EP4077336A1 - Composés polycycliques pour dispositifs électroluminescents organiques - Google Patents

Composés polycycliques pour dispositifs électroluminescents organiques

Info

Publication number
EP4077336A1
EP4077336A1 EP20829883.6A EP20829883A EP4077336A1 EP 4077336 A1 EP4077336 A1 EP 4077336A1 EP 20829883 A EP20829883 A EP 20829883A EP 4077336 A1 EP4077336 A1 EP 4077336A1
Authority
EP
European Patent Office
Prior art keywords
formulas
groups
radicals
index
stands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20829883.6A
Other languages
German (de)
English (en)
Inventor
Philipp Stoessel
Amel MEKIC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP4077336A1 publication Critical patent/EP4077336A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to polycyclic compounds for use in electronic devices, in particular in organic electroluminescent devices, and to electronic devices, in particular organic electroluminescent devices, containing these polycyclic compounds.
  • the object of the present invention is therefore to provide compounds which are suitable for use in an organic electronic device, in particular in an organic electroluminescent device, and which lead to good device properties when used in this device, and to provide the corresponding electronic device .
  • the object of the present invention to provide connections which lead to a long service life, good efficiency and low operating voltage. Furthermore, the compounds should have excellent processability, and the compounds should in particular show good solubility.
  • Another object of the present invention can be seen in providing compounds which are suitable for use in a phosphorescent or fluorescent electroluminescent device, in particular as an emitter.
  • the compounds should lead to devices which have excellent color purity.
  • a further object can be seen in providing electronic devices with excellent performance as inexpensively as possible and of constant quality
  • the electronic devices should be able to be used or adapted for many purposes.
  • the performance of the electronic devices should be maintained over a wide temperature range.
  • R 1 has the meaning set out above, the dashed bonds represent the attachment points to the atoms of the groups to which the two radicals R bond, and the other symbols have the following meanings: Y 4 is, identically or differently, C ( R 1 ) 2 ,
  • R a is on each occurrence, identically or differently, F, a straight-chain alkyl, alkoxy or thioalkoxy group with 1 to 40 carbon atoms or an alkenyl or alkynyl group with 2 to 40 carbon atoms or a branched or cyclic alkyl, alkoxy group or thioalkoxy group having 3 to 20 carbon atoms, where the alkyl, alkoxy, thioalkoxy, alkenyl or alkynyl group can each be substituted by one or more radicals R 2 , one or more non-adjacent
  • an aryl group contains 6 to 40 carbon atoms;
  • a heteroaryl group contains 2 to 40 carbon atoms and at least one heteroatom, with the proviso that the sum of carbon atoms and heteroatoms is at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • an aryl group or heteroaryl group is either a simple aromatic cycle, i.e. benzene, or a simple heteroaromatic cycle, e.g.
  • Aromatics linked to one another by a single bond such as biphenyl, on the other hand, are not referred to as an aryl or heteroaryl group, but as an aromatic ring system.
  • An electron-poor heteroaryl group in the context of the present invention is a heteroaryl group which has at least one heteroaromatic six-membered ring with at least one nitrogen atom. Further aromatic or heteroaromatic five-membered rings or six-membered rings can also be fused onto this six-membered ring. Examples of electron-poor heteroaryl groups are pyridine, pyrimidine, pyrazine, pyridazine, triazine, quinoline, quinazoline or quinoxaline. For the purposes of this invention, an aromatic ring system contains 6 to 60 carbon atoms in the ring system.
  • a heteroaromatic ring system for the purposes of this invention contains 2 to 60 carbon atoms and at least one heteroatom in the ring system, with the proviso that the sum of carbon atoms and heteroatoms is at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • an aromatic or heteroaromatic ring system is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups, but rather in which also several aryl or heteroaryl groups through a non-aromatic unit, such as. B. a C, N or O atom can be connected.
  • systems such as fluorene, 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, stilbene, etc. are to be understood as aromatic ring systems for the purposes of this invention, and likewise systems in which two or more Aryl groups are linked, for example, by a short alkyl group.
  • the aromatic ring system is preferably selected from fluorene, 9,9'-spirobifluorene, 9,9-diarylamine or groups in which two or more aryl and / or heteroaryl groups are linked to one another by single bonds.
  • an aliphatic hydrocarbon radical or an alkyl group or an alkenyl or alkynyl group which can contain 1 to 20 carbon atoms, and in which also individual H atoms or CH 2 groups are represented by the above-mentioned groups can be substituted, preferably the radicals methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s-pentyl, neo-pentyl , Cyclopentyl, n-hexyl, neo-hexyl, cyclohexyl, n-heptyl, cyclo-heptyl, n-octyl, cyclooctyl, 2-ethylhexyl, trifluoromethyl, pentafluoro
  • An alkoxy group with 1 to 40 carbon atoms is preferably methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, s- Pentoxy, 2-methylbutoxy, n-hexoxy, cyclohexyloxy, n-heptoxy, cycloheptyloxy, n-octyloxy, cyclooctyloxy, 2-ethylhexyloxy, pentafluoroethoxy and 2,2,2-trifluoroethoxy are stood.
  • a thioalkyl group with 1 to 40 carbon atoms includes, in particular, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio,
  • 2-Ethylhexylthio trifluoromethylthio, pentafluoroethylthio, 2,2,2-trifluoroethylthio, ethenylthio, propenylthio, butenylthio, pentenylthio, cyclopentenylthio, hexenylthio, cyclohexenylthio, heptenylthio, cyclothiothio, octenylthynyl, butthiothiothio, propenylthio, cycloheptenynyl, butthiothiothio, octoheptenynyl, ethenylthio, ethenylthio , Hexinylthio, heptinylthio or octinylthio understood.
  • alkyl, alkoxy or thioalkyl groups according to the present invention can be straight-chain, branched or cyclic, it being possible for one or more non-adjacent CH 2 groups to be replaced by the abovementioned groups; furthermore, one or more H atoms can also be replaced by D, F, CI, Br, I, CN or NO 2 , preferably F, CI or CN, more preferably F or CN, particularly preferably CN.
  • An aromatic or heteroaromatic ring system with 5 - 60 or 5 to 40 aromatic ring atoms, which can also be substituted by the above-mentioned radicals and which can be linked via any positions on the aromatic or fleteroaromatic is understood to mean in particular groups, which are derived from benzene, naphthalene, anthracene, benzanthracene, phenanthrene, pyrene, chrysene, perylene, fluoranthene, naphthacene, pentacene, benzopyrene, biphenyl, biphenylene, terphenyl, triphenylene, fluorene, spirobifluorene, dihydro- phenanthrene, dihydropyrene, tetrahydropyrene, or trans-indenofluoren, cis- or trans-indenocarbazole, cis- or trans -indolocarbazole, truxes,
  • 1, 2,4-triazole benzotriazole, 1, 2,3-oxadiazole, 1, 2,4-oxadiazole, 1,2,5-oxadiazole, 1, 3,4-oxadiazole, 1, 2,3- Thiadiazole, 1, 2,4-thiadiazole, 1, 2,5-thiadiazole, 1, 3,4-thiadiazole, 1, 3,5-triazine, 1, 2,4-triazine, 1, 2,3- Triazine, tetrazole, 1, 2,4,5-tetrazine, 1,2,3,4-tetrazine, 1,2,3,5-tetrazine, purine, pteridine, indolizine and benzothiadiazole or groups derived from combinations of these Systems.
  • the compounds according to the invention can have a structure of the formulas (IIIa), (IIb), (IIc) and (IIId); the compounds according to the invention can particularly preferably be selected from the compounds of the formulas (IIIa), (IIb), (llc) and (lld),
  • p 2 , p 3 , Y 1 , Y 2 , Y 3 , X, Z, and R have the meanings given above, in particular for formula (I), the index m being 0, 1, 2, 3 or 4, preferably 0 , 1 or 2, and the index n is 0, 1, 2 or 3, preferably 0, 1 or 2, the sum of the indices m and n preferably being 0, 1, 2, 3 or 4.
  • the compounds according to the invention can be selected particularly preferably from the compounds of the formulas (IIIa), (IIIb) and (IIIc), where Y 1 , Y 2 , Y 3 , X, Z, and R have the meanings given above, in particular for formula (I), the index I 0, 1, 2, 3, 4 or 5, preferably 0, 1 or 2 is, the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, and the index n is 0, 1, 2 or 3, preferably 0, 1 or 2, the sum of the indices I, m and n is preferably 2, 3, 4, 5, 6, 7 or 8, structures of the formulas (IIIa) and (IIIb) being preferred and structures of the formula (IIIa) being particularly preferred.
  • (IIIb) and (IIIc) are at most 10, particularly preferably at most 8 and particularly preferably at most 6.
  • the at least two radicals R which form the structures of the formulas (RA-1) to (RA-12) and form a condensed ring, represent radicals R from adjacent X groups.
  • the at least two radicals R form a condensed ring with the other groups to which the two radicals R bond, the two radicals R preferably at least one of the structures of the formulas (RA-1a) to (RA- 4f) where the symbols R a and R 1 and the indices s and t have the meanings given above, in particular for formula (I), and the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2.
  • the compounds particularly preferably comprise at least one structure of the formulas (IVa) to (IVu), and the compounds are particularly preferably selected from compounds of the formulas (IVa) to (IVu)
  • Y 1 , Y 2 , Y 3 , X, Z, and R have the meanings given above, in particular for formula (I), the symbol o for the attachment points of at least one of the structures of the formulas (RA-1) to (RA- 12), the index I is 0, 1, 2, 3, 4 or 5, preferably 0, 1 or 2, the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, the index n is 0, 1, 2 or 3, preferably 0, 1 or 2, the index j is 0, 1 or 2, preferably 0 or 1, and the index k is 0 or 1, preferably 0, the sum of the indices k , j, I, m and n is preferably 0, 1, 2, 3, 4, 5 or 6.
  • Structures / compounds of the formulas (IVa) to (IVk) are preferred here and structures / compounds of the formulas (IVa) to (IVc) are particularly preferred.
  • Compounds according to the invention preferably comprise at least one structure of the formulas (IVa-1) to (IVb-4), particularly preferably compounds according to the invention are selected from the compounds of the formulas (IVa-1) to (IVb-4), where the indices s and v and the symbols Y 1 , Y 2 , Y 3 , Y 4 , X, Z, R, R a and R 1 have the meanings given above, in particular for formula (I), the index n 0, 1, 2 or 3, preferably 0, 1 or 2, and the index k is 0 or 1, preferably 0, the sum of the indices k and n preferably being 0, 1, 2, 3, 4, 5 or 6, particularly preferably 2, 3, 4 or 5
  • Compounds according to the invention preferably comprise at least one structure of the formulas (IVe-1) to (IVh-4), particularly preferably compounds according to the invention are selected from the compounds of the formulas (IVe-1) to (IVh-4),
  • the indices s and v, Y 1 , Y 2 , Y 4 , X, Z, R, R a and R 1 have the meanings given above, in particular for formula (I), the index m being 0, 1, 2, 3 or 4, preferably 0, 1 or 2, the index n is 0, 1, 2 or 3, preferably 0, 1 or 2, the index j is 0, 1 or 2, preferably 0 or 1, and the index k is 0 or 1, preferably 0, where the sum of the indices k, j, I, m and n is preferably 0, 1, 2, 3, 4, 5, 6, 7 or 8, particularly preferably 2, 3, 4, 5 or 6 is.
  • At least two radicals R form a condensed ring with the other groups to which the two radicals R bond, the two radicals R forming structures of the formula (RB) where R 1 has the meaning given above, in particular for formula (I), the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, and Y 5 is C (R 1 ) 2 , NR 1 , NAr, O or S, preferably C (R 1 ) 2 , NAr or O.
  • radicals R which form the structures of the formula (RB) and form a condensed ring, represent radicals R from adjacent X groups.
  • the compounds have at least two condensed rings, at least one condensed ring being formed by structures of the formulas (RA-1) to (RA-12) and another ring being formed by structures of the formulas (RA-1) to (RA-12) or (RB) is formed, the compounds comprising at least one structure of the formulas (Va) to (Vz), preferably the compounds are selected from the compounds of the formulas (Va) to (Vz),
  • Y 1 , Y 2 , Y 3 , X, Z, and R have the meanings given above, in particular for formula (I), the symbol o for There are attachment points of at least one structure of the formulas (RA-1) to (RA- 12) or a structure of the formula (RB), the index I is 0, 1, 2, 3, 4 or 5, preferably 0, 1 or 2, the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, the index n is 0, 1, 2 or 3, preferably 0, 1 or 2, the index j 0, 1 or 2, preferably 0 or 1, and the index k is 0 or 1, preferably 0, the sum of the indices k, j, I, m and n preferably being 0, 1, 2, 3 or 4, particularly preferably 2, 3 or 4 .
  • Structures / compounds of the formulas (Va) to (Vp) are preferred here and structures / compounds of the formulas (Va) to (Vd) are particularly preferred.
  • the sum of the indices k, j, I, m and n is preferably 0, 1, 2 or 3, preferably 1 or 2.
  • the formulas (Va) to (Vz) have at least two condensed rings, the condensed rings being the same and the part formed by two radicals R by at least one structure of the formulas (RA-1) to (RA -12) can be displayed.
  • the formulas (Va) to (Vz) have at least two condensed rings, the condensed rings being different and the part formed by two radicals R in each case by at least one structure of the formulas (RA-1) to ( RA-12) can be displayed.
  • the formulas (Va) to (Vz) have at least two condensed rings, wherein the condensed rings are different and one of the two condensed rings has a part formed by two radicals R, which is formed by at least one of the structures of the formulas (RA-1) to (RA-12) can be represented and one of the two condensed rings has a part formed by two radicals R which can be represented by one of the structures of the formula (RB).
  • compounds according to the invention preferably comprise at least one structure of the formulas (Va-1) to (Va-18), particularly preferably compounds according to the invention are selected from the compounds of the formulas (Va-1) to (Va-18),
  • the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2
  • the index n is 0, 1, 2 or 3, preferably 0, 1 or 2
  • the index k is 0 or 1
  • compounds according to the invention preferably comprise at least one structure of the formulas (Vc-1) to (Vc-18), particularly preferably compounds according to the invention are selected from the compounds of the formulas (Vc-1) to (Vc-18),
  • the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2
  • the index n is 0, 1, 2 or 3, preferably 0, 1 or 2
  • the index k is 0 or 1
  • the sum of the indices p 2 and p 3 is 2 and at least one of the groups Y 1 , Y 2 , Y 3 stands for a bond, at least one, preferably two of the groups Y 1 , Y 2 , Y 3 stands for B (Ar) or B (R) and Z stands for N and / or in the formulas (IIIa), (IVa) to (IVc), (Va) to (Vd), (Va-1) to (Va-18) or (Vc-1) to (Vc-18) at least one of the groups Y 1 , Y 2 , Y 3 stands for a bond, at least one, preferably two of the groups Y 1 , Y 2 , Y 3 stands for B (Ar) or B (R) and Z stands for N.
  • the sum of the indices p 2 and p 3 is 2 and at least two of the groups Y 1 , Y 2 , Y 3 , preferably all groups Y 1 , Y 2 , Y 3 stands for B (Ar) or B (R) and Z stands for N and / or in the formulas (IIIa), (IVa) to (IVc), (Va) to (Vd), (Va-1) to (Va-18) or (Vc-1) to (Vc-18) at least two of the groups Y 1 , Y 2 , Y 3 , preferably all groups Y 1 , Y 2 , Y 3 for B ( Ar) or B (R) stands / stand and Z stands for N.
  • the sum of the indices p 2 and p 3 is 2 and at least one of the groups Y 1 , Y 2 , Y 3 stands for a bond, at least one, preferably two of the groups Y 1 , Y 2 , Y 3 stands for N (Ar) or N (R) and Z stands for B and / or in the formulas (IIIa), (IVa) to (IVc), (Va) to (Vd), (Va-1) to (Va-18) or (Vc-1) to (Vc-18) at least one of the groups Y 1 , Y 2 , Y 3 represents a bond, at least one , preferably two of the groups Y 1 , Y 2 , Y 3 stands for N (Ar) or N (R) and Z stands for B.
  • the sum of the indices p 2 and p 3 is 2 and at least two of the groups Y 1 , Y 2 , Y 3 , preferably all groups Y 1 , Y 2 , Y 3 stands for N (Ar) or N (R) and Z stands for B and / or in the formulas (IIIa), (IVa) to (IVc), (Va) to (Vd) , (Va-1) to (Va-18) or (Vc-1) to (Vc-18) at least two of the groups Y 1 , Y 2 , Y 3 , preferably all groups Y 1 , Y 2 , Y 3 for N (Ar) or N (R) stands / stand and Z stands for B.
  • compounds according to the invention preferably comprise at least one structure of the formulas (Ve-1) to (Ve-18), particularly preferably compounds according to the invention are selected from the compounds of the formulas (Ve-1) to (Ve-18),
  • the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2
  • the index j is 0, 1 or 2, preferably 0 or 1
  • the index k is 0 or 1, preferably 0, the sum being of the indices j, k and m is preferably 0, 1, 2, 3, 4, 5, 6, 7 or 8, particularly preferably 0, 1, 2, 3 or 4.
  • compounds according to the invention preferably comprise at least one structure of the formulas (V 1-1) to (V 1-18); compounds according to the invention are particularly preferably selected from the compounds of the formulas (V 1-1) to (V 1-18) ),
  • the index m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2
  • the index n is 0, 1, 2 or 3, preferably 0, 1 or 2
  • the index j is 0, 1 or 2, preferably Is 0 or 1, where the sum of the Indices j, m and n is preferably 0, 1, 2, 3, 4, 5, 6, 7 or 8, particularly preferably 0, 1, 2, 3 or 4.
  • the sum of the indices p 2 and p 3 is 1 or the index p 2 is 1 and at least one of the groups Y 1 , Y 2 , Y 3 , preferably two of the groups Y 1 , Y 2 , Y 3 stands for B (Ar) or B (R) and Z stands for N and / or in the formulas (IIIb), (IVd) to (IVm), ( Ve) to (Vp), (Ve-1) to (Ve-18) or (V 1-1) to (V 1-18) at least one of the groups Y 1 , Y 2 , preferably both groups Y 1 , Y 2 stands for B (Ar) or B (R) and Z stands for N.
  • the sum of the indices p 2 and p 3 is 1 or the index p 2 is 1 and at least one of the groups Y 1 , Y 2 , Y 3 , preferably two of the groups Y 1 , Y 2 , Y 3 stands for N (Ar) or N (R) and Z stands for B and / or in the formulas (IIIb), (IVd) to (IVm), ( Ve) to (Vp), (Ve-1) to (Ve-18) or (V 1-1) to (V 1-18) at least one of the groups Y 1 , Y 2 , preferably both groups Y 1 , Y 2 stands for N (Ar) or N (R) and Z stands for B.
  • the substituents R and R a , R 1 and R 2 according to the above formulas with the ring atoms of the ring system to which the R and R a , R 1 and R 2 are bonded, do not form a condensed aromatic or heteroaromatic ring system.
  • R 1 and / or R 2 form a ring system with one another, this can be mono- or polycyclic, aliphatic, heteroaliphatic, aromatic or heteroaromatic.
  • the radicals which form a ring system with one another can be adjacent, ie these radicals are bonded to the same carbon atom or to carbon atoms that are directly bonded to one another, or they can be further apart.
  • the ring systems provided with the substituents R, R a , R 1 and / or R 2 can also be linked to one another via a bond be, so that a ring closure can be effected in this way.
  • each of the corresponding binding sites is preferably provided with a substituent R, R a , R 1 and / or R 2 .
  • a compound according to the invention is represented by at least one of the structures according to formula (I), (Ila) to (IIId), (IIIa) to (IIIc), (IVa) to (IVu), (IVa-1) to ( IVb-4), (IVe-1) to (IVh-4), (Va) to (Vz), (Va-1) to (Va-18), (Vc-1) to (Vc-18), ( Ve-1) to (Ve-18) and / or (V 1-1) to (V 1-18) can be displayed.
  • compounds according to the invention preferably comprising structures according to formula (I), (Ila) to (IIId), (IIIa) to (IIIc), (IVa) to (IVu), (IVa-1) to (IVb-4), (IVe-1) to (IVh-4), (Va) to (Vz), (Va-1) to (Va-18), (Vc-1) to (Vc-18), (Ve-1) to (Ve-18) and / or (V 1-1) to (V 1-18) have a molecular weight of less than or equal to 5000 g / mol, preferably less than or equal to 4000 g / mol, particularly preferably less than or equal to 3000 g / mol , especially preferably less than or equal to 2000 g / mol and very particularly preferably less than or equal to 1200 g / mol.
  • preferred compounds according to the invention are distinguished by the fact that they can be sublimed. These compounds generally have a molar mass of less than approx. 1200 g / mol.
  • Preferred aromatic or heteroaromatic ring systems R, R a and / or Ar are selected from phenyl, biphenyl, in particular ortho-, meta- or para-biphenyl, terphenyl, in particular ortho-, meta-, para- or branched terphenyl, quaterphenyl, in particular ortho-, meta-, para- or branched quaterphenyl, fluorene, which can be linked via the 1-, 2-, 3- or 4-position, spirobifluorene, which is linked via the 1-,
  • 2-, 3- or 4-position can be linked, naphthalene, in particular 1- or 2-linked naphthalene, indole, benzofuran, benzothiophene, carbazole, which can be linked via the 1-, 2-, 3- or 4-position , Dibenzofuran, which can be linked via the 1-, 2-, 3- or 4-position, dibenzothiophene, which can be linked via the 1-, 2-, 3- or 4-position, indenocarbazole, indolocarbazole, pyridine, pyrimidine , Pyrazine, pyridazine, triazine, quinoline, isoquinoline, quinazoline, quinoxaline, Phenanthrene or triphenylene, each of which can be substituted by one or more radicals R 1.
  • At least one substituent R is selected from the group consisting of H, D or an aromatic or heteroaromatic ring system selected from the groups of the following formulas Ar-1 to Ar-75, the substituents R preferably being either one Ring according to the structures of the formulas (RA-1) to (RA-12) or (RB) or the substituent R, identically or differently on each occurrence, is selected from the group consisting of H, D or an aromatic or heteroaromatic ring system selected from the groups of the following formulas Ar-1 to Ar-75, and / or the group Ar, identically or differently on each occurrence, is selected from the groups of the following formulas Ar-1 to Ar-75,
  • Binding represents the connection point and the following still applies:
  • Ar 1 is on each occurrence, identically or differently, a bivalent aromatic or heteroaromatic ring system with 6 to 18 aromatic ring atoms, which can in each case be substituted by one or more radicals R 1;
  • the above-mentioned groups for Ar have several groups A, then all combinations from the definition of A come into consideration. Preferred embodiments are then those in which one group A is NR 1 and the other group A is C (R 1 ) 2 or in which both groups A are NR 1 or in which both groups A are 0. If A stands for NR 1 , the substituent R 1 which is bonded to the nitrogen atom preferably stands for an aromatic or heteroaromatic ring system with 5 to 24 aromatic ring atoms, which can also be substituted by one or more radicals R 2.
  • this substituent R 1 identically or differently on each occurrence, represents an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, in particular with 6 to 18 aromatic ring atoms, which has no condensed aryl groups and which has no condensed heteroaryl groups in which two or more aromatic or heteroaromatic 6-ring groups are fused directly to one another, and which in each case can also be substituted by one or more radicals R 2.
  • Triazine, pyrimidine and quinazoline are also preferred, as listed above for Ar-47 to Ar-50, Ar-57 and Ar-58, it being possible for these structures to be substituted by one or more radicals R 2 instead of R 1.
  • R is selected from the group consisting of H, D, F, CN, NO 2 , Si (R 1 ) 3 , B (OR 1 ) 2 , a straight-chain alkyl group with 1 up to 20 carbon atoms or a branched or cyclic alkyl group with 3 to 20 carbon atoms, where the alkyl group can in each case be substituted by one or more radicals R 1 , or an aromatic or heteroaromatic ring system with 5 to 60 aromatic ring atoms is preferred with 5 to 40 aromatic ring atoms, each of which can be substituted by one or more radicals R 1.
  • R is selected from the group consisting of H, D, F, a straight-chain alkyl group with 1 to 20 C atoms or a branched or cyclic alkyl group with 3 to 20 C atoms, where the alkyl group can in each case be substituted by one or more radicals R 1 , or an aromatic or heteroaromatic ring system with 5 to 60 aromatic ring atoms, preferably with 5 to 40 aromatic ring atoms, each of which can be substituted by one or more radicals R 1.
  • At least one substituent R is selected from the group consisting of H, D, an aromatic or heteroaromatic ring system with 6 to 30 aromatic ring atoms, which can be substituted with one or more radicals R 1 , or a group N (Ar) 2 .
  • the substituents R either form a ring according to the structures of the formulas (RA-1) to (RA-12) or (RB) or R is selected, identically or differently on each occurrence, from the group consisting of H , D, an aromatic or heteroaromatic ring system with 6 to 30 aromatic ring atoms, which can be substituted by one or more radicals R 1 , or a group N (Ar) 2 .
  • R is particularly preferably selected identically or differently on each occurrence from the group consisting of H or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, preferably with 6 to 18 aromatic ring atoms, particularly preferably with 6 to 13 aromatic ring atoms , which can be substituted in each case with one or more radicals R 1.
  • R a is selected from the group consisting of a straight-chain alkyl group with 1 to 20 carbon atoms or a branched or cyclic alkyl group with 3 to 20 carbon atoms, the alkyl group each can be substituted by one or more radicals R 1 , or an aromatic or heteroaromatic ring system with 5 to 60 aromatic ring atoms, preferably with 5 to 40 aromatic ring atoms, which can each be substituted by one or more radicals R 1.
  • R a is selected identically or differently on each occurrence from the group consisting of a straight-chain alkyl group with 1 to 10 carbon atoms or a branched or cyclic alkyl group with 3 to 10 carbon atoms, the alkyl group in each case can be substituted by one or more radicals R 1 , an aromatic or heteroaromatic ring system with 6 to 30 aromatic ring atoms, which can be substituted by one or more radicals R 1.
  • R a is particularly preferably selected identically or differently on each occurrence from the group consisting of a straight-chain alkyl group with 1 to 5 carbon atoms or a branched or cyclic alkyl group with 3 to 5 carbon atoms, the alkyl group each having one or more radicals R 1 can be substituted or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, preferably with 6 to 18 aromatic ring atoms, particularly preferably with 6 to 13 aromatic ring atoms, each of which is substituted by one or more radicals R 1 can.
  • R a is selected identically or differently at each occurrence from the group consisting of a straight-chain alkyl group with 1 to 6 carbon atoms or a cyclic alkyl group with 3 to 6 carbon atoms, the alkyl group in each case with one or more radicals R 1 can be substituted, or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, which can in each case be substituted by one or more radicals R 1; two radicals R a here can also form a ring system with one another.
  • R a is particularly preferably selected identically or differently on each occurrence from the group consisting of a straight-chain alkyl group with 1, 2, 3 or 4 carbon atoms or a branched or cyclic alkyl group with 3 to 6 carbon atoms, the alkyl group can be substituted in each case with one or more radicals R 1 , but is preferably unsubstituted, or an aromatic ring system with 6 to 12 aromatic ring atoms, in particular with 6 aromatic ring atoms, each by one or more, preferably non-aromatic radicals R 1 can be substituted, but is preferably unsubstituted; two radicals R a here can form a ring system with one another form.
  • R a is very particularly preferably selected identically or differently on each occurrence from the group consisting of a straight-chain alkyl group having 1, 2, 3 or 4 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms.
  • R a very particularly preferably represents a methyl group or a phenyl group, where two phenyl groups can together form a ring system, a methyl group being preferred over a phenyl group.
  • Preferred aromatic or heteroaromatic ring systems R, R a and Ar are selected from phenyl, biphenyl, especially ortho-, meta- or para-biphenyl, terphenyl, especially ortho-, meta-, para- or branched terphenyl, quaterphenyl, especially ortho- , meta-, para- or branched quaterphenyl, fluorene which can be linked via the 1-, 2-, 3- or 4-position, spirobifluorene which is linked via the 1-, 2-, 3- or 4-position can, naphthalene, in particular 1- or 2-linked naphthalene, indole, benzofuran, benzothiophene, carbazole, which can be linked via the 1-, 2-, 3- or 4-position, dibenzofuran, which can be linked via the 1-, 2- , 3- or 4- position, dibenzothiophene, which can be linked via the 1-, 2-, 3- or 4-position, indenocarbazole, indolocarba
  • Ar-1 to Ar-75 listed above are particularly preferred, structures of the formulas (Ar-1), (Ar-2), (Ar-3), (Ar-12), (Ar-13), ( Ar-14), (Ar-15), (Ar-16), (Ar-69), (Ar-70), (Ar-75), preferred and structures of the formulas (Ar-1), (Ar-2 ), (Ar-3), (Ar-12), (Ar-13), (Ar-14), (Ar-15), (Ar-16) are particularly preferred.
  • R are groups of the formula -Ar 4 -N (Ar 2 ) (Ar 3 ), where Ar 2 , Ar 3 and Ar 4, identically or differently on each occurrence, represent an aromatic or heteroaromatic ring system with 5 to 24 aromatic Ring atoms stand, which can be substituted in each case with one or more radicals R 1.
  • the total number of aromatic ring atoms of Ar 2 , Ar 3 and Ar 4 is a maximum of 60 and preferably a maximum of 40.
  • Ar 4 and Ar 2 can be linked to one another and / or Ar 2 and Ar 3 to one another by a group selected from a single bond, C (R 1 ) 2 , NR 1 , O or S.
  • the linkage of Ar 4 and Ar 2 with one another or of Ar 2 and Ar 3 with one another is preferably carried out ortho to the position of the linkage with the nitrogen atom, so that, for example and preferably, a carbazole is formed.
  • none of the groups Ar 2 , Ar 3 or Ar 4 are connected to one another.
  • Ar 4 is preferably an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, preferably with 6 to 12 aromatic ring atoms, which can in each case be substituted by one or more radicals R 1 .
  • Ar 4 is particularly preferably selected from the group consisting of ortho-, meta- or para-phenylene or ortho-, meta- or para-biphenyl, which can each be substituted by one or more radicals R 1 , but are preferably unsubstituted.
  • Ar 4 is very particularly preferably an unsubstituted phenylene group.
  • Ar 2 and Ar 3 are preferably, identically or differently on each occurrence, an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, which can in each case be substituted by one or more radicals R 1.
  • Particularly preferred groups Ar 2 and Ar 3 are selected from the group consisting of benzene, ortho-, meta- or para-biphenyl, ortho-, meta-, para- or branched terphenyl, ortho-, meta -, para- or branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1-, 2-, 3- or 4-spirobifluorenyl, 1- or 2-naphthyl, indole, benzofuran, benzothiophene , 1-, 2-,
  • Ar 2 and Ar 3 are very particularly preferably selected from the group consisting of benzene, biphenyl, in particular ortho-, meta- or para-biphenyl, terphenyl, in particular ortho-, meta-, para or branched Ter - phenyl, quaterphenyl, especially ortho-, meta-, para- or branched quaterphenyl, fluorene, especially 1-, 2-, 3- or 4-fluorene, or spirobifluorene, especially 1-, 2-, 3- or 4- Spirobifluoren.
  • R 1 identically or differently on each occurrence, is selected from the group consisting of H, D, F, CN, a straight-chain alkyl group with 1 to 10 carbon atoms or a branched or cyclic alkyl group with 3 up to 10 carbon atoms, where the alkyl group can be substituted by one or more radicals R 2 , or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, each of which can be substituted by one or more radicals R 2.
  • R 1 identically or differently on each occurrence, is selected from the group consisting of H, a straight-chain alkyl group with 1 to 6 carbon atoms, in particular with 1, 2, 3 or 4 carbon atoms, or a branched or cyclic alkyl group with 3 to 6 carbon atoms, where the alkyl group can be substituted with one or more radicals R 5 , but is preferably unsubstituted, or an aromatic or heteroaromatic ring system with 6 to 13 aromatic ring atoms, each by a or more radicals R 5 can be substituted, but is preferably unsubstituted.
  • R 2 identically or differently on each occurrence, is H, an alkyl group with 1 to 4 carbon atoms or an aryl group with 6 to 10 carbon atoms which is substituted by an alkyl group with 1 to 4 carbon atoms can be, but is preferably unsubstituted.
  • the alkyl groups preferably have no more than five carbon atoms, particularly preferably no more than 4 carbon atoms, very particularly preferably no more than 1 carbon atom.
  • compounds are also suitable which are substituted with alkyl groups, in particular branched alkyl groups, with up to 10 carbon atoms or which are substituted with oligoarylene groups, for example ortho-, meta-, para- or branched terphenyl or quaterphenyl groups, are substituted.
  • the compound has exactly two or exactly three structures according to formula (I), (Ila) to (IIId), (IIIa) to (IIIc), (IVa) to (IVu), (IVa-1) to (IVb-4), (IVe-1) to (IVh-4), (Va) to (Vz), (Va-1) to (Va-18), (Vc-1) to (Vc-18), (Ve-1) to (Ve-18) and / or (V 1-1) to (V 1-18), where preferably one of the groups Y 1 , Y 2 , Y 3 or one of the aromatic or heteroaromatic ring systems, to which at least one of the groups Y 1 , Y 2 , Y 3 binds, is shared by both structures.
  • the compounds comprise at least one of the structures of the formulas (D-1) to (D-4), the compounds of the formulas (D-1) to (D-4) particularly preferably corresponding
  • the group L 1 represents a connecting group, preferably a bond or an aromatic or heteroaromatic ring system with 5 to 40, preferably 5 to 30 aromatic ring atoms, which can be substituted by one or more radicals R 1 , and the other symbols and indices used have the meanings given above, in particular for formula (I).
  • L 1 represents a bond or an aromatic or heteroaromatic ring system with 5 to 14 aromatic or heteroaromatic ring atoms, preferably an aromatic ring system with 6 to 12 carbon atoms, which can be substituted by one or more radicals R 1 , but is preferably unsubstituted, where R 1 can have the meaning given above, in particular for formula (I).
  • L 1 is particularly preferably an aromatic ring system with 6 to 10 aromatic ring atoms or a heteroaromatic ring system with 6 to 13 heteroaromatic ring atoms, which can be substituted by one or more radicals R 2 , but is preferably unsubstituted, where R 2 is the may have the meaning given above, in particular for formula (I).
  • the symbol L 1 set out in formula (D4) stands identically or differently on each occurrence for a bond or an aryl or fleteroaryl radical having 5 to 24 ring atoms, preferably 6 to 13 ring atoms, particularly preferably 6 to 10 ring atoms, so that an aromatic or heteroaromatic group of an aromatic or heteroaromatic ring system is bonded directly, ie via an atom of the aromatic or heteroaromatic group, to the respective atom of the further group.
  • the group L 1 set out in formula (D4) comprises an aromatic ring system with at most two condensed aromatic and / or heteroaromatic 6-membered rings, preferably no condensed aromatic or heteroaromatic ring system. Accordingly, naphthyl structures are preferred over anthracene structures. Furthermore, fluorenyl, spirobifluorenyl, dibenzofuranyl and / or dibenzothienyl structures are preferred over naphthyl structures.
  • Suitable aromatic or heteroaromatic ring systems L 1 are selected from the group consisting of ortho-, meta- or para-phenylene, ortho-, meta- or para-biphenylene, terphenylene, especially branched terphenylene, quaterphenylene, especially branched quaterphenylene, fluorenylene, Spirobifluorenylene, dibenzofuranylene, dibenzothienylene and carbazolylene, each of which can be substituted by one or more radicals R 1 , but are preferably unsubstituted.
  • the compounds according to the invention can in principle be prepared by various methods. However, the methods described below have proven to be particularly suitable.
  • the present invention therefore also provides a process for the preparation of the compounds according to the invention, in which a basic structure is synthesized with a group Z or a precursor of the group Z and at least one of the groups Y 1 , Y 2 , Y 3 is synthesized by means of a nucleophile aromatic substitution reaction or a coupling reaction is introduced.
  • Suitable compounds comprising at least one heterocyclic structure can in many cases be obtained commercially, the starting compounds set out in the examples being obtainable by known processes, so that reference is made to them.
  • Particularly suitable and preferred coupling reactions are those according to BUCHWALD, SUZUKI, YAMAMOTO, STILLE, HECK, NEGISHI, SONOGASHIRA and HIYAMA. These reactions are well known, the examples providing further guidance to those skilled in the art.
  • the compounds according to the invention can be obtained in high purity, preferably more than 99% (determined by means of 1 H-NMR and / or HPLC).
  • the compounds according to the invention can also be mixed with a polymer. It is also possible to incorporate these compounds covalently into a polymer. This is possible in particular with compounds which are substituted with reactive leaving groups such as bromine, iodine, chlorine, boronic acid or boronic acid esters, or with reactive, polymerizable groups such as olefins or oxetanes. These can be used as monomers for producing corresponding oligomers, dendrimers or polymers.
  • the oligomerization or polymerization takes place preferably via the halogen functionality or the boronic acid functionality or via the polymerizable group. It is also possible to crosslink the polymers via such groups.
  • the compounds and polymers according to the invention can be used as a crosslinked or uncrosslinked layer.
  • the invention therefore further relates to oligomers, polymers or dendrimers containing one or more of the structures of the formula (I) listed above and preferred embodiments of this formula or compounds according to the invention, where one or more bonds of the compounds according to the invention or the structures of the formula (I) and preferred embodiments of this formula for the polymer, oligomer or dendrimer are present.
  • these therefore form a side chain of the oligomer or polymer or are linked in the main chain.
  • the polymers, oligomers or dendrimers can be conjugated, partially conjugated or non-conjugated.
  • the oligomers or polymers can be linear, branched or dendritic. The same preferences as described above apply to the repeating units of the compounds according to the invention in oligomers, dendrimers and polymers.
  • the monomers according to the invention are homopolymerized or copolymerized with other monomers. Preference is given to copolymers in which the units of the formula (I) or the preferred embodiments set out above and below are present in amounts of 0.01 to 99.9 mol%, preferably 5 to 90 mol%, particularly preferably 20 to 80 mol%.
  • Suitable and preferred comonomers which form the polymer backbone are selected from fluorene (e.g. according to EP 842208 or WO 2000/022026), spirobifluoren (e.g. according to EP 707020, EP 894107 or WO 2006/061181), para-phenylenes (e.g.
  • WO 92/18552 carbazoles (e.g. according to WO 2004/070772 or WO 2004/113468), thiophenes (e.g. according to EP 1028136), dihydrophenanthrenes (e.g. according to WO 2005 / 014689), cis- and trans-indenofluorenes (e.g. according to WO 2004/041901 or WO 2004/113412), ketones (e.g. according to WO 2005/040302), phenanthrenes (e.g. according to WO 2005/104264 or WO 2007/017066) or several of these units.
  • the polymers, oligomers and dendrimers can also contain further units, for example hole transport units, in particular those based on triarylamines, and / or electron transport units.
  • compounds according to the invention which are distinguished by a high glass transition temperature are of particular interest.
  • compounds according to the invention are particularly preferred, comprising structures according to the formula (I) or the preferred embodiments set out above and below which have a glass transition temperature of at least 70 ° C., particularly preferably of at least 110 ° C., very particularly preferably of at least 125 ° C and particularly preferably at least 150 ° C, determined according to DIN 51005 (version 2005-08).
  • formulations of the compounds according to the invention are required. These formulations can be, for example, solutions, dispersions or emulsions. It can be preferred to use mixtures of two or more solvents for this purpose.
  • Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrole, THF, methyl THF, THP, chlorobenzene, dioxane, phenoxytoluene, in particular 3-phenoxytoluene , (-) - fenchone, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3- Methyl anisole, 4-methyl anisole, 3,4-dimethyl anisole, 3,5-dimethyl anisole, acetophenone, a-terpineol, benzothiazole, butyl benzoate, cumene, cyclohexanol, cyclohexanone, cyclohexylbenzene
  • the present invention therefore also provides a formulation or a composition containing at least one compound according to the invention and at least one further compound.
  • the further compound can be, for example, a solvent, in particular one of the solvents mentioned above or a mixture of these solvents. If the further compound comprises a solvent, this mixture is referred to herein as a formulation.
  • the further compound can, however, also be at least one further organic or inorganic compound which is also used in the electronic device, for example an emitter and / or a matrix material, these compounds differing from the compounds according to the invention. Suitable emitters and matrix materials are listed below in connection with the organic electroluminescent device.
  • the further compound can also be polymeric, optionally equipped with groups for further crosslinking.
  • the present invention therefore again further provides a composition containing a compound according to the invention and at least one further organically functional material.
  • Functional materials are generally the organic or inorganic materials that are inserted between the anode and cathode.
  • the organically functional material selected from the group consisting of fluorescent emitters, phosphorescent emitters, emitters that show TADF (thermally activated delayed fluorescence), host materials, electron transport materials, electron injection materials, hole conductor materials, hole injection materials, electron blocking materials, hole blocking materials, wide- Band gap materials and n-dopants.
  • Another object of the present invention is the use of a compound according to the invention in an electronic device, in particular in an organic electroluminescent device, preferably as an emitter, particularly preferably as a blue emitter.
  • compounds according to the invention preferably show fluorescent properties and thus preferably provide fluorescent emitters.
  • the compounds according to the invention for converting light can be used in color converters.
  • An electronic device containing at least one compound according to the invention.
  • An electronic device in the sense of the present invention is a device which contains at least one layer which contains at least one organic compound.
  • the component can also contain inorganic materials or layers that are made entirely of inorganic materials.
  • the electronic device is preferably selected from the group consisting of organic electroluminescent devices (OLEDs, sOLED, PLEDs, LECs, etc.), preferably organic light-emitting diodes (OLEDs), organic light- emitting diodes based on small molecules (sOLEDs), organic light-emitting diodes based on polymers (PLEDs), light-emitting electrochemical cells (LECs), organic laser diodes (O lasers), “organic plasmon emitting devices” (DM Koller et al., Nature Photonics 2008, 1-4); organic integrated circuits (O-ICs), organic field-effect transistors (O-FETs), organic Thin film transistors (O-TFTs), organic light emitting transistors (O-LETs), organic solar cells (O-SCs), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs) and organic electrical sensors, preferably organic electroluminescent devices
  • OLEDs organic electroluminescent devices
  • the organic electroluminescent device contains a cathode, anode and at least one emitting layer. In addition to these layers, it can also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, electron blocking layers and / or charge generation layers. Interlayers, which for example have an exciton-blocking function, can also be introduced between two emitting layers. It should be noted, however, that not all of these layers necessarily have to be present.
  • the organic electroluminescent device can contain an emitting layer, or it can contain a plurality of emitting layers.
  • the organic electroluminescent device according to the invention can also be a tandem electroluminescent device, in particular for white-emitting OLEDs.
  • the compound according to the invention can be used in different layers, depending on the precise structure.
  • a suitable matrix material which is known as such is preferably used.
  • a preferred mixture of the compound according to the invention and a matrix material contains between 99 and 1% by volume, preferably between 98 and 10% by volume, particularly preferably between 97 and 60% by volume, in particular between 95 and 80% by volume of matrix material based on the total mixture of emitter and matrix material.
  • the mixture contains between 1 and 99% by volume, preferably between 2 and 90% by volume, particularly preferably between 3 and 40% by volume, in particular between 5 and 20% by volume of the emitter, based on the Total mixture of emitter and matrix material.
  • Suitable matrix materials which can be used in combination with the compounds according to the invention are aromatic ketones, aromatic phosphine oxides or aromatic sulfoxides or sulfones, eg. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, carbazole derivatives, e.g. B. CBP (N, N-biscarbazolylbiphenyl) or those in WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527, WO 2008/086851 or WO 2013/041176, indolocarbazole derivatives, e.g. B.
  • indenocarbazole derivatives e.g. B. according to WO 2010/136109, WO 2011/000455, WO 2013/041176 or WO 2013/056776, azacarbazole derivatives, e.g. B. according to EP 1617710, EP 1617711, EP 1731584, JP 2005/347160, bipolar matrix materials, e.g. B. according to WO 2007/137725, silanes, e.g. B. according to WO 2005/111172, aza borole or boronic ester, z. B. according to WO 2006/117052, triazine derivatives, e.g. B.
  • WO 2012/048781 dibenzofuran derivatives, e.g. B. according to WO 2015/169412, WO 2016/015810, WO 2016/023608, WO 2017/148564 or WO 2017/148565 or biscarbazole, e.g. B. according to JP 3139321 B2.
  • Further preferred matrix or host materials are anthracenes. Particularly preferred anthracenes are disclosed in WO 2014/106523 A1, very particularly those of the formula (II). Further particularly preferred anthracenes are disclosed in WO2007 / 065547 A1, very particularly those of the formulas (2) and (3) and in particular those of the formulas (A1) to (A64). Furthermore, particularly preferred anthracenes are disclosed in WO2007 / 065548 A1, very particularly those of the formula (1) and in particular those of the formulas H1 to H20.
  • connection can be used as a co-host which does not participate or does not participate to a significant extent in the charge transport, as described, for example, in WO 2010/108579.
  • compounds which have a large band gap and which themselves do not, or at least not to a significant extent, participate in the charge transport of the emitting layer are suitable as co-matrix material.
  • Such materials are preferably pure hydrocarbons. Examples of such materials can be found, for example, in WO 2009/124627 or in WO 2010/006680.
  • a compound according to the invention which is used as an emitter is used, preferably in combination with one or more phosphorescent materials (triplet emitter) and / or a compound which is a TADF (thermally activated delayed fluorescence) floss material.
  • a hyperfluorescence and / or hyperphosphorescence system is preferably formed here.
  • WO 2015/091716 A1 and WO 2016/193243 A1 disclose OLEDs which contain both a phosphorescent compound and a fluorescent emitter in the emission layer, the energy being transferred from the phosphorescent compound to the fluorescent emitter (hyperphosphorescence).
  • the phosphorescent compound behaves like a host material.
  • host materials have higher singlet and triplet energies compared to the emitter, so that the energy of the host material is also transferred to the emitter as optimally as possible.
  • the systems disclosed in the prior art have precisely such an energy relation.
  • Phosphorescence in the context of this invention is understood to mean the luminescence from an excited state with a higher spin multiplicity, that is to say a spin state> 1, in particular from an excited triplet state.
  • a spin state> 1 in particular from an excited triplet state.
  • all luminescent complexes with transition metals or lanthanides, in particular all iridium, platinum and copper complexes are to be regarded as phosphorescent compounds.
  • Particularly suitable phosphorescent compounds are compounds which, when suitably excited, emit light, preferably in the visible range, and also at least one atom with an atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80 contain, in particular a metal with this atomic number.
  • Compounds containing copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium are preferably used as phosphorescence emitters, in particular compounds containing iridium or platinum.
  • Examples of the emitters described above can be found in the applications WO 00/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO 05/033244, WO 05/019373, US 2005 / 0258742, WO 2009/146770, WO 2010/015307, WO 2010/031485, WO 2010/054731, WO 2010/054728, WO 2010/086089,
  • WO 2010/099852 WO 2010/102709, WO 2011/032626, WO 2011/066898, WO 2011/157339, WO 2012/007086, WO 2014/008982,
  • WO 2016/124304 WO 2017/032439, WO 2018/011186, WO 2018019687, WO 2018019688, WO 2018041769, WO 2018054798, WO 2018069196, WO 2018069197, WO 2018069273, WO 2018134392, WO 2018178001, WO 2018177981, WO 20190205423, ,
  • WO 2019158453 and WO 2019179909 can be found.
  • all phosphorescent complexes are suitable as they are used according to the prior art for phosphorescent electroluminescent devices and as are known to the person skilled in the art in the field of organic electroluminescence, and the person skilled in the art can use further phosphorescent complexes without inventive effort.
  • a compound according to the invention can preferably be used in combination with a TADF floss material and / or a TADF emitter, as set out above.
  • TADF thermally activated delayed fluorescence
  • S 1 -T 1 singlet-triplet distance
  • a further connection can be provided in the matrix in addition to the emitter, which has a strong spin-orbit coupling, so that an inter-system crossing is made possible via the spatial proximity and the possible interaction between the molecules, or the Spin-orbit coupling is generated via a metal atom contained in the emitter.
  • the organic electroluminescent device according to the invention does not contain a separate hole injection layer and / or hole transport layer and / or hole blocking layer and / or electron transport layer, ie the emitting layer directly adjoins the hole injection layer or the anode, and / or the emitting layer directly adjoins the electron transport layer or the electron injection layer or the cathode, such as for example described in WO 2005/053051.
  • a metal complex which is the same or similar to the metal complex in the emitting layer, directly adjacent to the emitting layer as a hole transport or hole injection material, e.g. B. described in WO 2009/030981.
  • An organic electroluminescent device is also preferred, characterized in that one or more layers are coated with a sublimation process.
  • the materials are vapor-deposited in vacuum sublimation systems at an initial pressure of less than 10 -5 mbar, preferably less than 10 -6 mbar. But it is also possible that the initial pressure is even lower, for example less than 10 -7 7 mbar.
  • An organic electroluminescent device is likewise preferred, characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) process or with the aid of a carrier gas sublimation. The materials are applied at a pressure between 10 -5 mbar and 1 bar.
  • OVPD Organic Vapor Phase Deposition
  • a special case of this process is the OVJP (Organic Vapor Jet Printing) process, in which the materials are applied directly through a nozzle and structured in this way, see BMS Arnold et al., Appl. Phys. Lett. 2008, 92, 053301.
  • an organic electroluminescent device characterized in that one or more layers of solution, such as, for. B. by spin coating, or with any printing process, such as. B. screen printing, flexographic printing, offset printing, LITI (Light Induced Thermal Imaging, thermal transfer printing), ink-jet printing (inkjet printing) or nozzle printing. This requires soluble compounds, which can be obtained, for example,
  • Formulations for applying a compound according to formula (I) or their or their preferred embodiments set out above are new.
  • the present invention therefore also relates to formulations containing at least one solvent and a compound according to formula (I) or their preferred embodiments set out above.
  • Hybrid methods are also possible in which, for example, one or more layers are applied from solution and one or more additional layers are vapor-deposited.
  • the compounds according to the invention and the organic electroluminescent devices according to the invention are distinguished from the prior art in particular by an improved service life.
  • the other electronic properties of the electroluminescent devices such as efficiency or operating voltage, remain at least as good.
  • the compounds according to the invention and the organic electroluminescent devices according to the invention are distinguished from the prior art in particular by an improved efficiency and / or operating voltage and a longer service life.
  • the electronic devices according to the invention, in particular organic electroluminescent devices are distinguished by one or more of the following surprising advantages over the prior art:
  • Electronic devices in particular organic electroluminescent devices containing compounds according to formula (I) or the preferred embodiments set out above and below as emitters have very narrow emission bands with low FWHM values (full width half maximum) and lead to particularly pure color emission , recognizable by the small CIE y values.
  • Electronic devices in particular organic electroluminescent devices containing compounds according to formula (I) or the preferred embodiments set out above and below as emitters have excellent efficiency.
  • compounds according to the invention according to formula (I) or the preferred embodiments set out above and below bring about a low operating voltage when used in electronic devices.
  • optical loss channels can be avoided in electronic devices, in particular organic electroluminescent devices. As a result, these devices are characterized by a high PL and thus high EL efficiency of emitters and excellent energy transfer from the matrices to dopants.
  • the following syntheses are carried out under a protective gas atmosphere in dried solvents.
  • the metal complexes are also handled with exclusion of light or under yellow light.
  • the solvents and reagents can e.g. B. from Sigma-ALDRICH or ABCR.
  • the respective information in square brackets or the numbers given for individual compounds relate to the CAS numbers of the compounds known from the literature. In the case of compounds that can have several enantiomeric, diastereomeric or tautomeric forms, one form is shown as a representative.
  • the purification is carried out by recrystallization from acetonitrile with the addition of DCM or by flash chromatography, silica gel, n-heptane / ethyl acetate, automatic column machine Torrent from A. Semrau. Drying at T ⁇ 160 ° C, p ⁇ 10 -3 mbar.
  • Step 2 transmetalation and cyclization
  • reaction mixture is cooled again to -40 ° C. 10.4 ml (110 mmol) boron tribromide are added dropwise over a period of about 10 minutes. After the addition is complete, the reaction mixture is stirred at RT for 1 h. The reaction mixture is then cooled to 0 ° C. and 19.2 ml (110 mmol) of diisopropylethylamine are added dropwise over a period of about 30 minutes. The reaction mixture is then stirred at 160 ° C. for 16 h. After cooling, the diisopropylethylammmonium hydrobromide is filtered off with suction using a reverse frit and the filtrate is cooled to -78 ° C.
  • the organyl lithium is suspended in 300 ml of toluene and transferred to the cryogenic reaction mixture from step 2. The mixture is stirred for 1 h and the reaction mixture is allowed to warm to RT overnight. The reaction mixture is carefully mixed with 15 ml of acetone and concentrated to dryness. The oily residue is absorbed on ISOLUTE ® with DCM and with a n-pentane-DCM mixture (10: 1) hot filtered through a silica gel bed. The filtrate is concentrated to dryness. The residue is flash chromatographed twice, silica gel, n-heptane / ethyl acetate, automatic column machine Torrent from A. Semrau.
  • Step 2 transmetalation and cyclization
  • reaction mixture is cooled again to -40 ° C. 5.7 ml (60 mmol) of boron tribromide are added dropwise over a period of about 10 minutes. After the addition is complete, the reaction mixture is stirred at RT for 1 h. Then the reaction mixture is cooled to 0 ° C and over a For a period of about 30 minutes, 21.0 ml (120 mmol) of di-isopropylethylamine are added dropwise. The reaction mixture is then stirred at 130 ° C. for 5 h. After cooling, it is diluted with 500 ml of toluene, hydrolyzed by adding 300 ml of aqueous 10% strength by weight potassium acetate solution, and the org.
  • OLEDs according to the invention and OLEDs according to the prior art are produced by a general method according to WO 2004/058911, which is adapted to the conditions described here (layer thickness variation, materials used).
  • the OLEDs basically have the following layer structure: substrate / hole injection layer 1 (HIL1) consisting of Ref-HTM1 doped with 5% NDP-9 (commercially available from Novaled), 20 nm / hole transport layer 1 (HTL1) made of 160 nm HTM1 / Emission layer (EML) 20 nm / Hole blocking layer (HBL) 10 nm / Electron transport layer (ETL) 20 nm / electron injection layer (EIL) made of 1 nm ETM2 / and finally a cathode.
  • the cathode is formed by a 100 nm thick aluminum layer.
  • the emission layer always consists of at least one matrix material (host material, host material) and an emitting dopant (dopant, emitter), which is added to the matrix material or matrix materials by co-evaporation in a certain volume proportion.
  • a specification such as SMB1: D1 (95: 5%) means that the material SMB1 is present in the layer in a volume proportion of 95% and D1 in a proportion of 5%.
  • the electron transport layer can also consist of a mixture of two materials.
  • Table 1 The materials used to produce the OLEDs are shown in Table 3.
  • the OLEDs are characterized as standard.
  • the electroluminescence spectra, the current efficiency (measured in cd / A), the power efficiency (measured in Im / W) and the external quantum efficiency (EQE, measured in percent) are calculated as a function of the luminance, calculated from current-voltage-luminance characteristics ( IUL characteristics) assuming a Lambertian radiation characteristic.
  • the electroluminescence spectra are determined at a luminance of 1000 cd / m 2 and the CIE 1931 y color coordinates are calculated therefrom.
  • the compounds according to the invention can be used, inter alia, as a dopant in the emission layer in OLEDs.
  • Compounds according to Table 3 are used as a comparison according to the prior art.
  • the results of the OLEDs are summarized in Table 2.
  • Table 1 Structure of the OLEDs
  • Table 2 Results of the vacuum-processed OLEDs
  • Table 3 List of materials used Compared to the references, the compounds according to the invention show narrower electroluminescence spectra, recognizable from the lower FWHM values (full width half maximum - width of the emission spectra in nm at half the peak height). This leads to smaller CIE y color coordinates, correspondingly improved color purity. In addition, they sometimes show higher efficiencies and lower operating voltages, which also leads to improved power efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

L'invention concerne des composés qui sont appropriés pour être utilisés dans des dispositifs électroniques, ainsi que des dispositifs électroniques, en particulier des dispositifs électroluminescents organiques, qui contiennent lesdits composés.
EP20829883.6A 2019-12-19 2020-12-16 Composés polycycliques pour dispositifs électroluminescents organiques Pending EP4077336A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19217948 2019-12-19
PCT/EP2020/086412 WO2021122740A1 (fr) 2019-12-19 2020-12-16 Composés polycycliques pour dispositifs électroluminescents organiques

Publications (1)

Publication Number Publication Date
EP4077336A1 true EP4077336A1 (fr) 2022-10-26

Family

ID=68965855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20829883.6A Pending EP4077336A1 (fr) 2019-12-19 2020-12-16 Composés polycycliques pour dispositifs électroluminescents organiques

Country Status (6)

Country Link
US (1) US20230104248A1 (fr)
EP (1) EP4077336A1 (fr)
JP (1) JP2023506570A (fr)
KR (1) KR20220116008A (fr)
CN (1) CN114867729A (fr)
WO (1) WO2021122740A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012308B2 (ja) * 2016-09-07 2022-01-28 学校法人関西学院 多環芳香族化合物
KR102654217B1 (ko) * 2020-09-15 2024-04-03 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
TW202229215A (zh) * 2020-09-30 2022-08-01 德商麥克專利有限公司 用於有機電致發光裝置功能層之結構化的化合物
CN113773207B (zh) * 2021-06-18 2022-08-02 北京莱特众成光电材料科技有限公司 有机化合物及包含其的电子元件和电子装置

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111878A1 (de) 1991-04-11 1992-10-15 Wacker Chemie Gmbh Leiterpolymere mit konjugierten doppelbindungen
JPH07133483A (ja) 1993-11-09 1995-05-23 Shinko Electric Ind Co Ltd El素子用有機発光材料及びel素子
JP3139321B2 (ja) 1994-03-31 2001-02-26 東レ株式会社 発光素子
DE4436773A1 (de) 1994-10-14 1996-04-18 Hoechst Ag Konjugierte Polymere mit Spirozentren und ihre Verwendung als Elektrolumineszenzmaterialien
JP3865406B2 (ja) 1995-07-28 2007-01-10 住友化学株式会社 2,7−アリール−9−置換フルオレン及び9−置換フルオレンオリゴマー及びポリマー
DE19614971A1 (de) 1996-04-17 1997-10-23 Hoechst Ag Polymere mit Spiroatomen und ihre Verwendung als Elektrolumineszenzmaterialien
DE19846766A1 (de) 1998-10-10 2000-04-20 Aventis Res & Tech Gmbh & Co Konjugierte Polymere, enthaltend spezielle Fluorenbausteine mit verbesserten Eigenschaften
US6166172A (en) 1999-02-10 2000-12-26 Carnegie Mellon University Method of forming poly-(3-substituted) thiophenes
DE60031729T2 (de) 1999-05-13 2007-09-06 The Trustees Of Princeton University Lichtemittierende, organische, auf elektrophosphoreszenz basierende anordnung mit sehr hoher quantenausbeute
EP1252803B2 (fr) 1999-12-01 2015-09-02 The Trustees Of Princeton University Complexes de forme l2mx en tant que dopants phosphorescents pour del organiques
TW532048B (en) 2000-03-27 2003-05-11 Idemitsu Kosan Co Organic electroluminescence element
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
EP1325671B1 (fr) 2000-08-11 2012-10-24 The Trustees Of Princeton University Composes organometalliques et electrophosphorescence organique presentant un deplacement d'emission
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
ITRM20020411A1 (it) 2002-08-01 2004-02-02 Univ Roma La Sapienza Derivati dello spirobifluorene, loro preparazione e loro uso.
GB0226010D0 (en) 2002-11-08 2002-12-18 Cambridge Display Tech Ltd Polymers for use in organic electroluminescent devices
KR101030158B1 (ko) 2002-12-23 2011-04-18 메르크 파텐트 게엠베하 유기 전자발광 부품
DE10304819A1 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte Polymere und Blends, deren Darstellung und Verwendung
JP4411851B2 (ja) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
WO2004093207A2 (fr) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Melanges de semi-conducteurs organiques aptes a l'emission et de matieres matricielles, leur utilisation et composants electroniques contenant ces melanges
EP1617711B1 (fr) 2003-04-23 2016-08-17 Konica Minolta Holdings, Inc. Dispositif organique électroluminescent et affichage
EP1491568A1 (fr) 2003-06-23 2004-12-29 Covion Organic Semiconductors GmbH Polymères semi-conducteurs
DE10328627A1 (de) 2003-06-26 2005-02-17 Covion Organic Semiconductors Gmbh Neue Materialien für die Elektrolumineszenz
DE10337346A1 (de) 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Konjugierte Polymere enthaltend Dihydrophenanthren-Einheiten und deren Verwendung
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005040302A1 (fr) 2003-10-22 2005-05-06 Merck Patent Gmbh Nouveaux materiaux pour l'electroluminescence et leur utilisation
US7880379B2 (en) 2003-11-25 2011-02-01 Merck Patent Gmbh Phosphorescent organic electroluminescent device having no hole transporting layer
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
DE102004020298A1 (de) 2004-04-26 2005-11-10 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere und deren Verwendung
DE102004023277A1 (de) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Neue Materialmischungen für die Elektrolumineszenz
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
JP4862248B2 (ja) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
ITRM20040352A1 (it) 2004-07-15 2004-10-15 Univ Roma La Sapienza Derivati oligomerici dello spirobifluorene, loro preparazione e loro uso.
EP1669386A1 (fr) 2004-12-06 2006-06-14 Covion Organic Semiconductors GmbH Polymères conjugués, leur représentation et utilisation
WO2006117052A1 (fr) 2005-05-03 2006-11-09 Merck Patent Gmbh Dispositif electroluminescent organique, et derives d'acide boronique et d'acide borinique utilises pour produire ce dispositif electroluminescent organique
DE102005037734B4 (de) 2005-08-10 2018-02-08 Merck Patent Gmbh Elektrolumineszierende Polymere, ihre Verwendung und bifunktionelle monomere Verbindungen
KR101082258B1 (ko) 2005-12-01 2011-11-09 신닛테츠가가쿠 가부시키가이샤 유기 전계 발광소자용 화합물 및 유기 전계 발광소자
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102005058558A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
DE102006025777A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2009030981A2 (fr) 2006-12-28 2009-03-12 Universal Display Corporation Structures de dispositifs électroluminescents organiques (oled) phosphorescents à longue durée de vie utile
DE102007002714A1 (de) 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102007053771A1 (de) 2007-11-12 2009-05-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
DE102008017591A1 (de) 2008-04-07 2009-10-08 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008027005A1 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008036247A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend Metallkomplexe
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102008048336A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen
DE102008056688A1 (de) 2008-11-11 2010-05-12 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2010054730A1 (fr) 2008-11-11 2010-05-20 Merck Patent Gmbh Dispositifs électroluminescents organiques
DE102008057050B4 (de) 2008-11-13 2021-06-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057051B4 (de) 2008-11-13 2021-06-17 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
DE102009011223A1 (de) 2009-03-02 2010-09-23 Merck Patent Gmbh Metallkomplexe
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009014513A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009053644B4 (de) 2009-11-17 2019-07-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009041414A1 (de) 2009-09-16 2011-03-17 Merck Patent Gmbh Metallkomplexe
DE102009053645A1 (de) 2009-11-17 2011-05-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtung
DE102009048791A1 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009053382A1 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
DE102009053836A1 (de) 2009-11-18 2011-05-26 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009057167A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische Vorrichtung enthaltend Metallkomplexe
DE102010005697A1 (de) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Verbindungen für elektronische Vorrichtungen
WO2011157339A1 (fr) 2010-06-15 2011-12-22 Merck Patent Gmbh Complexes métalliques
DE102010027317A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010048608A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP6215192B2 (ja) 2011-04-18 2017-10-18 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子用材料
EP2758372B1 (fr) 2011-09-21 2017-05-17 Merck Patent GmbH Dérivés de carbazole pour des dispositifs électroluminescents organiques
CN103889952A (zh) 2011-10-20 2014-06-25 默克专利有限公司 用于有机电致发光器件的材料
US9837622B2 (en) 2012-07-13 2017-12-05 Merck Patent Gmbh Metal complexes
CN104520308B (zh) 2012-08-07 2018-09-28 默克专利有限公司 金属络合物
KR102188214B1 (ko) 2012-12-21 2020-12-08 메르크 파텐트 게엠베하 금속 착물
JP6556629B2 (ja) 2012-12-21 2019-08-07 メルク パテント ゲーエムベーハー 金属錯体
US11631816B2 (en) 2013-01-03 2023-04-18 Merck Patent Gmbh Electronic device
EP3044284B1 (fr) 2013-09-11 2019-11-13 Merck Patent GmbH Complexes métalliques
WO2015091716A1 (fr) 2013-12-20 2015-06-25 Basf Se Dispositifs d'oled tres efficaces a temps de declin tres courts
US11005050B2 (en) 2014-01-13 2021-05-11 Merck Patent Gmbh Metal complexes
WO2015117718A1 (fr) 2014-02-05 2015-08-13 Merck Patent Gmbh Complexes métalliques
CN106459018B (zh) 2014-05-05 2022-01-25 默克专利有限公司 用于有机发光器件的材料
EP3174890B1 (fr) 2014-07-28 2019-03-13 Merck Patent GmbH Complexes métalliques
KR102474330B1 (ko) 2014-07-29 2022-12-05 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
EP3180411B1 (fr) 2014-08-13 2018-08-29 Merck Patent GmbH Matériaux pour dispositifs électroluminescents organiques
JP6772188B2 (ja) 2015-02-03 2020-10-21 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 金属錯体
KR20240058993A (ko) 2015-06-03 2024-05-07 유디씨 아일랜드 리미티드 매우 짧은 붕괴 시간을 갖는 고효율 oled 소자
KR102664605B1 (ko) 2015-08-25 2024-05-10 유디씨 아일랜드 리미티드 금속 착물
KR102627527B1 (ko) 2016-03-03 2024-01-22 메르크 파텐트 게엠베하 유기 전계 발광 장치용 재료
EP3484868B1 (fr) 2016-07-14 2020-11-25 Merck Patent GmbH Complexes métalliques
WO2018019687A1 (fr) 2016-07-25 2018-02-01 Merck Patent Gmbh Complexes métalliques dinucléaires et oligonucléaires comprenant des sous-unités de ligands tripodes bidentées ainsi que leur utilisation dans des dispositifs électroniques
CN109476691B (zh) 2016-07-25 2023-09-12 Udc爱尔兰有限公司 用作有机电致发光器件中的发光体的金属络合物
WO2018041769A1 (fr) 2016-08-30 2018-03-08 Merck Patent Gmbh Complexes métalliques binucléaires et trinucléaires obtenus à partir de deux ligands hexadentés tripodaux liés entre eux, destinés à être utilisés dans des dispositifs électroluminescents
WO2018054798A1 (fr) 2016-09-21 2018-03-29 Merck Patent Gmbh Complexes métalliques trouvant application comme émetteurs dans des dispositifs électroluminescents organiques
JP7064488B2 (ja) 2016-10-12 2022-05-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 二核金属錯体および電子デバイス、特に、前記金属錯体を含んでなる有機エレクトロルミネッセンス素子
JP7064487B2 (ja) 2016-10-12 2022-05-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属錯体
WO2018069273A1 (fr) 2016-10-13 2018-04-19 Merck Patent Gmbh Complexes métalliques
CN110177855A (zh) 2017-01-23 2019-08-27 默克专利有限公司 用于有机电致发光器件的材料
EP3601304B1 (fr) 2017-03-29 2021-10-27 Merck Patent GmbH Complexes métalliques
WO2018177981A1 (fr) 2017-03-29 2018-10-04 Merck Patent Gmbh Composés aromatiques
US11021568B2 (en) 2017-06-30 2021-06-01 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
TWI776926B (zh) 2017-07-25 2022-09-11 德商麥克專利有限公司 金屬錯合物
JP7116405B2 (ja) 2017-08-17 2022-08-10 学校法人関西学院 有機電界発光素子
CN111212844B (zh) 2017-10-13 2023-08-25 学校法人关西学院 二聚体化合物、有机元件用材料、有机电场发光元件、显示装置及照明装置
CN111094302B (zh) 2017-11-06 2022-10-11 株式会社Lg化学 多环化合物及包含其的有机发光器件
US11800785B2 (en) 2017-11-24 2023-10-24 Kwansei Gakuin Educational Foundation Material for organic device and organic electroluminescent device using the same
EP3724202B1 (fr) 2017-12-13 2022-08-17 Merck Patent GmbH Complexes métalliques
KR102134523B1 (ko) * 2017-12-26 2020-07-16 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20200120698A (ko) 2018-02-13 2020-10-21 메르크 파텐트 게엠베하 금속 착물
TWI828664B (zh) 2018-03-19 2024-01-11 愛爾蘭商Udc愛爾蘭責任有限公司 金屬錯合物
WO2020017931A1 (fr) * 2018-07-19 2020-01-23 주식회사 엘지화학 Composé polycyclique et dispositif électroluminescent organique le comprenant
WO2020054676A1 (fr) * 2018-09-10 2020-03-19 学校法人関西学院 Élément électroluminescent organique
US12116379B2 (en) * 2018-12-27 2024-10-15 Lg Chem, Ltd. Compound and organic light emitting diode comprising same
CN113454093A (zh) * 2019-04-22 2021-09-28 学校法人关西学院 环烷烃缩合多环芳香族化合物
CN114026147A (zh) * 2019-06-14 2022-02-08 学校法人关西学院 多环芳香族化合物

Also Published As

Publication number Publication date
JP2023506570A (ja) 2023-02-16
WO2021122740A1 (fr) 2021-06-24
KR20220116008A (ko) 2022-08-19
CN114867729A (zh) 2022-08-05
US20230104248A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
EP3519415B1 (fr) Carbazoles comprenant des structures diazadibenzofurane ou diazadibenzothiophène
EP3227269B1 (fr) Matières pour dispositifs électroluminescents organiques
WO2017148565A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2016023608A1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP3174954A1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP3016952B1 (fr) Composés de lactame spirocondensés pour des dispositifs électroluminescents organiques
WO2021122740A1 (fr) Composés polycycliques pour dispositifs électroluminescents organiques
WO2022079068A1 (fr) Composés hétérocycliques pour dispositifs électroluminescents organiques
WO2021122538A1 (fr) Composés aromatiques pour dispositifs électroluminescents organiques
WO2022129114A1 (fr) Composés azotés pour dispositifs électroluminescents organiques
WO2022079067A1 (fr) Composés comprenant des hétéroatomes pour dispositifs électroluminescents organiques
WO2022002772A1 (fr) Composés hétéroaromatiques pour dispositifs électroluminescents organiques
EP4132939B1 (fr) Composés polycycliques pour dispositifs électroluminescents organiques
EP4122028B1 (fr) Composés hétérocycliques pour dispositifs électroluminescents organiques
WO2022229234A1 (fr) Composés hétérocycliques azotés pour dispositifs électroluminescents organiques
WO2021185712A1 (fr) Composés hétéroaromatiques pour dispositifs électroluminescents organiques
EP4165052A1 (fr) Composés hétérocycliques pour dispositifs électroluminescents organiques
WO2021191183A1 (fr) Composés cycliques pour dispositifs électroluminescents organiques
WO2022069421A1 (fr) Composés pouvant être utilisés pour la structuration de couches fonctionnelles de dispositifs électroluminescents organiques
EP4097090A1 (fr) Dérivés de benzimidazole
WO2023041454A1 (fr) Composés hétérocycliques contenant du bore pour dispositifs électroluminescents organiques
WO2022069422A1 (fr) Composés pour la structuration de couches fonctionnelles de dispositifs électroluminescents organiques
WO2024184050A1 (fr) Composés azotés cycliques pour dispositifs électroluminescents organiques
WO2023072799A1 (fr) Composés hétérocycliques contenant du bore et de l'azote pour dispositifs électroluminescents organiques
WO2024149694A1 (fr) Hétérocycles azotés pour dispositifs électroluminescents organiques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230524

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519