado al mismo); una segunda porción de 0.266 pulgadas de diámetro y 1.6 pulgadas de longitud axial; una tercera porción de 0.376 pulgadas de diámetro y 2.256 pulgadas de longitud axial; y una cuarta porción de 0.532 pulgadas de diámetro y
3.190 pulgadas de longitud axial. Además, hay interconexiones axiales cortas regulares entre las porciones antedichas. La preparación del lote maestro se describe en mayor detalle inmediatamente a continuación.
1.
Preparación de pasta de negro de carbón. Las bolsas de negro de carbón fueron mezcladas con agua desionizada en un tanque para pasta de negro de carbón y equipado con un agitador. El agitador rompió las pellas en fragmentos y se formó una pasta cruda con 15.1% de negro de carbón. La pasta cruda fue recirculada utilizando un triturador de tubería. Durante la operación, esta pasta fue bombeada continuamente mediante una bomba de diafragma de aire hacia un molino coloidal para una dispersión inicial. La pasta fue alimentada entonces mediante una bomba de cavidad en avance hacia un homogenizador, específicamente, un Microfluidizer Modelo M210 de Microfluidics International Corporation para presurizar y desgarrar, con el fin de producir una pasta finamente triturada. La rata de flujo de la pasta desde el microfluidizador hacia la zona de mezcla fue definida por la velocidad del microfluidizador, actuando el microfluidizador como una bomba de desplazamiento positivo de alta presión. La rata de flujo de la pasta fue monitoreada con un medidor de flujo de masa Micromotion®. La pasta de negro de carbón fue alimentada al microfluidizador a una presión de aproximadamente 250 psig y la presión de salida fue establecida a 7500 psig a un conjunto acumulado a aproximadamente 1200 psig de presión de salida, de tal forma que la pasta fue introducida como un chorro en la zona de mezcla y a una rata de flujo de aproximadamente 3.6 libras/minuto y a una velocidad de aproximadamente 500 pies por segundo.
2.
Suministro de látex. El látex fue cargado a un tanque, específicamente un tanque de alimentación de 55 galones. La emulsión antioxidante fue agregada al látex antes de la carga. Los antioxidantes agregados consistían de 0.3 phr de tris nonil fenil fosfito (TNPP) y 0.4 phr de Santoplex® 134 (mezcla de alquil-aril p-fenilén diamina). Cada uno de los antioxidantes fue preparado como una emulsión al 40% en peso utilizando 4 partes de oleato de potasio por 100 partes de antioxidante junto con hidróxido de potasio para ajustar la emulsión a un pH de aproximadamente 10. Se utiliza una bomba peristáltica para mover el látex desde el tanque de alimentación hacia la zona de mezcla del reactor de coagulación. La rata de flujo del látex fue de 3.2 a 3.3 libras/minuto y aproximadamente 4.8 pies por segundo, y fue medido con un medidor de flujo de masa Endress +Hauser (Greenwood, Indiana, Estados Unidos). La carga de negro de carbón deseada de 71 phr fue obtenida manteniendo una relación apropiada de la rata de alimentación de látex y la rata de alimentación de pasta de negro de carbón.
3.
Mezcla de negro de carbón y látex. La pasta de negro de carbón y el látex fueron mezclados arrastrando el látex hacia la pasta de negro de carbón. Durante el arrastre, el negro de carbón fue mezclado íntimamente en el látex y la
mezcla coaguló. Del reactor salieron “gusanos” de coagulo suaves, húmedos esponjosos.
4.
Desaguado. El grumo húmedo descargado del reactor de coagulación tenía aproximadamente 80% de agua. El grumo húmedo fue desaguado hasta aproximadamente 11 a 13% de humedad con un extrusor de desaguado (The French Oil Mill Machinery Company; 3½ pulgadas de diámetro). En el extrusor, el grumo húmedo fue comprimido y se exprimió el agua desde el grumo a través de un barril con ranuras del extrusor.
5.
Secado y enfriamiento. El grumo desaguado fue depositado en un segundo extrusor donde de nuevo fue comprimido y calentado. El agua fue eliminada por expulsión del grumo a través de la placa de molde del extrusor. La temperatura de salida del producto fue aproximadamente 280ºF a 310ºF y el contenido de humedad fue aproximadamente 3.0 a 4.0% en peso. El grumo caliente, seco fue enfriado rápidamente (aproximadamente 20 segundos) hasta aproximadamente 100ºF mediante un transportador con vibración por aire forzado. El grumo parcialmente húmedo fue secado completamente a menos de 0.5 % en peso en un horno de convección de aire forzado (Aeroglide, Raleigh, Carolina del Norte) a una temperatura de 200ºF - 240ºF.
Etapa de mezcla en seco. En los siguientes ejemplos las dos etapas de “mezcla en seco” del método seco/seco utilizado más abajo para comparación y propósitos de control, y la etapa “mezcla en seco” del método húmedo/seco
de la presente divulgación se llevaron a cabo en un mezclador Farell BR Banbury.
La referencia en los siguientes procedimientos y en los siguientes ejemplos a “lote maestro de goma natural” se
refiere al producto de la primera etapa de mezcla en seco. El término goma natural triturada se refiere al producto de la “condición de trituración de goma natural” definida más abajo. El término NR se refiere a goma natural. El término CB se refiere a negro de carbón. En todos los casos, el negro de carbón es negro de carbón N234. Las formulaciones completas para las etapas de mezcla en húmedo y en seco se proporcionan en la tabla de formulación inmediatamente a continuación.
Puede verse a partir de los ejemplos que siguen las excelentes propiedades que se alcanzan en las mezclas de composición elastomérica de la presente divulgación que se utilizan de acuerdo con la invención o con la invención.
Formulación
Ingredientes
phr
Gomas Negro de Carbón Aceite Antioxidante 1 Antioxidante 2 Óxido de Zinc Ácido Esteárico Acelerador Azufre
(RSS1 triturado + Taktene 220 o CEC NR + Taktene 220 o CEC NR + RSS1 triturado o, RSS1 triturado) (V7H) (Sundex 790) (Santoflex 134) (TNPP) (Azo 60) (Hystrene 5016) (Santocure NS) 100.0 50.0 5.0 0.4 0.3 4.0 2.0 1.8 1.0
Total
164.5
Procedimientos de mezcla de mezclas CEC NR/MR y mezclas NR/BR secas
Método de mezcla
5 1. Se mezcla lote maestro de goma natural, en el cual todo el negro de carbón ha sido cargado, con goma de butadieno y aceite. Las relaciones de goma natural a goma de butadieno fueron 90/10, 80/20, 70/30;
2.
Se mezcla lote maestro de goma natural, en el cual todo el negro de carbón y el aceite fueron cargados, con goma de butadieno. Las relaciones de goma natural a goma de butadieno fueron 80/20 y 70/30;
3.
Se mezcla lote maestro de goma natural, en el cual se cargaron 50 phr de negro de carbón, con lote maestro de
10 butadieno, en el cual se cargaron 50 phr de negro de carbón, y aceite. Las relaciones de goma natural a goma de butadieno fueron 80/20, 70/30, 60/40 y 50/50;
4. Se mezcla lote maestro de goma natural con 50 phr de negro de carbón y se cargó todo el aceite, con lote maestro de butadieno, en el cual se cargó 50 phr de negro de carbón. Las proporciones de goma natural a goma de butadieno fueron 80/20, 70/30, 60/40 y 50/50;
15 5. Se mezcla lote maestro CEC, en el cual se cargó todo el negro de carbón, con goma de butadieno y aceite. Las proporciones de goma natural a goma de butadieno fueron 90/10, 80/20 y 70/30;
6.
Se mezcla lote maestro de CEC, en el cual se cargó todo el negro de carbón y el aceite, con goma de butadieno. Las proporciones de goma natural a goma de butadieno fueron 80/20 y 70/30;
7.
Se mezcla lote maestro de CEC, en el cual se cargaron 50 phr de negro de carbón, con lote maestro de
20 butadieno, en el cual se cargaron 50 phr de negro de carbón, y aceite. Las proporciones de goma natural a goma de butadieno fueron 80/20, 70/30, 60/40 y 50/50;
8. Se mezcla lote maestro CEC en el cual se cargaron 50 phr de negro de carbón y todo el aceite, con lote maestro de butadieno, en el cual se cargaron 50 phr de negro de carbón. Las proporciones de goma natural a goma de butadieno fueron 80/20, 70/30, 60/40 y 50/50.
Procedimientos de mezcla 5 Se utilizó un mezclador Banbury de tres etapas para las combinaciones de mezcla en seco y un mezclador Banbury
de dos etapas para las combinaciones CEC. La goma natural fue triturada antes de la primera etapa para las combinaciones de mezcla en seco. La goma de butadieno fue utilizada sin trituración. Condiciones de trituración de la goma natural
Factor de llenado: 0.75 Velocidad del rotor: 100 rpm Temperatura Banbury: 30°C Energía del lote total: 950 Watios -Hora
10 Procedimientos de mezclado Banbury Etapa de mezcla 1: Etapa 1:
Factor de llenado: Variable Velocidad de rotor: 70 rpm Temperatura Banbury: 30°C Tiempo Operación 0" Agregar NR triturado 30" Agregar 40 phr de CB 1’00" Agregar la mitad restante de CB 1’30" Agregar CB
Vaciar de acuerdo con la curva de
8’ a 13’
potencia
Muestra No.
Factor de relleno Tiempo de mezclado Temperatura para vaciar (ºC) Consumo de energía (KWH)
1-1 (etapa 1)
0.67 8’ 140.8 1.45
1-2 (etapa 1)
0.65 8’ 148.6 1.59
1-3 (etapa 1)
0.63 10’ 167.3 1.89
Etapa 2
Factor de relleno:
0.70
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
Agregar lote maestro NR, bala de BR, agentes químicos y aceite
3’00"
vaciar
Muestra No.
Temperatura para vaciar(ºC) Consumo de energía (KWH)
1-1 (etapa 2) 1.2 (etapa 2) 1-3 (etapa 2)
113.5 118.2 116.4 0.42 0.46 0.44
Etapa 3:
Factor de relleno:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
operación
0"
Agregar compuesto de la etapa 2 y agentes de curado
3’00"
vaciar
5
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
1-1 1-2 1 -3
99.5 89.8 103 . 9 0.42 0.43 0.45
Método de mezcla 2: Etapa 1:
Etapa 2:
Factor de relleno:
0.65
Velocidad de rotor:
70 rpm (50 rpm cuando la temperatura alcanzó 160ºC)
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar NR triturado
30"
agregar 40 phr de CB
1’00"
agregar la mitad del CB restante
1’30"
agregar el CB restante
2’00"
agregar aceite
9’ a 13’
vaciar de acuerdo con la curva de potencia
Muestra No.
Tiempo de mezclado Temperatura para vaciar(ºC) Consumo de energía (KWH)
2-2 (etapa 1)
9’ 148 1. 60
2-2 (etapa 1)
9.5’ 145 1.84
Factor de llenado.
0.70
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar lote maestro NR, bala de SR, agentes químicos
3’00"
vaciar
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
2-1 (etapa 2) 2-2 (etapa 2)
127 126 0.48 0.51
Etapa 3:
Factor de llenado: 0.65
Velocidad de rotor: 70 rpm
Temperatura Banbury: 30°C
Tiempo Operación
0" agregar el compuesto de la etapa 2 y agentes de curado
3’00" vaciar
Muestra ID
Temperatura para vaciar (ºC) Consumo de energía (KWH)
2-1 2-2
107 0.42 0.44
5
Método de mezcla 3:
Etapa 1:
• Lote maestro NR
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar NR triturado
30"
agregar 40phr de CB
1’00"
agregar el CB restante
9’00"
vaciar
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
3-1 a 3-4 (etapa 1) 3-1 a 3-4 (etapa 1) 3-1 a 3-4 (etapa 1)
142 143 148 1.51 1.48 1.52
Lote maestro BR
Lote maestro BR
Factor de llenado.
0.75
Velocidad de rotor:
85 rpm (60 rpm cuando la temperatura alcanzó 160°C)
Temperatura Banbury:
30°C
Tiempo
Operación
0’
agregar bala de BR
30"
agregar 30 phr de negro de carbón
1’00"
agregar la mitad del negro de carbón restante
1’30"
agregar el negro de carbón restante
7’00"
vaciar
Muestra No,
Temperatura para vaciar (ºC) Consumo de energía (KWH)
3-1 to 3-4 (etapa 1) 3-1 to 3-4 (etapa 1) 3-1 to 3-4 (etapa 1)
159 158 157 1.38. 1.35 1.33
Etapa 2:
Factor de llenado:
0.70
Velocidad de rotor:
70 rpm
Temperatura Bambury:
30°C
Tiempo
Operación
0"
Agregar lote maestro de la etapa 1 y agentes químicos y aceite
3’00"
vaciar
5
Muestra No.
Temperatura para vaciar (ºC) Consumo de energía (KWH)
3-1 (etapa 2)
115 0.38
3-2 (etapa 2)
123 0.40
3-3 (etapa 2)
120 0.40
3-4 (etapa 2)
118 0.37
Etapa 3:
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
Agregar compuesto de la etapa 2 y curados
3’00"
vaciar
Muestra ID
Temperatura para vaciar (ºC) Consumo de energía (KWH)
3-1 3-2 3-3 3-4
103 107 109 97 0.44 0.46 0.47 0.38
Método de mezcla 4:
5
Etapa 1:
• Lotes maestros NR
Factor de llenado
0.65
Velocidad de rotor:
70 rpm
Temperatura
30°C
Banbury:
Tiempo
Operación
0"
agregar NR triturado
30
agregar 40 phr de CB
1’00"
agregar CB restante
2’00"
agregar aceite
9’00"
vaciar
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
4-1 to 4-4 (etapa 1)
140 1.49
4-1 to 4-4 (etapa 1)
138 1.49
4-1 to 4-4 (etapa 1)
137 1.40
Factor de llenado:
0.75
Velocidad de rotor:
85 rpm (60rpm cuando temp. reached 160°C)
Temperatura Banbury:
30°C
Tiempo
Operación
0’
agregar bala de BR
30"
agregar 30 phr de negro de carbón
1’00"
agregar la mitad del negro de carbón restante
1’30"
agregar el negro de Carbón restante
7’00"
Vaciar
Muestra No.
Temperatura para vaciar (ºC) Consumo de energía (KWH)
4-1 to 4-4 (etapa 1)
159 1.38
4.1 to 4-4 (etapa 1)
158 1.35
4-1 to 4-4 (etapa 1)
157 1.33
5
Etapa 2
Factor de llenado:
0.70
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
Agregar lote maestro de la etapa 1 y agentes químicos
3’00"
vaciar
Muestra No.
Temperatura para vaciar (ºC) Consumo de energía (KWH)
4-1 (etapa 2) 4-2 (etapa 2) 4-3 (etapa 2) 4-4 (etapa 2)
133 133 133 132 0.52 0.56 0.55 0.53
Etapa 3:
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura
30°C
Banbury:
Tiempo
Operación
0"
Agregar compuesto de la etapa 2 y curados
3’00"
vaciar
Muestra No.
Temperatura para vaciar (ºC) Consumo de energía (KWH)
4-1 4-2 4-3 4-4
107 108 109 111 0.48 0.48 0.47 0.46
5
Método de mezcla 5:
Factor de llenado:
0.75
Velocidad de rotor:
70 rpm
Temperatura Banbury :
30°C
Tiempo
Operación
0"
agregar lote maestro de CEC
4’
agregar bala de BR
(continuación)
7’
agregar polvos y aceite
9’
vaciar
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
5-1 (etapa 1)
104.2 1.78
5-2 (etapa 1)
107.1 1.72
5-3 (etapa 1)
103.9 1.79
Etapa 2:
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
Agregar compuestos de etapa 1 y agentes de curado:
3’00"
vaciar
5
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
5-1 5-2 5-3
76.7 81.0 83.3 0.46 0.48 0.46
Método de mezcla 6: Etapa 1:
Factor de llenado:
0.75
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar lote maestro de CEC
4’
agregar bala de BR
7’
agregar polvos
9’
vaciar
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
6-1 (etapa 1) 6-2 (etapa 1)
114.8 115.6 1.67 1.72
Etapa 2:
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar compuesto de etapa I y agentes de curado
3’00"
vaciar
Muestra Nb
Temperatura para vaciar (ºC) Consumo de energía (KWH)
6-1 6-2
81.8 81.4 0.47 0.47
Método de mezcla 7: Etapa 1:
Factor de llenado:
0.75
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar lote maestro de CEC
2’
agregar lote maestro de BR
5’
agregar polvos y aceite
7’
vaciar
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
7.1 (etapa 1)
117.4 1.33
7-2 (etapa 1)
112.6 1.21
7-3 (etapa 1)
106.0 1.14
7-4 (etapa 1)
105.7 1.24
Etapa 2:
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
Agentes de curado etapa 1 compuestos y
agentes de curado
3’00"
vaciar
Muestra No
Temperatura para vaciar (ºC) Consumo de energía (KWH)
7.1 7-2 7-3 7-4
83.6 83.0 83.6 83.4 0.48 0.46 0.46 0.46
Método de mezcla 8:
Etapa 1:
Factor de llenado:
0.75
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar lote maestro de CEC
2’
agregar lote maestro de BR
5’
agregar polvos
7’
vaciar
Muestra ID
Temperatura para vaciar (ºC) Consumo de energía (KWH)
8-1 (etapa 1) 8-2 (etapa 1) 8-3 (etapa 1) 8-4 (etapa 1)
108.4 112.4 103.1 111.3 1.26 1.27 1.13 1.20
5
Etapa 2:
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar compuesto de etapa 1 y agentes
de curado
3’00"
vaciar
Muestra ID
Temperatura para vaciar (ºC) Consumo de energía (KWH)
8-1
78.8 0.40
8-2
81.0 0.45
8-3
76.4 0.44
8-4
79.5 0.44
Tabla 1 Descripción de muestra y código para mezclas NR/BR
Método de mezcla No.
Descripción Muestra No. Relación de NR/BR Carga de negro de carbón en goma natural Carga de negro de carbón en goma de butadieno Aceite cargado a
1
1-1 80/10 55.5 phr 0 phr mezcla
1-2
80/20 82.5 phr 0 phr mezcla
lote maestro de mezcla de goma natural, en el cual se cargó todo el negro de carbón, con goma de butadieno y aceite.
1-3 70/30 71.4 phr 0 phr mezcla
2
2-1 80/20 825 phr 0 phr goma natural
lote maestro de mezcla de goma natural, En el cual se cargó todo el negro de carbón y aceite, con goma de butadieno.
2-2 70/30 71.4 phr 0 phr goma natural
(continuación) (continuación) Tabla 2 Caracterización de composición de mezclas NR/BR Tabla 3. Propiedades físicas de mezclas NR/BR Tabla 4. Propiedades de fractura y propiedades dinámicas de las mezclas NR/BR (continuación)
Método de mezcla No.
Descripción Muestra No. Relación de NR/BR Carga de negro de carbón en goma natural Carga de negro de carbón en goma de butadieno Aceite cargado a
3
lote maestro de mezcla de 3-1 80/20 50 phr 50 phr mezcla
goma natural, en el cual se
3-2 70/30, 60 phr 60 phr mezcla
cargaron 50 phr de negro de carbón, con
3-3 60/40 50 phr 50 phr mezcla
lote maestro de goma de butadieno, En el cual se cargaron 50 phr de negro de carbón, y aceite.
3-4 50/50 50 phr 50 phr mezcla
4
lote maestro de mezcla de 4-1 80/20 50 phr 50 phr goma natural
goma natural, en el cual se
4-2 70/30 50 phr 50 phr goma natural
cargaron 50 phr de negro de carbón y
4-3 60/40 60 phr 50 phr goma natural
todo el aceite, con lote maestro de goma de butadieno, En el cual se cargaron 50 phr de negro de carbón.
4-4 50/50 50 phr 50 phr goma natural
5
lote maestro de mezcla de 5-1 80/10 55.5 Plu 0 phr mezcla
CEC, En el cual se cargó
5-2 80/20 625 phr 0 phr mezcla
todo el negro de carbono con goma de butadieno y aceite
5-3 70/30 71.4 phr 0 phr mezcla
6
lote maestro de mezcla de CEC, en el cual se cargaron todo el negro de carbón y aceite, con goma de butadieno. 6-1 6-2 80/20 70/30 62.6 phr 71.4 phr 0 phr 0 phr CEC CEC
Método de mezcla No.
Descripción Muestra No. Relación de NR/BR Carga de negro de carbón en goma natural Carga de negro de carbón en goma de butadieno Aceite cargado a
7
7-1 80/20 50 phr 50 phr mezcla
7-2
70/30 50 phr 50 phr mezcla
7-3
60/40 50 phr 50 phr mezcla
lote maestro de mezcla de CEC, En el cual se cargaron 50 phr de negro de carbón, con lote maestro de goma de butadieno, En el cual se cargaron 50 phr de negro de carbón, y aceite.
7-4 50160 50 phr 50 phr mezcla
8
8-1 80/20 50 phr 50 phr CEC
8-2
70/30 50 phr 50 phr CEC
8-3
80/40 50 phr 50 phr CEC
lote maestro de mezcla de CEC, En el cual se cargaron 50 phr de negro de carbón y aceite, con lote maestro de goma de butadieno, En el cual se cargaron 50 phr de negro de carbón.
8-4 50/50 50 phr 50 phr CEC
Método de mezcla No.
Muestra No. Viscosidad Mooney ML (1+d)@100°C Área no dispersada % de Sol Molecular Peso de goma enlazada
1
1-1 1-2 1-3 58 60 64 1.15 1.00 2.84 296 277 243 40 42 43
2
2-1 2-2 63 62 1.26 1.28 276 246 41 41
3
3-1 62 0.88 337 37
3-2
61 0.58 336 36
3-3
64 0.85 336 38
3-4
64 0.84 333 34
4
4.1 70 0.68 359 37
4-2
70 0.62 361 37
4-3
68 0.68 342 37
4-4
65 0.54 324 35
5
5-1 5-2 5-3 58 58 58 334 310 296 43 43 41
6
6-1 6-2 60 59 0.32 0.40 430 347 36 37
7
7-1 65 0.51 422 43
7-2
65 0.46 434 42
7-3
62 0.54 428 40
7-4
64 0.47 404 41
8
8-1 62 0.52 401 40
8-2
64 0.52 434 40
8.3
58 0.65 407 34
8-4
63 0.51 359 41
Muestra No.
Dureza E100 MPa E300 MPa Ténsil % de elongación Re-unión 60ºC, % Re-unión Re-unión, 0°C, % t.a., %
1-1 1-2 1-3
65 64 65 2.9 3.1 3.2 16 17 18 29 28 25 500 462 404 62 65 65 38 43 46 52 55 56
2-1 2-2
69 69 2.9 2.9 16 16 26 24 458 434 60 60 39 41 50 51
3-1 3-2 3-3 3-4
65 66 66 67 2.4 2.4 2.5 2.5 13 13 13 13 28 28 25 23 510 514 488 488 63 83 62 62 43 45 46 49 53 54 54 57
4.1 4-2 4-3 4-4
68 69 63 68 2.8 2-6 2.6 2.7 14 14 14 14 27 25 24 24 502 472 407 459 61 61 60 60 42 43 44 48 52 53 53 53
6-1 6-2 5-3
65 64 64 2.9 2.8 2.9 17 16 16 28 27 25 452 452 432 65 66 65 41 43 45 64 55 56
6-1 6-2
66 65 2.5 2.0 14 15 27 26 505 482 62 83 42 45 54 55
7-1 7-2 7-3 7-4
68 66 67 67 3.0 3.0 2.9 3.0 17 17 16 16 29 28 25 23 472 459 429 307 64 64 64 65 45 46 48 51 55 57 58 59
8-1 8-2 8-3
67 67 66 2.8 2.8 2.6 15 15 14 28 27 25 480 476 485 64 84 62 48 47 47 56 56 55
8-1
65 2.8 15 23 400 67 54 60
Muestra No.
Rata de crecimiento de fractura x10-6, cm/millón de ciclos Resistencia al desgarre molde C, NI mm Rata de abrasión Max. Tan δ @ 80°C
1-1 1-2 1-3
4.32 3.11 1.34 128 68 54 81 83 88 0.176 0.147 0.132
2-1 2-2
4.37 2.39 55 50 100 85 0.178 0.164
3-1
4.30 107 74 0.185
3-2
3.86 87 80 0.161
3-3
3.54 80 85 0.153
3-4
2.23 73 100 0.158
4-1
4.47 108 85 0.188
4-2
4.64 104 96 0.173
4-3
3.82 70 113 0.175
4-4
3.73 63 150 0.174
5-1 5-2 5-3
4.03 3.72 1.99 76 65 62 114 113 88 0.176 0.156 0.152
6.1 6.2
1.64 0.61 75 81 101 107 0.188 0.186
7-1
4.59 70 117 0.178
7-2
4.30 75 132 0.166
7-3
4.61 56 144 0.151
7-4
3.43 52 146 0.132
Muestra No.
Rata de crecimiento de fractura x10-6, cm/millón de ciclos Resistencia al desgarre molde C, NI mm Rata de abrasión Max. Tan δ @ 80°C
8-1 8-2 8-3 8-4
5.08 4.60 5.19 4.43 66 66 58 64 112 134 140 138 0.186 0.181 0.165 0.140
Rata de abrasión= (pérdida de peso de muestra de referencia/pérdida de peso de muestra) x 100 (la muestra referencia fue muestra No. 2-1)
Procedimientos de mezcla de mezclas de CEC/RSS1 y composición de mezcla en seco de RSS1 Método de mezcla 5 En seco: El RSS1 triturado fue mezclado con otros ingredientes:
CEC: El lote maestro CEC, en el cual estaba cargado el negro de carbón, fue RSS1 triturado y aceite. Las proporciones de goma natural CEC a goma natural RSS1 fueron 100/0, 90/10, 80/20 y 70/30. Procedimientos de mezcla Se utilizó un mezclador Banbury de tres etapas para mezclar la composición y un mezclador Banbury de dos etapas
10 para las mezclas CEC/RSS1. La goma natural RSS1 fue triturada antes de la primera etapa de mezcla para la composición de mezcla en seco y las mezclas CEC/RSS1. Condición de trituración RSS1
Factor de llenado:
0.75
Velocidad de rotor:
100 rpm
Temperatura Banbury:
30°C
Energía total del lote:
950 Vatios-hora
15 Procedimientos de mezcla Banbury: En seco: Etapa 1:
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
agregar RSS1 triturado
30"
agregar 30 phr de CB
1’00"
agregar CB restante
1’30"
agregar CB restante
10’
vaciado de acuerdo con curva de potencia
Código muestra
Tiempo de mezcla Temperatura de vaciado (°C) Entrada de energía (KWH)
Seco (etapa 1)
10 ’ 130 1.7
Etapa 2:
Factor de llenado:
0.70
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
Agregar lote maestro de etapa 1, aceite y productos químicos excpto agentes de curado
3’00"
vaciado
Código muestra
Temperatura de vaciado (°C) Entrada de energía (KWH)
Seco (etapa 2)
124 0.42
5
Etapa 3:
100
Factor de llenado:
0.65
Velocidad de rotor.
70 rpm
Temperatura
30°C
Banbury:
Tiempo
Operación
0".
Agregar compuesto y agentes curado
etapa 2
3’00"
vaciado
Código
Temperatura de Entrada de energía
muestra
vaciado (°C) (KWH)
1.1
91 0.36
CEC:
Etapa 1:
Factor de llenado:
0.75
Velocidad de rotor:
70 rpm
Temperatura
30°C
Banbury:
Tiempo
Operación
0"
Agregar CEC lote maestro
4’
agregar RSS1 triturado
7’
Agregar polvos y aceite
6’-9’
vaciado
5
Código muestra
Temperatura vaciado (°C) Entrada de energía(KWH) Tiempo de mezcla
CEC-1 (etapa 1)
113.9 1.28 6’
CEC-2 (etapa 1)
104.2 1.78 9’
CEC-3 (etapa 1)
107.1 1.72 9’
CEC-4 (etapa 1)
103.9 1.79 9’
Etapa 2:
Factor de llenado:
0.65
Velocidad de rotor:
70 rpm
Temperatura Banbury:
30°C
Tiempo
Operación
0"
Agregar compuesto y agentes curado etapa 1
3’00"
vaciado
Muestra No
Temperatura de vaciado (°C) Entrada energía (KWH)
CEC-1
81.3 0.63
CEC-2
76.7 0.46
CEC-3
81.0 0.46
CEC-4
83.3 0.48
Tabla 1 Descripción de muestra y código para mezclas CEC/RSS1
Método de
Descripción Código de Proporción Carga de Carga de Carga de
mezcla
muestra de negro de negro de aceite en
CEC/RSS1
carbón CEC carbón en
REST
RSS1
En seco
Goma natural (RSS1) fue mezclada En seco / / 50 phr
En seco
con ingredientes
CEC
Lote maestro de mescal CEC-1 100/0 50 phr /
CEC
CEC en el cual todo el
CEC-2 90/10 55.5 phr 0 phr mezcla
negro de carbón fue
CEC-3 60/20 62.6 phr 0 phr mezcla
cargado con RSS1
CEC-4 70/30 71.4 phr 0 phr mezcla
triturado y
aceite.
Tabla 2 Características de composición de mezclas CEC/RSS1
Código de muestra
Viscosidad Mooney ML(1+4)@100°C Peso molecular de Sol K Goma enlazada %
En seco
61 304 38
CEC-1 CEC-2 CEC-3 CEC-4
63 61 61 60 378 362 363 377 41 46 46 45
Tabla 3 Propiedades físicas de mezclas CEC/RSS1
Código de muestra
Dureza E100 MPa E300 MPa MPa Elongación ténsil de re-unión% 60°C, % Re-unión 0°C. % Re-unión t.a. %
En seco
69 2.8 15 27 472 59 35 48
CEC-1
69 2.7 16 30 533 62 36 50
30
CEC-2
66 3.0 17 30 483 63 39 52
31
CEC-3
63 2.8 17 497 64 38 53
CEC-4
65 2.8 16 506 65 38 54
Tabla 4 Propiedades de fractura y propiedades dinámicas de mezclas CEC/RSS1
Código de muestra
Rata de crecimiento de fractura x10-5 , cm/millones de ciclo Resistencia a desgarramiento molde C, N/ mm Rata de abrasión Max. Tan δ @ 60°C
En seco
4.83 122 80 0.178
CEC-1 CEC-2 CEC-3 CEC-4
3.43 4.31 3.85 4.11 91 94 97 106 120 110 108 98 0.179 0.174 0.174 0.168
Rata de abrasión= (pérdida de peso de muestra de referencia/pérdida de peso de muestra) x 100 (la muestra de referencia fue la muestra No. 2-1 en CEC en la aplicación de mezclas NR/BR)

Claims (16)

  1. REIVINDICACIONES
    1. Uso de una mezcla de composición elastomérica que comprende (a) un agente de relleno en partículas dispersado finamente en un elastómero, y (b) elastómero adicional, donde la mezcla de composiciones elastomérica es obtenible por un método que comprende las etapas de:
    alimentar un flujo continuo de un primer fluido que comprende un látex elastomérico a una zona de mezcla de un reactor de coagulación;
    alimentar un flujo continuo de un segundo fluido que comprende un agente de relleno en partículas bajo presión a la zona de mezcla del reactor de coagulación para formar una mezcla con el látex elastomérico, siendo suficientemente energética la mezcla del primer fluido y el segundo fluido dentro de la zona de mezcla para coagular de forma sustancialmente completa el látex elastomérico en el reactor de coagulación;
    descargar un flujo continuo de composición elastomérica desde el reactor de coagulación; y
    mezclar en seco la composición elastomérica con el elastómero adicional para formar una mezcla de composición elastomérica,
    en aplicaciones para neumáticos y en productos de goma industriales.
  2. 2.
    Uso de acuerdo con la reivindicación 1 donde el uso en aplicaciones para neumáticos es el uso como rodamientos para neumáticos, subrodamiento para neumáticos, corazas de alambre, paredes laterales, carcasa o gomas de amortiguación para neumáticos con rerodamiento.
  3. 3.
    Uso de acuerdo con la reivindicación 1 donde el uso en los productos industriales es un uso como soportes para motor, hidrosoportes, rodamientos para puente, aislamientos sísmicos, amortiguaciones, cintas transportadoras, limpiaparabrisas, rodaduras o rodamientos o cintas para minería.
  4. 4.
    Uso de acuerdo con cualquier reivindicación precedente donde la mezcla de composición elastomérica está caracterizada por una macrodispersión D (%) del agente de relleno en partículas menor de 0.2% de área no dispersada en una primera fase elastomérica de la mezcla de composición elastomérica, comprendiendo dicha primera fase elastomérica esencialmente solo el elastómero del látex elastomérico.
  5. 5.
    Uso de acuerdo con cualquiera de las reivindicaciones precedentes donde la mezcla de composición elastomérica es una mezcla de composición elastomérica de fases múltiples que comprende una composición elastomérica y elastómero adicional, donde la composición elastomérica comprende al menos 30 phr de agente de relleno en partículas dispersado en un elastómero, siendo seleccionado el agente de relleno en partículas de negro de carbón, negro de carbón recubierto con silicio, negro de carbón tratado con silicio, sílica ahumada, sílica precipitada o una mezcla de cualquiera de ellos, y siendo cada fase de la mezcla de composición elastomérica de fases múltiples seleccionada independientemente de goma natural, un derivado clorado de goma natural, homopolímero, copolímero o terpolímero de butadieno, estireno, isopreno, isobutileno, 3,3-dialquil-1,3-butadieno donde el grupo alquilo es alquilo C1 a C3, acrilonitrilo, etileno y propileno, un derivado de aceite extensor de cualquiera de ellos y una mezcla de cualquiera de ellos donde la macrodispersión D (%) del agente de relleno en partículas en la mezcla de composición elastomérica de fases múltiples es menor de 0.2% de área no dispersada.
  6. 6.
    Un producto neumático o un producto de goma industrial que comprende una mezcla de composición elastomérica que comprende (a) un agente de relleno en partículas finamente dispersado en elastómero, y (b) un elastómero adicional, donde la mezcla de composición elastomérica es obtenible por un método que comprende las etapas de:
    alimentar un flujo continuo de un primer fluido que comprende látex elastomérico a una zona de mezcla de un reactor de coagulación;
    alimentar un flujo continuo de un segundo fluido que comprende un agente de relleno en partículas bajo presión en la zona de mezcla de un reactor de coagulación para formar una mezcla con el látex elastomérico, siendo la mezcla del primer fluido y el segundo fluido dentro de la zona de mezcla suficientemente energética para coagular sustancialmente de forma completa el látex elastomérico en el reactor de coagulación;
    descargar un flujo continuo de composición elastomérica desde el reactor de coagulación; y
    mezclar en seco la composición elastomérica con el elastómero adicional para formar una mezcla de composición elastomérica, donde la mezcla de composición elastomérica está caracterizada por una macrodispersión D (%) del agente de relleno en partículas menor de 0.2% de área no dispersada en una primera fase elastomérica de la mezcla de composición elastomérica, comprendiendo dicha primera fase elastomérica esencialmente solo un elastómero del látex elastomérico.
  7. 7.
    Un producto para neumático de acuerdo con la reivindicación 6 el cual es un rodamiento para neumático, un rerodamiento para neumático, una carcasa de alambre, una pared lateral, carcasa o goma de amortiguación para neumáticos con reencauche.
  8. 8.
    Un producto de goma industrial de acuerdo la reivindicación 6 el cual es un soporte para motor, hidrosoportes, soportes de puente, aislamiento sísmico, amortiguaciones, cinta transportadora, limpiaparabrisas, rodaduras o rodamientos para tanques o cintas para minería.
  9. 9.
    Un rodamiento para neumático de autobús o camión de acuerdo con la reivindicación 6 donde el negro de carbón está presente en una cantidad de 40-60 phr, el aceite extensor está presente en una cantidad de 0-20 phr y la sílica está presente en una cantidad de 0-10 phr y el negro de carbón se selecciona de N110, N115, N121, N134, N220 y N299.
  10. 10.
    Un rodamiento OTR de acuerdo con la reivindicación 6 donde el negro de carbón está presente en una cantidad de 45-55 phr, el aceite extensor está presente en una cantidad de 5-10 phr y la sílica está presente en una cantidad de 5-20 phr y el negro de carbón es seleccionado de N110, N115, N220 y N231.
  11. 11.
    Una cinta de acero de acuerdo con la reivindicación 6 donde el negro de carbón está presente en una cantidad de 50-75 phr, el aceite extensor está presente en una cantidad de 0-5 phr y la sílica está presente en una cantidad de 0-20 phr y el negro de carbón seleccionado de N326.
  12. 12.
    Una base de rodamiento para autobús o camión de acuerdo con la reivindicación 6 donde el negro de carbón está presente en una cantidad de 40-60 phr y el aceite extensor está presente en una cantidad de 0-20 phr y el negro de carbón es seleccionado de N330 y N550.
  13. 13.
    Una cobertura de carcasa de acuerdo con la reivindicación 6 donde el negro de carbón está presente en una cantidad de 40-60 phr y el aceite extensor está presente en una cantidad de 5-30 phr y el negro de carbón es seleccionado de N326, N330 y N550.
  14. 14.
    Una pared lateral de acuerdo con la reivindicación 6 donde el negro de carbón está presente en una cantidad de 30-60 phr y el aceite extensor está presente en una cantidad de 5-30 phr y el negro de carbón es seleccionado de N330, N351 y N550.
  15. 15.
    Un ápice de acuerdo con la reivindicación 6 donde el negro de carbón está presente en una cantidad de 50-90 phr y el aceite extensor está presente en una cantidad de 0-20 phr y el negro de carbón es seleccionado de N326, N330 y N356.
  16. 16.
    Un rodamiento LRR PC de acuerdo con la reivindicación 6 donde el negro de carbón está presente en una cantidad de 40-60 phr y el aceite extensor está presente en una cantidad de 0-30 phr y el negro de carbón es seleccionado de N234, N299, N339, N343, N347 y N351.
ES04028180T 1997-09-30 1998-09-28 Mezclas de composiciones de elastómeros y métodos para su producción Expired - Lifetime ES2383959T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US94176697A 1997-09-30 1997-09-30
US941766 1997-09-30
US08/942,449 US6075084A (en) 1996-04-01 1997-10-01 Elastomer composite blends and methods - II
US942449 1997-10-01

Publications (1)

Publication Number Publication Date
ES2383959T3 true ES2383959T3 (es) 2012-06-27

Family

ID=27130164

Family Applications (2)

Application Number Title Priority Date Filing Date
ES04028180T Expired - Lifetime ES2383959T3 (es) 1997-09-30 1998-09-28 Mezclas de composiciones de elastómeros y métodos para su producción
ES98953200T Expired - Lifetime ES2235371T3 (es) 1997-09-30 1998-09-28 Mezclas de compuestos de elastomeros y procedimientos para producirlas.

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES98953200T Expired - Lifetime ES2235371T3 (es) 1997-09-30 1998-09-28 Mezclas de compuestos de elastomeros y procedimientos para producirlas.

Country Status (18)

Country Link
EP (2) EP1537908B1 (es)
JP (2) JP4750269B2 (es)
KR (1) KR100617997B1 (es)
CN (2) CN100473684C (es)
AT (2) ATE283753T1 (es)
AU (1) AU1063099A (es)
BR (1) BR9815397B1 (es)
CA (1) CA2305702C (es)
CZ (1) CZ297185B6 (es)
DE (1) DE69827963T2 (es)
DK (1) DK1537908T3 (es)
ES (2) ES2383959T3 (es)
HK (1) HK1099782A1 (es)
MY (1) MY133282A (es)
OA (1) OA11344A (es)
PL (1) PL189105B1 (es)
PT (1) PT1537908E (es)
WO (1) WO1999016600A1 (es)

Families Citing this family (489)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60021547T2 (de) * 1999-04-16 2006-05-18 Cabot Corp., Boston Verfahren und vorrichtung zur herstellung und behandlung von elastomeren verbundwerkstoffen, und durch das verfahren herstellbarer elastomerer verbundwerkstoff
US6296329B1 (en) * 1999-05-12 2001-10-02 The Goodyear Tire & Rubber Company Endless rubber track and vehicle containing such track
US6534569B2 (en) 2000-01-25 2003-03-18 Cabot Corporation Polymers containing modified pigments and methods of preparing the same
US6799815B2 (en) 2001-09-12 2004-10-05 The Goodyear Tire & Rubber Company Cold environment endless rubber track and vehicle containing such track
US7341142B2 (en) 2001-11-09 2008-03-11 Cabot Corporation Elastomer composite materials in low density forms and methods
US6908961B2 (en) * 2001-12-07 2005-06-21 Cabot Corporation Elastomer composites, elastomer blends and methods
EP1652873A4 (en) * 2003-08-05 2009-11-11 Bridgestone Corp RUBBER MASTERBATCH AND MANUFACTURING METHOD THEREFOR
FR2910905B1 (fr) 2006-12-27 2010-08-20 Michelin Soc Tech Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme
FR2916202B1 (fr) 2007-05-15 2009-07-17 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un plastifiant diester
JP5060899B2 (ja) * 2007-10-01 2012-10-31 東洋ゴム工業株式会社 ゴム−充填剤複合体の製造方法
ITTO20070777A1 (it) 2007-10-31 2009-05-01 Bridgestone Corp Mescola adesiva a base acquosa per la produzione di pneumatici
CA2714461C (en) * 2008-02-08 2014-06-17 Cabot Corporation An elastomer composite and method for producing it
FR2930554B1 (fr) 2008-04-29 2012-08-17 Michelin Soc Tech Melange elastomerique comprenant majoritairement un elastomere dienique couple par un groupe amino-alcoxysilane, composition de caoutchouc le comprenant et leurs procedes d'obtention.
US8158721B2 (en) 2008-06-13 2012-04-17 Exxonmobil Chemical Patents Inc. Process for preparing dynamically vulcanized alloys
FR2933417B1 (fr) 2008-07-04 2011-12-30 Michelin Soc Tech Bande de roulement de pneumatique
JP2010065126A (ja) * 2008-09-10 2010-03-25 Bridgestone Corp マスターバッチの製造方法及びマスターバッチ
FR2940303B1 (fr) 2008-12-19 2011-02-25 Michelin Soc Tech Composition de caoutchouc
FR2940301B1 (fr) 2008-12-22 2012-07-27 Michelin Soc Tech Composition de caoutchouc comportant un agent de couplage mercaptosilane bloque
FR2940300B1 (fr) 2008-12-22 2010-12-31 Michelin Soc Tech Composition de caoutchouc depourvue ou quasiment depourvue de zinc
FR2940302B1 (fr) 2008-12-22 2012-07-27 Michelin Soc Tech Composition de caoutchouc comportant un agent de couplage mercaptosilane bloque
FR2943065B1 (fr) 2009-03-16 2011-04-22 Michelin Soc Tech Composition de caoutchouc
FR2943680B1 (fr) 2009-03-31 2012-12-28 Michelin Soc Tech Composition de caoutchoux et pneumatique utilisant cette composition.
JPWO2010125959A1 (ja) 2009-04-28 2012-10-25 株式会社ブリヂストン ゴム用薬品分散液、その製造方法、ゴム用薬品含有ゴムウェットマスターバッチ、ゴム組成物及びタイヤ
FR2945815B1 (fr) 2009-05-20 2011-07-01 Michelin Soc Tech Composition de caoutchouc comportant un agent de couplage organosilane
FR2947274B1 (fr) 2009-06-24 2013-02-08 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un compose acetylacetonate
FR2947275B1 (fr) 2009-06-29 2011-08-26 Michelin Soc Tech Pneumatique dont la bande de roulement comprend un elastomere thermoplastique.
FR2950064B1 (fr) 2009-09-14 2011-10-14 Michelin Soc Tech Composition de caoutchouc comprenant une resine phenolique
MY155456A (en) * 2009-09-17 2015-10-15 Cabot Corp Formation of latex coagulum composite
FR2951183B1 (fr) 2009-10-08 2012-04-27 Michelin Soc Tech Composition de caoutchouc comprenant une 1,2,4-triazine
FR2951180B1 (fr) 2009-10-08 2011-10-28 Michelin Soc Tech Composition de caoutchouc comprenant un thiazole
FR2951181B1 (fr) 2009-10-08 2011-10-28 Michelin Soc Tech Composition de caoutchouc comprenant un thiadiazole
FR2951184B1 (fr) 2009-10-08 2011-10-28 Michelin Soc Tech Composition de caoutchouc comprenant une thiazoline
FR2951186B1 (fr) 2009-10-12 2012-01-06 Michelin Soc Tech Composition de caoutchouc a base de glycerol et d'un elastomere fonctionnalise et bande de roulement pour pneumatique
FR2951185B1 (fr) 2009-10-14 2012-02-03 Michelin Soc Tech Composition de caoutchouc a base d'un caoutchouc synthetique epoxyde, bande de roulement pour pneumatique la contenant
FR2951182B1 (fr) 2009-10-14 2012-09-21 Michelin Soc Tech Composition de caoutchouc comprenant une resine epoxyde
FR2952645B1 (fr) 2009-10-27 2011-12-16 Michelin Soc Tech Bandage pneumatique dont la paroi interne est pourvue d'une couche de caoutchouc thermo-expansible
FR2952644B1 (fr) 2009-11-17 2011-12-30 Michelin Soc Tech Pneumatique dont la bande de roulement comporte un elastomere thermoplastique
EP2501770A4 (en) 2009-11-20 2015-12-09 3M Innovative Properties Co SURFACE MODIFIED LUBRICANTS
WO2011068511A1 (en) * 2009-12-03 2011-06-09 Michelin Recherche Et Technique, S.A. Filler blending for rubber formulations
FR2955584B1 (fr) 2009-12-18 2014-08-22 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver.
FR2956118B1 (fr) 2009-12-18 2013-03-08 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver.
FR2954332B1 (fr) 2009-12-22 2012-01-13 Michelin Soc Tech Article notamment pneumatique avec melange de caoutchouc externe comportant un sel de lanthanide
FR2954333B1 (fr) 2009-12-23 2012-03-02 Michelin Soc Tech Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique
FR2956119B1 (fr) 2009-12-23 2012-12-28 Michelin Soc Tech Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique
FR2955328B1 (fr) 2010-01-18 2013-03-08 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver
FR2957082B1 (fr) 2010-03-05 2012-03-02 Michelin Soc Tech Pneumatique dont la bande de roulement comporte un elastomere thermoplastique.
FR2957601B1 (fr) 2010-03-18 2012-03-16 Michelin Soc Tech Pneumatique et composition de caoutchouc contenant un polymere greffe
FR2957600B1 (fr) 2010-03-18 2012-04-20 Soc Tech Michelin Flanc pour pneumatique
FR2957602B1 (fr) 2010-03-19 2012-04-13 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver
FR2958295B1 (fr) 2010-03-31 2012-05-04 Michelin Soc Tech Pneumatique dont la bande de roulement comporte une composition de caoutchouc comprenant une resine poly(vinylester).
FR2959744B1 (fr) 2010-05-04 2012-08-03 Michelin Soc Tech Composition de caoutchouc, utilisable pour la fabrication d'un pneumatique dont la composition comporte un amidon et un plastifiant aqueux ou hydrosoluble
FR2959745B1 (fr) 2010-05-10 2012-06-01 Michelin Soc Tech Pneumatique dont la bande de roulement comporte un elastomere thermoplastique vulcanisat (tpv).
WO2011145586A1 (ja) * 2010-05-19 2011-11-24 株式会社ブリヂストン ウエットマスターバッチの製造方法、ゴム組成物及びタイヤ
FR2960544B1 (fr) 2010-05-27 2012-08-17 Michelin Soc Tech Bandage pneumatique dont la zone sommet est pourvue d'une couche interne reduisant les bruits de roulage
FR2960567B1 (fr) 2010-05-27 2012-06-22 Michelin Soc Tech Renfort filaire composite pour pneumatique, enrobe d'un caoutchouc a propriete de barriere a l'eau amelioree
FR2961819B1 (fr) 2010-05-27 2013-04-26 Soc Tech Michelin Bandage pneumatique dont la ceinture est pourvue d'une gomme d'enrobage reduisant les bruits de roulage
FR2960543B1 (fr) 2010-05-27 2012-06-22 Michelin Soc Tech Bandage pneumatique dont la zone sommet est pourvue d'une couche interne reduisant les bruits de roulage
FR2960879B1 (fr) 2010-06-02 2012-07-13 Michelin Soc Tech Procede d'obtention d'une composition de caoutchouc comprenant une charge thermoplastique
FR2961516B1 (fr) 2010-06-17 2015-06-26 Michelin Soc Tech Bandage pneumatique dont la ceinture est pourvue d'une gomme d'enrobage reduisant les bruits de roulage
FR2961818B1 (fr) 2010-06-23 2012-07-20 Michelin Soc Tech Composition de caoutchouc comprenant une charge thermoplastique et un agent compatibilisant
FR2962368B1 (fr) 2010-07-09 2012-08-31 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un melange d'un caoutchouc butyl et d'un elastomere thermoplastique
FR2962737B1 (fr) 2010-07-13 2012-08-17 Michelin Soc Tech Composition de caoutchouc contenant un elastomere modifie, son procede de preparation et pneumatique la contenant
FR2962729B1 (fr) 2010-07-13 2012-09-21 Arkema France Molecules porteuses de groupes associatifs
FR2963014B1 (fr) 2010-07-21 2012-08-31 Michelin Soc Tech Composition de caoutchouc comprenant des ecailles de verre notamment pour la fabrication de pneumatiques
PL231315B1 (pl) * 2010-09-15 2019-02-28 Cabot Corp Kompozyt elastomerowy i sposób wytwarzania kompozytu elastomerowego
FR2966157B1 (fr) 2010-10-18 2012-12-14 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique
FR2967681B1 (fr) 2010-11-23 2012-11-30 Michelin Soc Tech Elastomere dienique a blocs a ip faible fonctionnel a fluage a froid ameliore et composition de caoutchouc le contenant
FR2967680B1 (fr) 2010-11-23 2012-11-30 Soc Tech Michelin Elastomere dienique a bloc pour des compositions de caoutchouc utilisables pour des pneumatiques
FR2967679B1 (fr) 2010-11-23 2012-12-21 Michelin Soc Tech Elastomere dienique a ip faible fonctionnel a fluage a froid ameliore et composition de caoutchouc le contenant
FR2967682B1 (fr) 2010-11-23 2012-12-21 Michelin Soc Tech Composition contenant un elastomere dienique particulier et un noir de carbone de surface specifique particuliere
FR2968006B1 (fr) 2010-11-26 2012-12-21 Michelin Soc Tech Bande de roulement de pneumatique
FR2970256B1 (fr) 2010-11-30 2013-01-11 Michelin Soc Tech Pneumatique comportant une sous-couche de bande de roulement a base de caoutchouc nitrile.
FR2969632B1 (fr) 2010-12-22 2014-04-11 Michelin Soc Tech Couche etanche aux gaz de gonflage comprenant un oxyde metallique comme agent de reticulation
FR2969629B1 (fr) 2010-12-23 2014-10-10 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique
FR2969624B1 (fr) * 2010-12-23 2013-02-08 Michelin Soc Tech Procede de preparation d'un melange-maitre en phase liquide
FR2973384B1 (fr) 2011-04-01 2014-08-22 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un agent de couplage azosilane.
FR2973385B1 (fr) 2011-04-01 2014-08-22 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un agent de couplage azosilane.
FR2974098B1 (fr) 2011-04-14 2013-04-19 Michelin Soc Tech Composition de caoutchouc comprenant un derive du thiadiazole
FR2974099B1 (fr) 2011-04-14 2013-04-19 Michelin Soc Tech Composition de caoutchouc comprenant un derive de la 1,2,4-triazine
FR2974097B1 (fr) 2011-04-14 2013-04-19 Michelin Soc Tech Composition de caoutchouc comprenant un derive de la thiazoline
FR2974096A1 (fr) 2011-04-14 2012-10-19 Michelin Soc Tech Composition de caoutchouc comprenant un derive de thiazole
FR2974100B1 (fr) 2011-04-14 2014-08-22 Michelin Soc Tech Composition de caoutchouc comprenant un derive du thiophene
FR2975406B1 (fr) 2011-05-18 2014-10-17 Michelin Soc Tech Cordon composite caoutchouteux pour bande de roulement de bandage pneumatique
FR2975407B1 (fr) 2011-05-18 2014-11-28 Michelin Soc Tech Cordon composite pour bande de roulement de bandage pneumatique
FR2975999B1 (fr) 2011-06-01 2014-07-04 Michelin Soc Tech Pneu dont la bande de roulement comporte une composition de caoutchouc thermo-expansible reduisant les bruits de roulage
FR2975998B1 (fr) 2011-06-01 2013-06-14 Michelin Soc Tech Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2975997B1 (fr) 2011-06-01 2013-06-14 Michelin Soc Tech Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2979076B1 (fr) 2011-07-28 2013-08-16 Michelin Soc Tech Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2978769B1 (fr) 2011-08-04 2013-09-27 Michelin Soc Tech Composition adhesive aqueuse a base de polyaldehyde et de polyphenol
FR2980206B1 (fr) 2011-09-19 2013-09-27 Michelin Soc Tech Bande de roulement de pneumatique hors la route
FR2980205B1 (fr) 2011-09-19 2013-09-27 Michelin Soc Tech Bande de roulement de pneumatique hors la route
FR2981938A1 (fr) 2011-10-28 2013-05-03 Michelin Soc Tech Gomme interieure de pneumatique
FR2982614B1 (fr) 2011-11-10 2014-01-03 Michelin Soc Tech Composition de caoutchouc a fort taux d'elastomere a faible indice de polydispersite
FR2982613B1 (fr) 2011-11-10 2014-05-02 Michelin Soc Tech Composition de caoutchouc a fort taux d'elastomere synthetique dienique non isoprenique
FR2984340B1 (fr) 2011-12-16 2018-01-12 Soc Tech Michelin Pneumatique pourvu d'un flanc externe a base d'un melange d'un elastomere dienique et d'un elastomere thermoplastique
FR2985730B1 (fr) 2011-12-16 2014-01-10 Michelin Soc Tech Composition de caoutchouc comprenant un agent de couplage mercaptosilane bloque
FR2984335B1 (fr) 2011-12-16 2018-01-12 Societe De Technologie Michelin Pneumatique pourvu d'une couche interne a base d'un melange d'un elastomere dienique et d'un elastomere thermoplastique
FR2984228B1 (fr) 2011-12-16 2016-09-30 Soc De Tech Michelin Bande de roulement ayant des elements de sculpture recouverts d'un assemblage de fibres impregne
FR2984339B1 (fr) 2011-12-16 2018-01-12 Soc Tech Michelin Pneumatique pourvu d'une bande de roulement a base d'un melange d'un elastomere dienique et d'un elastomere thermoplastique
FR2984229B1 (fr) 2011-12-16 2013-12-27 Michelin Soc Tech Bandage pneumatique comportant un cordon composite de recreusage
FR2984900B1 (fr) 2011-12-21 2014-02-07 Michelin Soc Tech Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant une hydroxyalkylpiperazine
FR2984897B1 (fr) 2011-12-21 2014-08-15 Michelin Soc Tech Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant une etheramine primaire
FR2984896B1 (fr) 2011-12-21 2014-10-24 Michelin Soc Tech Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant une amine primaire
FR2984895B1 (fr) 2011-12-21 2016-01-01 Michelin Soc Tech Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant un hydroxyde de metal alcalin ou alcalino-terreux
FR2984898B1 (fr) 2011-12-21 2014-08-15 Michelin Soc Tech Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant un aminoetheralcool
FR2984899B1 (fr) 2011-12-21 2014-08-15 Michelin Soc Tech Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant une diamine hydroxylee
FR2984903B1 (fr) 2011-12-22 2014-05-09 Michelin Soc Tech Pneu dont la bande de roulement comporte une composition de caoutchouc thermo-expansible reduisant les bruits de roulage
FR2984692B1 (fr) 2011-12-23 2014-01-17 Michelin Soc Tech Semelle de chaussure comportant une composition de caoutchouc a base de caoutchouc nitrile-butadiene, d'une huile et d'une resine
FR2989090B1 (fr) 2012-04-10 2014-05-09 Michelin & Cie Composition de caoutchouc pour bande de roulement de pneumatique comportant des microparticules de sulfate de potassium
FR2990211B1 (fr) 2012-05-04 2014-05-02 Michelin & Cie Bande de roulement de pneumatique
JP2014004336A (ja) * 2012-06-01 2014-01-16 Dunlop Sports Co Ltd ゴルフボールおよびその製造方法
FR2994187B1 (fr) 2012-06-12 2014-07-25 Michelin & Cie Composition elastomerique presentant une conductivite thermique amelioree
FR2992322B1 (fr) 2012-06-22 2015-06-19 Michelin & Cie Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2992895B1 (fr) * 2012-07-05 2014-08-15 Michelin & Cie Pneumatique comportant une bande de roulement constituee de plusieurs melanges elastomeriques
FR2993895B1 (fr) 2012-07-25 2014-08-08 Michelin & Cie Composition de caoutchouc comprenant une resine a base de lignine
FR2995609B1 (fr) 2012-07-25 2014-11-28 Michelin & Cie Pneumatique ayant une adherence sur sol mouille amelioree
FR2993892B1 (fr) 2012-07-25 2014-08-08 Michelin & Cie Composition de caoutchouc comprenant une resine epoxyde et un durcisseur poly-imine
FR2993889B1 (fr) 2012-07-27 2014-08-22 Michelin & Cie Composition de caoutchouc thermo-expansible pour pneumatique
FR2996230B1 (fr) 2012-09-28 2014-10-31 Michelin & Cie Cable gomme in situ comprenant une composition comprenant un polysulfure organique.
FR2996851B1 (fr) 2012-10-15 2014-11-28 Michelin & Cie Gomme interieure de pneumatique.
FR2997410B1 (fr) 2012-10-30 2016-01-01 Michelin & Cie Cable gomme in situ comprenant une composition comprenant un copolymere de styrene-butadiene.
CN102922949A (zh) * 2012-11-07 2013-02-13 刘艮春 一种新型橡胶安全防爆衬胎
FR2998510A1 (fr) 2012-11-29 2014-05-30 Michelin & Cie Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2998509A1 (fr) 2012-11-29 2014-05-30 Michelin & Cie Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2999587B1 (fr) 2012-12-17 2014-12-26 Michelin & Cie Pneumatique comportant une composition de caoutchouc comprenant un elastomere epoxyde reticule par un poly-acide carboxylique
FR2999588B1 (fr) 2012-12-17 2015-02-13 Michelin & Cie Pneumatique comportant une composition de caoutchouc comprenant un elastomere epoxyde reticule par un poly-acide carboxylique
FR2999586B1 (fr) 2012-12-17 2014-12-26 Michelin & Cie Pneumatique comportant une composition de caoutchouc comprenant un polymere epoxyde reticule par un poly-acide carboxylique
FR2999589B1 (fr) 2012-12-17 2014-12-26 Michelin & Cie Pneumatique comportant une composition de caoutchouc comprenant un elastomere epoxyde reticule par un poly-acide carboxylique
CN103203810B (zh) * 2013-01-10 2017-06-13 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶与橡胶制品
FR3002540B1 (fr) 2013-02-28 2015-04-17 Michelin & Cie Bandage dont les bourrelets sont pourvus d'un melange de protection reduisant les bruits de roulage
FR3005470B1 (fr) 2013-05-07 2015-05-01 Michelin & Cie Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant un compose triazine et un hydroxyde de metal alcalin ou alcalino-terreux
FR3005468B1 (fr) 2013-05-07 2015-05-01 Michelin & Cie Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant un compose triazine et une amine primaire
EP3003666B1 (en) * 2013-05-30 2018-07-25 Pirelli Tyre S.p.A. Process for producing tyres for vehicle wheels
FR3009306B1 (fr) 2013-07-30 2015-07-31 Michelin & Cie Pneu dont la zone sommet est pourvue d’une couche interne reduisant les bruits de roulage
FR3009305A1 (fr) 2013-07-30 2015-02-06 Michelin & Cie Composition de caoutchouc thermo-expansible et pneumatique comportant une telle composition
FR3009557B1 (fr) 2013-08-09 2015-09-11 Michelin & Cie Elastomere dienique modifie comprenant un elastomere dienique couple par un compose aminoalcoxysilane et fonctionnalise amine en extremite de chaine et composition de caoutchouc le comprenant
FR3009558B1 (fr) 2013-08-09 2015-09-04 Michelin & Cie Elastomere dienique couple possedant une fonction silanol en milieu de chaine et fonctionnalise amine en extremite de chaine et composition de caoutchouc le comprenant
FR3010078B1 (fr) 2013-08-30 2016-10-14 Michelin & Cie Caoutchouc naturel epoxyde et modifie
FR3011241B1 (fr) 2013-09-27 2015-10-23 Michelin & Cie Elastomere dienique tribloc dont le bloc central est un bloc polyether et fonctionnalise amine en extremite de chaine
FR3011551B1 (fr) 2013-10-08 2016-10-28 Michelin & Cie Composition de caoutchouc pour bande de roulement comprenant une polynitrone
FR3012147B1 (fr) 2013-10-22 2016-07-15 Michelin & Cie Pneumatique comprenant une composition comprenant un derive du diacrylate de zinc et un peroxyde
FR3012454B1 (fr) 2013-10-30 2015-12-18 Michelin & Cie Elastomere dienique modifie comprenant majoritairement un elastomere dienique couple par un compose alcoxysilane portant un groupe epoxyde et fonctionnalise amine en extremite de chaine
FR3014880B1 (fr) 2013-12-18 2015-12-25 Michelin & Cie Pneumatique pour velocipede.
FR3015502B1 (fr) 2013-12-19 2016-02-05 Michelin & Cie Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides contenant des microparticules hydrosolubles.
FR3015503B1 (fr) 2013-12-19 2016-02-05 Michelin & Cie Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant des microparticules d'oxyde ou carbure metallique.
FR3015501B1 (fr) 2013-12-19 2017-05-26 Michelin & Cie Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant un caoutchouc thermo-expansible a l'etat cru, ou caoutchouc mousse a l'etat cuit.
FR3015494B1 (fr) 2013-12-20 2016-01-15 Michelin & Cie Bande de roulement pour pneumatique comportant un elastomere thermoplastique
FR3015499B1 (fr) 2013-12-20 2017-04-28 Michelin & Cie Pneumatique pour vehicules destines a porter de lourdes charges
FR3015505B1 (fr) 2013-12-20 2016-01-01 Michelin & Cie Composition de caoutchouc comprenant une resine de polyphenylene ether comme plastifiant
FR3015504B1 (fr) 2013-12-20 2016-01-01 Michelin & Cie Composition de caoutchouc comprenant une resine de polyphenylene ether comme plastifiant
FR3015486B1 (fr) 2013-12-23 2017-02-10 Michelin & Cie Procede de depolymerisation du caoutchouc naturel en solution par metathese
FR3019548B1 (fr) 2014-04-03 2016-04-01 Michelin & Cie Composition de caoutchouc comprenant une resine dicyclopentadiene aromatique
FR3020066B1 (fr) 2014-04-22 2016-04-01 Michelin & Cie Composition de caoutchouc pour pneumatique comportant un agent de couplage azosilane
JP6313647B2 (ja) 2014-05-08 2018-04-18 株式会社ブリヂストン ゴム組成物及びこれを用いてなるタイヤ
FR3022247B1 (fr) 2014-06-13 2018-01-19 Compagnie Generale Des Etablissements Michelin Procede de preparation d'un caoutchouc naturel
FR3022548A1 (fr) 2014-06-18 2015-12-25 Michelin & Cie Composition de caoutchouc comprenant un elastomere epoxyde reticule par un poly-acide carboxylique
FR3024152B1 (fr) 2014-07-24 2016-07-15 Michelin & Cie Pneumatique muni d'une bande de roulement comprenant une composition de caoutchouc comprenant une resine thermoplastique de polymethacrylate de methyle
FR3027025B1 (fr) 2014-10-13 2016-12-09 Michelin & Cie Produit renforce comprenant une composition a faible taux de soufre et pneumatique comprenant ledit produit renforce
FR3027026B1 (fr) 2014-10-13 2016-12-09 Michelin & Cie Produit renforce comprenant une composition comprenant un accelerateur de vulcanisation rapide et pneumatique comprenant ledit produit renforce
FR3027027B1 (fr) 2014-10-13 2016-12-09 Michelin & Cie Produit renforce comprenant une composition comprenant un systeme oxyde metallique et derive d'acide stearique equilibre et pneumatique comprenant ledit produit renforce
FR3027028B1 (fr) 2014-10-13 2016-12-09 Michelin & Cie Produit renforce comprenant une composition a faible taux de soufre et pneumatique comprenant ledit produit renforce
CA2964346C (en) 2014-10-24 2020-07-21 Exxonmobil Chemical Patents Inc. Chain end functionalized polyolefins for improving wet traction and rolling resistance of tire treads
CN104371121A (zh) * 2014-11-03 2015-02-25 怡维怡橡胶研究院有限公司 一种连续式制备的橡胶母炼胶在卡车胎肩垫胶中的应用
CN104371123A (zh) * 2014-11-03 2015-02-25 怡维怡橡胶研究院有限公司 一种连续式制备的橡胶母炼胶在卡车胎胎面胶中的应用
FR3028860B1 (fr) 2014-11-25 2018-04-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant un flanc externe qui comporte un polymere incompatible
WO2016084984A1 (en) 2014-11-28 2016-06-02 Compagnie Generale Des Etablissements Michelin A rubber composition
WO2016099512A1 (en) 2014-12-18 2016-06-23 Compagnie Generale Des Etablissements Michelin Microstructured composites for improved tire characteristics
WO2016099510A1 (en) 2014-12-18 2016-06-23 Compagnie Generale Des Etablissements Michelin Microstructured composites for improved tire characteristics
FR3030542B1 (fr) 2014-12-19 2018-05-18 Michelin & Cie Bande de roulement de pneumatique
FR3030545B1 (fr) 2014-12-22 2018-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine hydrocarbonee specifique
FR3030543B1 (fr) 2014-12-22 2017-01-13 Michelin & Cie Pneumatique comprenant une composition comprenant un derive d'acrylate polyfonctionnel et un peroxyde
FR3030544B1 (fr) 2014-12-22 2017-01-13 Michelin & Cie Pneumatique comprenant une composition comprenant un derive d'acrylate polyfonctionnel et un peroxyde
WO2016104815A1 (en) 2014-12-26 2016-06-30 Compagnie Generale Des Etablissements Michelin A tire having a tread comprising rubber composition comprising short fibers
US10604613B2 (en) 2015-01-21 2020-03-31 Compagnie Generale Des Etablissements Michelin High-rigidity rubber composition
FR3031745A1 (fr) 2015-01-21 2016-07-22 Michelin & Cie Composition de caoutchouc a haute rigidite
FR3031746A1 (fr) 2015-01-21 2016-07-22 Michelin & Cie Composition de caoutchouc a haute rigidite
FR3033329A1 (fr) 2015-03-05 2016-09-09 Michelin & Cie Pneumatique comprenant une composition comprenant un derive du diacrylate de zinc et un peroxyde
FR3033571B1 (fr) 2015-03-09 2017-03-10 Michelin & Cie Objet pneumatique pourvu d'une couche elastomere etanche aux gaz de gonflage a base d'un coupage d'elastomeres thermoplastiques sous forme de copolymeres a blocs
FR3033569B1 (fr) 2015-03-09 2017-03-10 Michelin & Cie Objet pneumatique pourvu d'une couche elastomere a base d'un elastomere thermoplastique sous forme d'un copolymere a blocs (a-b-(a-co-b)) n-b-c
FR3033570B1 (fr) 2015-03-09 2017-03-10 Michelin & Cie Objet pneumatique pourvu d'une couche elastomere a base d'un elastomere thermoplastique sous forme d'un copolymere a blocs (a-b-(alpha-methylstyrene-co-b))n-b-c
FR3033567B1 (fr) 2015-03-09 2017-03-10 Michelin & Cie Objet pneumatique pourvu d'une couche elastomere etanche aux gaz de gonflage a base d'un elastomere thermoplastique sous forme d'un copolymere a blocs
FR3033568B1 (fr) 2015-03-09 2017-03-10 Michelin & Cie Objet pneumatique pourvu d'une couche elastomere etanche aux gaz de gonflage a base d'un elastomere thermoplastique sous forme d'un copolymere a blocs (a-b-b) n-b-c
EP3289011B1 (en) 2015-04-30 2019-03-20 Compagnie Générale des Etablissements Michelin A heat-expandable rubber composition
FR3037590B1 (fr) 2015-06-18 2017-06-02 Michelin & Cie Composition de caoutchouc comprenant un copolymere de styrene et de butadiene de faible temperature de transition vitreuse, et un fort taux de charge et de plastifiant
FR3037593A1 (fr) 2015-06-18 2016-12-23 Michelin & Cie Pneumatique pour vehicules destines a porter de lourdes charges
FR3038319B1 (fr) 2015-07-02 2017-07-07 Michelin & Cie Composition de caoutchouc comprenant une resine hydrocarbonee de faible temperature de transition vitreuse, un agent de couplage specifique et une amine primaire
FR3038320A1 (fr) 2015-07-02 2017-01-06 Michelin & Cie Composition de caoutchouc comprenant une silice de tres haute surface specifique et une resine hydrocarbonee de faible temperature de transition vitreuse
WO2017021219A1 (fr) * 2015-07-31 2017-02-09 Compagnie Generale Des Etablissements Michelin Procede et dispositif pour la preparation de melange caoutchouteux en phase liquide
FR3039558B1 (fr) 2015-07-31 2017-07-21 Michelin & Cie Composition de caoutchouc comprenant une resine hydrocarbonee de faible temperature de transition vitreuse
FR3039557B1 (fr) 2015-07-31 2017-07-21 Michelin & Cie Composition de caoutchouc comprenant une resine hydrocarbonee de faible temperature de transition vitreuse
JP6484145B2 (ja) 2015-08-27 2019-03-13 Toyo Tire株式会社 ゴム組成物の製造方法およびタイヤの製造方法
CN108136825B (zh) 2015-09-25 2020-06-26 米其林集团总公司 酯化的芳族多酚衍生物用于制备增强橡胶组合物的酚醛树脂的用途
US10590225B2 (en) 2015-09-25 2020-03-17 Compagnie Generale Des Etablissements Michelin Use of a silylated aromatic polyphenol derivative for the production of a phenol-aldehyde resin for reinforcement of a rubber composition
WO2017050952A1 (fr) 2015-09-25 2017-03-30 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à haute rigidité à base d'un dérivé de polyphénol aromatique
EP3368601B1 (en) 2015-09-30 2021-11-24 Compagnie Générale des Etablissements Michelin A tire comprising a rubber composition
FR3042504B1 (fr) 2015-10-16 2018-01-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine hydrocarbonee specifique
FR3043678B1 (fr) 2015-11-17 2018-01-05 Compagnie Generale Des Etablissements Michelin Procede de preparation d'un caoutchouc naturel stabilise.
JP6651333B2 (ja) * 2015-11-20 2020-02-19 株式会社ブリヂストン ウェットマスターバッチの製造方法及びタイヤの製造方法
JP6840150B2 (ja) 2015-12-14 2021-03-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン 芳香族アルデヒドおよび芳香族ポリフェノールをベースとした高いレベルの流動性を有するゴム組成物
EP3390072B1 (en) 2015-12-17 2020-07-01 Compagnie Générale des Etablissements Michelin A tire comprising a tread
FR3045629B1 (fr) 2015-12-22 2018-01-05 Compagnie Generale Des Etablissements Michelin Materiaux composites a base de melanges fibres orthotropes orientes pour le couplage mecanique
FR3045626A1 (fr) 2015-12-22 2017-06-23 Michelin & Cie Bande de roulement comprenant au moins un chelate metallique et/ou un pigment
FR3046603B1 (fr) 2016-01-11 2017-12-29 Michelin & Cie Procede de modification d'un caoutchouc naturel et caoutchouc naturel modifie
FR3047735A1 (fr) 2016-02-12 2017-08-18 Michelin & Cie Composition de caoutchouc comprenant une silice essentiellement spherique et peu structuree
CN105690587B (zh) * 2016-03-17 2018-08-17 青岛科技大学 一种先雾化再混合的橡胶湿法混炼方法
FR3049282B1 (fr) 2016-03-24 2018-03-23 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant un renfort composite auto-adherent comprenant un copolymere a blocs
FR3049283B1 (fr) 2016-03-24 2018-03-23 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant un renfort composite auto-adherent comprenant un copolymere a blocs
FR3049607B1 (fr) 2016-03-31 2018-03-16 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine hydrocarbonee specifique
WO2017170654A1 (en) 2016-03-31 2017-10-05 Compagnie Generale Des Etablissements Michelin A tire having a tread comprising a rubber composition
WO2017170655A1 (en) 2016-03-31 2017-10-05 Compagnie Generale Des Etablissements Michelin A tire having a tread comprising a rubber composition
FR3053345B1 (fr) 2016-06-30 2018-07-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un agent de couplage polysulfure de monohydroxysilane
FR3053347A1 (fr) 2016-06-30 2018-01-05 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition comprenant un systeme specifique d’elastomeres
FR3053344B1 (fr) 2016-06-30 2018-07-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine epoxyde et un durcisseur amine specifique
FR3053346B1 (fr) 2016-06-30 2018-07-06 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition comprenant un systeme specifique d’elastomeres
FR3054234A1 (fr) 2016-07-21 2018-01-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haute rigidite
FR3054227A1 (fr) 2016-07-21 2018-01-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haute rigidite a base d'un derive de compose phenolique
FR3054226A1 (fr) 2016-07-21 2018-01-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haute rigidite
FR3054231B1 (fr) 2016-07-21 2018-07-13 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haute rigidite
FR3054228B1 (fr) 2016-07-21 2018-07-13 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haute rigidite
WO2018015673A1 (fr) 2016-07-21 2018-01-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à haute rigidité
FR3054233A1 (fr) 2016-07-21 2018-01-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haute rigidite
FR3056595A1 (fr) 2016-09-29 2018-03-30 Compagnie Generale Des Etablissements Michelin Bande de roulement pour pneumatique comportant un elastomere thermoplastique
FR3057264B1 (fr) 2016-10-12 2020-05-29 Arkema France Composes porteurs de groupes associatifs azotes
FR3057265A1 (fr) 2016-10-12 2018-04-13 Arkema France Composes dissymetriques porteurs de groupes associatifs
FR3058147A1 (fr) 2016-10-31 2018-05-04 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une charge renforcante specifique
FR3058148A1 (fr) 2016-10-31 2018-05-04 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une charge renforcante specifique
FR3058149A1 (fr) 2016-10-31 2018-05-04 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une charge renforcante specifique
FR3059004A1 (fr) 2016-11-18 2018-05-25 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe a base d'au moins un melange d'elastomere dienique et de cire
FR3059003A1 (fr) 2016-11-18 2018-05-25 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe a base d'au moins un melange d'elastomere dienique et d'un amide
FR3059331A1 (fr) 2016-11-28 2018-06-01 Compagnie Generale Des Etablissements Michelin Bande de roulement pour pneumatique
FR3059596A1 (fr) 2016-12-02 2018-06-08 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un elastomere thermoplastique comprenant au moins un bloc elastomere sature
FR3059668A1 (fr) 2016-12-02 2018-06-08 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3059669A1 (fr) 2016-12-07 2018-06-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un elastomere dienique, un derive de polyacrylate et d'un elastomere thermoplastique specifique
FR3060013A1 (fr) 2016-12-08 2018-06-15 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a base de polyisoprene epoxyde
FR3060012A1 (fr) 2016-12-14 2018-06-15 Compagnie Generale Des Etablissements Michelin Pneumatique muni d'une composition comprenant un elastomere dienique, un acrylate de zinc, un peroxyde et un anti-oxydant specifique
FR3060592A1 (fr) 2016-12-15 2018-06-22 Compagnie Generale Des Etablissements Michelin Pneumatique comportant une composition de caoutchouc comprenant un polymere porteur d'un groupement diene conjugue reticule par un dienophile
FR3060565A1 (fr) 2016-12-16 2018-06-22 Michelin & Cie Polysulfure d'alcoxysilane
FR3060585A1 (fr) 2016-12-19 2018-06-22 Compagnie Generale Des Etablissements Michelin Bande de roulement pour pneumatique comprenant un elastomere modifie
FR3060591A1 (fr) 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
FR3060589A1 (fr) 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
FR3060587A1 (fr) 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
FR3060586A1 (fr) 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe a base d'une composition comprenant une poudrette de caoutchouc
FR3060590A1 (fr) 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
FR3060588A1 (fr) 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
FR3061186B1 (fr) 2016-12-22 2019-05-24 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine hydrocarbonee specifique
FR3061185A1 (fr) 2016-12-22 2018-06-29 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine hydrocarbonee specifique
FR3061184A1 (fr) 2016-12-22 2018-06-29 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine hydrocarbonee specifique
FR3063081A1 (fr) 2017-02-20 2018-08-24 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc presentant des proprietes ameliorees a cru et a cuit
FR3063732A1 (fr) 2017-03-08 2018-09-14 Compagnie Generale Des Etablissements Michelin Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un derive d'acrylate polyfonctionnel
FR3063731A1 (fr) 2017-03-08 2018-09-14 Compagnie Generale Des Etablissements Michelin Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un acrylate de zinc
FR3064640A1 (fr) 2017-04-04 2018-10-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a base de resine renforcante et d'un derive d'aminobenzoate
FR3065221A1 (fr) 2017-04-14 2018-10-19 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine hydrocarbonee specifique
FR3065959A1 (fr) 2017-05-04 2018-11-09 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a base d'un derive d'acrylate de zinc incorpore a partir d'un melange-maitre
FR3065960B1 (fr) 2017-05-05 2019-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant au moins une silice en tant que charge renforcante inorganique
US11724545B2 (en) 2017-05-31 2023-08-15 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
JP6904078B2 (ja) * 2017-06-13 2021-07-14 Jsr株式会社 熱可塑性エラストマー組成物の製造方法
US20200223259A1 (en) 2017-06-29 2020-07-16 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall, the composition of which comprises a hydrocarbon resin
WO2019002765A1 (fr) 2017-06-29 2019-01-03 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe dont la composition comprend un polyoxyde d'ethylene
US11225567B2 (en) 2017-06-30 2022-01-18 Compagnie Generale Des Etablissements Michelin Aircraft tire
WO2019002771A1 (fr) 2017-06-30 2019-01-03 Compagnie Generale Des Etablissements Michelin Compositions de caoutchouc ayant une bonne tenue au fluage
FR3068703A1 (fr) 2017-07-04 2019-01-11 Compagnie Generale Des Etablissements Michelin Composition a base d'au moins un compose polyaromatique particulier
FR3069550A1 (fr) 2017-07-28 2019-02-01 Compagnie Generale Des Etablissements Michelin Elastomere etendu a la resine
WO2019023841A1 (en) 2017-07-31 2019-02-07 Dow Silicones Corporation METHOD AND APPARATUS FOR MANUFACTURING LIQUID SILICONE RUBBER COMPOSITIONS
WO2019064407A1 (en) 2017-09-28 2019-04-04 Compagnie Generale Des Etablissements Michelin PNEUMATIC COMPRISING A RUBBER COMPOSITION
FR3071853A1 (fr) 2017-09-29 2019-04-05 Compagnie Generale Des Etablissements Michelin Procede d'electrodeposition d'une composition adhesive comportant un sel de phosphate et une resine thermodurcissable sur un element conducteur
FR3071843A1 (fr) 2017-09-29 2019-04-05 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'une composition adhesive aqueuse sans ammoniaque ajoute
JP2020535268A (ja) 2017-09-29 2020-12-03 コンパニー ゼネラール デ エタブリッスマン ミシュラン リン酸塩および熱硬化性樹脂を含む接着剤組成物
FR3071841A1 (fr) 2017-10-04 2019-04-05 Compagnie Generale Des Etablissements Michelin Compositions de caoutchouc comprenant une combinaison specifique d'un agent de couplage et d'une resine hydrocarbonee
FR3071842A1 (fr) 2017-10-04 2019-04-05 Compagnie Generale Des Etablissements Michelin Compositions de caoutchouc comprenant une combinaison specifique d'un agent de couplage et d'une resine hydrocarbonee
WO2019073145A1 (fr) 2017-10-09 2019-04-18 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'une bande de roulement comportant au moins un caoutchouc butyl et un copolymere a base de butadiene et de styrene
WO2019077272A1 (fr) 2017-10-20 2019-04-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une resine de polyphenylene ether comme plastifiant
CN111278904A (zh) 2017-10-30 2020-06-12 米其林集团总公司 包含特定胺以及基于过氧化物和丙烯酸酯衍生物的交联体系的橡胶组合物
US20200325308A1 (en) 2017-10-30 2020-10-15 Compagnie Generale Des Etablissements Michelin Tire provided with an inner layer made from at least an isoprene elastomer, a reinforcing resin and a metal salt
AU2018366123B2 (en) * 2017-11-10 2021-06-03 Cabot Corporation Methods of producing an elastomer compound and elastomer compounds
WO2019092377A2 (fr) 2017-11-13 2019-05-16 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a base d'un polyamide a basse temperature de fusion
FR3073858B1 (fr) 2017-11-17 2019-10-18 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un plastifiant liquide presentant une basse temperature de transition vitreuse
WO2019106292A1 (fr) 2017-11-29 2019-06-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouterie dont le systeme de reticulation comprend un coupage de peroxydes et un derive d'acrylate
FR3074182B1 (fr) 2017-11-30 2019-10-18 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a haut module comprenant un ultra-accelerateur de vulcanisation
FR3074183B1 (fr) 2017-11-30 2020-07-24 Michelin & Cie Composition de caoutchouc a haut module comprenant un systeme de reticulation au soufre efficace
BR112020010159B1 (pt) 2017-12-08 2023-11-28 Compagnie Generale Des Etablissements Michelin Pneu dotado de uma camada interna
BR112020009932A2 (pt) 2017-12-14 2020-11-24 Compagnie Generale Des Etablissements Michelin pneu para veículo de engenharia civil
WO2019115955A1 (fr) 2017-12-14 2019-06-20 Compagnie Generale Des Etablissements Michelin Pneumatique d'avion
WO2019115900A1 (fr) 2017-12-15 2019-06-20 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un produit renforcé par un élément de renfort
WO2019122604A1 (fr) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique dont le systeme de reticulation est a base de peroxyde organique
WO2019122602A1 (fr) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique dont le systeme de reticulation est a base de peroxyde organique
EP3727880A1 (fr) 2017-12-19 2020-10-28 Compagnie Generale Des Etablissements Michelin Composition comprenant un compose polysulfure
CN111492001B (zh) 2017-12-19 2022-06-21 米其林集团总公司 交联体系基于有机过氧化物的轮胎胎面
EP3727879A1 (fr) 2017-12-19 2020-10-28 Compagnie Generale Des Etablissements Michelin Composition comprenant un compose polysulfure
WO2019122627A1 (fr) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Stratifie elastomerique
WO2019122686A1 (fr) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comprenant un compose polysulfuré et pneumatique comprenant ledit produit renforce
WO2019122600A1 (fr) 2017-12-19 2019-06-27 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique dont le système de réticulation est à base de peroxyde organique
CN111511577B (zh) 2017-12-21 2023-02-17 米其林集团总公司 包含酚类化合物的无硫交联组合物
EP3727877B1 (fr) 2017-12-21 2023-03-15 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc réticulée par un diacide et comprenant un composé phénolique
EP3727878B1 (fr) 2017-12-21 2023-03-29 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc réticulée par un diacide et comprenant un composé phénolique
FR3078337B1 (fr) 2018-02-27 2020-08-07 Arkema France Utilisation de l'oxyde de magnesium pour la reticulation de polymeres
FR3078336B1 (fr) 2018-02-27 2020-09-18 Arkema France Utilisation de l'oxyde de magnesium dans la fabrication de pneumatiques
WO2019186069A1 (fr) 2018-03-29 2019-10-03 Compagnie Generale Des Etablissements Michelin Patch et procede de fixation d'un organe electronique a la surface d'un pneumatique
EP3774385B1 (en) 2018-03-30 2022-10-26 Compagnie Generale Des Etablissements Michelin A tire comprising a tread
FR3079838B1 (fr) 2018-04-09 2020-12-18 Michelin & Cie Composition de caoutchouc comprenant une charge renforcante a faible surface specifique
FR3079843B1 (fr) 2018-04-09 2020-10-23 Michelin & Cie Pneumatique avec bourrelets comprenant une composition de caoutchouc specifique
CN112135738B (zh) 2018-04-11 2022-09-09 埃克森美孚化学专利公司 用于改进的轮胎胎面性能的基于丙烯的聚合物添加剂
JP7069342B2 (ja) 2018-04-11 2022-05-17 エクソンモービル ケミカル パテンツ インコーポレイテッド タイヤトレッド性能改善のためのプロピレン系ポリマー添加剤
SG11202009972RA (en) 2018-04-11 2020-11-27 Exxonmobil Chemical Patents Inc Butyl rubber additives for improved tire tread performance
US20210017369A1 (en) 2018-04-11 2021-01-21 Exxonmobil Chemical Patents Inc. Propylene-Based Polymer Additives for Improved Tire Tread Performance
CN108437254B (zh) * 2018-04-26 2020-10-20 梁树旺 一种塑料改性用共混装置
FR3081161B1 (fr) 2018-05-17 2020-07-10 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique dont le systeme de reticulation est a base de peroxyde organique
FR3081162B1 (fr) 2018-05-17 2020-04-24 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique dont le systeme de reticulation est a base de peroxyde organique
CN112352014B (zh) 2018-05-24 2023-07-04 埃克森美孚化学专利公司 用于改进的轮胎胎面性能的丙烯-乙烯-二烯三元共聚物聚烯烃添加剂
FR3081876B1 (fr) 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3081877B1 (fr) 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3081875B1 (fr) 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3081874B1 (fr) 2018-05-31 2020-07-10 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3081873B1 (fr) 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3082520B1 (fr) 2018-06-19 2020-12-18 Michelin & Cie Composition comprenant un elastomere butadienique et une charge specifique, et pneumatique comprenant cette composition
FR3082847B1 (fr) 2018-06-21 2020-06-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un elastomere fonctionnel
FR3082848B1 (fr) 2018-06-21 2020-12-11 Michelin & Cie Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
FR3083242B1 (fr) 2018-07-02 2020-06-12 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a base de resine epoxyde et d’un derive d’aminobenzoate
FR3086547B1 (fr) 2018-07-25 2024-02-16 Michelin & Cie Semelle de raquette a neige
FR3085167B1 (fr) 2018-08-23 2020-07-31 Michelin & Cie Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un derive d'acrylate specifique
FR3085166B1 (fr) 2018-08-23 2020-07-17 Compagnie Generale Des Etablissements Michelin Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un derive d'acrylate specifique
WO2020039536A1 (en) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin A rubber composition
WO2020039535A1 (en) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin A rubber composition
FR3085165B1 (fr) 2018-08-23 2020-07-17 Compagnie Generale Des Etablissements Michelin Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un derive d'acrylate specifique
FR3085955B1 (fr) 2018-09-17 2020-09-11 Michelin & Cie Composition de caoutchouc a base de resine epoxyde, d’un durcisseur amine et d’un imidazole
FR3085954B1 (fr) 2018-09-17 2020-09-11 Michelin & Cie Pneumatique avec bourrelets comprenant une composition de caoutchouc specifique
FR3086296B1 (fr) 2018-09-21 2020-09-25 Michelin & Cie Composition de caoutchouc comprenant un elastomere epoxyde et un compose polyphenolique
FR3086295B1 (fr) 2018-09-21 2020-09-25 Michelin & Cie Composition de caoutchouc comprenant un elastomere epoxyde et un compose polyphenolique
FR3086297B1 (fr) 2018-09-21 2021-06-04 Michelin & Cie Composition de caoutchouc comprenant un compose polyphenolique
FR3087199B1 (fr) 2018-10-11 2020-09-25 Michelin & Cie Pneumatique comprenant une composition de caoutchouc a base de polyisoprene epoxyde et d'un polyamide a basse temperature de fusion
FR3087200B1 (fr) 2018-10-15 2020-09-25 Michelin & Cie Pneumatique comprenant une composition de caoutchouc a base de polyisoprene epoxyde et d'un polyurethane thermoplastique
FR3087204B1 (fr) 2018-10-15 2020-09-18 Michelin & Cie Pneumatique comprenant une composition de caoutchouc comprenant un polyurethane thermoplastique
FR3087783A3 (fr) 2018-10-25 2020-05-01 Compagnie Generale Des Etablissements Michelin Pneumatique de vehicule agricole
WO2020084246A1 (fr) 2018-10-25 2020-04-30 Compagnie Generale Des Etablissements Michelin Pneumatique de vehicule agricole
WO2020096026A1 (en) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin An article, in particular a tire
WO2020096027A1 (en) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin An article, in particular a tire
FR3088646A3 (fr) 2018-11-15 2020-05-22 Michelin & Cie Pneumatique pourvu d'une bande de roulement
FR3088644A3 (fr) 2018-11-15 2020-05-22 Michelin & Cie Composition de caoutchouc de bande de roulement de pneumatique
FR3089149A3 (fr) 2018-12-03 2020-06-05 Michelin & Cie Stratifié comprenant une couche de liaison comprenant un initiateur radicalaire
FR3089225A3 (fr) 2018-12-04 2020-06-05 Michelin & Cie Bande de roulement pour pneumatique d’avion
FR3089988A3 (fr) 2018-12-17 2020-06-19 Michelin & Cie Composition de caoutchouc à base d’au moins un élastomère fonctionnalisé comprenant des groupes fonctionnels polaires et un composé phénolique spécifique
FR3089990A3 (fr) 2018-12-17 2020-06-19 Michelin & Cie Composition de caoutchouc à base d’au moins un élastomère fonctionnalisé comprenant des groupes fonctionnels polaires et un composé polyphénolique spécifique
WO2020128257A1 (fr) 2018-12-19 2020-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition de caoutchouc comprenant un elastomere thermoplastique et une poudrette de caoutchouc
WO2020128256A1 (fr) 2018-12-19 2020-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition de caoutchouc comprenant un pro-oxydant et une poudrette de caoutchouc
FR3090651A3 (fr) 2018-12-19 2020-06-26 Michelin & Cie Pneumatique comprenant une composition de caoutchouc comprenant un elastomere thermoplastique et une poudrette de caoutchouc
FR3090648A3 (fr) 2018-12-19 2020-06-26 Michelin & Cie Pneumatique comprenant une composition de caoutchouc comprenant un pro-oxydant et une poudrette de caoutchouc
FR3090653A3 (fr) 2018-12-19 2020-06-26 Michelin & Cie Pneumatique comprenant une poudrette de caoutchouc
FR3090669A3 (fr) 2018-12-21 2020-06-26 Michelin & Cie Pneumatique pourvu d'un flanc externe dont la composition comprend un dérivé de polyoxyde d’éthylène
WO2020128260A1 (fr) 2018-12-21 2020-06-25 Compagnie Generale Des Etablissements Michelin Composition de caouthcouc comprenant un compose polysulfuré
US20220056242A1 (en) 2018-12-21 2022-02-24 Compagnie Generale Des Etablissements Michelin Tire provided with an outer sidewall, the composition of which contains a thermoplastic elastomer and a polyethylene oxide
FR3090647A3 (fr) 2018-12-21 2020-06-26 Michelin & Cie Composition de caouthcouc comprenant un compose polysulfuré
FR3090674A3 (fr) 2018-12-21 2020-06-26 Michelin & Cie Pneumatique pourvu d'un flanc externe dont la composition comprend un élastomère thermoplastique et un polyoxyde d’éthylène
FR3090644A3 (fr) 2018-12-21 2020-06-26 Michelin & Cie Produit renforce comprenant une composition comportant un compose polysulfuré
FR3090670A3 (fr) 2018-12-21 2020-06-26 Michelin & Cie Pneumatique pourvu d'un flanc externe dont la composition comprend une cire anti-ozone spécifique
FR3090673A3 (fr) 2018-12-21 2020-06-26 Michelin & Cie Pneumatique pourvu d'un flanc externe dont la composition comprend un élastomère thermoplastique et une résine hydrocarbonée
WO2020128332A1 (fr) 2018-12-21 2020-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe dont la composition comprend un élastomère thermoplastique et une résine hydrocarbonée
WO2020128330A1 (fr) 2018-12-21 2020-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe dont la composition comprend une cire anti-ozone spécifique
WO2020128261A1 (fr) 2018-12-21 2020-06-25 Compagnie Generale Des Etablissements Michelin Produit renforce comprenant une composition comportant un compose polysulfuré
WO2020128329A1 (fr) 2018-12-21 2020-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe dont la composition comprend un dérivé de polyoxyde d'éthylène
CN109632550B (zh) * 2018-12-24 2022-01-14 长安大学 一种磨耗性能对比试验装置及试验方法
FR3091289A3 (fr) 2018-12-27 2020-07-03 Michelin & Cie Compositions de caoutchouc à base d’au moins un composé portant des fonctions carbonate cycliques
WO2020158695A1 (en) 2019-01-28 2020-08-06 Compagnie Generale Des Etablissements Michelin A laminate
WO2020158694A1 (en) 2019-01-28 2020-08-06 Compagnie Generale Des Etablissements Michelin An article
CN110066433A (zh) * 2019-02-25 2019-07-30 益凯新材料有限公司 一种应用于湿法混炼的硅烷偶联剂添加剂混合方法
FR3095447B1 (fr) 2019-04-26 2021-12-24 Michelin & Cie Bandage pour roue de véhicule transportable manuellement
FR3096052B1 (fr) 2019-05-14 2021-04-23 Michelin & Cie Pneumatique pourvu de flancs externes
ES2918516B2 (es) * 2019-06-05 2022-12-22 Beyond Lotus Llc Métodos de preparación de un material compuesto que tiene elastómero y carga
WO2021005718A1 (en) 2019-07-09 2021-01-14 Compagnie Generale Des Etablissements Michelin A laminate
WO2021005719A1 (en) 2019-07-09 2021-01-14 Compagnie Generale Des Etablissements Michelin A rubber composition
FR3098518A1 (fr) 2019-07-09 2021-01-15 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc de bande de roulement de pneumatique
WO2021021417A1 (en) 2019-07-26 2021-02-04 Exxonmobil Chemical Patents Inc. Hydrocarbon polymer modifiers having high aromaticity and uses thereof
FR3099169B1 (fr) 2019-07-26 2021-07-02 Michelin & Cie Pneu incorporant une composition de caoutchouc comprenant une résine hydrocarbure spécifique
KR20220029694A (ko) 2019-07-26 2022-03-08 엑손모빌 케미칼 패턴츠 인코포레이티드 낮은 방향족성을 갖는 탄화수소 중합체 개질제 및 그의 용도
FR3099168B1 (fr) 2019-07-26 2021-07-02 Michelin & Cie Pneu incorporant une composition de caoutchouc comprenant une résine hydrocarbure spécifique
FR3099166B1 (fr) 2019-07-26 2022-02-11 Michelin & Cie Pneu incorporant une composition de caoutchouc comprenant une résine hydrocarbure spécifique
FR3099167B1 (fr) 2019-07-26 2021-07-02 Michelin & Cie Pneu incorporant une composition de caoutchouc comprenant une résine hydrocarbure spécifique
FR3099767B1 (fr) 2019-08-07 2021-07-09 Michelin & Cie Composition de caoutchouc a base d’au moins un compose ayant une fonction imidazolidinone n-substituée
FR3101353B1 (fr) 2019-09-30 2021-09-24 Michelin & Cie Composition de caoutchouc pour pneumatique de grande dimension
FR3101878B1 (fr) 2019-10-10 2021-10-01 Michelin & Cie Compositions de caoutchouc comprenant un élastomère diénique époxydé et un système de réticulation
FR3101877B1 (fr) 2019-10-10 2022-06-17 Michelin & Cie Composition de caoutchouc comprenant un élastomère diénique comprenant des fonctions carbonates
FR3102181B1 (fr) 2019-10-18 2021-10-22 Michelin & Cie Composite comprenant des fibres courtes
FR3102770B1 (fr) 2019-11-06 2021-10-22 Michelin & Cie Composition de caoutchouc comprenant une charge et un système de réticulation adaptés
FR3103490B1 (fr) 2019-11-21 2021-10-22 Michelin & Cie Composition de caoutchouc comprenant un polybutadiene fonctionnalise
FR3103819B1 (fr) 2019-11-28 2023-07-21 Michelin & Cie Bandage hors la route comprenant des fibres d’alcool polyvinylique
FR3103775B1 (fr) 2019-11-28 2021-11-05 Michelin & Cie Chenille en caoutchouc comprenant des fibres d’alcool polyvinylique
FR3104592B1 (fr) 2019-12-12 2021-12-03 Michelin & Cie Système de réticulation et composition de caoutchouc diénique le comprenant
FR3104590B1 (fr) 2019-12-12 2021-12-03 Michelin & Cie Composite comprenant un élément de renfort et une composition de caoutchouc
FR3104593B1 (fr) 2019-12-12 2021-12-03 Michelin & Cie Système de réticulation et composition de caoutchouc diénique le comprenant
FR3104591B1 (fr) 2019-12-16 2021-11-12 Michelin & Cie Produit renforcé à base d’au moins un élément de renfort métallique et d’une composition de caoutchouc.
FR3104597B1 (fr) 2019-12-16 2021-11-12 Michelin & Cie Composition de caoutchouc
US20230039642A1 (en) 2019-12-17 2023-02-09 Exxonmobil Chemical Patents Inc. Functionalized Polymers Tread Additive To Improve Truck And Bus Radial Tire Performance
FR3104595B1 (fr) 2019-12-17 2021-11-12 Michelin & Cie Pneumatique avec une bande de roulement comportant des elements de renforcement
CN114867777A (zh) 2019-12-17 2022-08-05 埃克森美孚化学专利公司 用于改进四季轮胎性能的官能化聚合物胎面添加剂
WO2021126627A1 (en) 2019-12-17 2021-06-24 Exxonmobil Chemical Patents Inc. Functionalized polymers tread additive to improve tire performance for immiscible all-season tread
US20230029797A1 (en) 2019-12-17 2023-02-02 Exxonmobil Chemical Patents Inc. Functionalized Polymers Tread Additive For Improved Wet Braking And Rolling Resistance In Low Silica Summer Tire
FR3104596B1 (fr) 2019-12-17 2021-11-12 Michelin & Cie Composition de caoutchouc
FR3104487B1 (fr) 2019-12-17 2021-11-05 Michelin & Cie Stratifie elastomerique
EP4077537A1 (en) 2019-12-17 2022-10-26 ExxonMobil Chemical Patents Inc. Functionalized polymers tread additive to improve tire performance for all-season tread containing high polybutadiene level
EP4076978A1 (en) 2019-12-17 2022-10-26 ExxonMobil Chemical Patents Inc. Functionalized polymers tread additive for improved winter tire performance
CN114846070A (zh) 2019-12-17 2022-08-02 埃克森美孚化学专利公司 用于改进高二氧化硅夏季轮胎的湿滑制动和滚动阻力的官能化聚合物胎面添加剂
FR3105239B1 (fr) 2019-12-18 2021-12-03 Michelin & Cie Procédé de préparation d’une composition de caoutchouc comprenant une poudrette de caoutchouc
FR3105248B1 (fr) 2019-12-18 2021-12-03 Michelin & Cie Composition de caoutchouc comprenant une resine de polyphenylene ether
FR3105589B1 (fr) 2019-12-23 2022-12-30 Michelin & Cie Dispositif piezoelectrique ayant des proprietes piezoelectriques ameliorees
FR3105245B1 (fr) 2019-12-24 2021-11-26 Michelin & Cie Nouvelle composition de caoutchouc pour pneumatique
FR3105244B1 (fr) 2019-12-24 2022-03-25 Michelin & Cie Nouvelle composition de caoutchouc pour pneumatique
CN115023351B (zh) 2020-01-28 2024-03-01 米其林集团总公司 橡胶组合物
FR3108119B1 (fr) 2020-03-10 2022-11-18 Michelin & Cie Composition de caoutchouc a base de résine époxyde et d’un durcisseur à latence élevée
FR3108118B1 (fr) 2020-03-10 2022-07-15 Michelin & Cie Composition de caoutchouc a base de résine époxyde et d’un durcisseur à latence élevée
CN111330948B (zh) * 2020-03-14 2022-05-31 安徽省冠盛纺织科技有限公司 一种混纺废料回收装置
EP4126563A1 (en) 2020-03-27 2023-02-08 Compagnie Generale Des Etablissements Michelin An article intended to come into contact with the ground, in particular a tire
FR3108910B1 (fr) 2020-04-07 2023-06-02 Michelin & Cie Composition de caoutchouc comprenant du polyethylene a basse temperature de fusion
FR3109156B1 (fr) 2020-04-09 2023-10-06 Michelin & Cie Composition de caoutchouc comprenant du polyamide a basse temperature de fusion
FR3111137B1 (fr) 2020-06-04 2022-04-29 Michelin & Cie Mélange de caoutchouc
FR3111138B1 (fr) 2020-06-04 2022-07-08 Michelin & Cie Composition de caoutchouc.
FR3111352B1 (fr) 2020-06-11 2023-02-10 Michelin & Cie Composition de caoutchouc presentant une resistance aux agressions amelioree
FR3111636B1 (fr) 2020-06-18 2022-08-26 Michelin & Cie Composition élastomérique comprenant un composé phénolique et un composé de la famille des oses
FR3111905B1 (fr) 2020-06-29 2022-12-30 Michelin & Cie Composition de caoutchouc a base d’au moins un compose oxyde de nitrile portant un cycle epoxyde.
FR3113906B1 (fr) 2020-09-04 2022-08-05 Michelin & Cie Composition de caoutchouc a base d’elastomere dienique fortement sature
FR3113905B1 (fr) 2020-09-04 2022-08-05 Michelin & Cie Composition de caoutchouc a base d’elastomere dienique fortement sature
EP4210970A1 (en) 2020-09-10 2023-07-19 Compagnie Generale Des Etablissements Michelin A rubber composition
FR3115542B1 (fr) 2020-10-23 2023-12-15 Michelin & Cie Module de communication radiofréquence comprenant un dispositif électronique enrobé dans un matériau élastomérique
FR3115541B1 (fr) 2020-10-23 2023-10-20 Michelin & Cie Produit renforcé à base d’au moins un élément de renfort métallique et d’une composition de caoutchouc.
FR3116060B1 (fr) 2020-11-09 2023-10-27 Michelin & Cie Composition de caoutchouc de bande de roulement de pneumatique
FR3117123B1 (fr) 2020-12-09 2023-12-15 Michelin & Cie Composition de caoutchouc presentant une resistance amelioree aux agressions mecaniques
FR3117122B1 (fr) 2020-12-09 2023-12-15 Michelin & Cie Bandage pour vehicule hors la route
FR3117404B1 (fr) 2020-12-16 2024-02-16 Michelin & Cie Stratifié élastomère présentant une excellente adhésion entre une couche diénique fortement saturé réticulé et une couche diénique vulcanisé
FR3118047B1 (fr) 2020-12-23 2022-12-30 Michelin & Cie Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3118045B1 (fr) 2020-12-23 2022-12-30 Michelin & Cie Composition de caoutchouc
FR3118044B1 (fr) 2020-12-23 2022-12-30 Michelin & Cie Composition de caoutchouc
FR3118046B1 (fr) 2020-12-23 2022-12-30 Michelin & Cie Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3119169B1 (fr) 2021-01-26 2022-12-30 Michelin & Cie Pneu incorporant une composition de caoutchouc comprenant une résine hydrocarbure spécifique
EP4284847A1 (en) 2021-01-26 2023-12-06 ExxonMobil Chemical Patents Inc. Hydrocarbon polymer modifiers having high aromaticity and low molecular weight and uses thereof
FR3119168B1 (fr) 2021-01-26 2023-01-13 Michelin & Cie Pneu incorporant une composition de caoutchouc comprenant une résine hydrocarbure spécifique
EP4284658A1 (en) 2021-01-28 2023-12-06 Compagnie Generale Des Etablissements Michelin An article, in particular a tire
FR3119394A1 (fr) 2021-01-29 2022-08-05 Compagnie Generale Des Etablissements Michelin Elastomère diénique modifié étendu à la résine
FR3119393B1 (fr) 2021-01-29 2023-01-13 Michelin & Cie Elastomère diénique modifié étendu à la résine
FR3120565B1 (fr) 2021-03-11 2023-02-10 Michelin & Cie Stratifie elastomere
FR3120632B1 (fr) 2021-03-11 2023-02-10 Michelin & Cie Composition elastomere
FR3121144B1 (fr) 2021-03-29 2023-03-31 Michelin & Cie Composite comprenant un élément de renfort métallique et une composition élastomérique comprenant une résine promotrice d’adhésion
FR3121145A1 (fr) 2021-03-29 2022-09-30 Compagnie Generale Des Etablissements Michelin Composite comprenant une composition élastomérique et un élément de renfort métallique
FR3121143B1 (fr) 2021-03-29 2023-03-03 Michelin & Cie Composite comprenant un élément de renfort métallique et une composition élastomérique comprenant une résine promotrice d’adhésion
CN113232187B (zh) * 2021-04-27 2022-08-19 青岛科技大学广饶橡胶工业研究院 一种白炭黑与天然橡胶湿法混炼方法
FR3122657A1 (fr) 2021-05-10 2022-11-11 Compagnie Generale Des Etablissements Michelin Composite à base d’une composition de caoutchouc et d’un élément de renfort métallique traité en milieu supercritique
FR3122658A1 (fr) 2021-05-10 2022-11-11 Compagnie Generale Des Etablissements Michelin Composite à base d’une composition de caoutchouc et d’un élément de renfort métallique traité au plasma
FR3123654B1 (fr) 2021-06-07 2023-04-28 Michelin & Cie Composition de caoutchouc base d’élastomère fortement saturé et de compolymère de butadiene-styrene
FR3123919B1 (fr) 2021-06-15 2023-04-28 Michelin & Cie Composition de caoutchouc a base de copolymere contenant des unites ethylene et des unites dieniques, et de polyethylene
FR3123920B1 (fr) 2021-06-15 2023-04-28 Michelin & Cie Composition de caoutchouc a base de copolymere contenant des unites ethylene et des unites dieniques, et de polyethylene
FR3124518B1 (fr) 2021-06-23 2024-03-01 Michelin & Cie Couche étanche intérieure pour pneumatique contre la prolifération des moustiques
FR3124512A1 (fr) 2021-06-25 2022-12-30 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3124514B1 (fr) 2021-06-25 2023-06-02 Michelin & Cie Composition de caoutchouc presentant une resistance aux agressions amelioree
FR3124798A1 (fr) 2021-06-30 2023-01-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3127224B1 (fr) 2021-09-23 2023-09-29 Michelin & Cie Produit renforcé comprenant une composition de caoutchouc à base d’un composé polyphénolique, une guanidine et au moins un composé péroxyde
FR3127495B1 (fr) 2021-09-30 2023-08-25 Michelin & Cie Article en caoutchouc resistant aux agressions mecaniques
FR3128159B1 (fr) 2021-10-15 2023-09-22 Michelin & Cie Pneumatique avec une bande de roulement comportant des elements de renforcement
WO2023076070A1 (en) 2021-10-29 2023-05-04 Exxonmobil Chemical Patents Inc. Extrusion processes for functionalized polymer compositions
WO2023076071A1 (en) 2021-10-29 2023-05-04 Exxonmobil Chemical Patents Inc. Method of forming a composition comprising a functionalized polymer
FR3129676B1 (fr) 2021-11-26 2023-10-20 Michelin & Cie Mélange de caoutchouc comprenant un accélérateur de vulcanisation rapide
FR3130281A1 (fr) 2021-12-10 2023-06-16 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc antivibratoire
FR3130283A1 (fr) 2021-12-14 2023-06-16 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un plastifiant polaire et un elastomere fortement sature
FR3130282A1 (fr) 2021-12-14 2023-06-16 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un plastifiant polaire d’ester et un elastomere fortement sature
FR3130807A1 (fr) 2021-12-16 2023-06-23 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3130810A1 (fr) 2021-12-16 2023-06-23 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023118281A1 (en) 2021-12-23 2023-06-29 Rhodia Operations Precipitated silica and process for its manufacture
FR3131324B1 (fr) 2021-12-23 2023-11-17 Michelin & Cie Composition élastomérique à base d’au moins un composé oxyde de nitrile comprenant un groupe époxy.
WO2023118286A1 (en) 2021-12-23 2023-06-29 Rhodia Operations Tire elastomeric compositions comprising a precipitated silica
FR3133615A1 (fr) 2022-03-15 2023-09-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une résine époxyde et un durcisseur
FR3135723A1 (fr) 2022-05-17 2023-11-24 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a base d’un elastomere fortement sature et d’un plastifiant liquide polaire
FR3135722A1 (fr) 2022-05-17 2023-11-24 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a base d’un elastomere fortement sature et d’un plastifiant liquide
FR3135721A1 (fr) 2022-05-19 2023-11-24 Compagnie Generale Des Etablissements Michelin Procédé d’encollage amélioré d’un ou plusieurs brins de composite Verre-Résine CVR
FR3136472A1 (fr) 2022-06-14 2023-12-15 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3136473A1 (fr) 2022-06-14 2023-12-15 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3136774A1 (fr) 2022-06-21 2023-12-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3136771A1 (fr) 2022-06-21 2023-12-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3136773A1 (fr) 2022-06-21 2023-12-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3136772A1 (fr) 2022-06-21 2023-12-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3136770A1 (fr) 2022-06-21 2023-12-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3136775A1 (fr) 2022-06-21 2023-12-22 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
FR3137389A1 (fr) 2022-06-30 2024-01-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un ester d'acide gras comme plastifiant
FR3137391A1 (fr) 2022-06-30 2024-01-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un estolide comme plastifiant biosourcé
FR3137390A1 (fr) 2022-06-30 2024-01-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un plastifiant biosourcé
FR3137388A1 (fr) 2022-06-30 2024-01-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un plastifiant biosourcé de la famille des estolides
FR3138351A1 (fr) 2022-07-29 2024-02-02 Compagnie Generale Des Etablissements Michelin Pneumatique à armature de carcasse radiale
FR3138352A1 (fr) 2022-07-29 2024-02-02 Compagnie Generale Des Etablissements Michelin Pneumatique à armature de carcasse radiale
FR3138350A1 (fr) 2022-07-29 2024-02-02 Compagnie Generale Des Etablissements Michelin Pneumatique à armature de carcasse radiale
WO2024038080A1 (de) * 2022-08-18 2024-02-22 Ineos Styrolution Group Gmbh Verfahren zur herstellung von thermoplastischen formmassen
FR3140373A1 (fr) 2022-10-04 2024-04-05 Compagnie Generale Des Etablissements Michelin PNEUMATIQUE POURVU D'UN FLANC EXTERNE A BASE D'UNE COMPOSITION COMPRENANT du noir de carbone de pyrolyse
FR3140374A1 (fr) 2022-10-04 2024-04-05 Compagnie Generale Des Etablissements Michelin Pneumatique
FR3140304A1 (fr) 2022-10-04 2024-04-05 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition de caoutchouc amelioree
FR3140372A1 (fr) 2022-10-04 2024-04-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d’un noir de carbone de pyrolyse et d’une résine époxyde
CN116079933B (zh) * 2023-04-12 2023-06-16 太原理工大学 一种骨料有序排布的树脂矿物复合材料制备装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1611278A (en) * 1922-09-26 1926-12-21 Kelly Springfield Tire Company Rubber-latex coagulum
US1846820A (en) * 1930-09-15 1932-02-23 Du Pont Process and product for coloring rubber
GB705344A (en) * 1952-03-12 1954-03-10 Columbian Carbon Improvements in method of compounding carbon black and rubber latex
US3021226A (en) * 1958-06-02 1962-02-13 Phillips Petroleum Co Carbon black slurries and latex-carbon black masterbatches
NL136464C (es) * 1962-10-16
US3403121A (en) * 1964-07-17 1968-09-24 Columbian Carbon Method for compounding rubbers with carbon black
DE1620918B1 (de) * 1965-09-09 1972-03-09 Inst Ciezkiej Syntezy Orga Verfahren und vorrichtung zum ausscheiden von hochmolekular verbindungen aus ihren lösungen
US3767605A (en) * 1969-08-13 1973-10-23 Copolymer Rubber & Chem Corp Method for preparation of rubber crumb
JPS4896636A (es) * 1972-03-18 1973-12-10
GB1421011A (en) * 1972-10-24 1976-01-14 Ashland Oil Inc Master-batched solid rubber blends and methods of making same
CH581493A5 (en) * 1974-06-24 1976-11-15 Escher Wyss Ag Static mixer for in line mixing - having sudden expansion with secondary fluid injection just prior to it
US4029633A (en) * 1976-04-14 1977-06-14 Cabot Corporation Carbon black-rubber masterbatch production
CA1145896A (en) * 1979-07-19 1983-05-03 Klaas Tebbens Coagulation of latex
CA1124921A (en) * 1979-07-19 1982-06-01 Klaas Tebbens Particulate rubber process
CA1155268A (en) * 1980-10-31 1983-10-18 Polysar Limited Polymer - carbon black mixing
ZA836674B (en) * 1982-09-16 1984-04-25 Firestone Tire & Rubber Co Method for reducing hysteresis in synthetic rubber stocks and rubber articles made therefrom
JPS6042427A (ja) * 1983-08-18 1985-03-06 Mitsubishi Rayon Co Ltd 熱可塑性樹脂の製造装置
JPS61255946A (ja) * 1985-05-09 1986-11-13 Bridgestone Corp 改良されたゴム組成物
DE3712798A1 (de) * 1987-04-15 1988-11-03 Bayer Ag Verfahren und vorrichtung zum kontinuierlichen gewinnen von organischen polymerisaten aus ihren loesungen oder emulsionen
DE4034064A1 (de) * 1990-10-26 1992-04-30 Continental Ag Verfahren zur herstellung einer kautschukmischung fuer reifenlaufflaechen
CA2168700A1 (en) * 1995-09-13 1997-03-14 Richard Robinson Smith Heterogeneous silica carbon black-filled rubber compound
JP4234200B2 (ja) * 1996-04-01 2009-03-04 キャボット コーポレイション 新規なエラストマー複合体及びその製造方法

Also Published As

Publication number Publication date
AU1063099A (en) 1999-04-23
KR100617997B1 (ko) 2006-09-05
ES2235371T3 (es) 2005-07-01
CA2305702C (en) 2008-02-05
CA2305702A1 (en) 1999-04-08
EP1019228B1 (en) 2004-12-01
MY133282A (en) 2007-10-31
PL189105B1 (pl) 2005-06-30
DE69827963T2 (de) 2005-09-22
CN1280534A (zh) 2001-01-17
ATE552044T1 (de) 2012-04-15
JP5641826B2 (ja) 2014-12-17
BR9815397A (pt) 2001-12-11
HK1099782A1 (en) 2007-08-24
EP1537908A1 (en) 2005-06-08
DK1537908T3 (da) 2012-06-18
PL339614A1 (en) 2001-01-02
BR9815397B1 (pt) 2009-01-13
PT1537908E (pt) 2012-04-24
JP2010280905A (ja) 2010-12-16
ATE283753T1 (de) 2004-12-15
JP4750269B2 (ja) 2011-08-17
CN100473684C (zh) 2009-04-01
CN1935888A (zh) 2007-03-28
WO1999016600A1 (en) 1999-04-08
DE69827963D1 (de) 2005-01-05
EP1537908B1 (en) 2012-04-04
CZ297185B6 (cs) 2006-09-13
CN1285454C (zh) 2006-11-22
JP2001518401A (ja) 2001-10-16
OA11344A (en) 2003-12-11
EP1019228A1 (en) 2000-07-19
KR20010030826A (ko) 2001-04-16
CZ20001141A3 (cs) 2000-09-13

Similar Documents

Publication Publication Date Title
ES2383959T3 (es) Mezclas de composiciones de elastómeros y métodos para su producción
ES2317651T3 (es) Nuevos compuestos elastomericos, metodos y aparatos.
ES2246847T3 (es) Procedimientos y aparatos para producir y tratar compuestos de elastomeros novedosos.
US7105595B2 (en) Elastomer composite blends and methods-II
US7582688B2 (en) Elastomer composites, method and apparatus
US6075084A (en) Elastomer composite blends and methods - II
ES2390218T3 (es) Composites elastómeros, mezclas elastómeras y métodos
CA2511365C (en) Novel elastomer composites, method and apparatus
KR100477497B1 (ko) 신규의엘라스토머복합체,그의제조방법및제조장치
MXPA00003102A (es) Mezclas de compuesto elastomerico y metodos para producirlas.