EP4263543A1 - Composés azotés pour dispositifs électroluminescents organiques - Google Patents
Composés azotés pour dispositifs électroluminescents organiquesInfo
- Publication number
- EP4263543A1 EP4263543A1 EP21823946.5A EP21823946A EP4263543A1 EP 4263543 A1 EP4263543 A1 EP 4263543A1 EP 21823946 A EP21823946 A EP 21823946A EP 4263543 A1 EP4263543 A1 EP 4263543A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radicals
- group
- substituted
- aromatic
- atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 title abstract description 4
- 150000001875 compounds Chemical class 0.000 claims abstract description 195
- 125000003118 aryl group Chemical group 0.000 claims description 244
- 125000004432 carbon atom Chemical group C* 0.000 claims description 139
- 229910052799 carbon Inorganic materials 0.000 claims description 93
- 125000000217 alkyl group Chemical group 0.000 claims description 77
- 239000000463 material Substances 0.000 claims description 63
- 229910052760 oxygen Inorganic materials 0.000 claims description 58
- 125000001072 heteroaryl group Chemical group 0.000 claims description 54
- 239000000203 mixture Substances 0.000 claims description 52
- 125000003545 alkoxy group Chemical group 0.000 claims description 51
- 125000005309 thioalkoxy group Chemical group 0.000 claims description 50
- 229910052717 sulfur Inorganic materials 0.000 claims description 48
- -1 arylheteroarylamino Chemical group 0.000 claims description 40
- 125000004122 cyclic group Chemical group 0.000 claims description 40
- 125000001424 substituent group Chemical group 0.000 claims description 40
- 229910052739 hydrogen Inorganic materials 0.000 claims description 36
- 125000006413 ring segment Chemical group 0.000 claims description 36
- 125000003342 alkenyl group Chemical group 0.000 claims description 34
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 33
- 125000000304 alkynyl group Chemical group 0.000 claims description 29
- 229910052731 fluorine Inorganic materials 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 28
- 229910052801 chlorine Inorganic materials 0.000 claims description 26
- 229910052805 deuterium Inorganic materials 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 26
- 125000001931 aliphatic group Chemical group 0.000 claims description 25
- 229910052794 bromium Inorganic materials 0.000 claims description 25
- 229910052740 iodine Inorganic materials 0.000 claims description 23
- 229910004013 NO 2 Inorganic materials 0.000 claims description 18
- 125000004429 atom Chemical group 0.000 claims description 18
- 238000002347 injection Methods 0.000 claims description 18
- 239000007924 injection Substances 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- 125000004104 aryloxy group Chemical group 0.000 claims description 14
- 239000000412 dendrimer Substances 0.000 claims description 14
- 229920000736 dendritic polymer Polymers 0.000 claims description 14
- 125000005553 heteroaryloxy group Chemical group 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 14
- 125000005842 heteroatom Chemical group 0.000 claims description 12
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- 230000002378 acidificating effect Effects 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 8
- 229910052702 rhenium Inorganic materials 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 7
- 229910052796 boron Chemical group 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 6
- 125000004437 phosphorous atom Chemical group 0.000 claims description 6
- 125000003003 spiro group Chemical group 0.000 claims description 6
- 125000004475 heteroaralkyl group Chemical group 0.000 claims description 5
- 125000000732 arylene group Chemical group 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 4
- 125000005549 heteroarylene group Chemical group 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 3
- 125000005110 aryl thio group Chemical group 0.000 claims description 3
- 125000004986 diarylamino group Chemical group 0.000 claims description 3
- 125000005240 diheteroarylamino group Chemical group 0.000 claims description 3
- 125000004446 heteroarylalkyl group Chemical group 0.000 claims description 3
- 125000005368 heteroarylthio group Chemical group 0.000 claims description 3
- JGLMVXWAHNTPRF-CMDGGOBGSA-N CCN1N=C(C)C=C1C(=O)NC1=NC2=CC(=CC(OC)=C2N1C\C=C\CN1C(NC(=O)C2=CC(C)=NN2CC)=NC2=CC(=CC(OCCCN3CCOCC3)=C12)C(N)=O)C(N)=O Chemical compound CCN1N=C(C)C=C1C(=O)NC1=NC2=CC(=CC(OC)=C2N1C\C=C\CN1C(NC(=O)C2=CC(C)=NN2CC)=NC2=CC(=CC(OCCCN3CCOCC3)=C12)C(N)=O)C(N)=O JGLMVXWAHNTPRF-CMDGGOBGSA-N 0.000 claims description 2
- 125000002947 alkylene group Chemical group 0.000 claims description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 238000007339 nucleophilic aromatic substitution reaction Methods 0.000 claims description 2
- 238000003419 tautomerization reaction Methods 0.000 claims description 2
- 150000003254 radicals Chemical class 0.000 description 305
- 239000010410 layer Substances 0.000 description 114
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 63
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 45
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 39
- 239000000460 chlorine Substances 0.000 description 24
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 24
- 239000000243 solution Substances 0.000 description 22
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 16
- 230000005525 hole transport Effects 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 14
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 14
- 239000011521 glass Substances 0.000 description 14
- 238000005160 1H NMR spectroscopy Methods 0.000 description 13
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 13
- 238000007363 ring formation reaction Methods 0.000 description 13
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 12
- 239000004305 biphenyl Substances 0.000 description 12
- 208000027385 essential tremor 2 Diseases 0.000 description 12
- 208000031534 hereditary essential 2 tremor Diseases 0.000 description 12
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 12
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical compound C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 11
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 11
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 10
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 9
- 239000011324 bead Substances 0.000 description 9
- 239000012043 crude product Substances 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 8
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 8
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 8
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 208000027386 essential tremor 1 Diseases 0.000 description 8
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 8
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 125000005577 anthracene group Chemical group 0.000 description 7
- 235000010290 biphenyl Nutrition 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 6
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 6
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 6
- 101100457453 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MNL1 gene Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000001743 benzylic group Chemical group 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 6
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 238000000103 photoluminescence spectrum Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 125000005580 triphenylene group Chemical group 0.000 description 6
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 150000001716 carbazoles Chemical class 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 description 5
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 5
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 5
- 125000003367 polycyclic group Chemical group 0.000 description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 description 5
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000006069 Suzuki reaction reaction Methods 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 4
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 4
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical compound C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000001194 electroluminescence spectrum Methods 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000003818 flash chromatography Methods 0.000 description 4
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 4
- 238000000260 fractional sublimation Methods 0.000 description 4
- WUNJCKOTXFSWBK-UHFFFAOYSA-N indeno[2,1-a]carbazole Chemical compound C1=CC=C2C=C3C4=NC5=CC=CC=C5C4=CC=C3C2=C1 WUNJCKOTXFSWBK-UHFFFAOYSA-N 0.000 description 4
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 4
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 4
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical compound C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 4
- 229960005544 indolocarbazole Drugs 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 235000019341 magnesium sulphate Nutrition 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N o-dimethylbenzene Natural products CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 238000010549 co-Evaporation Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 3
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 3
- 239000005457 ice water Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000012258 stirred mixture Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- 125000005259 triarylamine group Chemical group 0.000 description 3
- BFIMMTCNYPIMRN-UHFFFAOYSA-N 1,2,3,5-tetramethylbenzene Chemical compound CC1=CC(C)=C(C)C(C)=C1 BFIMMTCNYPIMRN-UHFFFAOYSA-N 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N 1,3-Dimethylbenzene Natural products CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 2
- LBNXAWYDQUGHGX-UHFFFAOYSA-N 1-Phenylheptane Chemical compound CCCCCCCC1=CC=CC=C1 LBNXAWYDQUGHGX-UHFFFAOYSA-N 0.000 description 2
- NPDIDUXTRAITDE-UHFFFAOYSA-N 1-methyl-3-phenylbenzene Chemical group CC1=CC=CC(C=2C=CC=CC=2)=C1 NPDIDUXTRAITDE-UHFFFAOYSA-N 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 2
- PAGZTSLSNQZYEV-UHFFFAOYSA-L 2,2-dimethylpropanoate;palladium(2+) Chemical compound [Pd+2].CC(C)(C)C([O-])=O.CC(C)(C)C([O-])=O PAGZTSLSNQZYEV-UHFFFAOYSA-L 0.000 description 2
- KSCPVCBJIZDZER-UHFFFAOYSA-N 2-bromo-1-chloro-4-iodobenzene Chemical compound ClC1=CC=C(I)C=C1Br KSCPVCBJIZDZER-UHFFFAOYSA-N 0.000 description 2
- LHRMBQARSBULRX-UHFFFAOYSA-N 2-bromo-1-fluoro-4-iodobenzene Chemical compound FC1=CC=C(I)C=C1Br LHRMBQARSBULRX-UHFFFAOYSA-N 0.000 description 2
- DXYYSGDWQCSKKO-UHFFFAOYSA-N 2-methylbenzothiazole Chemical compound C1=CC=C2SC(C)=NC2=C1 DXYYSGDWQCSKKO-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- SNFCXVRWFNAHQX-UHFFFAOYSA-N 9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=CC=C21 SNFCXVRWFNAHQX-UHFFFAOYSA-N 0.000 description 2
- BPMFPOGUJAAYHL-UHFFFAOYSA-N 9H-Pyrido[2,3-b]indole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=N1 BPMFPOGUJAAYHL-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- LTEQMZWBSYACLV-UHFFFAOYSA-N Hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1 LTEQMZWBSYACLV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- PWATWSYOIIXYMA-UHFFFAOYSA-N Pentylbenzene Chemical compound CCCCCC1=CC=CC=C1 PWATWSYOIIXYMA-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000006887 Ullmann reaction Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001448 anilines Chemical class 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- XSIFPSYPOVKYCO-UHFFFAOYSA-N butyl benzoate Chemical compound CCCCOC(=O)C1=CC=CC=C1 XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 150000002081 enamines Chemical class 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- YYZUSRORWSJGET-UHFFFAOYSA-N ethyl octanoate Chemical compound CCCCCCCC(=O)OCC YYZUSRORWSJGET-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 150000003222 pyridines Chemical class 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 125000006836 terphenylene group Chemical group 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- 125000004001 thioalkyl group Chemical group 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-O tritert-butylphosphanium Chemical compound CC(C)(C)[PH+](C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-O 0.000 description 2
- LHXDLQBQYFFVNW-OIBJUYFYSA-N (-)-Fenchone Chemical compound C1C[C@@]2(C)C(=O)C(C)(C)[C@@H]1C2 LHXDLQBQYFFVNW-OIBJUYFYSA-N 0.000 description 1
- 229930006729 (1R,4S)-fenchone Natural products 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- FIARMZDBEGVMLV-UHFFFAOYSA-N 1,1,2,2,2-pentafluoroethanolate Chemical group [O-]C(F)(F)C(F)(F)F FIARMZDBEGVMLV-UHFFFAOYSA-N 0.000 description 1
- HQDYNFWTFJFEPR-UHFFFAOYSA-N 1,2,3,3a-tetrahydropyrene Chemical compound C1=C2CCCC(C=C3)C2=C2C3=CC=CC2=C1 HQDYNFWTFJFEPR-UHFFFAOYSA-N 0.000 description 1
- ZFXBERJDEUDDMX-UHFFFAOYSA-N 1,2,3,5-tetrazine Chemical compound C1=NC=NN=N1 ZFXBERJDEUDDMX-UHFFFAOYSA-N 0.000 description 1
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical compound C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- HTJMXYRLEDBSLT-UHFFFAOYSA-N 1,2,4,5-tetrazine Chemical compound C1=NN=CN=N1 HTJMXYRLEDBSLT-UHFFFAOYSA-N 0.000 description 1
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical compound C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 1
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- UDGKZGLPXCRRAM-UHFFFAOYSA-N 1,2,5-thiadiazole Chemical compound C=1C=NSN=1 UDGKZGLPXCRRAM-UHFFFAOYSA-N 0.000 description 1
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 description 1
- UUSUFQUCLACDTA-UHFFFAOYSA-N 1,2-dihydropyrene Chemical compound C1=CC=C2C=CC3=CCCC4=CC=C1C2=C43 UUSUFQUCLACDTA-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- SPPWGCYEYAMHDT-UHFFFAOYSA-N 1,4-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=C(C(C)C)C=C1 SPPWGCYEYAMHDT-UHFFFAOYSA-N 0.000 description 1
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 1
- OSIGJGFTADMDOB-UHFFFAOYSA-N 1-Methoxy-3-methylbenzene Chemical compound COC1=CC=CC(C)=C1 OSIGJGFTADMDOB-UHFFFAOYSA-N 0.000 description 1
- HYLLZXPMJRMUHH-UHFFFAOYSA-N 1-[2-(2-methoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOC HYLLZXPMJRMUHH-UHFFFAOYSA-N 0.000 description 1
- SNAQINZKMQFYFV-UHFFFAOYSA-N 1-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCCOC SNAQINZKMQFYFV-UHFFFAOYSA-N 0.000 description 1
- GAQKEAQMVDKCAF-UHFFFAOYSA-N 1-bromo-2-chloro-4-iodobenzene Chemical compound ClC1=CC(I)=CC=C1Br GAQKEAQMVDKCAF-UHFFFAOYSA-N 0.000 description 1
- OCODJNASCDFXSR-UHFFFAOYSA-N 1-bromo-2-fluoro-4-iodobenzene Chemical compound FC1=CC(I)=CC=C1Br OCODJNASCDFXSR-UHFFFAOYSA-N 0.000 description 1
- QGRPVMLBTFGQDQ-UHFFFAOYSA-N 1-chloro-2-methoxybenzene Chemical compound COC1=CC=CC=C1Cl QGRPVMLBTFGQDQ-UHFFFAOYSA-N 0.000 description 1
- ZMXIYERNXPIYFR-UHFFFAOYSA-N 1-ethylnaphthalene Chemical compound C1=CC=C2C(CC)=CC=CC2=C1 ZMXIYERNXPIYFR-UHFFFAOYSA-N 0.000 description 1
- RERATEUBWLKDFE-UHFFFAOYSA-N 1-methoxy-2-[2-(2-methoxypropoxy)propoxy]propane Chemical compound COCC(C)OCC(C)OCC(C)OC RERATEUBWLKDFE-UHFFFAOYSA-N 0.000 description 1
- JCHJBEZBHANKGA-UHFFFAOYSA-N 1-methoxy-3,5-dimethylbenzene Chemical compound COC1=CC(C)=CC(C)=C1 JCHJBEZBHANKGA-UHFFFAOYSA-N 0.000 description 1
- WCOYPFBMFKXWBM-UHFFFAOYSA-N 1-methyl-2-phenoxybenzene Chemical compound CC1=CC=CC=C1OC1=CC=CC=C1 WCOYPFBMFKXWBM-UHFFFAOYSA-N 0.000 description 1
- ALLIZEAXNXSFGD-UHFFFAOYSA-N 1-methyl-2-phenylbenzene Chemical group CC1=CC=CC=C1C1=CC=CC=C1 ALLIZEAXNXSFGD-UHFFFAOYSA-N 0.000 description 1
- UDONPJKEOAWFGI-UHFFFAOYSA-N 1-methyl-3-phenoxybenzene Chemical compound CC1=CC=CC(OC=2C=CC=CC=2)=C1 UDONPJKEOAWFGI-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- AGSGBXQHMGBCBO-UHFFFAOYSA-N 1H-diazasilole Chemical compound N1C=C[SiH]=N1 AGSGBXQHMGBCBO-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- LPHIYKWSEYTCLW-UHFFFAOYSA-N 1h-azaborole Chemical compound N1B=CC=C1 LPHIYKWSEYTCLW-UHFFFAOYSA-N 0.000 description 1
- USYCQABRSUEURP-UHFFFAOYSA-N 1h-benzo[f]benzimidazole Chemical compound C1=CC=C2C=C(NC=N3)C3=CC2=C1 USYCQABRSUEURP-UHFFFAOYSA-N 0.000 description 1
- 125000004793 2,2,2-trifluoroethoxy group Chemical group FC(CO*)(F)F 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- PFRPMHBYYJIARU-UHFFFAOYSA-N 2,3-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),2,4,6,8(16),9,11(15),12-octaene Chemical compound C1=CC=C2N=NC3=CC=CC4=CC=C1C2=C43 PFRPMHBYYJIARU-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- JDMFXJULNGEPOI-UHFFFAOYSA-N 2,6-dichloroaniline Chemical class NC1=C(Cl)C=CC=C1Cl JDMFXJULNGEPOI-UHFFFAOYSA-N 0.000 description 1
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 1
- ZNOVTXRBGFNYRX-UHFFFAOYSA-N 2-[[4-[(2-amino-5-methyl-4-oxo-1,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 ZNOVTXRBGFNYRX-UHFFFAOYSA-N 0.000 description 1
- UXGVMFHEKMGWMA-UHFFFAOYSA-N 2-benzofuran Chemical compound C1=CC=CC2=COC=C21 UXGVMFHEKMGWMA-UHFFFAOYSA-N 0.000 description 1
- LYTMVABTDYMBQK-UHFFFAOYSA-N 2-benzothiophene Chemical compound C1=CC=CC2=CSC=C21 LYTMVABTDYMBQK-UHFFFAOYSA-N 0.000 description 1
- OHWSWGXNZDSHLM-UHFFFAOYSA-N 2-chloro-3-iodopyridine Chemical class ClC1=NC=CC=C1I OHWSWGXNZDSHLM-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- JBIJLHTVPXGSAM-UHFFFAOYSA-N 2-naphthylamine Chemical compound C1=CC=CC2=CC(N)=CC=C21 JBIJLHTVPXGSAM-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- TVYVQNHYIHAJTD-UHFFFAOYSA-N 2-propan-2-ylnaphthalene Chemical compound C1=CC=CC2=CC(C(C)C)=CC=C21 TVYVQNHYIHAJTD-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical group N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 description 1
- RPBPHGSYVPJXKT-UHFFFAOYSA-N 3-bromo-2-phenylmethoxypyridine Chemical compound BrC1=CC=CN=C1OCC1=CC=CC=C1 RPBPHGSYVPJXKT-UHFFFAOYSA-N 0.000 description 1
- CPDDXQJCPYHULE-UHFFFAOYSA-N 4,5,14,16-tetrazapentacyclo[9.7.1.12,6.015,19.010,20]icosa-1(18),2,4,6,8,10(20),11(19),12,14,16-decaene Chemical group C1=CC(C2=CC=CC=3C2=C2C=NN=3)=C3C2=CC=NC3=N1 CPDDXQJCPYHULE-UHFFFAOYSA-N 0.000 description 1
- JTLBOLSIPFGKTJ-UHFFFAOYSA-N 4-(aminomethylidene)-2-phenyl-1,3-oxazol-5-one Chemical compound O1C(=O)C(=CN)N=C1C1=CC=CC=C1 JTLBOLSIPFGKTJ-UHFFFAOYSA-N 0.000 description 1
- NCSVCMFDHINRJE-UHFFFAOYSA-N 4-[1-(3,4-dimethylphenyl)ethyl]-1,2-dimethylbenzene Chemical compound C=1C=C(C)C(C)=CC=1C(C)C1=CC=C(C)C(C)=C1 NCSVCMFDHINRJE-UHFFFAOYSA-N 0.000 description 1
- LVUBSVWMOWKPDJ-UHFFFAOYSA-N 4-methoxy-1,2-dimethylbenzene Chemical compound COC1=CC=C(C)C(C)=C1 LVUBSVWMOWKPDJ-UHFFFAOYSA-N 0.000 description 1
- 229940077398 4-methyl anisole Drugs 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- IUKNPBPXZUWMNO-UHFFFAOYSA-N 5,12-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(15),2,4,6,8(16),9,11,13-octaene Chemical compound N1=CC=C2C=CC3=NC=CC4=CC=C1C2=C43 IUKNPBPXZUWMNO-UHFFFAOYSA-N 0.000 description 1
- NHWJSCHQRMCCAD-UHFFFAOYSA-N 5,14-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),2,4,6,8(16),9,11(15),12-octaene Chemical compound C1=CN=C2C=CC3=NC=CC4=CC=C1C2=C43 NHWJSCHQRMCCAD-UHFFFAOYSA-N 0.000 description 1
- PODJSIAAYWCBDV-UHFFFAOYSA-N 5,6-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),2,4(16),5,7,9,11(15),12-octaene Chemical compound C1=NN=C2C=CC3=CC=CC4=CC=C1C2=C43 PODJSIAAYWCBDV-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ODVBUEQVGQNONL-UHFFFAOYSA-N BC(C=CC=C1B)=C1N Chemical class BC(C=CC=C1B)=C1N ODVBUEQVGQNONL-UHFFFAOYSA-N 0.000 description 1
- 238000007045 Balz-Schiemann reaction Methods 0.000 description 1
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 238000006443 Buchwald-Hartwig cross coupling reaction Methods 0.000 description 1
- ZPIPUFJBRZFYKJ-UHFFFAOYSA-N C1=NC=C2C=CC3=CN=CC4=CC=C1C2=C34 Chemical compound C1=NC=C2C=CC3=CN=CC4=CC=C1C2=C34 ZPIPUFJBRZFYKJ-UHFFFAOYSA-N 0.000 description 1
- 101100229711 Caenorhabditis elegans eas-1 gene Proteins 0.000 description 1
- 101100326684 Caenorhabditis elegans tra-3 gene Proteins 0.000 description 1
- 101100370282 Caenorhabditis elegans tra-4 gene Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- ONKUXPIBXRRIDU-UHFFFAOYSA-N Diethyl decanedioate Chemical compound CCOC(=O)CCCCCCCCC(=O)OCC ONKUXPIBXRRIDU-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 238000005863 Friedel-Crafts acylation reaction Methods 0.000 description 1
- 238000003547 Friedel-Crafts alkylation reaction Methods 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101000801643 Homo sapiens Retinal-specific phospholipid-transporting ATPase ABCA4 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VYQSSWZYPCCBRN-UHFFFAOYSA-N Isovaleriansaeure-menthylester Natural products CC(C)CC(=O)OC1CC(C)CCC1C(C)C VYQSSWZYPCCBRN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- DJNTZVRUYMHBTD-UHFFFAOYSA-N Octyl octanoate Chemical compound CCCCCCCCOC(=O)CCCCCCC DJNTZVRUYMHBTD-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 102100033617 Retinal-specific phospholipid-transporting ATPase ABCA4 Human genes 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- RVRNWZKXNNOOPU-UHFFFAOYSA-M [Cl+].[O-]S(=O)(=O)C(F)(F)F Chemical class [Cl+].[O-]S(=O)(=O)C(F)(F)F RVRNWZKXNNOOPU-UHFFFAOYSA-M 0.000 description 1
- VGRJHHLDEYYRNF-UHFFFAOYSA-N ac1lasce Chemical compound C1C2=CC=CC=C2C(C=2C3=CC=CC=C3CC=22)=C1C1=C2CC2=CC=CC=C21 VGRJHHLDEYYRNF-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 150000001336 alkenes Chemical group 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- LHXDLQBQYFFVNW-UHFFFAOYSA-N alpha-fenchone Natural products C1CC2(C)C(=O)C(C)(C)C1C2 LHXDLQBQYFFVNW-UHFFFAOYSA-N 0.000 description 1
- 229940088601 alpha-terpineol Drugs 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WMUIZUWOEIQJEH-UHFFFAOYSA-N benzo[e][1,3]benzoxazole Chemical compound C1=CC=C2C(N=CO3)=C3C=CC2=C1 WMUIZUWOEIQJEH-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 125000005620 boronic acid group Chemical group 0.000 description 1
- 238000006795 borylation reaction Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- CODNYICXDISAEA-UHFFFAOYSA-N bromine monochloride Chemical class BrCl CODNYICXDISAEA-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005566 carbazolylene group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- DTNOERNOMHQUCN-UHFFFAOYSA-N cyclohexyl hexanoate Chemical compound CCCCCC(=O)OC1CCCCC1 DTNOERNOMHQUCN-UHFFFAOYSA-N 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001987 diarylethers Chemical class 0.000 description 1
- 150000007858 diazaphosphole derivatives Chemical class 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXPBFNVKTVJZKF-UHFFFAOYSA-N dihydrophenanthrene Natural products C1=CC=C2CCC3=CC=CC=C3C2=C1 XXPBFNVKTVJZKF-UHFFFAOYSA-N 0.000 description 1
- JURBTQKVGNFPRJ-UHFFFAOYSA-N ditert-butyl(methyl)phosphane Chemical compound CC(C)(C)P(C)C(C)(C)C JURBTQKVGNFPRJ-UHFFFAOYSA-N 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000002220 fluorenes Chemical class 0.000 description 1
- 125000005567 fluorenylene group Chemical group 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical group II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- WCZAXBXVDLKQGV-UHFFFAOYSA-N n,n-dimethyl-2-(7-oxobenzo[c]fluoren-5-yl)oxyethanamine oxide Chemical compound C12=CC=CC=C2C(OCC[N+](C)([O-])C)=CC2=C1C1=CC=CC=C1C2=O WCZAXBXVDLKQGV-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005244 neohexyl group Chemical group [H]C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- VXNSQGRKHCZUSU-UHFFFAOYSA-N octylbenzene Chemical compound [CH2]CCCCCCCC1=CC=CC=C1 VXNSQGRKHCZUSU-UHFFFAOYSA-N 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000002921 oxetanes Chemical group 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- DLRJIFUOBPOJNS-UHFFFAOYSA-N phenetole Chemical compound CCOC1=CC=CC=C1 DLRJIFUOBPOJNS-UHFFFAOYSA-N 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- GDISDVBCNPLSDU-UHFFFAOYSA-N pyrido[2,3-g]quinoline Chemical compound C1=CC=NC2=CC3=CC=CN=C3C=C21 GDISDVBCNPLSDU-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- VFWRGKJLLYDFBY-UHFFFAOYSA-N silver;hydrate Chemical compound O.[Ag].[Ag] VFWRGKJLLYDFBY-UHFFFAOYSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- VNFWTIYUKDMAOP-UHFFFAOYSA-N sphos Chemical compound COC1=CC=CC(OC)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 VNFWTIYUKDMAOP-UHFFFAOYSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- YGPLLMPPZRUGTJ-UHFFFAOYSA-N truxene Chemical compound C1C2=CC=CC=C2C(C2=C3C4=CC=CC=C4C2)=C1C1=C3CC2=CC=CC=C21 YGPLLMPPZRUGTJ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000002061 vacuum sublimation Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- UGOMMVLRQDMAQQ-UHFFFAOYSA-N xphos Chemical compound CC(C)C1=CC(C(C)C)=CC(C(C)C)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 UGOMMVLRQDMAQQ-UHFFFAOYSA-N 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
- C07D471/16—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/16—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/12—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
- C07D491/16—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/12—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
- C07D491/20—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/22—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/12—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
- C07D495/16—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/20—Delayed fluorescence emission
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- Nitrogen-containing compounds for organic electroluminescent devices The present invention relates to nitrogen-containing compounds for use in electronic devices, in particular in organic electroluminescent devices, and electronic devices, in particular organic electroluminescent devices, containing these aromatic compounds.
- organic electroluminescent devices phosphorescent organometallic complexes or fluorescent compounds are frequently used as emitting materials.
- there is still a need for improvement in electroluminescent devices Known from US 2010/0051928, WO 2010/104047 A1, US 2014/319507 A1, WO 2017/175690, US 2019/0393439, CN 110452226 A, WO 2019/132506 A1 and WO 2020/064666 A1 are polycyclic compounds organic electroluminescent devices can be used.
- the object of the present invention is therefore to provide compounds which are suitable for use in an organic electronic device, in particular in an organic electroluminescent device, and which lead to good device properties when used in this device, and to provide the corresponding electronic device .
- the compounds should have excellent processability, and the compounds should in particular have good solubility.
- a further object of the present invention can be seen as providing compounds which are suitable for use in a phosphorescent or fluorescent electroluminescent device, in particular as an emitter.
- the compounds should lead to devices which have excellent color purity, particularly when they are used as emitters in organic electroluminescent devices.
- a further object can be seen in providing electronic devices with excellent performance as cost-effectively as possible and with constant quality.
- the electronic devices should be able to be used or adapted for many purposes. In particular, the performance of the electronic devices should be maintained over a wide temperature range.
- the radical R y bonded to the group Y does not have an acidic proton in the vicinity of the group Y, preferably a keto-enol tautomerism is excluded if Y is C ⁇ O.
- An acidic proton in this sense is a proton which has a high pKa value, the pKa value of a proton preferably being at least 21, preferably at least 22 and particularly preferably at least 25.
- the radical R y bonded to the group Y and the radical R a adjacent to the group form a condensed ring with the other groups to which the two radicals R y , R a bind, preferably an aliphatic or heteroaliphatic ring with 3 to 20, preferably 5 to 18 ring atoms or an aromatic or heteroaromatic ring with 5 to 13 ring atoms, particularly preferably an aliphatic or heteroaliphatic ring with 3 to 20, preferably 5 to 18 ring atoms, with one or more R 1 radicals can be substituted, where R 1 has the meaning given above, in particular for formula (I).
- At least one, preferably at least two, of the radicals R, R a , R b , R c , R d , R e are not equal to H, preferably not equal to H, D, OH, NO 2 , F, Cl, Br, I.
- At least one of the radicals R a preferably both radicals R a
- the statements made above with regard to preferred radicals R a must be taken into account here.
- at least one of the R c radicals, preferably both R c radicals is/are not H, with particularly preferably at least one of the R c radicals, preferably both R c radicals, not being H, D, F, Cl, Br , I.
- the statements made above with regard to preferred radicals R c must be taken into account here.
- At least one of the radicals R a and at least one of the radicals R c is not equal to H, preferably not equal to H, D, F, Cl, Br, I.
- Both radicals R a and both radicals R are particularly preferred c is not equal to H, preferably not equal to H, D, F, Cl, Br, I.
- the radical R represents an aromatic or heteroaromatic ring system having 5 to 13 aromatic ring atoms, which can be substituted by one or more radicals R e .
- a radical R a and a radical R c form a condensed ring, preferably an aliphatic or heteroaliphatic ring, with the other groups to which the two radicals R a , R c are bonded having 3 to 20, preferably 5 to 18 ring atoms or an aromatic or heteroaromatic ring having 5 to 13 ring atoms, particularly preferably an aliphatic or heteroaliphatic ring having 3 to 20, preferably 5 to 18 ring atoms, which may be substituted with one or more R 1 radicals can, where R 1 has the meaning given above, in particular for formula (I).
- the radical R comprises an aromatic or heteroaromatic ring system with 5 to 13 aromatic ring atoms, which can be substituted with one or more radicals R e and at least two radicals R a , R c form a ring with the further groups , to which the two radicals R a , R c bind, form a fused ring, which can each be substituted by one or more radicals R 1 .
- the radical R comprises an aromatic or heteroaromatic ring system having 5 to 13 aromatic ring atoms, which may be substituted with one or more radicals Re, and the radical Ry bonded to the group Y and the radical adjacent to the group R a and the other groups to which the radicals R a and R y are bonded form a fused ring, which can each be substituted by one or more radicals R 1 .
- a compound/structure according to the invention preferably comprises at least one, preferably two, fused rings Rings which are formed by the radical R y bonded to the group Y and the radical R a adjacent to the group with the further groups to which the two radicals R y , R a bind, and the radical R represents an aromatic or heteroaromatic ring system with 5 to 13 aromatic ring atoms.
- Condensed rings can be aliphatic, heteroaliphatic, aromatic or heteroaromatic, where in preferred configurations are set out above and below, with an aliphatic or heteroaliphatic ring having 3 to 20, preferably 5 to 18 ring atoms or an aromatic or heteroaromatic ring having 5 to 13 ring atoms preferably being formed, particularly preferably an aliphatic or heteroaliphatic ring having 3 to 20, preferably 5 to 18 ring atoms, which can each be substituted by one or more radicals R 1 .
- An aryl group within the meaning of this invention contains 6 to 40 carbon atoms; a heteroaryl group within the meaning of this invention contains 2 to 40 carbon atoms and at least one heteroatom, with the proviso that the sum of carbon atoms and heteroatoms is at least 5.
- the heteroatoms are preferably selected from N, O and/or S.
- An aryl group or heteroaryl group is either a simple aromatic cycle, i.e. benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine, thiophene, etc. or a fused (fused) aryl or heteroaryl group, for example naphthalene, anthracene, phenanthrene, quinoline, isoquinoline, etc.
- aromatics linked to one another by a single bond are not referred to as aryl or heteroaryl groups, but as aromatic ring systems.
- An electron-deficient heteroaryl group in the context of the present invention is a heteroaryl group which has at least one heteroaromatic six-membered ring with at least one nitrogen atom. Further aromatic or heteroaromatic five-membered rings or six-membered rings can be fused onto this six-membered ring.
- electron-deficient heteroaryl groups are pyridine, pyrimidine, pyrazine, pyridazine, triazine, quinoline, quinazoline or quinoxaline.
- An aromatic ring system within the meaning of this invention contains 6 to 60 carbon atoms in the ring system, preferably 6 to 40 carbon atoms in the ring system.
- a heteroaromatic ring system within the meaning of this invention contains 2 to 60 carbon atoms, preferably 3 to 40 carbon atoms, and at least one heteroatom in the ring system, with the proviso that the sum of carbon atoms and heteroatoms is at least 5.
- the heteroatoms are preferably selected from N, O and / or S.
- An aromatic or heteroaromatic ring system in the context of this invention should be understood to mean a system which does not necessarily only contain aryl or heteroaryl groups, but in which several aryl or Heteroaryl groups through a non-aromatic moiety, such as.
- a C, N or O atom may be connected.
- systems such as fluorene, 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, stilbene, etc. should also be understood as aromatic ring systems for the purposes of this invention, and also systems in which two or more aryl groups, for example connected by a short alkyl group.
- the aromatic ring system is preferably selected from fluorene, 9,9'-spirobifluorene, 9,9-diarylamine or groups in which two or more aryl and/or heteroaryl groups are linked to one another by single bonds.
- an aliphatic hydrocarbon radical or an alkyl group or an alkenyl or alkynyl group which can contain 1 to 20 carbon atoms, and which also contains individual H atoms or CH 2 groups, are represented by the groups mentioned above can be substituted, preferably the radicals methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s-pentyl, neo-pentyl , cyclopentyl, n-hexyl, neo-hexyl, cyclohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl, trifluoromethyl, pentafluoroethyl
- An alkoxy group having 1 to 40 carbon atoms is preferably methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, s- pentoxy, 2-methylbutoxy, n-hexoxy, cyclohexyloxy, n-heptoxy, cycloheptyloxy, n-octyloxy, cyclooctyloxy, 2-ethylhexyloxy, pentafluoroethoxy and 2,2,2-trifluoroethoxy.
- a thioalkyl group with 1 to 40 carbon atoms is, in particular, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-butylthio, t-butylthio, n-pentylthio, s-pentylthio, n-hexylthio, cyclohexylthio, n-heptylthio, cycloheptylthio, n-octylthio, cyclooctylthio, 2-ethylhexylthio, trifluoromethylthio, pentafluoroethylthio, 2,2,2-trifluoroethylthio, ethenylthio, propenylthio, butenylthio, pentenylthio, cyclopentenylthi
- my alkyl, alkoxy or thioalkyl groups can be straight-chain, branched or cyclic, it being possible for one or more non-adjacent CH 2 groups to be replaced by the groups mentioned above; furthermore, one or more H atoms can also be replaced by D, F, Cl, Br, I, CN or NO 2 , preferably F, Cl or CN, more preferably F or CN, particularly preferably CN.
- aromatic or heteroaromatic ring system with 5-60 or 5 to 40 aromatic ring atoms which can be substituted with the above-mentioned radicals and which can be linked via any position on the aromatic or heteroaromatic, is understood to mean, in particular, groups derived from benzene, naphthalene, anthracene, benzanthracene, phenanthrene, pyrene, chrysene, perylene, fluoranthene, naphthacene, pentacene, benzopyrene, biphenyl, biphenylene, terphenyl, triphenylene, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans-indenofluorene, cis- or trans-indenocarbazole, cis- or trans-indolocarbazole, truxene, isotruxen
- the wording that two or more radicals can form a ring with one another is to be understood, inter alia, as meaning that the two radicals are linked to one another by a chemical bond with formal splitting off of two hydrogen atoms. This is illustrated by the following scheme. .
- the above formulation should also be understood to mean that if one of the two radicals is hydrogen, the second radical binds to the position to which the hydrogen atom was bonded, forming a ring. This should be illustrated by the following scheme: .
- the compounds according to the invention can comprise a structure of the formulas (Ia) and/or (Ib), the compounds according to the invention can particularly preferably be selected from the compounds of the formulas (Ia) and/or (Ib),
- T 1 is the same or different on each occurrence fused ring, preferably an aliphatic or heteroaliphatic ring having 3 to 20, preferably 5 to 18, ring atoms or an aromatic or heteroaromatic ring having 5 to 13 ring atoms, particularly preferably an aliphatic or heteroaliphatic ring having 3 to 20, preferably 5 to 18 Ring atoms which may be substituted by one or more R 1 radicals, where R 1 has the meaning given above, in particular for formula (I);
- T 2 is identical or different on each occurrence for a fused ring, preferably for an aliphatic or heteroaliphatic ring having 3 to 20, preferably 5 to 18 ring atoms or for an aromatic or heteroaromatic ring having 5 to 13 ring atoms, particularly preferably for an aliphatic or heteroaliphatic ring
- compounds/structures where the symbol X in formula (I) is CYR y show unexpected advantages in terms of performance, particularly in relation to the Color purity, so that compounds with two groups CYR y or substituents YR y on the aromatic rings show significantly narrower emission spectra.
- the structures/compounds of the formulas (I-1) to (I-26) are preferred, structures/compounds of the formulas (I-1) to (I-7) and (I-14) to (I-26) are particularly preferred preferred and structures/compounds of the formulas (I-14) to (I-20) are very particularly preferred.
- At least two radicals R, R a , R b , R c , R d , R e , R y are connected to the other groups to which the two radicals R, R a , R b , R c , R d , R e , R y form a fused ring, where the two radicals R, R a , R b , R c , R d , R e , R y have at least one structure of the following formulas ( Form Cy-1) to (Cy-10).
- R 3 is not H and/or D. If adjacent radicals in the structures according to the invention form an aliphatic ring system, then it is preferred if this has no acidic benzylic protons.
- benzylic protons is meant protons that bond to an alkyl carbon atom bonded directly to an aryl or heteroaryl group. This can be achieved if the carbon atoms of the aliphatic ring system which bond directly to an aryl or heteroaryl group are fully substituted and contain no hydrogen atoms attached.
- the absence of acidic benzylic protons in formulas (Cy-1) to (Cy-3) is achieved in that Z 1 and Z 3 , when they represent C(R 3 ) 2 , are defined such that R 3 is not equal to hydrogen. Furthermore, this can also be achieved in that the carbon atoms of the aliphatic ring system which bond directly to an aryl or heteroaryl group are the bridgeheads of a bi- or polycyclic structure.
- the protons bonded to bridgehead carbon atoms are substantially less acidic than benzylic protons on carbon atoms not bonded in a bi- or polycyclic structure due to the spatial structure of the bi- or polycyclic structure and are considered non-acidic protons for the purposes of the present invention.
- At most one of the groups Z 1 , Z 2 and Z 3 is a heteroatom, in particular O or NR 3 , or O or NR 1 , and the other groups are C(R 3 ) 2 or C(R 1 ) 2 or Z 1 and Z 3 , the same or different on each occurrence, are O or NR 3 and Z 2 is C(R 1 ) 2 .
- Z 1 and Z 3 are identical or different on each occurrence for C(R 3 ) 2 and Z 2 is C(R 1 ) 2 and particularly preferably C(R 3 ) 2 or CH 2 .
- the radical R 1 which is bonded to the bridgehead atom, preferably to the bridgehead atom according to formulas (Cy-4) to (Cy-10), is the same or different on each occurrence and is selected from the group consisting of H , D, F, a straight-chain alkyl group having 1 to 10 carbon atoms, which may be substituted by one or more radicals R 2 , but is preferably unsubstituted, a branched or cyclic alkyl group having 3 to 10 carbon atoms, with one or several radicals R 2 may be substituted, but is preferably unsubstituted, or an aromatic or heteroaromatic ring system having 5 to 12 aromatic ring atoms, which may be substituted by one or more radicals R 2 in each case.
- the radical R 1 which is bonded to the bridgehead atom according to formula (CY-4) is particularly preferably selected identically or differently on each occurrence from the group consisting of H, F, a straight-chain alkyl group having 1 to 4 carbon atoms, one branched alkyl group having 3 or 4 carbon atoms or a phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, but is preferably unsubstituted.
- the radical R 1 is preferably selected identically or differently on each occurrence from the group consisting of H, methyl or tert-butyl.
- At least two radicals R, R a , R b , R c , R d , R e , R y are connected to the other groups to which the two radicals R, R a , R b , R c , R d , R e , R y form a fused ring, where the two radicals R, R a , R b , R c , R d , R e , R y form at least one structure of the formulas (RA -1) to (RA-13) forms
- R 1 has the meaning set out above, the dashed bonds represent the attachment points via which the two radicals R, R a , R b , R c , R d , R e , R y bond, and the other symbols have the following meaning :
- R f is the same or different on each occurrence and is F, a straight-chain alkyl, alkoxy or thioalkoxy group having 1 to 40 carbon atoms or an alkenyl or alkynyl group having 2 to 40 carbon atoms or a branched or cyclic alky
- structures of formulas are RA-1 , RA-3, RA-4 and RA-5 are preferred and structures of formulas RA-4 and RA-5 are particularly preferred.
- at least two radicals R, R a , R b , R c , R d , R e , R y form with the further groups to which the two radicals R, R a , R b , R c , R d , R e , R y bind a fused ring, wherein the two radicals R, R a , R b , R c , R d , R e , R y preferably have at least one of the structures of the formulas (RA-1a) bis (RA-4f) forms
- a radical R a and a radical R c have the structures of the formulas (Cy-1) to (Cy-10), (RA-1) to (RA-13) and/or (RA-1a) to (RA-4f) and form a fused ring, wherein the group R a and the group R c are preferably adjacent.
- a radical R a and a radical R y have structures of the formulas (Cy-1) to (Cy-10), (RA-1) to (RA-13) and/or (RA-1a) to (RA-4f) and form a fused ring, wherein the group R a and the group R y are preferably adjacent.
- a radical R b and a radical R y can also have structures of the formulas (Cy-1) to (Cy-10), (RA-1) to (RA-13) and/or (RA-1a) to (RA- 4f) and form a fused ring, ring formation via a radical R a being preferred.
- two radicals R b have the structures of the formulas (Cy-1) to (Cy-10), (RA-1) to (RA-13) and/or (RA-1a) to ( RA-4f) and form a fused ring, with the R b groups preferably being adjacent.
- the two radicals R b can also originate from different rings, the rings each bonding to the nitrogen atom of the basic structure.
- a radical R d with a radical R or R e has the structures of the formulas (Cy-1) to (Cy-10), (RA-1) to (RA-13) and/or (RA- 1a) to (RA-4f) and form a condensed ring.
- two radicals R e have the structures of the formulas (Cy-1) to (Cy-10), (RA-1) to (RA-13) and/or (RA-1a) to (RA- 4f) and form a fused ring, with the R e groups preferably being adjacent.
- a radical R a with a radical R c , a radical R a with a radical R y , a radical R d with a radical R or R e or two radicals R e preferably form the structures of the formulas (Cy-1) to ( Cy-10), (RA-1) to (RA-13) and/or (RA-1a) to (RA-4f) and each form at least one condensed ring, particularly preferably a radical R a with a radical R c , and/or a radical R a with a radical R y .
- At least two radicals R, R a , R b , R c , R d , R e , R y form with the further groups to which the two radicals R, R a , R b , R c , R d , R e , R y bind a fused ring with the two groups R, R a , R b , R c , R d , R e , R y forming structures of formula (RB).
- R 1 has the meaning mentioned above, in particular for formula (I)
- the dashed bonds represent the attachment points via which the two radicals R, R a , R b , R c , R d , R e , R y bind
- the Index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2
- Y 3 is C(R 1 ) 2 , NR 1 , NAr', BR 1 , BAr', O or S, preferably C( R 1 ) 2 , NAr' or O, where Ar' has the meaning given above, in particular for formula (I).
- a radical R d with a radical R or R e form the structures of the formula (RB) and form a fused ring.
- two radicals R e form the structures of the formula (RB) and form a fused ring, the radicals R e preferably being adjacent.
- the sum of the indices r, s, t, v, m and n is preferably 0, 1, 2 or 3, particularly preferably 1 or 2.
- a radical R a with a radical R c , a radical R a with a radical R y , a radical R d with a radical R or R e or two radicals R e preferably form the structures of the Formulas (Cy-1) to (Cy-10), (RA-1) to (RA-13) and/or (RA-1a) to (RA-4f) and each form at least one condensed ring.
- a radical R a with a radical R c and a radical R a with a radical R y each form a fused ring in the event that X in formula (I) represents N, C—CN or CR b , or two radicals R a each form a fused ring with two radicals R y in the event that X in formula (I) is CYR y .
- the substituents R, R a , R b , R c , R d , R e , R f , R y , R 1 and R 2 according to the above formulas with the ring atoms of Ring system to which the substituents R, R a , R b , R c , R d , R e , R f , R y , R 1 and R 2 bind do not form a fused aromatic or heteroaromatic ring system.
- the substituents particularly preferably have no aryl or heteroaryl groups with six-membered rings directly fused to one another. This preference is due to the low triplet energy of such structures. Phenanthrene and triphenylene are fused aryl groups with more than two aromatic six-membered rings directly fused to one another, which are nevertheless also suitable according to the invention, since these also have a high triplet level. It can therefore preferably be provided that the radical R does not comprise a continuously conjugated anthracene group, preferably none of the radicals R, R a , R b , R c , R d , R e , R f , R y , R 1 , R 2 comprises an anthracene group conjugated throughout.
- End-to-end conjugation of the anthracene group is established when direct bonds are formed between the anthracene group, the inventive backbone represented in formula (I), and an optional aromatic or heteroaromatic linking group.
- a further linkage between the aforementioned conjugated groups which takes place for example via an S, N or O atom or a carbonyl group, does not damage a conjugation.
- the two aromatic rings are bonded directly, with the sp 3 hybridized carbon atom in position 9 preventing condensation of these rings, but conjugation can take place since this sp 3 hybridized carbon atom in position 9 is not necessarily between the groups that are connected via a connection group.
- a spirobifluorene structure continuous conjugation can be formed if the linkage between the groups linked through the spirobifluorene group is through the same phenyl group of the spirobifluorene structure or through phenyl groups of the spirobifluorene structure that are directly bonded to each other and lie in a plane, he follows. If the linkage between the groups linked through one spirobifluorene group is through different phenyl groups of the second spirobifluorene structure linked through the sp 3 hybridized carbon atom at position 9, the conjugation is disrupted.
- the radical R does not include an anthracene group, preferably none of the radicals R, R a , R b , R c , R d , R e , R f , R y , R 1 , R 2 one Anthracene group includes.
- the radicals R do not comprise any aromatic or heteroaromatic ring system which has three linearly fused aromatic 6-rings, with preferably none of the radicals R, R a , R b , R c , R d , R e , R f , R y , R 1 , R 2 comprises an aromatic or heteroaromatic ring system which has three linearly fused aromatic 6 rings. Provision can furthermore be made for the radical R y not to include or form a fluorenone group, preferably none of the radicals R, R a , R b , R c , R d , R e to include or form a fluorenone group.
- a fluorenone comprises a 5-membered ring containing a CO group to which two 6-membered aromatic rings are fused. If two radicals, which can be selected in particular from R, R a , R b , R c , R d , R e , R f , R y , R 1 and R 2 , form a ring system with one another, this can be mono- or be polycyclic, aliphatic, heteroaliphatic, aromatic or heteroaromatic.
- radicals that form a ring system with one another can be adjacent, ie these radicals are attached to the same carbon atom or to carbon atoms directly are bound together, are bound together, or they may be further apart.
- the ring systems provided with the substituents R, R a , R b , R c , R d , R e , R f , R y , R 1 and/or R 2 can also be connected to one another via a bond, so that a Ring closure can be effected.
- each of the corresponding binding sites is preferably provided with a substituent R, R a , R b , R c , R d , R e , R f , R y , R 1 and/or R 2 .
- the structure/connection is symmetrical with respect to the radicals R a , R b and R c .
- the structure/connection is symmetrical with respect to the radicals R a , R b , R c and R d .
- Symmetric with respect to the radicals R a and R c means in particular that the corresponding radicals R a and R c are the same and do not differ. In this case, the equality relates to both radicals R a and R c .
- both R c groups form an identical ring of structure RA-1.
- Structures/compounds in which the radicals R a and R c are symmetrical are distinguished by a surprisingly high degree of color purity, which is reflected in particular in a narrow emission spectrum. In a further configuration, the structure/compound can be asymmetrical with respect to the radicals R a and R c .
- the radical R contains at least one group selected from C(Ar) 3 , C( Re ) 3 , N(Ar) 2 , N( Re ) 2 , Si(Ar) 3 , Si( Re ) 3 , B( Re ) 2 , preferably selected from C(Ar) 3 , C( Re ) 3 , N(Ar) 2 , Si(Ar) 3 , Si( Re ) 3 , particularly preferably a fluorene group , which may be substituted with one or more R e radicals, represents, comprises or forms with a R d radical.
- a compound according to the invention can be represented by at least one of the structures of the formula (I), (Ia), (Ib) and/or (I-1) to (I-147).
- Compounds according to the invention preferably comprising structures of the formula (I), (Ia), (Ib) and/or (I-1) to (I-147), preferably have a molecular weight of less than or equal to 5000 g/mol, preferably less than or equal to 4000 g/mol, particularly preferably less than or equal to 3000 g/mol, especially preferably less than or equal to 2000 g/mol and very particularly preferably less than or equal to 1200 g/mol.
- preferred compounds according to the invention are characterized in that they can be sublimed. These compounds generally have a molar mass of less than about 1200 g/mol.
- Preferred aromatic or heteroaromatic ring systems Ar, R, R a , R b , R c , R d , R e , R f and/or Ar' are selected from phenyl, biphenyl, in particular ortho-, meta- or para-biphenyl, Terphenyl, in particular ortho-, meta-, para- or branched terphenyl, quaterphenyl, in particular ortho-, meta-, para- or branched quaterphenyl, fluorene which is linked via the 1-, 2-, 3- or 4-position can be, spirobifluorene, which can be linked via the 1-, 2-, 3- or 4-position, naphthalene, in particular 1- or 2-linked naphthalene, indole, benzofuran, benzothiophene, carbazole, which can be linked via the 1- , 2-, 3-, 4- or 9-position can be linked, dibenzofuran, which via the 1-, 2-, 3- or 4-position
- Preferred embodiments are then those in which one group A is NR 1 and the other group A is C(R 1 ) 2 or in which both groups A are NR 1 or in which both groups A are O.
- A is NR 1
- the substituent R 1 which is bonded to the nitrogen atom is preferably an aromatic or heteroaromatic ring system having 5 to 24 aromatic ring atoms, which can also be substituted by one or more R 2 radicals.
- this substituent R 1 is identical or different on each occurrence for an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, in particular with 6 to 18 aromatic ring atoms, which has no fused aryl groups and which no fused heteroaryl groups in which two or more aromatic or heteroaromatic 6-ring groups are fused directly to one another, and which can each also be substituted by one or more radicals R 2 .
- Triazine, pyrimidine and quinazoline are also preferred, as listed above for Ar-47 to Ar-50, Ar-57 and Ar-58, it being possible for these structures to be substituted by one or more R 2 radicals instead of by R 1 .
- R, R a , R b , R c , R d , R e and R f are described below.
- R, R a , R b , R c , R d , R e is the same or different on each occurrence selected from the group consisting of H, D, F, CN, NO 2 , Si(R 1 ) 3 , B(OR 1 ) 2 , a straight-chain alkyl group having 1 to 20 carbon atoms or a branched or cyclic alkyl group having 3 to 20 carbon atoms, where each alkyl group may be substituted by one or more radicals R 1 , or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, preferably atoms having 5 to 40 aromatic ring, each may be substituted by one or more R 1 radicals.
- the substituent R, R a , R b , R c , R d , R e is the same or different on each occurrence and is selected from the group consisting of H, D, F, a straight-chain alkyl group with 1 to 20 carbon atoms, or a branched or cyclic alkyl group having 3 to 20 carbon atoms, where each alkyl group can be substituted by one or more radicals R 1 , or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, preferably 5 up to 40 aromatic ring atoms, each of which can be substituted by one or more radicals R 1 .
- At least one substituent R, R a , R b , R c , R d , R e is selected identically or differently on each occurrence from the group consisting of H, D, an aromatic or heteroaromatic ring system with 6 bis 30 aromatic ring atoms, which can be substituted by one or more radicals R 1 , or a group N(Ar') 2 .
- the substituents R, R a , R b , R c , R d , R e either form a ring according to the structures of the formulas (RA-1) to (RA-13), (RA-1a ) to (RA-4f) or (RB) or R, R a , R b , R c , R d , R e is the same or different at each occurrence selected from the group consisting of H, D, an aromatic or heteroaromatic ring system with 6 to 30 aromatic ring atoms, which can be substituted by one or more radicals R 1 , or a group N(Ar') 2 .
- Substituents R, R a , R b , R c , R d , R e which are the same or different on each occurrence, are particularly preferably selected from the group consisting of H or an aromatic or heteroaromatic ring system having 6 to 24 aromatic ring atoms, preferably with 6 to 18 aromatic ring atoms, particularly preferably with 6 to 13 aromatic ring atoms, each of which can be substituted by one or more radicals R 1 .
- R f is the same or different on each occurrence selected from the group consisting of a straight-chain alkyl group having 1 to 20 carbon atoms or a branched or cyclic alkyl group having 3 to 20 carbon atoms, where the alkyl group can each be substituted by one or more R 2 radicals, or an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, preferably having 5 to 40 aromatic ring atoms, which can each be substituted by one or more R 2 radicals.
- R f is the same or different on each occurrence selected from the group consisting of a straight-chain alkyl group having 1 to 10 carbon atoms or a branched or cyclic alkyl group having 3 to 10 carbon atoms, the alkyl group in each case may be substituted with one or more R 2 radicals, an aromatic or heteroaromatic ring system having 6 to 30 aromatic ring atoms, which may be substituted with one or more R 2 radicals.
- R a is particularly preferably the same or different on each occurrence selected from the group consisting of a straight-chain alkyl group having 1 to 5 carbon atoms or a branched or cyclic alkyl group having 3 to 5 carbon atoms, the alkyl group in each case having one or more radicals R 2 can be substituted or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, preferably with 6 to 18 aromatic ring atoms, particularly preferably with 6 to 13 aromatic ring atoms, which can each be substituted with one or more R 2 radicals can.
- R f is selected the same or different each time it occurs from the group consisting of a straight-chain alkyl group having 1 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms, the alkyl group in each case having one or more radicals R 2 may be substituted, or an aromatic or heteroaromatic ring system having 6 to 24 aromatic ring atoms, each of which may be substituted by one or more R 2 radicals; two radicals R f can also form a ring system with one another.
- R f is particularly preferably selected identically or differently on each occurrence from the group consisting of a straight-chain alkyl group having 1, 2, 3 or 4 carbon atoms or a branched or cyclic alkyl group having 3 to 6 carbon atoms, where the alkyl group can each be substituted by one or more radicals R 2 , but is preferably unsubstituted, or an aromatic ring system having 6 to 12 aromatic ring atoms, in particular with 6 aromatic ring atoms, each by one or more, preferably non-aromatic radicals R 2 may be substituted, but is preferably unsubstituted; two radicals R f can form a ring system with one another.
- R f is very particularly preferably selected the same or differently on each occurrence from the group consisting of a straight-chain alkyl group having 1, 2, 3 or 4 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms.
- R f is very particularly preferably a methyl group or a phenyl group, it being possible for two phenyl groups to form a ring system together, with a methyl group being preferred to a phenyl group.
- Preferred aromatic or heteroaromatic ring systems for which the substituents R, R a , R b , R c , R d , R e , R f or Ar, Ar' or Ar' stand are selected from phenyl, biphenyl, in particular ortho- , meta- or para-biphenyl, terphenyl, in particular ortho-, meta-, para- or branched terphenyl, quaterphenyl, in particular ortho-, meta-, para- or branched quaterphenyl, fluorene, which via the 1-, 2-, 3 - or 4-position can be linked, spirobifluorene, which can be linked via the 1-, 2-, 3- or 4-position, naphthalene, in particular 1- or 2-linked naphthalene, indole, benzofuran, benzothiophene, carbazole, which can be linked via the 1-, 2-, 3- or 4-position, dibenzofuran, which can be linked via the
- Ar-1 to Ar-75 listed above are particularly preferred, with structures of the formulas (Ar-1), (Ar-2), (Ar-3), (Ar-12), (Ar-13), ( Ar-14), (Ar-15), (Ar-16), (Ar-40), (Ar-41), (Ar-42), (Ar-43), (Ar-44), (Ar- 45), (Ar-46), (Ar- 69), (Ar-70), (Ar-75), preferred and structures of formulas (Ar-1), (Ar-2), (Ar-3), (Ar-12), (Ar-13), (Ar-14), (Ar-15), (Ar-16) are particularly preferred.
- R 1 substituents R 1 .
- R e substituents R 1
- R f substituents R 1 are to be replaced by R 2 .
- R, R a , R b , R c , R d , R e are groups of the formula -Ar 4 -N(Ar 2 )(Ar 3 ), where Ar 2 , Ar 3 and Ar 4 are identical or different each occurrence is an aromatic or heteroaromatic ring system having 5 to 24 aromatic ring atoms, which can each be substituted by one or more R 1 radicals.
- the total number of aromatic ring atoms of Ar 2 , Ar 3 and Ar 4 is a maximum of 60 and preferably a maximum of 40.
- Ar 4 and Ar 2 can be connected to one another and/or Ar 2 and Ar 3 can also be connected to one another by a group selected from C(R 1 ) 2 , NR 1 , O or S may be connected.
- Ar 4 and Ar 2 are preferably linked to one another or Ar 2 and Ar 3 to one another in each case ortho to the position of the linkage to the nitrogen atom.
- none of the groups Ar 2 , Ar 3 or Ar 4 are connected to one another.
- Ar 4 is preferably an aromatic or heteroaromatic ring system having 6 to 24 aromatic ring atoms, preferably having 6 to 12 aromatic ring atoms, which can each be substituted by one or more R 1 radicals.
- Ar 4 is particularly preferably selected from the group consisting of ortho-, meta- or para-phenylene or ortho-, meta- or para-biphenyl, which can each be substituted by one or more radicals R 1 , but are preferably unsubstituted. Most preferably Ar 4 is an unsubstituted phenylene group.
- Ar 2 and Ar 3 are preferably identical or different on each occurrence and are an aromatic or heteroaromatic ring system having 6 to 24 aromatic ring atoms, which can each be substituted by one or more R 1 radicals.
- Ar 2 and Ar 3 groups are identical or different on each occurrence and are selected from the group consisting of benzene, ortho-, meta- or para-biphenyl, ortho-, meta-, para- or branched terphenyl, ortho-, meta -, para- or branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1-, 2-, 3- or 4-spirobifluorenyl, 1- or 2-naphthyl, indole, benzofuran, benzothiophene , 1-, 2-, 3- or 4-carbazole, 1-, 2-, 3- or 4-dibenzofuran, 1-, 2-, 3- or 4-dibenzothiophene, indenocarbazole, indolocarbazole, 2-, 3 - or 4-pyridine, 2-, 4- or 5-pyrimidine, pyrazine, pyridazine, triazine, phenanthrene or triphenylene, each of which may be substituted by
- Ar 2 and Ar 3 are very particularly preferably the same or different on each occurrence selected from the group consisting of benzene, biphenyl, in particular ortho-, meta- or para-biphenyl, terphenyl, in particular ortho-, meta-, para- or branched ter - phenyl, quaterphenyl, in particular ortho-, meta-, para- or branched quaterphenyl, fluorene, in particular 1-, 2-, 3- or 4-fluorene, or spirobifluorene, in particular 1-, 2-, 3- or 4- -spirobifluorene.
- R 1 is identical or different on each occurrence selected from the group consisting of H, D, F, CN, a straight-chain alkyl group having 1 to 10 carbon atoms or a branched or cyclic alkyl group having 3 to 10 carbon atoms, it being possible for the alkyl group to be substituted by one or more R 2 radicals, or an aromatic or heteroaromatic ring system having 6 to 24 aromatic ring atoms, each of which can be substituted by one or more R 2 radicals.
- R 1 is identical or different on each occurrence selected from the group consisting of H, a straight-chain alkyl group having 1 to 6 carbon atoms, in particular having 1, 2, 3 or 4 carbon atoms, or a branched or cyclic alkyl group with 3 to 6 carbon atoms, where the alkyl group can be substituted with one or more radicals R 2 , but is preferably unsubstituted, or an aromatic or heteroaromatic ring system with 6 to 13 aromatic ring atoms, each of which may be substituted by one or more R 2 radicals, but is preferably unsubstituted.
- R 2 is identical or different on each occurrence and is H, an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms which is substituted with an alkyl group having 1 to 4 carbon atoms may be, but is preferably unsubstituted.
- the alkyl groups preferably have no more than five carbon atoms, particularly preferably no more than 4 carbon atoms, very particularly preferably no more than 1 carbon atom.
- the compound comprises exactly two or exactly three structures of the formula (I), (Ia), (Ib) and/or (I-1) to (I-147), preferably one of the aromatic or heteroaromatic Ring systems which can be represented by at least one of the groups R, R d , R e or to which the groups R, R d , R e bind, is shared by both structures.
- the compounds are selected from compounds of the formula (D-1), (D2) or (D-3), wherein the group L 1 is a linking group, preferably a bond or an aromatic or heteroaromatic ring system having 5 to 40, preferably 5 to 30 aromatic ring atoms, which is formed by one or more radicals R 1 can be substituted, and R 1 and the other symbols used have the meanings given above, in particular for formula (I).
- group L 1 is a linking group, preferably a bond or an aromatic or heteroaromatic ring system having 5 to 40, preferably 5 to 30 aromatic ring atoms, which is formed by one or more radicals R 1 can be substituted, and R 1 and the other symbols used have the meanings given above, in particular for formula (I).
- L 1 is a bond or an aromatic or heteroaromatic ring system having 5 to 14 aromatic or heteroaromatic ring atoms, preferably an aromatic ring system having 6 to 12 carbon atoms, which can be substituted by one or more R 1 radicals , but is preferably unsubstituted, where R 1 can have the meaning given above, in particular for formula (I).
- L 1 is particularly preferably an aromatic ring system having 6 to 10 aromatic ring atoms or a heteroaromatic ring system having 6 to 13 heteroaromatic ring atoms, each of which may be substituted by one or more radicals R 2 , but is preferably unsubstituted, where R 2 is the above, in particular for formula (I) can have the meaning mentioned.
- the symbol L 1 set out in formula (D3) is the same or different on each occurrence for a bond or an aryl or heteroaryl radical having 5 to 24 ring atoms, preferably 6 to 13 ring atoms, particularly preferably 6 to 10 ring atoms, so that an aromatic or heteroaromatic group of an aromatic or heteroaromatic ring system is bonded directly, ie via an atom of the aromatic or heteroaromatic group, to the respective atom of the further group. Provision can furthermore be made for the group L 1 set out in formula (D3) to comprise an aromatic ring system having at most two fused aromatic and/or heteroaromatic 6-rings, preferably no fused aromatic or heteroaromatic ring system.
- naphthyl structures are preferred over anthracene structures.
- fluorenyl, spirobifluorenyl, dibenzofuranyl and/or dibenzothienyl structures are preferred over naphthyl structures.
- Particularly preferred are structures that do not exhibit condensation, such as phenyl, biphenyl, terphenyl and/or quaterphenyl structures.
- Suitable aromatic or heteroaromatic ring systems L 1 are selected from the group consisting of ortho-, meta- or para-phenylene, ortho-, meta- or para-biphenylene, terphenylene, in particular branched terphenylene, quaterphenylene, in particular branched quaterphenylene, fluorenylene, Spirobifluorenylene, dibenzofuranylene, dibenzothienylene and carbazolylene, each of which may be substituted by one or more radicals R 1 , but are preferably unsubstituted.
- the preferred embodiments mentioned above can be combined with one another at will within the limitations defined in claim 1. In a particularly preferred embodiment of the invention, the preferences mentioned above occur simultaneously.
- compounds comprising a structure according to formula (I), preferably compounds according to formula (I), are preferred in which a radical R a and a radical R y together form a ring, these compounds having the following properties :
- compounds comprising a structure according to formula (I) are preferred Compounds according to formula (I) are preferred in which a radical R a and a radical R y together form a ring, these compounds having the following properties:
- the preferences set out above with regard to ring formation of the radicals R a and R y to form structures of the formulas (Cy-1) to (Cy-10) apply to the ring formation of a radical R a with a radical R c .
- the preferences set out above with regard to ring formation, ring formation, radicals R a and R y for structures of the formulas (Cy-1) to (Cy-10) apply to two radicals R e .
- compounds comprising a structure according to formula (I-44), preferably compounds according to formula (I-44), are preferred, where the ring T 1 has the following meaning, a radical R a and a radical R c form a ring and in which the radicals R b , R c , R d and R e have the following meanings:
- radical R a and R c form a ring
- R c there is a radical R c der in column (R b , R c ).
- This radical R c describes the substituent which is adjacent to ring T 1 .
- rings T 1 and T 2 represent the following structures, wherein the index m is preferably 0, 1 or 2, and more preferably 0 or 1, and wherein R b , R c is H, D, alkyl and the radicals R d , R e and Y 1 have the following meanings:
- radicals mentioned in the column under the group R e stand for the substituents on the phenyl ring of the basic structure, which is also substituted by the radical R d mentioned (see, for example, formula (1-14), (I-44)), or for the substituents on the phenyl ring which binds to the phenyl ring of the backbone which is also substituted by the R d radical mentioned (see, for example, formulas (1-15), (1-16)).
- the radical R e stands in particular for the groups set out above, where R e in the group C(R e ) 2 is preferably identical or different on each occurrence for a linear alkyl group with 1 to 10 C- Atoms or a branched or cyclic alkyl group having 3 to 10 carbon atoms or an aromatic or heteroaromatic ring system having 5 to 24, preferably having 5 to 13, aromatic ring atoms, which can also be substituted by one or more R 1 radicals.
- R e is very particularly preferably a methyl group or a phenyl group.
- the radicals R e can also form a ring system with one another, which leads to a spiro system.
- the radical R e stands in particular for the groups set out above, where R e in groups ( Re ) 2 CC( R e ) 2 , (R e )C ⁇ C(R e ) is preferably H, C 1 to C 4 alkyl, or an aryl or heteroaryl group having 5 to 13 carbon atoms, where the aryl or heteroaryl group can be linked.
- R e in groups ( Re ) 2 CC( R e ) 2 , (R e )C ⁇ C(R e ) is preferably H, C 1 to C 4 alkyl, or an aryl or heteroaryl group having 5 to 13 carbon atoms, where the aryl or heteroaryl group can be linked.
- two groups Re in the group ( Re ) 2 CC( Re ) 2 or ( Re )C ⁇ C( Re ) can form a fused ring system.
- the radical R e stands in particular for the groups set out above , where R e in the group C (R e ) 2 is preferably identical or different on each occurrence for a linear alkyl group having 1 to 10 carbon atoms or for a branched or cyclic alkyl group having 3 to 10 carbon atoms or for an aromatic or heteroaromatic ring system having 5 to 24, preferably having 5 to 13, aromatic ring atoms, which can also be substituted by one or more radicals R 1 .
- R e is very particularly preferably a methyl group or a phenyl group.
- the radicals R e can also form a ring system with one another, which leads to a spiro system.
- the radical R e stands in particular for the groups set out above, where R e in groups ( Re ) 2 CC( R e ) 2 , (R e )C ⁇ C(R e ) is preferably H, C 1 to C 4 alkyl, or an aryl or heteroaryl group having 5 to 13 carbon atoms, where the aryl or heteroaryl group can be linked.
- R e in groups ( Re ) 2 CC( R e ) 2 , (R e )C ⁇ C(R e ) is preferably H, C 1 to C 4 alkyl, or an aryl or heteroaryl group having 5 to 13 carbon atoms, where the aryl or heteroaryl group can be linked.
- two groups Re in the group ( Re ) 2 CC( Re ) 2 or ( Re )C ⁇ C( Re ) can form a fused ring system.
- rings T 1 and T 2 represent the following structures, wherein the index m is preferably 0, 1 or 2, and more preferably 0 or 1, and wherein R b , R c is H, D, alkyl and the radicals R d , R e and Y 1 have the following meanings:
- the radicals mentioned in the column under the group R e represent the substituents on the phenyl ring which is connected to the group Y 1 .
- the radical R e stands in particular for the groups set out above, where R e in the group C(R e ) 2 is preferably identical or different on each occurrence for a linear alkyl group with 1 to 10 C- Atoms or a branched or cyclic alkyl group having 3 to 10 carbon atoms or an aromatic or heteroaromatic ring system having 5 to 24, preferably having 5 to 13, aromatic ring atoms, which can also be substituted by one or more R 1 radicals.
- R e is very particularly preferably a methyl group or a phenyl group.
- the radicals R e can also form a ring system with one another, which leads to a spiro system.
- the radical R e stands in particular for the groups set out above, where R e in groups ( Re ) 2 CC( R e ) 2 , (R e )C ⁇ C(R e ) is preferably H, C 1 to C 4 alkyl, or an aryl or heteroaryl group having 5 to 13 carbon atoms, where the aryl or heteroaryl group can be linked.
- R e in groups ( Re ) 2 CC( R e ) 2 , (R e )C ⁇ C(R e ) is preferably H, C 1 to C 4 alkyl, or an aryl or heteroaryl group having 5 to 13 carbon atoms, where the aryl or heteroaryl group can be linked.
- two groups Re in the group ( Re ) 2 CC( Re ) 2 or ( Re )C ⁇ C( Re ) can form a fused ring system.
- rings T 1 and T 2 represent the following structures, where the sum of the indices m and n is preferably less than or equal to 4, more preferably 0, 1 or 2 and especially preferably 0 or 1, and in which the radicals R b , R c , R d and R e have the following meanings:
- alkyl in the above tables includes in particular straight-chain alkyl groups or branched or cyclic alkyl groups according to the definition set out above for the respective group.
- aryl, heteroaryl in the above tables includes in particular aryl or heteroaryl groups having 5 to 40 aromatic ring atoms according to the definition set out above for the respective group, the aryl groups preferably having 6 to 12, particularly preferably 6, ring atoms and the heteroaryl groups preferably having 5 up to 13, particularly preferably 5, ring atoms. More preferably, heteroaryl groups include one or two heteroatoms, preferably N, O or S.
- the designations “RA-3”, “RA-4”, “RA-4f”, “RA-5”, “TRA-3”, “TRA -4”, “TRA-4f”, “TRA-5", “Ar-1", “Ar-75” refer to the structural formulas set forth above and below.
- Phenyl ring formation with one group means that the two groups together form a phenyl group which can be substituted with radicals R 1 in accordance with the definition given above for the respective group. This usually forms a naphthyl group with the phenyl group bonded to the nitrogen atom, which is substituted by the radicals R d and R or R e .
- the term “and”, in particular when describing preferred groups R d means that the two radicals are different, one of the radicals R d corresponding to a first definition and the second radical R d corresponding to a second definition.
- aryl, heteroaryl and phenyl ring formation with R e means that one of the radicals R d is an aryl, Heteroaryl group and the second radical R d with R e " forms a phenyl ring. If a field does not include the term “and”, then all radicals represent a corresponding group.
- Ar-1 to Ar-75 for the group R d means that both radicals R d are an aryl or heteroaryl radical according to above or following formulas Ar-1 to Ar-75. The same applies to the further use of the term "and" in the above tables.
- substituents R a , R y are preferably selected from H, D, alkyl, aryl, heteroaryl or alkyl, aryl, heteroaryl according to the definitions set out above for the groups R a and R c .
- a further object of the present invention is a method for preparing the compounds according to the invention, in which a basic structure with an aromatic amino group is synthesized and at least one aromatic or heteroaromatic radical is introduced, preferably by means of a nucleophilic aromatic substitution reaction or a coupling reaction.
- Suitable compounds comprising a basic structure with an aromatic amino group can often be obtained commercially, the starting compounds set out in the examples being obtainable by known methods, so that reference is made thereto. These compounds can be reacted with other compounds by known coupling reactions, the necessary conditions for this being known to the person skilled in the art and detailed information in the examples assisting the person skilled in the art in carrying out these reactions.
- Particularly suitable and preferred coupling reactions, all of which lead to CC linkages and/or CN linkages are those according to BUCHWALD, SUZUKI, YAMAMOTO, STILLE, HECK, NEGISHI, SONOGASHIRA and HIYAMA. These reactions are well known and the examples provide further guidance to those skilled in the art.
- the compounds according to the invention can be obtained in high purity, preferably more than 99% (determined by means of 1 H-NMR and/or HPLC).
- the compounds according to the invention can also be mixed with a polymer. It is also possible to covalently incorporate these compounds into a polymer.
- Another subject of the invention are therefore oligomers, polymers or dendrimers containing one or more of the above structures of the formula (I) and preferred embodiments of this formula or compounds according to the invention, wherein one or more bonds of the compounds according to the invention or the structures of the formula (I) and preferred embodiments of this formula for the polymer, oligomer or dendrimer are present.
- these therefore form a side chain of the oligomer or polymer or are linked in the main chain.
- the Polymers, oligomers or dendrimers can be conjugated, partially conjugated or non-conjugated.
- the oligomers or polymers can be linear, branched or dendritic.
- the same preferences as described above apply to the repeating units of the compounds according to the invention in oligomers, dendrimers and polymers.
- the monomers according to the invention are homopolymerized or copolymerized with other monomers. Copolymers are preferred in which the units of the formula (I) or the preferred embodiments described above and below are present in an amount of 0.01 to 99.9 mol %, preferably 5 to 90 mol %, particularly preferably 20 to 80 mol %.
- Suitable and preferred comonomers which form the polymer backbone are selected from fluorenes (e.g.
- spirobifluorenes e.g. according to EP 707020, EP 894107 or WO 2006/061181
- para- phenylenes e.g. according to WO 92/18552
- carbazoles e.g. according to WO 2004/070772 or WO 2004/113468
- thiophenes e.g. according to EP 1028136
- dihydrophenanthrenes e.g. according to WO 2005/014689
- cis- and trans-indenofluorenes e.g. according to WO 2004/041901 or WO 2004/113412
- ketones e.g.
- phenanthrenes e.g. according to WO 2005 /104264 or WO 2007/017066
- the polymers, oligomers and dendrimers can also contain further units, for example hole transport units, in particular those based on triarylamines, and/or electron transport units.
- compounds according to the invention which are distinguished by a high glass transition temperature are of particular interest.
- particular preference is given to compounds according to the invention, comprising structures according to the formula (I) or the preferred embodiments described above and below, which have a glass transition temperature of at least 70° C., particularly preferably at least 110° C., very particularly preferably at least 125° C.
- Formulations of the compounds according to the invention are required for the processing of the compounds according to the invention from the liquid phase, for example by spin coating or by printing processes. These formulations can be, for example, solutions, dispersions or emulsions. It may be preferable to use mixtures of two or more solvents for this.
- Suitable and preferred solvents are toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrol, THF, methyl THF, THP, chlorobenzene, dioxane, phenoxytoluene, especially 3-phenoxytoluene , (-)-fenchone, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4 -Methylanisole, 3,4-dimethylanisole, 3,5-dimethylanisole, acetophenone, ⁇ -terpineol, benzothiazole, butyl benzoate, cumene, cyclohexanol, cyclohexanone, cyclohexylbenzene, decalin, do
- a further object of the present invention is therefore a formulation or a composition containing at least one compound according to the invention and at least one further compound.
- the further connection can be, for example, a solvent, in particular one of the abovementioned solvents or a mixture of these solvents. If the further compound comprises a solvent, then this mixture is referred to herein as a formulation.
- the further compound can also be at least one further organic or inorganic compound which is also used in the electronic device, for example an emitter and/or a Matrix material, these compounds differing from the compounds according to the invention. Suitable emitters and matrix materials are listed below in connection with the organic electroluminescent device.
- the further connection can also be polymeric.
- compositions containing a compound according to the invention and at least one further organically functional material.
- Functional materials are generally the organic or inorganic materials that are placed between the anode and the cathode.
- the organically functional material is preferably selected from the group consisting of fluorescent emitters, phosphorescent emitters, emitters that exhibit TADF (thermally activated delayed fluorescence), host materials, electron transport materials, electron injection materials, hole conductor materials, hole injection materials, electron blocking materials, hole blocking materials, wide-band Gap materials and n-dopants, preferably host materials.
- Another subject of the present invention is the use of a compound according to the invention in an electronic device, in particular in an organic electroluminescent device, preferably as an emitter, particularly preferably as a green, red or blue emitter, especially preferably as a blue emitter.
- compounds according to the invention preferably exhibit fluorescent properties and thus preferably provide fluorescent emitters.
- an electronic device containing at least one connection according to the invention is a device which contains at least one layer which contains at least one organic compound.
- the component can also contain inorganic materials or also layers which are made up entirely of inorganic materials.
- the electronic device is preferably selected from the group consisting of The electronic device is particularly preferably selected from the group consisting of organic electroluminescent devices (OLEDs, sOLED, PLEDs, LECs, etc.), preferably organic light-emitting diodes (OLEDs), organic light small molecule-based emitting diodes (sOLEDs), organic polymer-based light-emitting diodes (PLEDs), light-emitting electrochemical cells (LECs), organic laser diodes (O-lasers), organic plasmon emitting devices (DM Koller et al., Nature Photonics 2008, 1-4); Organic Integrated Circuits (O-ICs), Organic Field Effect Transistors (O-FETs), Organic Thin Film Transistors (O-TFTs), Organic Light Emitting Transistors (O-LETs), Organic Solar Cells (O-SCs), Organic Optical Detectors, organic photoreceptors, organic field quench devices (O-FQDs) and organic electrical sensors,
- the organic electroluminescent device contains cathode, anode and at least one emitting layer. In addition to these layers, it can also contain further layers, for example one or more hole-injection layers, hole-transport layers, hole-blocking layers, electron-transport layers, electron-injection layers, exciton-blocking layers, electron-blocking layers and/or charge-generation layers. Likewise, interlayers can be introduced between two emitting layers, which have an exciton-blocking function, for example. However, it should be pointed out that each of these layers does not necessarily have to be present. In this case, the organic electroluminescent device can contain an emitting layer, or it can contain a plurality of emitting layers.
- emission layers are present, they preferably have several in total Emission maxima between 380 nm and 750 nm, resulting in white emission overall, ie various emitting compounds which can fluoresce or phosphorescence are used in the emitting layers. Systems with three emitting layers are particularly preferred, with the three layers showing blue, green and orange or red emission.
- the organic electroluminescent device according to the invention can also be a tandem electroluminescent device, in particular for white-emitting OLEDs.
- the connection according to the invention can be used in different layers, depending on the precise structure.
- an organic electroluminescent device containing a compound of the formula (I) or the preferred embodiments detailed above in an emitting layer as an emitter, preferably a red, green or blue emitter, particularly preferably as a blue emitter.
- an emitting layer preferably a red, green or blue emitter, particularly preferably as a blue emitter.
- the compound according to the invention is used as an emitter in an emitting layer, preference is given to using a suitable matrix material which is known per se.
- a preferred mixture of the compound according to the invention and a matrix material contains between 99 and 1% by volume, preferably between 98 and 10% by volume, particularly preferably between 97 and 60% by volume, in particular between 95 and 80% by volume of matrix material based on the total mixture of emitter and matrix material.
- the mixture contains between 1 and 99% by volume, preferably between 2 and 90% by volume, particularly preferably between 3 and 40% by volume, in particular between 5 and 20% by volume, of the emitter based on the Total mixture of emitter and matrix material.
- Suitable matrix materials which can be used in combination with the compounds according to the invention are aromatic ketones, aromatic phosphine oxides or aromatic sulfoxides or sulfones, e.g. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, carbazole derivatives, z. B.
- CBP N,N-biscarbazolylbiphenyl
- CBP CBP (N,N-biscarbazolylbiphenyl) or those in WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527, WO 2008/086851 or WO 2013/041176, indolocarbazole derivatives, e.g. B. according to WO 2007/063754 or WO 2008/056746, indenocarbazole derivatives, z. B. according to WO 2010/136109, WO 2011/000455, WO 2013/041176 or WO 2013/056776, azacarbazole derivatives, z. according to EP 1617710, EP 1617711, EP 1731584, JP 2005/347160, bipolar matrix materials, e.g.
- WO 2010/054730 bridged carbazole derivatives, z. B. according to WO 2011/042107, WO 2011/060867, WO 2011/088877 and WO 2012/143080, triphenylene derivatives, z. B. according to WO 2012/048781, dibenzofuran derivatives, z. B. according to WO 2015/169412, WO 2016/015810, WO 2016/023608, WO 2017/148564 or WO 2017/148565 or biscarbazoles, z. B. according to JP 3139321 B2.
- a compound can be used as a co-host that does not participate, or does not participate to a significant extent, in charge transport, as described, for example, in WO 2010/108579.
- suitable co-matrix material are compounds which have a large band gap and do not themselves participate, or at least not to a significant extent, in the charge transport of the emitting layer.
- Such materials are preferably pure hydrocarbons. Examples of such materials can be found, for example, in WO 2009/124627 or in WO 2010/006680.
- Other well suited matrix materials that can be used in organic electroluminescent devices are the following three compounds, which can be produced by the methods disclosed in WO2019/170729 A1.
- a compound according to the invention which is used as an emitter, is preferably used in combination with one or more phosphorescent materials (triplet emitters) and/or a compound which is a TADF (thermally activated delayed fluorescence) host material.
- a hyperfluorescence and/or hyperphosphorescence system is preferably formed here.
- WO 2015/091716 A1 and WO 2016/193243 A1 disclose OLEDs which contain both a phosphorescent compound and a fluorescent emitter in the emission layer, with the energy being transferred from the phosphorescent compound to the fluorescent emitter (hyperphosphorescence). In this context, the phosphorescent compound behaves like a host material.
- Phosphorescence within the meaning of this invention is understood as meaning luminescence from an excited state with a higher spin multiplicity, ie a spin state > 1, in particular from an excited triplet state.
- all luminescent complexes with transition metals or lanthanides, in particular all iridium, platinum and copper complexes are to be regarded as phosphorescent compounds.
- Particularly suitable phosphorescent compounds are compounds which, when suitably excited, emit light, preferably in the visible range, and also at least one atom with an atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80 included, in particular a metal with this atomic number.
- the phosphorescence emitters used are preferably compounds which contain copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium, in particular compounds which contain iridium or platinum.
- Examples of the emitters described above can be found in applications WO 00/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO 05/033244, WO 05/019373, US 2005/ 0258742, WO 2009/146770, WO 2010/015307, WO 2010/031485, WO 2010/054731, WO 2010/054728, WO 2010/086089, WO 2010/099852, WO 2010/102609, WO 2011/ WO02011/ 066898, WO 2011/157339, WO 2012/007086, WO 2014/008982, WO 2014/023377, WO 2014/094961, WO 2014/094960, WO 2015/036074, WO 2015/104045, WO 127018/61 WO 2016/124304, WO 2017/032439, WO 2018/011186, WO 2018/001
- phosphorescent complexes are suitable, such as are used in accordance with the prior art for phosphorescent electroluminescent devices and as are known to those skilled in the field of organic electroluminescence are, and the person skilled in the art can use other phosphorescent complexes without any inventive step.
- a compound according to the invention can preferably be used in combination with a TADF host material and/or a TADF emitter, as set out above.
- the process referred to as thermally activated delayed fluorescence (TADF "thermally activated delayed fluorescence") is described, for example, by BH Uoyama et al., Nature 2012, Vol.492, 234.
- a comparatively small singlet-triplet distance ⁇ E(S 1 -T 1 ) of, for example, less than about 2000 cm -1 is required in the emitter.
- another connection can be provided in the matrix, which has a strong spin-orbit coupling, so that the spatial proximity and the interaction between the molecules is possible an inter-system crossing is made possible, or the spin-orbit coupling is generated via a metal atom contained in the emitter.
- the organic electroluminescent device according to the invention contains no separate hole injection layer and/or hole transport layer and/or hole blocking layer and/or electron transport layer, ie the emitting layer is directly adjacent to the hole injection layer or the anode and/or the emitting layer is directly adjacent to the electron transport layer or the electron injection layer or the cathode, as described for example in WO 2005/053051.
- a metal complex which is the same or similar to the metal complex in the emitting layer directly adjacent to the emitting layer as hole transport or hole injection material, such as. B. described in WO 2009/030981.
- organic electroluminescent device characterized in that one or more layers are coated using a sublimation process.
- the materials are vapour-deposited in vacuum sublimation systems at an initial pressure of less than 10 -5 mbar, preferably less than 10 -6 mbar. However, it is also possible for the initial pressure to be even lower, for example less than 10 -7 mbar.
- An organic electroluminescent device is also preferred, characterized in that one or more layers are coated using the OVPD (organic vapor phase deposition) method or with the aid of carrier gas sublimation. The materials are applied at a pressure between 10 -5 mbar and 1 bar.
- OVPD organic vapor phase deposition
- a special case of this process is the OVJP (Organic Vapor Jet Printing) process, in which the materials are applied directly through a nozzle and thus structured.
- an organic electroluminescent device characterized in that one or more layers of solution, such as. B. by spin coating, or with any printing process, such as B. screen printing, flexographic printing, offset printing, LITI (Light Induced Thermal Imaging, thermal transfer printing), ink-jet printing (ink jet printing) or nozzle printing.
- the compounds according to the invention and the organic electroluminescent devices according to the invention are distinguished, compared with the prior art, in particular by improved efficiency and/or operating voltage and a longer service life.
- the compounds according to the invention can also be used for color conversion. Preferably, they can be used for color conversion of light-emitting devices.
- preferred Areas of application are pixels in displays, surface elements in displays (sinage) and lighting elements.
- the light-emitting device can be selected from the large number of known devices. Two selected examples of light-emitting devices are LEDs and organic electroluminescent devices.
- the compounds are incorporated into a composition which is then processed into pixels or flat layers by known methods (spin coating, slit coating, doctor blades, screen printing, nozzle printing, inkjet printing, etc.).
- the compositions typically contain crosslinkable components (monomers, oligomers, polymers), e.g. B. based on acrylates, acrylamides, polyesters, silicones, etc. and one or more thermally or photochemically activatable starter components.
- other components such as org. Auxiliaries (antioxidants, stabilizers, leveling agents, viscosity moderators, etc.) or inorganic.
- the composition contains one or more other fluorescent materials that differ from the compounds according to the invention. All of the fluorescent materials known to those skilled in the art can be considered. Inorganic or organic fluorescent materials can be used. The principle of color conversion, the color conversion films and their production and components are well known to those skilled in the art (e.g. WO 2017/054898 A1, WO2019/002239 A1, X. Bai et al, 30, SID DIGEST 2019, JE Kwon, JA Chem. Soc. , 135, .30, 11239, 2013, WH Kim et al, Appl.
- the present invention therefore also relates to a composition containing one or more compounds according to the invention and one networkable component.
- the crosslinkable component can be any component that one skilled in the art would contemplate for this purpose.
- the crosslinkable component is preferably an acrylate, acrylamide, polyester or silicone, with acrylates being very preferred.
- the composition very preferably also contains a starter component and it is even more preferred if the composition also contains one or more auxiliaries, the abovementioned auxiliaries being suitable.
- the present invention also relates to a color conversion film containing one or more of the compounds according to the invention.
- Efficient and pure emission colors with narrow emission bands can be achieved by using the color conversion films.
- the color conversion films can, for example, be applied to a blue-emitting organic electroluminescent device.
- the compounds according to the invention absorb at least part of the light emitted by the organic electroluminescent device and re-emit light of a longer wavelength (color down-conversion).
- color down-conversion Depending on the compounds used according to the invention, efficient, color-pure and narrow-band blue, green, yellow, red or infrared emissions can be obtained in this way.
- the compound according to the invention is used not as an electroluminescent but as a phololuminescent component.
- the present invention relates to a light-emitting device containing an organic electroluminescent device and a color conversion film.
- the color conversion film is preferably arranged in the light exit area of the organic electroluminescent device.
- the present invention relates to the color conversion using the compounds according to the invention in the agricultural industry in order to change the radiation emitted by a source, for example the radiation from the sun or an artificial light source, so that biological Material, preferably plants, algae or fungi, experience tailor-made conditions. In this way, the condition and growth of the biological material can be optimally adjusted and influenced.
- the compounds according to the invention are preferably introduced into a film.
- the compounds according to the invention can also be built into the roofs of greenhouses.
- the electronic devices according to the invention are distinguished by one or more of the following surprising advantages over the prior art: 1. Electronic devices, in particular organic electroluminescent devices containing compounds of the formula (I) or the preferred embodiments described above and below as emitters have very narrow emission bands with low FWHM values (Full Width Half Maximum) and lead to particularly pure color emission, recognizable by the small CIE y values. It is particularly surprising here that both blue emitters with low FWHM values and emitters with low FWHM values which emit in the green, yellow or red range of the color spectrum are provided. 2.
- the emission bands show a shoulder or side-peak in the long-wavelength emission flank, each of which is less than 50%, often less than 40%, of the intensity of the main peak.
- this leads to a favorably low viewing angle dependency of the color impression compared to narrow-band boron-containing emitters according to the prior art, which often do not have such shoulders or secondary maxima and show a greater viewing angle dependency of the color impression.
- Electronic devices in particular organic electroluminescent devices containing compounds of the formula (I) or the preferred embodiments described above and below, in particular as emitters, have a very good service life. In this case, these connections bring about, in particular, a low roll-off, ie a low drop in the power efficiency of the device at high luminance levels.
- Electronic devices in particular organic electroluminescent devices containing compounds of the formula (I) or the preferred embodiments described above and below as emitters, have excellent efficiency.
- compounds according to the invention of the formula (I) or the preferred embodiments described above and below bring about a low operating voltage when used in electronic devices.
- the compounds of the formula (I) according to the invention or the preferred embodiments described above and below show a very high stability and lifetime.
- the formation of optical loss channels can be avoided in electronic devices, in particular organic electroluminescent devices, with compounds of the formula (I) or the preferred embodiments described above and below. As a result, these devices are characterized by a high PL and thus high EL efficiency of emitters and excellent energy transfer from the matrices to dopants.
- Exciton energy is typically transferred from a matrix or host in the emission layer to the emitter either via the so-called Dexter or Förster transfer.
- the Förster energy transfer (FRET) from a host or a matrix to the emitter according to the invention is particularly preferred, as this is particularly efficient, which leads to electronic devices with particularly good performance data (e.g. efficiency, voltage and service life). It turns out that the energy transfer from a host or a matrix to the compounds according to the invention preferably takes place via Förster transfer. 7.
- Compounds of the formula (I) or the preferred embodiments described above and below exhibit excellent glass film formation.
- Compounds of the formula (I) or the preferred embodiments described above and below form very good films from solutions and exhibit excellent solubility.
- Figures Figure 1 shows the photoluminescence spectra (PL spectra) of the compounds ES79, measured with a PL spectrometer from Hitachi, F-4500 PL, in approx. 10 -5 molar, degassed toluene solution at room temperature (approx. 25 ° C).
- Example S1 can be prepared in 34% yield using the above-mentioned Grignard route starting from the above-mentioned starting materials according to the following literature: Steps 1-4: BM Fox et al., J. Med. Chem., 2014, 52, 3464. Step 5: I. Dragutan et al., Org. Prep. Proced., Int., 1975, 7, 2, 75.
- the purification in particular the separation of regioisomers of the cyclization in step 5, takes place via flash chromatography on a column automat (CombiFlash Torrent, from Axel Semrau).
- Example S1b Example S1b can be prepared analogously starting from 2-bromo-1-chloro-4-iodobenzene [31928-46-8] in 30% yield.
- Example S1c Example S1c can be prepared analogously starting from 2-bromo-1-fluoro-4-iodobenzene [811842-30-5] in 27% yield.
- S1 can also be prepared in a yield of 41% using the above Suzuki route starting from the above starting materials according to the following literature: Steps 1 to 3: C. Dolente et al., WO 2011/120877 Step 4: I. Dragutan et al., Org. Prep. Proced., Int., 1975, 7, 2, 75.
- Step 3 and 4 ML Maddess et al., Org. Process Res. Dev.2014, 18, 528 ⁇ 538.
- the purification in particular the separation of regioisomers of the cyclization in step 2, takes place via flash chromatography on a column automat (CombiFlash Torrent, from Axel Semrau).
- S9 can be prepared on the above-mentioned Grignard route A) according to the above-mentioned literature or according to the Grignard route described by GM Castanedo et al., J. Med.
- Steps 1 to 5 are carried out analogously to syntheses known from the literature: Steps 1 to 4: M. Adachi et al., Tetrahedron Letters, 37 (49), 8871, 1996; EP 0556008 B1. Step 5: JD Eckelbarger et al., US Pat Ketones and morpholine are produced in yields of approx.
- Step 1 Synthesis of the substituted pyridines: Step 1: Example S200 A mixture of 23.3 g (100 mmol) S100 (analogous for the other 6- and 7-ring enamines), 22.6 g (120 mmol) 4-(aminomethylene)-2-phenyl-5(4H)-oxazolone [3674-51 -9], 47.3 ml [500 mmol] acetic anhydride [108-24-7] and 150 ml toluene are stirred for 4 h at 100 °C (5-ring enamines are in o-xylene at 130 °C/4 h in an autoclave implemented).
- the reaction mixture is carefully poured onto 1000 ml of ice water, stirred for a further 10 minutes, 200 ml of dichloromethane (DCM) are added, stirred for a further 10 minutes and the org. phase off.
- the aqueous phase is adjusted with careful addition of conc.
- aqueous ammonia solution basic pH 8-9
- the aqueous phase extracted three times with 200 ml of ethyl acetate
- the combined ethyl acetate extracts washed twice with 200 ml of ice water, once with 200 ml of sat. Sodium bicarbonate solution and twice with 100 ml sat. saline solution. It is dried over a mixture of magnesium sulfate and sodium carbonate, the desiccant is filtered off and the org. Phase in a vacuum and the residue crystallizes once from acetonitrile with the addition of ethyl acetate (EE). Yield: 24.7 g (81 mmol), 81%; Purity: approx.
- Step 4 Example S500 A mixture of 30.4 g (100 mmol) of S400, 100 ml of 3N sulfuric acid and 200 ml of dioxane is stirred at 100° C. for 1.5 h. After cooling, the reaction mixture is diluted with 1000 ml of ice-water and then adjusted to pH ⁇ 7.5 with ice-cooling with 3 N NaOH. The aqueous phase is extracted three times with 200 ml of DCM each time, and the combined org. Phases twice with 200 ml water each, once with 200 ml sat. saline and dried over magnesium sulfate.
- Step 5 Example S600 Variant 1: 24.9 g (100 mmol) of S500 are added to 500 ml of concentrated hydrochloric acid cooled to 3-5° C. while stirring vigorously. A cold solution of 10.4 g (150 mmol) of sodium nitrite in 50 ml of water is added dropwise to the suspension over a period of 15 minutes, while stirring vigorously, and the mixture is then stirred at 5° C. for about 20 minutes.
- the diazonium solution thus obtained is poured into a well-stirred solution, cooled to 5° C., of 90.0 g (600 mmol) of potassium iodide in 5000 ml of water to which 1000 ml of DCM have been added (caution: foaming!).
- 90.0 g (600 mmol) of potassium iodide in 5000 ml of water to which 1000 ml of DCM have been added (caution: foaming!).
- sodium bisulfite solution is added until the color has disappeared and the pH is carefully adjusted to ⁇ 7.5 with 5 N NaOH with very thorough cooling. It is diluted with a further 1500 ml DCM, the org. Phase off, re-extracted the aqueous twice with 500 ml DCM, wash the combined org. Phases twice with 500 ml water and twice with 500 ml sat.
- a solution of 13.9 g (200 mmol) of sodium nitrite and 37.5 g (250 mmol) of potassium iodide in 60 ml of water is added in portions to the suspension, with thorough stirring and ice cooling, and the mixture is stirred at 10° C. for 15 minutes. The mixture is then allowed to warm to room temperature and is stirred for a further 70 minutes. It is then diluted with 1500 ml of water, the pH is adjusted to 9.5 by adding saturated sodium bicarbonate solution and 200 ml of 2M sodium bisulfite solution are added. The precipitated crude product is filtered off with suction, washed twice with 50 ml of water each time and briefly dried with suction.
- Variant 2 Jourdan-Ullmann coupling Procedure analogous to the following literature: Y.-L-Tasi et al., J. Luminesc., 2007, 127, 41.
- a mixture of 33.0 g (110 mmol) S1, 4.57 ml (50 mmol ) aniline, 27.6 g (200 mmol) potassium carbonate, 42.7 g (300 mmol) sodium sulfate, 954 mg (15 mmol) copper powder, 500 ml nitrobenzene and 1000 g glass beads (3 mm diameter) is stirred at 160° C. for 12-16 h. The reaction mixture is allowed to cool to 60° C.
- Example A500 A mixture of 15.0 g (50 mmol) S1, 4.57 mL (50 mmol) aniline, 65.2 g (200 mmol) cesium carbonate, 2.18 g (3.5 mmol) rac-BINAP [98327-87-8], 561 mg (2.5 mmol) Palladium(II) acetate, 500 ml of toluene and 50 g of glass beads (3 mm in diameter) are stirred at 60° C. until conversion is complete (TLC check, typically 2-4 h). Then 18.0 g (50 mmol) S600 are added and the temperature is increased to 100.degree.
- reaction mixture is allowed to cool to 60° C. and the salts are filtered off with suction via a Celite bed pre-slurried with toluene.
- the filtrate is concentrated to dryness, the residue is boiled with 200 ml of methanol, the solid is filtered off with suction, washed twice with 50 ml of methanol each time, dried in vacuo and flash-chromatographed (Combi-Flash Torrent from A. Semrau) . Yield: 18.8 g (34 mmol), 69%; Purity: approx. 95% according to 1 H-NMR.
- Step 3 can preferably also be carried out with 3-fluoro-4-triflate or 3-fluoro-4-chloro-benzoketones as follows: Step 3: similar to WO2019063288. Typical yields 60-80%. Level 4: see above.
- Level 2 A well-stirred mixture of 36.2 g (100 mmol) of the amine, 500 mmol of potassium carbonate, 1.16 g (4 mmol) of tri-tert-butylphosphonium tetrafluroborate, 449 mg (2 mmol) of palladium(II) acetate, 100 g of glass beads (3 mm diameter) and 1000 ml of dimethylacetamide (DMAC) is stirred at 150° C. for 1 h.
- DMAC dimethylacetamide
- Stage 3 and 4 one-pot reaction A well-stirred mixture of 16.3 g (50 mmol) of the carbazole, 12.0 g (50 mmol) S1c, 34.6 g (250 mmol) potassium carbonate, 100 g glass beads (3 mm diameter), 500 ml DMAC is stirred at 150° C. for 20 h .
- the reaction mixture is allowed to cool to RT, 1.16 g (4 mmol) of tri-tert-butylphosphonium tetrafluroborate and 449 mg (2 mmol) of palladium(II) acetate are added and the mixture is again stirred at 150° C. for 7 h.
- the alternative method B is not only suitable for the construction of symmetrically substituted emitters, but also specifically for regio- Directional construction of asymmetrically substituted emitters by using two different bromo-chloro-benzoketones in step 1) and step 3) or 3-fluoro-4-triflate or 3-fluoro-4-chloro-benzoketones in step 3).
- the following emitters ES can be represented analogously to the steps.
- Stage 3 Intramolecular cyclization via SN 2 Ar reaction, e.g. analogous to CN108727396. Typical yields 40-80%.
- IT IT 2.6 Alternative Method E: Synthesis from 2,6-dichloroanilines by Buchwald coupling and Pd-catalyzed intramolecular cyclization: Level 1 and level 2: e.g. analogous to US 2021/0005826. Typical yields over both stages 20-50%. Measurement of Photoluminescence Spectra (PL Spectra): FIG.
- the PL spectrum shows the PL spectrum of the compounds ES79 according to the invention, measured with a PL spectrometer from Hitachi, F-4500 PL, in about 10 -5 molar, degassed toluene solution Room temperature (approx. 25 °C).
- the PL spectrum has a very narrow emission band with a low FWHM value ( ⁇ 0.2 eV) and leads to particularly pure color emission. In addition, it shows a shoulder in the long-wave emission flank that is less than 50% of the intensity of the main maximum.
- OLED Components 1) Vacuum-Processed Components: The compounds according to the invention can be used, inter alia, as a dopant in the emission layer in fluorescence and in hyperphosphorescence OLED components.
- OLEDs (organic light emitting diodes) according to the invention and OLEDs according to the prior art are produced using a general method according to WO 2004/058911, which is adapted to the conditions described here (layer thickness variation, materials used).
- the precise layer structure of the electroluminescent OLEDs can be found in the examples.
- the materials required to produce the OLEDs are shown in Table 10.
- the OLEDs are characterized by default. For this purpose, the electroluminescence spectra, the current efficiency (measured in cd/A), the power efficiency (measured in lm/W) and the external quantum efficiency (EQE, measured in percent) as a function of the luminance, calculated from current-voltage-luminance curves ( IUL characteristics) assuming a Lambertian radiation characteristic.
- the electroluminescence spectra are determined at a luminance of 100 or 1000 cd/m2 and from this the emission color and the EL-FWHM Values (ELectroluminescence - Full Width Half Maximum - width of the EL emission spectra at half peak height in eV, for better comparability over the entire spectral range) taken.
- Fluorescence OLED components All materials are thermally vapor-deposited in a vacuum chamber.
- the emission layer (EML) always consists of at least one matrix material (host material, host material) SMB and an emitting dopant (dopant, emitter) ES or EAS, which is added to the matrix material or matrix materials by co-evaporation in a certain proportion by volume.
- a specification such as SMB:ES or EAS (97:3%) means that the material SMB is present in the layer in a volume proportion of 97% and the dopant ES or EAS in a proportion of 3%.
- the electron transport layer can also consist of a mixture of two materials, for example ETM1 (50%) and ETM2 (50%), see Table 1.
- ETM1 50%)
- ETM2 50%
- the materials used to produce the OLEDs are shown in Table 10.
- the compounds D-Ref.1 to D-Ref.4, see Table 10, are used as a comparison according to the prior art.
- the OLEDs basically have the following layer structure: substrate - hole injection layer 1 (HIL1) made of HTM1 doped with 5% NDP-9 (commercially available from Novaled), 20 nm - hole transport layer 1 (HTL1) made of HTM1, 160 nm - Hole transport layer 2 (HTL2), see Table 1 - Emission layer (EML), see Table 1 - Electron transport layer (ETL2), see Table 1 - Electron transport layer (ETL1) from ETM1 (50%) and ETM2 (50 %), 30 nm - Electron injection layer (EIL) made of ETM2, 1 nm - Cathode made of aluminum, 100 nm Table 1: Structure of blue fluorescent OLED devices Table 2: Results Hyperphosphorescent OLED devices: All materials are thermally evaporated in a vacuum chamber.
- the emission layer (EML) or the emission layers always consists of at least one matrix material (host material, host material) TMM, a (phosphorescent) sensitizer PS and one fluorescent emitter ES or EAS.
- the matrix material (host material, host material) TMM can consist of two components which are vaporized as a mixture (premixed host, eg TMM2), the components and the composition are also shown in Table 10.
- Sensitizer PS and fluorescent emitter ES or EAS are added to the host material TMM by co-evaporation in a certain proportion by volume.
- Blue hyperphosphorescence OLED components BH The OLEDs basically have the following layer structure: substrate - hole injection layer 1 (HIL1) made of HTM2 doped with 5% NDP-9 (commercially available from Novaled), 20 nm - hole transport layer 1 (HTL1) made of HTM2, 30 nm - Hole transport layer 2 (HTL2), see Table 3 - Emission layer (EML), see Table 3 - Electron transport layer (ETL2), see Table 3 - Electron transport layer (ETL1) from ETM1 (50%) and ETM2 (50 %), 20 nm - ETM2 electron injection layer (EIL), 1 nm - aluminum cathode, 100 nm Table 3: Structure of blue hyperphosphorescent OLED devices Table 4: Results Green hyper
- the structure used is as follows: - substrate - ITO, 50 nm - PEDOT, 20 nm - hole transport layer HIL-Sol, made of HTM-Sol, 20 nm - emission layer made of SMB4(97%) and ES(3%) or EAS (3%), 50 nm - electron transport layer (ETL1) made of ETM1 (50%) and ETM2 (50%), 25 nm - cathode made of aluminum, 100 nm Glass flakes coated with structured ITO (indium tin oxide) are used as the substrate. coated with a thickness of 50 nm.
- PEDOT buffer (PEDOT) Clevios P VP AI 4083 (Heraeus Clevios GmbH, Leverkusen) PEDOT is at the top.
- the spin-coating takes place in air from water.
- the layer is then heated at 180° C. for 10 minutes.
- the hole transport layer and the emission layer are applied to the glass flakes coated in this way.
- the hole transport layer is the polymer HTM sol of the structure shown in Table 10, which was synthesized according to WO2010/097155.
- the polymer is dissolved in toluene so that the solution typically has a solids content of approx.
- the layers are spun on in an inert gas atmosphere, in the present case argon, and baked at 180° C. for 60 minutes.
- the emission layer is always made up of at least one matrix material (host material, host material) and one emitting dopant (dopant, emitter).
- An indication such as SMB4 (97%) and ES or EAS (3%) means that the material SMB4 in one Weight proportion of 97% and the dopant ES or EAS is present in a weight proportion of 3% in the emission layer.
- the mixture for the emission layer is dissolved in toluene or chlorobenzene.
- the typical solids content of such solutions is around 18 g/l if, as here, the layer thickness of 50 nm typical for a device is to be achieved by means of spin coating.
- the layers are spun on in an inert gas atmosphere, in the present case argon, and baked at 140° to 160° C. for 10 minutes.
- the materials used are shown in Table 10.
- the materials for the electron transport layer and for the cathode are thermally evaporated in a vacuum chamber.
- the electron transport layer can consist of more than one material, which are admixed to one another by co-evaporation in a certain proportion by volume.
- ETM1 50%) and ETM2 (50%) means that the materials ETM1 and ETM2 are each present in a volume proportion of 50% in the layer.
- the materials used in the present case are shown in Table 10.
- Table 9 Results of the solution-processed OLEDs at 1000 cd/m 2
- Table 10 Structural formulas of the materials used
- EQE values Extra Quantum Efficients
- the EQE values are significantly higher and the operating voltages are lower compared to the reference, which leads to significantly improved performance efficiencies of the device and thus to lower power consumption.
- Production of components for color conversion General production procedure for the composition and derived layers: 0.5 g of the compound ES or EAS according to the invention, 0.2 g of titanium dioxide (TiO 2 ToyoColor, Toyo Ink Group) and 10 g OE-6550 Optical Encapsulant (Dow Corning ) are homogenized with very good stirring (magnetic stirrer) under the action of ultrasound (ultrasonic bath) at 40 °C. Layers with a layer thickness of approx.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Electroluminescent Light Sources (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
La présente invention porte sur des composés azotés qui se prêtent à une utilisation dans des dispositifs électroniques et sur des dispositifs électroniques, en particulier des dispositifs électroluminescents organiques contenant lesdits composés.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20215751 | 2020-12-18 | ||
PCT/EP2021/085800 WO2022129114A1 (fr) | 2020-12-18 | 2021-12-15 | Composés azotés pour dispositifs électroluminescents organiques |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4263543A1 true EP4263543A1 (fr) | 2023-10-25 |
Family
ID=73855967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21823946.5A Pending EP4263543A1 (fr) | 2020-12-18 | 2021-12-15 | Composés azotés pour dispositifs électroluminescents organiques |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240124769A1 (fr) |
EP (1) | EP4263543A1 (fr) |
KR (1) | KR20230122093A (fr) |
CN (1) | CN116724040A (fr) |
TW (1) | TW202241905A (fr) |
WO (1) | WO2022129114A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230122201A (ko) * | 2022-02-14 | 2023-08-22 | 경남정보대학교 산학협력단 | 온라인 베이커리 주문 방법 및 상기 방법이 기록된 컴퓨터 판독 가능한 기록 매체 |
CN118647622A (zh) * | 2022-02-23 | 2024-09-13 | 默克专利有限公司 | 用于有机电致发光器件的芳族杂环 |
KR20240103447A (ko) * | 2022-12-27 | 2024-07-04 | 엘지디스플레이 주식회사 | 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치 |
Family Cites Families (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4111878A1 (de) | 1991-04-11 | 1992-10-15 | Wacker Chemie Gmbh | Leiterpolymere mit konjugierten doppelbindungen |
JPH07133483A (ja) | 1993-11-09 | 1995-05-23 | Shinko Electric Ind Co Ltd | El素子用有機発光材料及びel素子 |
JP3139321B2 (ja) | 1994-03-31 | 2001-02-26 | 東レ株式会社 | 発光素子 |
DE4436773A1 (de) | 1994-10-14 | 1996-04-18 | Hoechst Ag | Konjugierte Polymere mit Spirozentren und ihre Verwendung als Elektrolumineszenzmaterialien |
JP3865406B2 (ja) | 1995-07-28 | 2007-01-10 | 住友化学株式会社 | 2,7−アリール−9−置換フルオレン及び9−置換フルオレンオリゴマー及びポリマー |
DE19614971A1 (de) | 1996-04-17 | 1997-10-23 | Hoechst Ag | Polymere mit Spiroatomen und ihre Verwendung als Elektrolumineszenzmaterialien |
DE19846766A1 (de) | 1998-10-10 | 2000-04-20 | Aventis Res & Tech Gmbh & Co | Konjugierte Polymere, enthaltend spezielle Fluorenbausteine mit verbesserten Eigenschaften |
US6166172A (en) | 1999-02-10 | 2000-12-26 | Carnegie Mellon University | Method of forming poly-(3-substituted) thiophenes |
DE60031729T2 (de) | 1999-05-13 | 2007-09-06 | The Trustees Of Princeton University | Lichtemittierende, organische, auf elektrophosphoreszenz basierende anordnung mit sehr hoher quantenausbeute |
US6310360B1 (en) | 1999-07-21 | 2001-10-30 | The Trustees Of Princeton University | Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices |
EP1252803B2 (fr) | 1999-12-01 | 2015-09-02 | The Trustees Of Princeton University | Complexes de forme l2mx en tant que dopants phosphorescents pour del organiques |
TW532048B (en) | 2000-03-27 | 2003-05-11 | Idemitsu Kosan Co | Organic electroluminescence element |
US20020121638A1 (en) | 2000-06-30 | 2002-09-05 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
EP1325671B1 (fr) | 2000-08-11 | 2012-10-24 | The Trustees Of Princeton University | Composes organometalliques et electrophosphorescence organique presentant un deplacement d'emission |
JP4154139B2 (ja) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | 発光素子 |
JP4154138B2 (ja) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | 発光素子、表示装置及び金属配位化合物 |
JP4154140B2 (ja) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | 金属配位化合物 |
ITRM20020411A1 (it) | 2002-08-01 | 2004-02-02 | Univ Roma La Sapienza | Derivati dello spirobifluorene, loro preparazione e loro uso. |
DE10249723A1 (de) | 2002-10-25 | 2004-05-06 | Covion Organic Semiconductors Gmbh | Arylamin-Einheiten enthaltende konjugierte Polymere, deren Darstellung und Verwendung |
GB0226010D0 (en) | 2002-11-08 | 2002-12-18 | Cambridge Display Tech Ltd | Polymers for use in organic electroluminescent devices |
KR101030158B1 (ko) | 2002-12-23 | 2011-04-18 | 메르크 파텐트 게엠베하 | 유기 전자발광 부품 |
DE10304819A1 (de) | 2003-02-06 | 2004-08-19 | Covion Organic Semiconductors Gmbh | Carbazol-enthaltende konjugierte Polymere und Blends, deren Darstellung und Verwendung |
JP4411851B2 (ja) | 2003-03-19 | 2010-02-10 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子 |
WO2004093207A2 (fr) | 2003-04-15 | 2004-10-28 | Covion Organic Semiconductors Gmbh | Melanges de semi-conducteurs organiques aptes a l'emission et de matieres matricielles, leur utilisation et composants electroniques contenant ces melanges |
EP1617711B1 (fr) | 2003-04-23 | 2016-08-17 | Konica Minolta Holdings, Inc. | Dispositif organique électroluminescent et affichage |
EP1491568A1 (fr) | 2003-06-23 | 2004-12-29 | Covion Organic Semiconductors GmbH | Polymères semi-conducteurs |
DE10328627A1 (de) | 2003-06-26 | 2005-02-17 | Covion Organic Semiconductors Gmbh | Neue Materialien für die Elektrolumineszenz |
DE10337346A1 (de) | 2003-08-12 | 2005-03-31 | Covion Organic Semiconductors Gmbh | Konjugierte Polymere enthaltend Dihydrophenanthren-Einheiten und deren Verwendung |
DE10338550A1 (de) | 2003-08-19 | 2005-03-31 | Basf Ag | Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs) |
DE10345572A1 (de) | 2003-09-29 | 2005-05-19 | Covion Organic Semiconductors Gmbh | Metallkomplexe |
US7795801B2 (en) | 2003-09-30 | 2010-09-14 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator, display and compound |
WO2005040302A1 (fr) | 2003-10-22 | 2005-05-06 | Merck Patent Gmbh | Nouveaux materiaux pour l'electroluminescence et leur utilisation |
US7880379B2 (en) | 2003-11-25 | 2011-02-01 | Merck Patent Gmbh | Phosphorescent organic electroluminescent device having no hole transporting layer |
US20050214575A1 (en) | 2004-03-26 | 2005-09-29 | Fuji Photo Film Co., Ltd. | Organic electroluminescence element |
US7790890B2 (en) | 2004-03-31 | 2010-09-07 | Konica Minolta Holdings, Inc. | Organic electroluminescence element material, organic electroluminescence element, display device and illumination device |
DE102004020298A1 (de) | 2004-04-26 | 2005-11-10 | Covion Organic Semiconductors Gmbh | Elektrolumineszierende Polymere und deren Verwendung |
DE102004023277A1 (de) | 2004-05-11 | 2005-12-01 | Covion Organic Semiconductors Gmbh | Neue Materialmischungen für die Elektrolumineszenz |
US7598388B2 (en) | 2004-05-18 | 2009-10-06 | The University Of Southern California | Carbene containing metal complexes as OLEDs |
JP4862248B2 (ja) | 2004-06-04 | 2012-01-25 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
ITRM20040352A1 (it) | 2004-07-15 | 2004-10-15 | Univ Roma La Sapienza | Derivati oligomerici dello spirobifluorene, loro preparazione e loro uso. |
EP1669386A1 (fr) | 2004-12-06 | 2006-06-14 | Covion Organic Semiconductors GmbH | Polymères conjugués, leur représentation et utilisation |
WO2006117052A1 (fr) | 2005-05-03 | 2006-11-09 | Merck Patent Gmbh | Dispositif electroluminescent organique, et derives d'acide boronique et d'acide borinique utilises pour produire ce dispositif electroluminescent organique |
DE102005037734B4 (de) | 2005-08-10 | 2018-02-08 | Merck Patent Gmbh | Elektrolumineszierende Polymere, ihre Verwendung und bifunktionelle monomere Verbindungen |
KR101082258B1 (ko) | 2005-12-01 | 2011-11-09 | 신닛테츠가가쿠 가부시키가이샤 | 유기 전계 발광소자용 화합물 및 유기 전계 발광소자 |
DE102006025777A1 (de) | 2006-05-31 | 2007-12-06 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
WO2008056746A1 (fr) | 2006-11-09 | 2008-05-15 | Nippon Steel Chemical Co., Ltd. | Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique |
WO2009030981A2 (fr) | 2006-12-28 | 2009-03-12 | Universal Display Corporation | Structures de dispositifs électroluminescents organiques (oled) phosphorescents à longue durée de vie utile |
DE102007002714A1 (de) | 2007-01-18 | 2008-07-31 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
DE102007053771A1 (de) | 2007-11-12 | 2009-05-14 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtungen |
DE102008017591A1 (de) | 2008-04-07 | 2009-10-08 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008027005A1 (de) | 2008-06-05 | 2009-12-10 | Merck Patent Gmbh | Organische elektronische Vorrichtung enthaltend Metallkomplexe |
DE102008033943A1 (de) | 2008-07-18 | 2010-01-21 | Merck Patent Gmbh | Neue Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008036247A1 (de) | 2008-08-04 | 2010-02-11 | Merck Patent Gmbh | Elektronische Vorrichtungen enthaltend Metallkomplexe |
DE102008036982A1 (de) | 2008-08-08 | 2010-02-11 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
JP5483962B2 (ja) | 2008-09-04 | 2014-05-07 | ユー・ディー・シー アイルランド リミテッド | 有機電界発光素子 |
DE102008048336A1 (de) | 2008-09-22 | 2010-03-25 | Merck Patent Gmbh | Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen |
WO2010054730A1 (fr) | 2008-11-11 | 2010-05-20 | Merck Patent Gmbh | Dispositifs électroluminescents organiques |
DE102008056688A1 (de) | 2008-11-11 | 2010-05-12 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008057050B4 (de) | 2008-11-13 | 2021-06-02 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102008057051B4 (de) | 2008-11-13 | 2021-06-17 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009007038A1 (de) | 2009-02-02 | 2010-08-05 | Merck Patent Gmbh | Metallkomplexe |
JP5670353B2 (ja) | 2009-02-27 | 2015-02-18 | メルク パテント ゲーエムベーハー | アルデヒド基を含むポリマー、このポリマーの反応および架橋、架橋ポリマー、このポリマー含むエレクトロルミネッセンスデバイス |
DE102009011223A1 (de) | 2009-03-02 | 2010-09-23 | Merck Patent Gmbh | Metallkomplexe |
WO2010104047A1 (fr) | 2009-03-11 | 2010-09-16 | 国立大学法人京都大学 | Composé aromatique polycyclique |
DE102009013041A1 (de) | 2009-03-13 | 2010-09-16 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009014513A1 (de) | 2009-03-23 | 2010-09-30 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
DE102009023155A1 (de) | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009031021A1 (de) | 2009-06-30 | 2011-01-05 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009041414A1 (de) | 2009-09-16 | 2011-03-17 | Merck Patent Gmbh | Metallkomplexe |
DE102009053644B4 (de) | 2009-11-17 | 2019-07-04 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009053645A1 (de) | 2009-11-17 | 2011-05-19 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtung |
DE102009048791A1 (de) | 2009-10-08 | 2011-04-14 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009053382A1 (de) | 2009-11-14 | 2011-05-19 | Merck Patent Gmbh | Materialien für elektronische Vorrichtungen |
DE102009053836A1 (de) | 2009-11-18 | 2011-05-26 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102009057167A1 (de) | 2009-12-05 | 2011-06-09 | Merck Patent Gmbh | Elektronische Vorrichtung enthaltend Metallkomplexe |
DE102010005697A1 (de) | 2010-01-25 | 2011-07-28 | Merck Patent GmbH, 64293 | Verbindungen für elektronische Vorrichtungen |
US8420633B2 (en) | 2010-03-31 | 2013-04-16 | Hoffmann-La Roche Inc. | Aryl-cyclohexyl-tetraazabenzo[e]azulenes |
WO2011157339A1 (fr) | 2010-06-15 | 2011-12-22 | Merck Patent Gmbh | Complexes métalliques |
DE102010027317A1 (de) | 2010-07-16 | 2012-01-19 | Merck Patent Gmbh | Metallkomplexe |
DE102010048608A1 (de) | 2010-10-15 | 2012-04-19 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
DE102010054525A1 (de) | 2010-12-15 | 2012-04-26 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
US8835409B2 (en) | 2011-01-25 | 2014-09-16 | Dow Agrosciences, Llc. | 3-alkenyl-6-halo-4-aminopicolinates and their use as herbicides |
WO2012133188A1 (fr) | 2011-03-25 | 2012-10-04 | 出光興産株式会社 | Élément électroluminescent organique |
JP6215192B2 (ja) | 2011-04-18 | 2017-10-18 | メルク パテント ゲーエムベーハー | 有機エレクトロルミネッセンス素子用材料 |
EP2758372B1 (fr) | 2011-09-21 | 2017-05-17 | Merck Patent GmbH | Dérivés de carbazole pour des dispositifs électroluminescents organiques |
CN103889952A (zh) | 2011-10-20 | 2014-06-25 | 默克专利有限公司 | 用于有机电致发光器件的材料 |
TWI606051B (zh) * | 2011-11-22 | 2017-11-21 | Udc愛爾蘭有限公司 | 有機電場發光元件、有機電場發光元件用材料以及使用該元件之發光裝置、顯示裝置、照明裝置及用於該元件之化合物 |
JP5926580B2 (ja) | 2012-03-01 | 2016-05-25 | ユー・ディー・シー アイルランド リミテッド | 有機電界発光素子、有機電界発光素子用材料、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子に用いられる化合物 |
US9837622B2 (en) | 2012-07-13 | 2017-12-05 | Merck Patent Gmbh | Metal complexes |
CN104520308B (zh) | 2012-08-07 | 2018-09-28 | 默克专利有限公司 | 金属络合物 |
JP6556629B2 (ja) | 2012-12-21 | 2019-08-07 | メルク パテント ゲーエムベーハー | 金属錯体 |
KR102188214B1 (ko) | 2012-12-21 | 2020-12-08 | 메르크 파텐트 게엠베하 | 금속 착물 |
EP3035401A4 (fr) | 2013-08-14 | 2017-01-04 | Kyushu University, National University Corporation | Élément électroluminescent organique |
EP3044284B1 (fr) | 2013-09-11 | 2019-11-13 | Merck Patent GmbH | Complexes métalliques |
WO2015091716A1 (fr) | 2013-12-20 | 2015-06-25 | Basf Se | Dispositifs d'oled tres efficaces a temps de declin tres courts |
JP5905916B2 (ja) | 2013-12-26 | 2016-04-20 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子および電子機器 |
US11005050B2 (en) | 2014-01-13 | 2021-05-11 | Merck Patent Gmbh | Metal complexes |
WO2015117718A1 (fr) | 2014-02-05 | 2015-08-13 | Merck Patent Gmbh | Complexes métalliques |
CN106459018B (zh) | 2014-05-05 | 2022-01-25 | 默克专利有限公司 | 用于有机发光器件的材料 |
EP3174890B1 (fr) | 2014-07-28 | 2019-03-13 | Merck Patent GmbH | Complexes métalliques |
KR102474330B1 (ko) | 2014-07-29 | 2022-12-05 | 메르크 파텐트 게엠베하 | 유기 전계발광 소자용 재료 |
EP3180411B1 (fr) | 2014-08-13 | 2018-08-29 | Merck Patent GmbH | Matériaux pour dispositifs électroluminescents organiques |
JP6772188B2 (ja) | 2015-02-03 | 2020-10-21 | メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH | 金属錯体 |
KR20240058993A (ko) | 2015-06-03 | 2024-05-07 | 유디씨 아일랜드 리미티드 | 매우 짧은 붕괴 시간을 갖는 고효율 oled 소자 |
KR102664605B1 (ko) | 2015-08-25 | 2024-05-10 | 유디씨 아일랜드 리미티드 | 금속 착물 |
WO2017054898A1 (fr) | 2015-09-29 | 2017-04-06 | Merck Patent Gmbh | Composition photosensible et film de conversion de couleur |
KR102627527B1 (ko) | 2016-03-03 | 2024-01-22 | 메르크 파텐트 게엠베하 | 유기 전계 발광 장치용 재료 |
US9954187B2 (en) | 2016-04-08 | 2018-04-24 | Idemitsu Kosan Co., Ltd. | Compound, organic electroluminescence device and electronic device |
JP6224285B1 (ja) | 2016-04-08 | 2017-11-01 | 出光興産株式会社 | 新規な化合物、有機エレクトロルミネッセンス素子及び電子機器 |
KR102404836B1 (ko) | 2016-06-30 | 2022-06-02 | 메르크 파텐트 게엠베하 | 금속 착물로부터의 거울상이성질체 혼합물의 분리 방법 |
EP3484868B1 (fr) | 2016-07-14 | 2020-11-25 | Merck Patent GmbH | Complexes métalliques |
CN109476691B (zh) | 2016-07-25 | 2023-09-12 | Udc爱尔兰有限公司 | 用作有机电致发光器件中的发光体的金属络合物 |
WO2018019687A1 (fr) | 2016-07-25 | 2018-02-01 | Merck Patent Gmbh | Complexes métalliques dinucléaires et oligonucléaires comprenant des sous-unités de ligands tripodes bidentées ainsi que leur utilisation dans des dispositifs électroniques |
WO2018041769A1 (fr) | 2016-08-30 | 2018-03-08 | Merck Patent Gmbh | Complexes métalliques binucléaires et trinucléaires obtenus à partir de deux ligands hexadentés tripodaux liés entre eux, destinés à être utilisés dans des dispositifs électroluminescents |
WO2018054798A1 (fr) | 2016-09-21 | 2018-03-29 | Merck Patent Gmbh | Complexes métalliques trouvant application comme émetteurs dans des dispositifs électroluminescents organiques |
JP7064488B2 (ja) | 2016-10-12 | 2022-05-10 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 二核金属錯体および電子デバイス、特に、前記金属錯体を含んでなる有機エレクトロルミネッセンス素子 |
JP7064487B2 (ja) | 2016-10-12 | 2022-05-10 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 金属錯体 |
WO2018069273A1 (fr) | 2016-10-13 | 2018-04-19 | Merck Patent Gmbh | Complexes métalliques |
EP3355378B1 (fr) | 2017-01-30 | 2022-12-28 | Novaled GmbH | Dispositif électroluminescent comprenant un agencement de couche définie comprenant une couche électroluminescente, une couche de transport de trous et une couche de transport d'électrons |
EP3601304B1 (fr) | 2017-03-29 | 2021-10-27 | Merck Patent GmbH | Complexes métalliques |
WO2018177981A1 (fr) | 2017-03-29 | 2018-10-04 | Merck Patent Gmbh | Composés aromatiques |
CN115188914A (zh) | 2017-04-03 | 2022-10-14 | 出光兴产株式会社 | 有机电致发光元件和电子设备 |
JP7222937B2 (ja) | 2017-06-29 | 2023-02-15 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 半導電性発光ナノ粒子を備える組成物 |
TWI776926B (zh) | 2017-07-25 | 2022-09-11 | 德商麥克專利有限公司 | 金屬錯合物 |
WO2019063288A1 (fr) | 2017-09-26 | 2019-04-04 | Cynora Gmbh | Molécules organiques, destinées à être utilisées en particulier dans des dispositifs optoélectroniques |
EP3724202B1 (fr) | 2017-12-13 | 2022-08-17 | Merck Patent GmbH | Complexes métalliques |
US11535637B2 (en) | 2017-12-26 | 2022-12-27 | Lg Chem, Ltd. | Compound and organic light emitting element comprising same |
KR20200120698A (ko) | 2018-02-13 | 2020-10-21 | 메르크 파텐트 게엠베하 | 금속 착물 |
KR20200128727A (ko) | 2018-03-09 | 2020-11-16 | 메르크 파텐트 게엠베하 | 전자 디바이스용 화합물 |
TWI828664B (zh) | 2018-03-19 | 2024-01-11 | 愛爾蘭商Udc愛爾蘭責任有限公司 | 金屬錯合物 |
CN108727396A (zh) | 2018-08-06 | 2018-11-02 | 长春海谱润斯科技有限公司 | 一种双咔唑化合物及其有机电致发光器件 |
TWI826522B (zh) | 2018-09-12 | 2023-12-21 | 德商麥克專利有限公司 | 電致發光裝置 |
TW202030902A (zh) | 2018-09-12 | 2020-08-16 | 德商麥克專利有限公司 | 電致發光裝置 |
WO2020053150A1 (fr) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Matériaux pour dispositifs électroluminescents organiques |
CN112739795A (zh) | 2018-09-27 | 2021-04-30 | 默克专利有限公司 | 可用作有机电子器件中的活性化合物的化合物 |
KR20210065972A (ko) | 2018-09-27 | 2021-06-04 | 메르크 파텐트 게엠베하 | 입체 장애 함질소 헤테로방향족 화합물의 제조 방법 |
CN110452226B (zh) | 2019-08-05 | 2022-04-22 | 北京大学深圳研究生院 | 一种基于吡咯衍生物的有机蓝光荧光材料与蓝光器件 |
US20230062486A1 (en) | 2019-12-19 | 2023-03-02 | Betta Pharmaceuticals Co., Ltd | Kras g12c inhibitor and pharmaceutical use thereof |
DE202019005189U1 (de) | 2019-12-19 | 2020-01-30 | Merck Patent Gmbh | Elektrolumineszierende Vorrichtung |
-
2021
- 2021-12-15 WO PCT/EP2021/085800 patent/WO2022129114A1/fr active Application Filing
- 2021-12-15 CN CN202180084715.8A patent/CN116724040A/zh active Pending
- 2021-12-15 US US18/266,829 patent/US20240124769A1/en active Pending
- 2021-12-15 KR KR1020237024258A patent/KR20230122093A/ko unknown
- 2021-12-15 EP EP21823946.5A patent/EP4263543A1/fr active Pending
- 2021-12-15 TW TW110147001A patent/TW202241905A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
TW202241905A (zh) | 2022-11-01 |
CN116724040A (zh) | 2023-09-08 |
US20240124769A1 (en) | 2024-04-18 |
KR20230122093A (ko) | 2023-08-22 |
WO2022129114A1 (fr) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2935276B1 (fr) | Matériaux pour dispositifs organiques électroluminescents | |
DE112011103904B4 (de) | Materialien für organische Elektrolumineszenzvorrichtungen | |
WO2017148565A1 (fr) | Matériaux pour dispositifs électroluminescents organiques | |
WO2016023608A1 (fr) | Matériaux pour dispositifs électroluminescents organiques | |
EP3174954A1 (fr) | Matériaux pour dispositifs électroluminescents organiques | |
EP3016952B1 (fr) | Composés de lactame spirocondensés pour des dispositifs électroluminescents organiques | |
EP2737554A1 (fr) | Composés pour dispositifs électroniques | |
EP3110796B1 (fr) | Matières pour dispositifs électroluminescents organiques | |
EP4263543A1 (fr) | Composés azotés pour dispositifs électroluminescents organiques | |
WO2022129116A1 (fr) | Dérivés d'indolo[3.2.1-jk]carbazole-6-carbonitrile utilisés en tant qu'émetteurs fluorescents bleus destinés à être utilisés dans des oled | |
EP4229064A1 (fr) | Composés hétérocycliques pour dispositifs électroluminescents organiques | |
WO2016045765A1 (fr) | Matières pour dispositifs électroluminescents organiques | |
EP4077336A1 (fr) | Composés polycycliques pour dispositifs électroluminescents organiques | |
EP4077335A1 (fr) | Composés aromatiques pour dispositifs électroluminescents organiques | |
EP4229145A1 (fr) | Composés comprenant des hétéroatomes pour dispositifs électroluminescents organiques | |
EP4172164A1 (fr) | Composés hétéroaromatiques pour dispositifs électroluminescents organiques | |
WO2022229234A1 (fr) | Composés hétérocycliques azotés pour dispositifs électroluminescents organiques | |
EP4122028B1 (fr) | Composés hétérocycliques pour dispositifs électroluminescents organiques | |
WO2022200638A1 (fr) | Matériaux pour dispositifs électroluminescents organiques | |
EP4330240A1 (fr) | Matériaux pour dispositifs électroluminescents organiques | |
WO2022002771A1 (fr) | Composés hétérocycliques pour dispositifs électroluminescents organiques | |
EP4263746A1 (fr) | Composés hétéroaromatiques azotés pour dispositifs électroluminescents organiques | |
WO2023161167A1 (fr) | Hétérocycles azotés pour dispositifs électroluminescents organiques | |
WO2023161168A1 (fr) | Hétérocycles aromatiques pour dispositifs électroluminescents organiques | |
EP4423209A1 (fr) | Composés hétérocycliques contenant du bore et de l'azote pour dispositifs électroluminescents organiques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230615 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |