EP3398870A1 - Kunststoffpalette mit versteifungsstruktur - Google Patents

Kunststoffpalette mit versteifungsstruktur Download PDF

Info

Publication number
EP3398870A1
EP3398870A1 EP17169002.7A EP17169002A EP3398870A1 EP 3398870 A1 EP3398870 A1 EP 3398870A1 EP 17169002 A EP17169002 A EP 17169002A EP 3398870 A1 EP3398870 A1 EP 3398870A1
Authority
EP
European Patent Office
Prior art keywords
spars
rungs
plastic pallet
stiffening structure
contact surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17169002.7A
Other languages
English (en)
French (fr)
Other versions
EP3398870B1 (de
Inventor
Stefan Müller
Thorsten Lenz
Gat Ramon
René Kloeters
Thomas Tappertzhofen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Preturn GmbH
Cabka Group GmbH
Original Assignee
GreenCycle GmbH
Cabka Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GreenCycle GmbH, Cabka Group GmbH filed Critical GreenCycle GmbH
Priority to ES17169002T priority Critical patent/ES2783823T3/es
Priority to EP17169002.7A priority patent/EP3398870B1/de
Priority to PL17169002T priority patent/PL3398870T3/pl
Priority to US15/968,610 priority patent/US10399739B2/en
Publication of EP3398870A1 publication Critical patent/EP3398870A1/de
Application granted granted Critical
Publication of EP3398870B1 publication Critical patent/EP3398870B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0006Rigid pallets without side walls the load supporting surface being made of a single element
    • B65D19/0008Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface
    • B65D19/001Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of a single element
    • B65D19/0012Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of a single element forming a continuous plane contact surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D11/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material
    • B65D11/20Details of walls made of plastics material
    • B65D11/22Reinforcing for strengthening parts of members
    • B65D11/26Local reinforcements, e.g. adjacent to closures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0006Rigid pallets without side walls the load supporting surface being made of a single element
    • B65D19/0008Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface
    • B65D19/002Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element
    • B65D19/0024Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element forming discontinuous or non-planar contact surfaces
    • B65D19/0026Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element forming discontinuous or non-planar contact surfaces and each contact surface having a stringer-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00034Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00049Materials for the base surface
    • B65D2519/00069Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00084Materials for the non-integral separating spacer
    • B65D2519/00104Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00119Materials for the construction of the reinforcements
    • B65D2519/00129Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00119Materials for the construction of the reinforcements
    • B65D2519/00139Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00263Overall construction of the pallet
    • B65D2519/00273Overall construction of the pallet made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00288Overall construction of the load supporting surface made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00293Overall construction of the load supporting surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00308Overall construction of the load supporting surface grid type, e.g. perforated plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00323Overall construction of the base surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00328Overall construction of the base surface shape of the contact surface of the base
    • B65D2519/00333Overall construction of the base surface shape of the contact surface of the base contact surface having a stringer-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00368Overall construction of the non-integral separating spacer
    • B65D2519/00373Overall construction of the non-integral separating spacer whereby at least one spacer is made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00402Integral, e.g. ribs
    • B65D2519/00407Integral, e.g. ribs on the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00437Non-integral, e.g. inserts on the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00442Non-integral, e.g. inserts on the base surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00447Non-integral, e.g. inserts on the non-integral separating spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00462Applied in mold, e.g. bi-injection molded reinforcement
    • B65D2519/00467Applied in mold, e.g. bi-injection molded reinforcement on or in the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00557Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements
    • B65D2519/00562Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements chemical connection, e.g. glued, welded, sealed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00557Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements
    • B65D2519/00567Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements mechanical connection, e.g. snap-fitted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/00776Accessories for manipulating the pallet
    • B65D2519/00796Guiding means for fork-lift

Definitions

  • the invention relates to a plastic pallet, which initially comprises a deck for the storage of objects to be transported and feet, which are formed projecting from a deck underside.
  • the plastic pallet also includes skids, which are each at least two feet on the undersides, ie on the opposite side of the deck, connected to each other.
  • the plastic pallet also comprises at least one stiffening structure, which in turn comprises arranged in the runners lower spars and just above the lower spars lying and spaced therefrom arranged and extending parallel upper spars.
  • the upper spars may be arranged in the deck in the area between a deck top and the deck bottom, or below the deck bottom.
  • plastic pallets are becoming increasingly important for the transport and storage of goods nowadays.
  • the lower weight and the ability to form almost any pallet structure using injection molding techniques so that here reaches a high degree of individuality and can be particularly tailored to customer-specific needs.
  • recyclates can be used to manufacture many types of pallets, unless specific hygiene requirements are met.
  • the use of additives such as reinforcing fibers is possible.
  • the deck can have a continuous, closed loading area, but the loading area can also be formed by a grid or ribbed structure.
  • feet are formed projecting down. They have a height that allows the pallet to be picked up and transported with the forks of a forklift, and the fork moves into the spaces between them between the feet. At the same time, however, the feet must also be able to support the allowable weight of the pallet with stored goods without fatigue of the material. Although it is possible to make the feet separately from a material with a higher impact strength, but this type of production is more expensive compared to the one-piece production of a pallet, as more tools must be kept and the pallet must then be assembled.
  • plastic pallets For transport on roller and chain conveyors on the one hand and to increase the stability on the other hand, plastic pallets often include skids, which are each at least two feet connected to each other at their bottom sides. Most of the runners are arranged parallel to each other in rectangular pallets their longitudinal direction is usually parallel to the narrower edge of the pallet, but this is not mandatory, a connection of the feet along the longer edge is possible. Circumferential runners can also be used, i. Skids, which additionally connect the feet along the longer edge of the pallet.
  • plastic pallets also have disadvantages compared to wood or metal pallets.
  • One disadvantage is that plastic pallets tend to deform more under load than wood pallets. At worst, this can lead to irreversible deformations. If goods with high, but still permissible mass parked on the pallets, this leads to a deflection of the deck, with the feet with molded-on runners easily deform or wear their share of the deflection by the feet on their top lean inward toward the center of the deck, but on the underside, they strive outwards. It thus thrust, bending and shear forces occur, which can be absorbed only insufficiently reversible by the pallet.
  • a composite of several parts plastic pallet described in the deck in the longitudinal direction to increase the bending stiffness metal rods are used.
  • the metal rods are arranged here transversely to the longitudinal direction of the runners. They reinforce the deck structure and lie parallel to each other without being connected.
  • Fig. 8 a plastic pallet in which reinforcing elements are arranged in the corners. Except for the non-interconnected reinforcing elements, which are also referred to as fittings, the pallet is made in one piece. The reinforcing elements extend in the finished pallet from the deck to the floor and are not interconnected. The attachment of the reinforcing elements exclusively in the corners serves to increase the wear resistance.
  • the reinforcing elements which may be formed from a rod-shaped or bar-shaped material, form a grid structure in the deck, and along the narrow side of the pallet two reinforcing elements arranged one above the other are parallel to one another, wherein the one element is embedded beneath the surface of the deck and the other in the bottom of the skid.
  • the reinforcing elements are not in direct contact with each other, they are not connected to each other.
  • a plastic pallet in which reinforcing elements are arranged below the base plate of the pallet in the region of the feet and within the deck.
  • Fig. 9-11 a pallet of a deck and feet attached thereto, wherein each three of the feet along the longer side of the pallet are connected by foot rails, which may consist of sheet steel, in the runners.
  • foot rails which may consist of sheet steel
  • the deck also made of steel sheet reinforcing elements are arranged in the manner of a grid, the crossing points of the longitudinal struts and cross struts are in the feet.
  • the grid structure is connected via webs with the foot rails, wherein on the type of connection no closer statement is made.
  • Styrofoam As a preferred material for in the WO 2007/019833 A1 pallet described is called Styrofoam and the lattice structure serves to increase the dimensional stability.
  • the arranged in the deck longitudinal and transverse struts and the webs in the feet have a plurality of juxtaposed recesses, which should ensure that they can be completely penetrated by the plastic of the pallet; In this way, the compound can be improved with the plastic and the stability of the overall construct compared to a simple Styrofoam palette can be increased.
  • the high number of recesses also ensures that the weight of the pallet does not increase excessively compared to a pure polystyrene pallet.
  • the object of the invention is, therefore, to develop a pallet which, compared to the pallets known in the prior art, has an increased resistance to bending and shearing forces and, consequently, a lower deflection.
  • the at least one stiffening structure has rungs each with predominantly closed surface, which connect the lower spars in the feet with the upper spars.
  • the sprouts are integrally formed on the spars or preferably integrally connected thereto via contact surfaces cohesively, or positively or positively, wherein the connection types can also be combined, and where quite both types of sprouts can be realized on a stiffening structure.
  • the at least one stiffening structure is thus designed as a ladder-shaped structure with spars and bars, wherein the spars are connected to the sprouts and fixed and preferably inseparable, so that the ladder-shaped structure is able to absorb correspondingly high shear forces.
  • the solid and preferably insoluble compound which is inevitably present in integral formation of the rungs and the spars and in embodiments in which the sprouts are not formed on spars, is preferably achieved by flat material bond, for example by gluing, but more preferably by welding is only a partial aspect.
  • the sprouts have a predominantly closed surface, for example, this means that as little openings or recesses are formed in the plate-shaped sprout parts as necessary, but in each case less than 50% of the entire surface of the plate-shaped spine part occupy, because a plurality of such recesses reduce the shear strength. If possible, such openings should be avoided.
  • the plate-shaped sprout parts therefore either have no openings, or only one, two or three openings through which, for example, optional transverse struts can be inserted to form a grid structure. If no transverse struts are to be used, the ladder-shaped stiffening structures therefore preferably have no openings.
  • the stiffening structures In order to connect or insert the stiffening structures with the pallet, there are various possibilities. For example, they can be used in the mold, for example an injection mold, during production, so that the stiffening structure is almost completely enclosed by the cured plastic. In this way, especially a tight fit can be guaranteed. In order to replace the stiffening structures in the event of wear, it can also be inserted from below or above in the pallet or the feet of a one-piece pallet. The connection with the plastic of the pallet can then also be non-positive and / or positive. Preferably, however, the pallet is made of several parts, and the stiffening structures are - possibly connected via crossbars - used in the runners before the deck is placed on the runners and with this example via snap closures or kraftform- or cohesively connected.
  • the stiffening structure can for example be made in one piece from strip steel, wherein the spaces between the rungs are punched out, milled or introduced into the stiffening structure in other, technically suitable manner.
  • the thicker the tape is chosen the more the shear strength is increased.
  • the mass of the plastic pallet is increased and if the ladder-shaped stiffening structure - as is preferably the case - made of metal, especially steel, this can lead to the mass of the plastic pallet with stiffening structures is higher than the mass of a comparable wooden pallet so that is an essential one Advantage of the material plastic would be lost. Too thin a sheet as a ladder-shaped stiffening structure on the other hand can not produce the required shear strength.
  • the ladder-shaped stiffening structure can also be made of other materials that can provide the necessary bending and shear stiffness of the pallet. For example, glass fiber or carbon fiber reinforced plastics are also suitable.
  • the spars have a corresponding thickness, whereas the sprouts can be made with a smaller thickness.
  • the spars on a predetermined thickness, which can be set, for example, based on the required shear strength.
  • the thickness of the spars is understood to mean the extent of the spars perpendicular to their longitudinal direction and perpendicular to the longitudinal direction of the sprouts in the ladder-shaped structure.
  • the sprouts are made in one piece on the spars, spars and sprouts merge, the sprouts can therefore be made thinner.
  • the rungs are connected in a material-locking, frictional and / or form-fitting manner to the bars via contact surfaces, the contact surfaces are selected to be as large as possible in their extent, both at height - ie. in the longitudinal direction of the spars - as well as perpendicular to it, in principle, also perpendicular to the height of curved surfaces in question.
  • the rungs in the longitudinal direction of the spars a predetermined height - with lying ladder-shaped stiffening structures in the view the width - on, which corresponds to at least 80% of the width of the respective, in rung-receiving foot.
  • the term "height" has been referred to a standing, ladder-like structure; in the case of horizontal ladder-shaped structures, this corresponds to the widthwise view.
  • the height of the rungs is chosen so that the maximum available space in the foot - which are different for different feet on the same pallet - is utilized, i. in the case of a cohesive, non-positive or positive connection, the extension of the contact surfaces in the longitudinal direction of the spars preferably corresponds to the predetermined height.
  • the spars do not have to be solid over the entire thickness of material, the spars can also be designed as hollow structures with different cross-sections.
  • the hollow structure is composed of different surfaces, wherein at least one of the surfaces of a spar parallel to the top surface - ie perpendicular to the longitudinal direction the spars and sprouts - is aligned, which also contributes to increase the stability.
  • the spars are designed, for example, as tubes with the cross-section of a quadrilateral, for example a trapezoid, rectangle or square, and accordingly comprise four surfaces.
  • they can also be designed as a T-beam or as a double T-beam, here too, at least one surface - that of the crossbar of the "T" - is parallel to the top surface.
  • the rungs are firmly bonded to the spars formed as tubes having a quadrangular cross-section via contact surfaces, then these contact surfaces are preferably parallel to the top surface and the extent of the contact surface in the direction of the thickness of the spars is at least a quarter of the thickness, but preferably at least half the thickness , However, the expansion of the contact surface in the direction of the thickness particularly preferably corresponds to the entire thickness, this guarantees the best possible stability of the cohesive and planar connection.
  • the contact surfaces can also be perpendicular to the top surface in the spanned by sprouts and spars plane, in tubes with rectangular cross-section then small plates can be welded to the spars, for example, without the plates would have to be bent.
  • the contact surfaces can also have any other shape or protrude at a different angle, it is important that the contact surfaces are chosen so large that they up to a predetermined maximum thrust and bending load a secure connection of sprouts and Holmen guarantee.
  • connection can for example be designed as a snap closure, wherein the contact surfaces then correspond to the surfaces of the closure in sprouts and spars, which lie in the connected state to each other.
  • a correspondingly stable connection can be achieved, for example, if the snap closure is aligned along the longitudinal direction of the spars and extends beyond the predetermined height.
  • the rungs can be wedge-shaped on their sides facing the spars, for example-also here preferably over the entire height-and the spars have corresponding receptacles.
  • the ladder-shaped stiffening structure can be realized in various ways, particularly advantageous embodiments are described below.
  • the stiffening structure is designed as an aluminum extruded profile.
  • the sprouts are in this case formed integrally on the spars. Openings are made between the rungs, for example by punching or milling, through which the tines of a forklift can enter.
  • Aluminum has the advantage that it is a light metal, moreover, no corrosion protection is necessary.
  • the stiffening structure is integrally formed as a tube with a square cross section, which is bent in the shape of two spars with intermediate rungs. In this way, it is possible to make a stiffening structure with a maximum of three rungs, which are integrally formed on the spars.
  • Such a stiffening structure can be realized in various ways, which differ mainly by where the two pipe ends are arranged in the stiffening structure. By way of example, it is possible to produce a structure designed in the manner of an "8" by sevenfold bending by 90 ° in each case.
  • the two ends of the tube are bent from one of the spars to the other, opposite spar and form the middle rung.
  • the pipe ends are cohesively connected to each other and to the other, opposite spar.
  • the compound is particularly preferably over the entire thickness of the spar. This type of manufacture makes it possible to provide the tube ends with a further bend for increased stability, so that the effective height of the rung, corresponding to the width of a lying ladder-shaped structure, grows. This increases the stability in terms of bending and shear strength when forces in the area of the middle foot attack.
  • the cohesive connection is particularly preferably produced by welding, the welds are then protected against corrosion, for example by galvanizing.
  • this profile is relatively inexpensive to produce, since tubes with square cross section, for example, with a cross section of 20x20 mm and a wall thickness of 2 mm, are available in large quantities on the market. In the production of profiles, about a quarter of the costs incurred by sawing the square tubes in order to cut them. By using a single curved tube, these costs can be minimized.
  • the spars are also formed as tubes with square cross-section, but at least the inner rungs are formed as plate-shaped connecting elements, in which on two opposite sides than contact surfaces Standing seams are formed.
  • These are one-piece elements which are also commercially available as so-called C-profiles with a wall thickness of, for example, 2 mm, alternatively, production by cutting and bending from a straight sheet metal is also possible.
  • As a material in particular steel sheet in question, but also all other metals and metal alloys that meet the requirements can be used.
  • a standing seam is understood to be a bend of the edge of the plate-shaped connecting element by 90 °.
  • the bent surface of the plate-shaped connecting element then forms the contact surface.
  • the extent of the contact surface in the direction of the thickness of the spar is at least a quarter of the thickness.
  • the bending edge is then at least 5mm from the peripheral edge of the plate-shaped connecting element.
  • a particularly stable, but also production-intensive variant is obtained if all sprouts are designed as such plate-shaped connecting elements, including the outer rungs. At the contact surfaces, the plate-shaped connecting elements are welded to the pipes, then the welds must be galvanized. Depending on the choice of material, it may also be necessary to galvanize the entire stiffening structure.
  • a somewhat less production-intensive variant in which the high stability in terms of bending and shear resistance in the case of a stiffening structure with three sprouts for the middle rung - attack on the experience of the greatest forces - is preserved, is the middle, inner rung as a plate-shaped connecting element with designed as standing seams contact surfaces, as described above, but to make the two outer rungs of a tube with a rectangular or square cross section to bend.
  • the two spars and the two outer rungs are in this case formed in one piece from a bent tube.
  • sheets of different thickness can be used, depending on the required load capacity, for example, sheets with thicknesses of 1 mm to 4 mm.
  • the stability of the stiffening structure is thus not achieved here by the material thickness, but by the formation of the spars by bending, whereby they can be impressed in particular a predetermined thickness.
  • the spars can be formed at the profile edges in the simplest case as standing seams.
  • a higher stability is achieved by Doppelstehfalze, ie by two in the transverse direction of the profile - with bending edges along the longitudinal direction of the spars - in a short distance successive bends by 90 ° in the same orientation.
  • the spars can also be designed as envelopes, ie as bends by 180 °.
  • the openings are introduced, this can be done for example by punching, cutting or milling.
  • the rungs are preferably plate-shaped, so in the longitudinal direction of the spars on a predetermined height, which comes close to the dimensions of the feet in the longitudinal direction of the spars. With tapered feet, the shape of the plate forming the rung can be adjusted accordingly, for example in a trapezoidal shape.
  • Fig. 1 shows a conventional plastic pallet, which includes a deck 1 for storage of objects to be transported.
  • a top side 2 can be seen, this is opposite a deck underside, not shown, deck top 2 and bottom deck are spaced from each other by the thickness of the deck. From the top bottom downstanding feet 3 are formed.
  • the plastic pallet also skids 4, which are each formed at least two feet 3 on the undersides connecting to each other.
  • the foremost segment of the plastic pallet - comprising three feet and the runners that connect the feet - is shown here cut open, so that there - arranged by hatching - stiffening structure 5 is visible.
  • the stiffening structure 5, of which the pallet here has two in the outer runners, is here ladder-shaped and comprises in the runners 4 arranged lower spars 6 and spaced therefrom arranged upper spars 7, which are arranged on the lower spars 6 extending parallel to these ,
  • the upper spars may be disposed in an area between the deck top 2 and the deck bottom in the deck 1, but may also be below the deck 1, as in FIG Fig. 1 exemplified, be arranged.
  • the stiffening structure 5 can then be completely enclosed by the plastic of the pallet in the case of a one-piece production.
  • the stiffening structure 5 is ladder-shaped and therefore has rungs 8 which connect the lower spars 6 in the feet 3 with the upper spars 7.
  • the surface of the sprouts is predominantly closed, i. it has no openings or recesses, and if so, then the area of the openings or portions proportionately to the total surface of the rungs 8 is less than 50%, usually less than 10%. Recesses and openings are only applied where this is necessary or useful for manufacturing reasons.
  • the rungs 8 are either integrally formed on the lower bars 6 and the upper spars 7, or they are integrally connected to these respectively via contact surfaces. Depending on the configuration, some of the rungs 8 may be integrally formed on one or both spars and other sprouts may be connected to the spars 6, 7 cohesively.
  • the type of fabric bond is chosen depending on the material. In the case of metallic stiffening structures 5, in particular a weld is suitable here. Dependent on Of the material - for example, can also be used carbon fiber and glass fiber reinforced plastics for the stiffening structure - other types of connection may prove useful, such as non-positive or positive connections, with all types of positive engagement can be combined.
  • stiffening structures 5 formed in this way it is possible to reduce the deflection of the plastic pallet with load bearing in the middle, for example from 22 mm to less than 10 mm for a plastic pallet measuring 1200 mm x 800 mm and 3 feet connected to runners.
  • the shear stiffness is increased because shear forces are derived or absorbed by the stiffening structures 5, which may be made of metal in particular.
  • Fig. 2 shows a plastic pallet without deck, here only the feet 3 are molded with runners 4 molded thereto.
  • stiffening structures 5 are used.
  • cross braces 9 are shown here, which further increase the stability of the plastic pallet.
  • These transverse struts 9 may also be made of metal. However, they are purely optional and not absolutely necessary for achieving the desired effect.
  • the cross struts 9. can be inserted into the pallet independently of the stiffening structures 5, but also be connected to them in a material-locking, positive-locking and / or non-positive manner, so as to form an even more stable structure.
  • the two outer transverse struts 9 are inserted through openings in the stiffening structures 5 and in the rungs 8 and form a grid with them.
  • the middle cross strut 9 is only launched, but could also be integrated into the grid.
  • stiffening structures 5 With the help of the stiffening structures 5, it is possible to reduce the deflection to the extent that is considered permissible even with wooden pallets of comparable size, or even to even smaller dimensions.
  • the thicker the stiffening structures - with thickness is the extension perpendicular to the longitudinal direction of the spars and perpendicular to the longitudinal direction of the rungs meant - are, the higher the shear and bending stiffness, but this is associated with a higher mass.
  • plastic pallets are in themselves lighter than wooden pallets of the same size, the weight of comparable wooden pallets can be exceeded in accordance with thick stiffening structures 5, whereby a significant advantage of plastic pallets fell away.
  • the thickness of the lower spars 6, the upper spars 7 and the sprouts 8 can be too small, for example as a pure sheet of constant thickness, this can not achieve the necessary shear stiffness if the thickness is too small. For this reason, at least the upper spars 6 and the lower spars 7 have a predetermined thickness.
  • the size of the contact surfaces depending on a predetermined maximum bending and thrust load of the plastic pallet is selected or specified, in As a rule, the contact surfaces should be chosen as large as structurally possible.
  • the rungs 8 In the longitudinal direction of the spars 6, 7, the rungs 8 to increase the shear stiffness and flexural rigidity in the longitudinal direction of the spars 6, 7 a predetermined height, which is based on the width of the feet, it should be at least 80% of the width of the respective, the rung receiving Foot amount.
  • the term "height" is used in reference to a standing ladder, it corresponds to a horizontal structure with the width.
  • a connection of the rungs 8 with the bars 6, 7 via contact surfaces corresponds to the extension of the contact surfaces in the longitudinal direction of the spars 6,7 preferably the predetermined height.
  • the contact surface is preferably in a plane to the longitudinal direction of the rungs 8 and the spars 6, 7.
  • the expansion of the contact surface in the thickness direction should then usually more than Half the thickness amount.
  • the rungs 8 may also have a smaller thickness, depending on the embodiment, for example, in the case of an embodiment of a sheet, a thickness corresponding to the sheet thickness.
  • stiffening structures 5 are described below with reference to FIG Fig. 3-11 explained.
  • Fig. 3a ) -c) show a first embodiment of a stiffening structure, as it can be used to increase the bending stiffness and shear resistance of the plastic pallet.
  • Fig. 3a shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows a view of the stiffening structure from the front
  • Fig. 3b shows
  • Passage holes 12 are optionally located in the area under the upper spar 7, through which plastic may pass during manufacture in the case of a one-piece pallet to provide a firm connection between the stiffening structure and the plastic pallet.
  • the passage holes 12 can also be used for another type of attachment, for example a mechanical, provided that pinching in the framework structure of the plastic pallet should not be possible, in this case, no through holes 12 are required.
  • the through-holes 12 are also suitable for accommodating optional transverse struts 9 in order to fix them better and to produce a stiffening grid structure in the plane of the deck 1, as in FIG Fig. 2 shown.
  • An advantage of using an aluminum extruded profile is also in the reduced mass. While a wooden pallet measuring 800mm x 1200mm weighs 20-25kg, the mass of a pallet is the same as in Fig. 3a ) -c) shown profiles about 15-20kg.
  • FIG. 4a shows a view of the aluminum extruded profile 13 from the side
  • Fig. 4b shows a cross section through the profile in the region of a rung 8
  • Fig. 4c the aluminum extruded profile 13 in a perspective view.
  • 8 openings 11 are introduced between the sprouts. The introduction can be done for example by punching, cutting or milling.
  • Fig. 4 shown further aluminum extruded profile 13 has through holes 12. Unlike the in Fig.
  • the lower beam 6 is designed as a tube with a square cross section and the upper spar as a double-T-beam. It is of course possible to design one of the spars as a T-beam here, as well as one of the spars of the aluminum extruded profile 10, which in Fig. 3a ) -c), be configured as a double-T-beam or as a pipe with a square or rectangular cross-section.
  • a third embodiment is in Fig. 5a ) -b).
  • This is a stiffening structure which is designed as a tube with a square cross section 14.
  • the tube 14 is bent into the shape of two bars 6, 7 with intermediate rungs 8. It is a one-piece design with a maximum of three rungs 8, which is particularly suitable for smaller pallets. All sprouts 8 are formed from the square tube 14.
  • the outer rungs 8 of the stiffening structure are formed by bending the tube 14 twice by 90 ° in each case.
  • the middle or inner rung 8 is formed by the two pipe ends 15 are bent by one of the spars - here without limiting the generality of the upper beam 7 by 90 °, thus the middle rung 8 is formed by the bending the opposite spar - here the lower beam 6 - materially connected, for example by welding, here over the entire thickness of the lower beam 6.
  • the pipe ends 15 may be connected to each other cohesively, at However, it can also be dispensed with a corresponding fixation in the plastic pallet in the middle foot.
  • FIG. 6 A modification of this embodiment is in Figure 6 shown.
  • the pipe ends 15, which form the middle rung 8, are spread away from each other here in their end regions, so that the middle rung 8 takes the form of a "Y".
  • the pipe ends 15 are each materially connected to the opposite spar, here the lower beam 6, over the entire thickness of the spar.
  • the respective edges are preferably provided with larger bevels to a contact surface for the cohesive connection, which is more stable compared to a linear, one-dimensional connection.
  • the rungs 8 are integrally formed on the lower beam 6 and the upper spar 7, even if the pipe ends are connected to the opposite spar to increase the rigidity of material. Due to the spreading of the pipe ends 15 in "Y" shape, the shear stiffness in a plane parallel to the deck 1 or the bending stiffness perpendicular to the ceiling plane relative to the in Fig. 5a) -b) shown embodiment further increased.
  • Fig. 7 shows a projection view of the stiffening structure from the front and Fig. 7b ) a perspective view.
  • the spars are formed as tubes with a square cross-section
  • the lower spar 6 and the upper spar 7 and the two outer rungs 8 are also formed integrally from a bent tube 14 here.
  • the two pipe ends 15 are connected cohesively in the region of one of the outer rungs 8.
  • the tube ends 15 may also meet at another location of one of the spars, for example in the region of the middle rung 8.
  • the middle rung 8 is formed here as a plate-shaped connecting element 16, in which on two opposite sides, namely the sides, to the spars 6 and 7, contact surfaces are formed as standing seams.
  • the plate-shaped connecting element 16 is here - based on the thickness of the lower beam 6 and the upper spar 7 - placed centrally.
  • the extent of the contact surfaces formed by the standing seams in the direction of the thickness here is half the thickness.
  • This fourth embodiment of a stiffening structure has a particularly good cost-benefit ratio, since on the one hand the square tube 14 only needs to be cut to length once and bent only four times. Due to the plate-shaped connecting element, which may have a C- or S-shape in cross-section, but the shear strength and bending stiffness compared to in Fig. 5 and Fig. 6 shown embodiments, since the plate-shaped connecting element 16 in the longitudinal direction of the spars, the maximum height - in the view corresponding to the width - may have, which just makes it possible to fully integrate it into the corresponding foot 3, whereas the width in the formation the middle rung 8 from the bent tube ends 15 is predetermined by the thickness of the square tube 14 and can not be increased.
  • the in the Fig. 7a ) -b) stiffening structure can also be used for pallets with more feet in one direction, as readily several of the plate-shaped connecting elements 16 can be set as inner rungs between the integrally formed outer rungs.
  • FIG. 8 Another - particularly stable - fifth embodiment of a stiffening structure for a plastic pallet is in Fig. 8 shown.
  • Fig. 8a shows a side view of a stiffening structure lying on the outer edge of a spar
  • Fig. 8b the cross section in the region of a rung 8
  • Fig. 8c a perspective view.
  • the outer rungs 8 are formed as plate-shaped connecting elements 16 with molded-on standing seams 17 to form the contact surfaces.
  • the plate-shaped connecting elements 16 have in cross-section - as in Fig. 8c ) - a "C" shape.
  • the lower spar 6 and the upper spar 7 are also formed in this embodiment as a tube 14 with a square cross-section. They can be produced from a pipe by sawing.
  • three - here similar - plate-shaped connecting elements 16 connect the upper spar 7 with the lower spar 6, the standing seams 17, which are formed by bending against the plate-shaped elements 16, form the contact surfaces.
  • Their extension in the direction of the thickness of the spars 6, 7 corresponds here to the entire thickness of the spars 6 and 7.
  • the plate-shaped connecting elements are integrally connected to the bars 6 and 7. After production of the cohesive connection, the stiffening structure must still be galvanized to protect against corrosion.
  • Fig. 9-11 show further embodiments of stiffening structures, which are all integrally formed from rolled and bent metal profile, for example (steel) sheet metal or strip steel, wherein between the rungs 8 openings 11 are again introduced.
  • these stiffening structures also have optional through holes 12.
  • the embodiments differ here only in the formation of the lower beam 6 and the upper spar 7, which are integrally formed on the profile edges by bending and as standing seams, double Stehfalze, envelopes or combinations thereof are formed.
  • This in Fig. 9a ) in perspective view and in Fig. 9b ) in cross-section in the region of a rung 8 shown metal profile as the sixth embodiment of a stiffening structure has an upper spar 7 to the lower spar 6 identically shaped.
  • Fig. 10a in perspective and in Fig. 10b ) in cross section in the region of a rung 8 shown metal profile as the seventh embodiment of a stiffening structure has trained by other bending combinations spars 6, 7.
  • the plate-shaped rungs 8 are also integrally formed on the spars 6, 7, and in relation to the thickness of the spars 6 and 7 - in Fig. 10b ) according to the horizontal direction in the sheet plane - centered.
  • the upper beam 7 has a greater width - corresponding to the vertical direction in the leaf level - than the lower beam 6.
  • the spars 6, 7 are here formed by the combination of several bends by 90 ° (standing seam) and a bend by 180 ° (envelope).
  • FIG. 11 An eighth embodiment of a stiffening structure is finally in Fig. 11 shown.
  • Fig. 11a) and Fig. 11b ) show the formed as a metal profile stiffening structure in perspective from two opposite sides
  • Fig. 11c shows the profile in cross section in the region of a rung 8.
  • the upper beam 7 is wider than the lower beam 6 executed.
  • Both bars 6, 7 are formed as double standing seams. Pro Holm only two bends are needed here, the stiffening structure is thus relatively easy to produce, but also offers a very high bending and shear strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pallets (AREA)

Abstract

Die Erfindung betrifft eine Kunststoffpalette, die ein Deck (1) zur Lagerung von zu transportierenden Objekten, Füße (3), welche von einer Deckunterseite abstehend ausgebildet sind, und Kufen (4), welche jeweils mindestens zwei Füße (3) an deren Unterseiten miteinander verbindend ausgebildet sind, umfasst. Die Kunststoffpalette umfasst außerdem mindestens eine Versteifungsstruktur (5), welche ihrerseits in den Kufen (4) angeordnete untere Holme (6) und davon beabstandet angeordnete obere Holme (7), welche über den unteren Holmen (6) parallel zu diesen verlaufend angeordnet sind, umfasst. Erfindungsgemäß weist die mindestens eine Versteifungsstruktur (5) Sprossen (8) mit jeweils überwiegend geschlossener Oberfläche auf, welche die unteren Holme (6) in den Füßen (3) mit den oberen Holmen (7) verbinden. Die Sprossen (8) sind dabei einstückig an den Holmen (6,7) ausgebildet oder mit diesen jeweils über Kontaktflächen stoffschlüssig, kraftschlüssig oder formschlüssig verbunden. Auf diese Weise wird die Biegesteifigkeit der Kunststoffpalette und ihre Schubfestigkeit in einer zur Deckoberseite (2) parallelen Ebene erhöht.

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft eine Kunststoffpalette, welche zunächst ein Deck zur Lagerung von zu transportierenden Objekten umfasst sowie Füße, welche von einer Deckunterseite abstehend ausgebildet sind. Die Kunststoffpalette umfasst außerdem Kufen, welche jeweils mindestens jeweils zwei Füße an deren Unterseiten, also an der dem Deck gegenüberliegenden Seite, miteinander verbindend ausgebildet sind. Schließlich umfasst die Kunststoffpalette auch mindestens eine Versteifungsstruktur, welche ihrerseits in den Kufen angeordnete untere Holme und genau über den unteren Holmen liegende und zu diesen beabstandet angeordnete und parallel verlaufende obere Holme umfasst. Die oberen Holme können im Deck im Bereich zwischen einer Deckoberseite und der Deckunterseite angeordnet sein, oder auch unterhalb der Deckunterseite.
  • Neben den klassischen Holzpaletten kommt Kunststoffpaletten für den Transport und für die Lagerung von Waren heutzutage eine immer größere Rolle zu. Vorteilhaft sind beispielsweise das geringere Gewicht und die Möglichkeit, nahezu jede beliebige Palettenstruktur mit Hilfe von Spritzgusstechniken zu formen, so dass hier ein hoher Grad an Individualität erreicht und besonders auf kundenspezifische Wünsche eingegangen werden kann. Darüber hinaus kann für die Herstellung vieler Palettentypen, sofern nicht besondere Hygienevorschriften einzuhalten sind, Rezyklat verwendet werden. Auch die Verwendung von Zusatzstoffen wie beispielsweise verstärkenden Fasern ist möglich. Das Deck kann eine durchgehende, geschlossene Ladefläche aufweisen, die Ladefläche kann aber auch durch ein Gitter- oder Rippenstruktur gebildet werden.
  • An der Unterseite des Decks, d.h. dem Boden zugewandt, sind Füße nach unten abstehend ausgebildet. Sie weisen eine Höhe auf, die es erlaubt, dass die Palette mit der Gabel eines Gabelstaplers aufgenommen und transportiert werden kann, die Gabel fährt in die Zwischenräume zwischen den Füßen ein. Gleichzeitig müssen die Füße jedoch auch in der Lage sein, das zulässige Gewicht der Palette mit darauf gelagerten Waren zu tragen, ohne dass es zu Ermüdungserscheinungen des Materials kommt. Zwar ist es möglich, die Füße separat aus einem Material mit einer höheren Schlagzähigkeit herzustellen, jedoch ist diese Art der Herstellung teurer im Vergleich zur einstückigen Herstellung einer Palette, da mehr Werkzeuge bereitgehalten werden müssen und die Palette anschließend zusammengesetzt werden muss.
  • Für den Transport auf Rollen- und Kettenförderern einerseits und zur Erhöhung der Stabilität andererseits umfassen Kunststoffpaletten oft auch Kufen, welche jeweils mindestens zwei Füße an deren Unterseiten miteinander verbindend ausgebildet sind. Meist sind die Kufen parallel zueinander angeordnet, bei rechteckigen Paletten liegt ihre Längsrichtung üblicherweise parallel zur schmaleren Kante der Palette, was aber nicht zwingend ist, auch eine Verbindung der Füße entlang der längeren Kante ist möglich. Auch umlaufende Kufen lassen sich verwenden, d.h. Kufen, welche zusätzlich noch die Füße entlang der längeren Kante der Palette miteinander verbinden.
  • Gegenüber Holz- oder Metallpaletten haben Kunststoffpaletten allerdings auch Nachteile. Ein Nachteil liegt darin, dass Kunststoffpaletten unter Belastung zu größeren Verformungen neigen als Holzpaletten. Schlimmstenfalls kann dies zu irreversiblen Verformungen führen. Werden Waren mit hoher, jedoch noch zulässiger Masse auf den Paletten abgestellt, so führt dies zu einer Durchbiegung des Decks, wobei sich auch die Füße mit daran angeformten Kufen leicht verformen bzw. ihren Anteil an der Durchbiegung tragen, indem sich die Füße an ihrer Oberseite nach innen in Richtung Deckmitte neigen, sie an ihrer Unterseite jedoch nach außen streben. Es treten somit Schub-, Biege- und Scherkräfte auf, die von der Palette nur ungenügend reversibel resorbiert werden können.
  • Stand der Technik
  • Um die Verformung unter Last zu verringern, ist es im Stand der Technik bekannt, Kunststoffpaletten mit Versteifungsstrukturen zu verstärken, um insbesondere die Biegesteifigkeit der Paletten zu erhöhen.
  • So wird beispielsweise in der DE 20 2015 100 355 U1 eine aus mehreren Teilen zusammensetzbare Kunststoffpalette beschrieben, in deren Deck in Längsrichtung zur Erhöhung der Biegesteifigkeit Metallstangen eingesetzt sind. Die Metallstangen werden hier quer zur Längsrichtung der Kufen angeordnet. Sie verstärken die Deckstruktur und liegen parallel zueinander, ohne miteinander verbunden zu sein.
  • In der DE 10 2014 007 079 A1 wird eine zweiteilige Kunststoffpalette mit Verstärkungsprofilen, welche die Funktion von Versteifungselementen haben, beschrieben. Die Versteifungselemente sind stangenartig und werden separat in die Kufen eingeschoben. Hier wird die Kufenstruktur im Bereich der Bodenebene verstärkt.
  • In der DE 10 2011 103 359 A1 zeigt Fig. 8 eine Kunststoffpalette, bei der in den Ecken Verstärkungselemente angeordnet sind. Bis auf die nicht miteinander verbundenen Verstärkungselemente, welche auch als Beschläge bezeichnet werden, ist die Palette einstückig gefertigt. Die Verstärkungselemente erstrecken sich in der fertigen Palette vom Deck bis zum Boden und sind nicht miteinander verbunden. Die Anbringung der Verstärkungselemente ausschließlich in den Ecken dient der Erhöhung der Verschleißfestigkeit.
  • In der DE 10 2011 052958 A1 wird eine aus mehreren Teilen zusammengesetzte Palette beschrieben, bei der Fußelemente bogenförmig ausgebildet und über Kreuz angeordnet sind. An ihrer zum Deck weisenden Seite, im Bereich des Scheitelpunkts der Bögen, sind sich über die Länge der Fußelemente erstreckende Stützstangen eingesetzt, welche auch aus Metall gefertigt sein können. Durch die gitterförmige Anordnung wird die Tragfähigkeit der Palette erhöht. Auch in der DE 43 36 469 A1 wird eine Kunststoffpalette beschrieben, bei der die Deckstruktur mit einem Gerüst aus Verstärkungsrohren, die beispielsweise aus Stahl gefertigt sein können, verstärkt wird.
  • In der DE 20 2007 000 985 U1 wird eine Kunststoffpalette beschrieben, welche mit Armierungen sowohl im Bereich unterhalb des Decks als auch im Bereich der Füße knapp oberhalb des Bodens versehen ist. Gemäß der in Fig. 1-3 gezeigten Ausgestaltung bilden die Armierungselemente, die aus einem stangen- oder stabförmigen Material gebildet sein können, eine Gitterstruktur im Deck, und entlang der Schmalseite der Palette liegen zwei übereinander angeordnete Armierungselemente zueinander parallel, wobei das eine Element unterhalb der Oberfläche des Decks in dieses eingebettet ist und das andere in die Unterseite der Kufe. Die Armierungselemente stehen jedoch nicht in direktem Kontakt zueinander, sie sind nicht miteinander verbunden.
  • In der WO 2007/019833 A1 wird eine Kunststoffpalette beschrieben, bei der Verstärkungselemente unterhalb der Grundplatte der Palette im Bereich der Füße und innerhalb des Decks angeordnet sind. Hier zeigen die Fig. 9-11 eine Palette aus einem Deck und daran angebrachten Füßen, wobei jeweils drei der Füße entlang der längeren Seite der Palette durch Fußschienen, die aus Stahlblech bestehen können, in den Kufen verbunden sind. Im Deck sind ebenfalls aus Stahlblech gefertigte Verstärkungselemente nach Art eines Gitters angeordnet, die Kreuzungspunkte der Längsstreben und Querstreben liegen im Bereich Füße. Dort ist die Gitterstruktur über Stege mit den Fußschienen verbunden, wobei über die Art der Verbindung keine nähere Aussage getroffen wird. Als bevorzugtes Material für die in der WO 2007/019833 A1 beschriebene Palette wird Styropor genannt und die Gitterstruktur dient der Erhöhung der Formstabilität. Die im Deck angeordneten Längs- und Querstreben sowie die Stege in den Füßen weisen eine Vielzahl aneinandergereihter Aussparungen auf, welche gewährleisten sollen, dass sie vom Kunststoff der Palette vollständig durchdrungen werden können; auf diese Weise kann die Verbindung mit dem Kunststoff verbessert und die Stabilität des Gesamtkonstrukts gegenüber einer einfachen Styroporpalette erhöht werden. Die hohe Anzahl an Aussparungen sorgt außerdem dafür, dass das Gewicht der Palette gegenüber einer reinen Styroporpalette nicht übermäßig zunimmt.
  • Zwar ist eine solche Struktur der Versteifungselemente mit Aussparungen sehr vorteilhaft hinsichtlich des Gewichts und der Verbindung mit dem Kunststoff und erhöht die Stabilität hinsichtlich einer direkten Belastung von oben, ist jedoch einer Belastung durch Scherkräfte kaum gewachsen. Die Verbindung der Längs- bzw. Querstreben mit den Fußschienen über die Streben kommt darüber hinaus nur durch den Verbund im Kunststoff zustande, so dass die Palette nur geringen Biege- und Scherkräften standhalten kann.
  • Beschreibung der Erfindung
  • Die Aufgabe der Erfindung besteht daher darin, eine Palette zu entwickeln, welche gegenüber den im Stand der Technik bekannten Paletten eine erhöhte Festigkeit gegenüber Biege- und Scherkräften aufweist und infolgedessen eine geringere Durchbiegung.
  • Diese Aufgabe wird bei einer Kunststoffpalette der eingangs beschriebenen Art dadurch gelöst, dass die mindestens eine Versteifungsstruktur Sprossen mit jeweils überwiegend geschlossener Oberfläche aufweist, welche die unteren Holme in den Füßen mit den oberen Holmen verbinden. Dabei sind die Sprossen einstückig an den Holmen ausgebildet oder mit diesen jeweils über Kontaktflächen bevorzugt stoffschlüssig, oder auch kraftschlüssig oder formschlüssig verbunden, wobei die Verbindungsarten auch kombiniert werden können, und wobei durchaus beide Arten von Sprossen an einer Versteifungsstruktur realisiert werden können. Durch diese Maßnahmen wird die Biegesteifigkeit der Palette einerseits und die Schubfestigkeit der Palette in einer zur Oberseite des Decks parallelen Ebene andererseits gegenüber im Stand der Technik bekannten Paletten erhöht. Bei einer überwiegend geschlossenen Oberfläche beträgt der Anteil der Öffnungen in den Sprossen weniger als 50 %, meist weniger als 25 %. Aussparungen und Öffnungen befinden sich nur dort, wo es aus fertigungstechnischen Gründen notwendig oder vorteilhaft ist. Tatsächlich liegt der Anteil der Öffnungen daher in der Regel bei weniger als 10 % der Oberfläche.
  • Die mindestens eine Versteifungsstruktur ist also als leiterförmige Struktur mit Holmen und Sprossen ausgebildet, wobei die Holme mit den Sprossen und fest und bevorzugt unlösbar miteinander verbunden sind, so dass die leiterförmige Struktur in der Lage ist, entsprechend hohe Scherkräfte aufzunehmen. Die feste und bevorzugt unlösbare Verbindung, die bei einstückiger Ausbildung der Sprossen und der Holme zwangsläufig vorhanden ist und bei Ausbildungen, bei denen die Sprossen nicht an Holmen ausgebildet sind, bevorzugt durch flächigen Stoffschluss, beispielsweise durch Kleben, besonders bevorzugt aber durch Schweißen erreicht wird, ist dabei nur ein Teilaspekt. Zur Erhöhung der Biegesteifigkeit bzw. Schubfestigkeit ebenso unerlässlich ist es, dass die Sprossen eine überwiegend geschlossene Oberfläche aufweisen, bei plattenförmigen Sprossen beispielsweise heißt dies, dass in den plattenförmigen Sprossenteilen so wenig Öffnungen oder Aussparungen ausgebildet sind, wie nötig, die aber in jedem Falle weniger als 50 % der gesamten Oberfläche des plattenförmigen Sprossenteils einnehmen, da eine Vielzahl solcher Aussparungen die Schubfestigkeit verringern. Wenn möglich, sollte auf solche Öffnungen verzichtet werden. In der Regel weisen die plattenförmigen Sprossenteile daher entweder keine Öffnungen auf, oder nur eine, zwei oder drei Öffnungen, durch die beispielsweise optionale Querstreben zur Bildung einer Gitterstruktur gesteckt werden können. Sollen keine Querstreben verwendet werden, weisen die leiterförmigen Versteifungsstrukturen daher bevorzugt keine Öffnungen auf.
  • Um die Versteifungsstrukturen mit der Palette zu verbinden bzw. sie in diese einzusetzen, gibt es verschiedene Möglichkeiten. Sie können beispielsweise schon bei der Herstellung in die Form, beispielsweise eine Spritzgussform, eingesetzt werden, so dass die Versteifungsstruktur nahezu vollständig von dem ausgehärteten Kunststoff umschlossen wird. Auf diese Weise kann besonders ein fester Sitz garantiert werden. Um die Versteifungsstrukturen im Falle eines Verschleißes auswechseln zu können, kann sie auch von unten oder oben in die Palette bzw. die Füße einer einteiligen Palette eingeschoben werden. Die Verbindung mit dem Kunststoff der Palette kann dann auch kraft- und/oder formschlüssig erfolgen. Bevorzugt ist aber die Palette mehrteilig ausgeführt, und die Versteifungsstrukturen werden - ggf. über Querstreben verbunden - in die Kufen eingesetzt, bevor das Deck auf die Kufen gesetzt und mit diesem beispielsweise über Schnappverschlüsse bzw. kraft- form- oder stoffschlüssig, verbunden wird.
  • In einer einfachen Ausgestaltung kann die Versteifungsstruktur beispielsweise einstückig aus Bandstahl gefertigt sein, wobei die Zwischenräume zwischen den Sprossen ausgestanzt, gefräst oder auf sonstige, bearbeitungstechnisch geeignete Weise in die Versteifungsstruktur eingebracht werden. Je dicker dabei das Band gewählt wird, desto mehr wird auch die Schubfestigkeit erhöht. Gleichzeitig wird jedoch auch die Masse der Kunststoffpalette erhöht und wenn die leiterförmige Versteifungsstruktur - wie es bevorzugt der Fall ist - aus Metall, insbesondere aus Stahl ist, kann dies dazu führen, dass die Masse der Kunststoffpalette mit Versteifungsstrukturen höher als die Masse einer vergleichbaren Holzpalette wird, so dass ein wesentlicher Vorteil des Materials Kunststoff verloren ginge. Ein zu dünnes Blech als leiterförmige Versteifungsstruktur andererseits kann die erforderliche Schubfestigkeit nicht herstellen. Anstelle aus Metall lässt sich die leiterförmige Versteifungsstruktur auch aus anderen Materialien, die die notwendigen Biege- und Schubsteifigkeit der Palette bereitstellen können, herstellen. Beispielsweise kommen auch glasfaser- oder kohlenstofffaserverstärkte Kunststoffe in Frage.
  • Es hat sich jedoch herausgestellt, dass eine ausreichend hohe Schubfestigkeit hergestellt werden kann, wenn insbesondere die Holme eine entsprechende Dicke aufweisen, wohingegen die Sprossen mit geringerer Dicke ausgeführt werden können. In einer bevorzugten Ausgestaltung weisen daher die Holme eine vorgegebene Dicke auf, die beispielsweise anhand der geforderten Schubfestigkeit festgelegt werden kann. Unter der Dicke der Holme wird dabei die Ausdehnung der Holme senkrecht zur ihrer Längsrichtung und senkrecht zur Längsrichtung der Sprossen in der leiterförmigen Struktur verstanden. Indem nur die Holme dicker ausgeführt werden, lässt sich entscheidend Material und damit Gewicht sparen, ohne dass es zu Einbußen bei der Schubfestigkeit kommt.
  • Sind die Sprossen einstückig an den Holmen ausgeführt, so gehen Holme und Sprossen ineinander über, die Sprossen können daher dünner ausgefertigt werden. Sind die Sprossen stoffschlüssig, kraftschlüssig und/oder formschlüssig mit den Holmen über Kontaktflächen verbunden, so werden die Kontaktflächen in ihrer Ausdehnung so groß wie möglich gewählt, und zwar sowohl in der Höhe - d.h. in Längsrichtung der Holme - als auch senkrecht dazu, wobei grundsätzlich senkrecht zur Höhe auch gekrümmte Flächen in Frage kommen.
  • Um eine hohe Stabilität bezüglich Biege- und Schubfestigkeit zu gewährleisten, weisen die Sprossen in Längsrichtung der Holme eine vorgegebene Höhe - bei liegenden leiterförmigen Versteifungsstrukturen in der Ansicht die Breite - auf, die mindestens 80 % der Breite des jeweiligen, in Sprosse aufnehmenden Fußes entspricht. Der Begriff "Höhe" wurde dabei der Anschaulichkeit halber auf eine stehende leiterförmige Struktur bezogen, bei liegenden leiterförmigen Strukturen entspricht dies in der Ansicht der Breite. Vorzugsweise wird die Höhe der Sprossen so gewählt, dass der maximal zur Verfügung stehende Bauraum im jeweiligen Fuß - dieser für verschiedene Füße an derselben Palette verschieden sein - ausgenutzt wird, d.h. im Falle einer stoffschlüssigen, kraftschlüssigen oder formschlüssigen Verbindung entspricht die Ausdehnung der Kontaktflächen in Längsrichtung der Holme bevorzugt der vorgegebenen Höhe.
  • Dabei müssen die Holme nicht über die gesamte Dicke massiv aus Material sein, die Holme können auch als Hohlstrukturen mit verschiedenen Querschnitten ausgebildet sein. Besonders vorteilhaft ist die Hohlstruktur aus verschiedenen Flächen zusammengesetzt, wobei mindestens eine der Flächen jeweils eines Holmes parallel zur Deckoberseite - d.h. senkrecht zur Längsrichtung der Holme und der Sprossen - ausgerichtet ist, was ebenfalls zur Erhöhung der Stabilität beiträgt. Im Falle der Verwendung von Hohlstrukturen sind die Holme beispielweise als Rohre mit dem Querschnitt eines Vierecks, beispielsweise eines Trapezes, Rechtecks oder Quadrats ausgebildet und umfassen dann dementsprechend vier Flächen. Alternativ können sie auch als T-Träger oder als Doppel-T-Träger ausgebildet sein, auch hier liegt mindestens eine Fläche - die des Querbalkens des "T" - parallel zur Deckoberseite.
  • Auf diese Weise kann eine hohe Stabilität der Versteifungsstruktur bzgl. Biegung und Scherung in der Palette senkrecht zur Richtung der Kufen, also senkrecht zu einer Ebene, in der die leiterförmige Struktur liegt, erreicht werden.
  • Sind die Sprossen stoffschlüssig mit den als Rohre mit viereckigem Querschnitt ausgebildeten Holmen über Kontaktflächen verbunden, so liegen diese Kontaktflächen bevorzugt parallel zur Deckoberfläche und beträgt die Ausdehnung der Kontaktfläche in Richtung der Dicke der Holme mindestens ein Viertel der Dicke, bevorzugt jedoch mindestens die Hälfte der Dicke. Besonders bevorzugt entspricht die Ausdehnung der Kontaktfläche in Richtung der Dicke jedoch der gesamten Dicke, dies garantiert die bestmögliche Stabilität der stoffschlüssigen und flächigen Verbindung.
  • Die Kontaktflächen können allerdings auch senkrecht zur Deckoberfläche in der von Sprossen und Holmen aufgespannten Ebene liegen, bei Rohren mit rechteckigem Querschnitt können dann beispielsweise kleine Platten mit den Holmen verschweißt werden, ohne dass die Platten gebogen werden müssten. In Abhängigkeit von der Form der Holme können die Kontaktflächen auch jede andere Form aufweisen oder in einem anderen Winkel abstehen, wichtig ist, dass die Kontaktflächen so groß gewählt werden, dass sie bis zu einer vorgegebenen maximalen Schub- und Biegebelastung eine sichere Verbindung von Sprossen und Holmen garantieren.
  • Dies gilt auch im Falle einer kraftschlüssigen oder formschlüssigen Verbindung. Letztere kann beispielsweise als Schnappverschluss ausgeführt werden, wobei die Kontaktflächen dann den Flächen des Verschlusses bei Sprossen und Holmen entsprechen, die im verbundenen Zustand aneinander liegen. Eine entsprechend stabile Verbindung kann beispielsweise erreicht werden, wenn der Schnappverschluss entlang der Längsrichtung der Holme ausgerichtet ist und sich über die vorgegebene Höhe erstreckt.
  • Um eine ausreichend stabile kraftschlüssige Verbindung herzustellen, können die Sprossen an ihren den Holmen zugewandten Seiten beispielsweise keilförmig - auch hier bevorzugt über die gesamte Höhe - ausgebildet sein und die Holme entsprechende Aufnahmen aufweisen.
  • Die leiterförmige Versteifungsstruktur kann auf verschiedene Weise realisiert werden, besonders vorteilhafte Ausgestaltungen sind im Folgenden beschrieben.
  • In einer besonders bevorzugten, besonders für sehr hohe Stückzahlen geeigneter Ausführung ist die Versteifungsstruktur als Aluminium-Strangpressprofil ausgebildet. Die Sprossen sind in diesem Fall einstückig an den Holmen ausgebildet. Zwischen die Sprossen werden Öffnungen eingebracht, beispielsweise durch Stanzen oder Fräsen, durch die die Zinken eines Gabelstaplers einfahren können. Aluminium hat den Vorteil, dass es ein Leichtmetall ist, zudem ist kein Korrosionsschutz notwendig.
  • In einer weiteren bevorzugten Ausgestaltung, die sich insbesondere für kleinere und mittlere Stückzahlen von weniger als 10.000 eignet, ist die Versteifungsstruktur einstückig als Rohr mit quadratischem Querschnitt ausgebildet, welches in die Form von zwei Holmen mit dazwischenliegenden Sprossen gebogen ist. Auf diese Weise ist es möglich, eine Versteifungsstruktur mit maximal drei Sprossen, die einstückig an den Holmen ausgebildet sind, zu gestalten. Eine solche Versteifungsstruktur kann auf verschiedene Weisen realisiert werden, die sich vor allem dadurch unterscheiden, wo die beiden Rohrenden in der Versteifungsstruktur angeordnet sind. Beispielsweise ist es möglich, durch siebenfache Biegung um jeweils 90° eine nach Art einer "8" ausgebildete Struktur herzustellen. In einer bevorzugten Ausgestaltung, die nur sechs Biegungen benötigt, sind die beiden Enden des Rohres von einem der Holme zum anderen, gegenüberliegenden Holm gebogen und formen die mittlere Sprosse. Die Rohrenden sind stoffschlüssig miteinander und mit dem anderen, gegenüberliegenden Holm verbunden. Die Verbindung erfolgt dabei besonders bevorzugt über die ganze Dicke des Holms. Diese Art der Herstellung ermöglicht es, die Rohrenden zur Erhöhung der Stabilität mit einer weiteren Biegung zu versehen, so dass die effektive Höhe der Sprosse, bei einer liegenden leiterförmigen Struktur der Breite entsprechend, wächst. Dies erhöht die Stabilität bezüglich Biegung und Schubfestigkeit, wenn Kräfte im Bereich des mittleren Fußes angreifen. Die stoffschlüssige Verbindung wird besonders bevorzugt durch Schweißen hergestellt, die Schweißstellen werden anschließend gegen Korrosion beispielsweise durch Verzinken geschützt. Grundsätzlich ist dieses Profil relativ preiswert herzustellen, da Rohre mit quadratischem Querschnitt, beispielsweise mit einem Querschnitt von 20x20 mm und einer Wandstärke von 2 mm, auf dem Markt in großen Mengen erhältlich sind. Bei der Herstellung von Profilen entsteht etwa ein Viertel der Kosten durch das Sägen der Quadratrohre, um diese abzulängen. Durch die Verwendung eines einzigen, gebogenen Rohres können diese Kosten minimiert werden.
  • In einer anderen Ausgestaltung, die in der Herstellung etwas teuer ist und aufgrund der zeitintensiveren Fertigung teurer ist, sind die Holme ebenfalls als Rohre mit quadratischem Querschnitt ausgebildet, jedoch sind mindestens die inneren Sprossen als plattenförmige Verbindungselemente ausgebildet, bei denen an zwei gegenüberliegenden Seiten Kontaktflächen als Stehfalze angeformt sind. Es handelt sich um einstückige Elemente, die als sogenannte C-Profile mit einer Wandstärke von beispielsweise 2 mm ebenfalls kommerziell erhältlich sind, alternativ ist auch eine Herstellung durch Schneiden und Biegen aus einem geraden Blech möglich. Als Material kommt insbesondere Stahlblech in Frage, aber auch alle anderen Metalle und Metalllegierungen, die die Anforderungen erfüllen, können verwendet werden.
  • Unter einem Stehfalz wird dabei eine Abbiegung des Randes des plattenförmigen Verbindungselements um 90° verstanden. Die abgebogene Fläche des plattenförmigen Verbindungselements bildet dann die Kontaktfläche. Die Ausdehnung der Kontaktfläche in Richtung der Dicke des Holmes beträgt mindestens ein Viertel der Dicke. Bei einem Rohrdurchmesser des Quadratrohres von etwa 2 cm liegt die Biegekante dann mindestens 5mm von der Randkante des plattenförmigen Verbindungselements entfernt. Für eine stabile Verbindung ist es jedoch vorteilhaft, die Kontaktfläche so groß wie möglich zu machen, so dass die Biegekante mindestens die Hälfte, d.h. 10 mm, am besten sogar der Dicke des Rohres entsprechend 20 mm von der Randkante des plattenförmigen Verbindungselements entfernt, parallel zu dieser liegt.
  • Ein besonders stabile, allerdings auch fertigungsintensive Variante erhält man, wenn sämtliche Sprossen als solche plattenförmigen Verbindungselemente ausgestaltet sind, einschließlich der äußeren Sprossen. An den Kontaktflächen werden die plattenförmigen Verbindungselemente mit den Rohren verschweißt, anschließend müssen die Schweißstellen verzinkt werden. Je nach Materialwahl kann es auch erforderlich sein, die gesamte Versteifungsstruktur zu verzinken.
  • Eine etwas weniger fertigungsintensive Variante, bei der die hohe Stabilität hinsichtlich Biegung und Schubfestigkeit im Falle einer Versteifungsstruktur mit drei Sprossen für die mittlere Sprosse - an der erfahrungsgemäß die größten Kräfte angreifen - erhalten bleibt, besteht darin, die mittlere, innere Sprosse als plattenförmiges Verbindungselement mit als Stehfalzen ausgebildeten Kontaktflächen, wie vorangehend beschrieben, zu gestalten, jedoch die beiden äußeren Sprossen aus einem Rohr mit rechteckigem oder quadratischem Querschnitt zu biegen. Die beiden Holme und die beiden äußeren Sprossen sind in diesem Fall einstückig aus einem gebogenen Rohr gebildet.
  • Weitere Möglichkeiten, den Materialverbrauch bei hoher Stabilität bzgl. Biegung und Scherung möglichst gering zu halten, bestehen darin, anstelle von dicken Blechen oder dicken Versteifungsstrukturen dünnere Bleche zu verwenden, bei denen die Holme durch Biegung entlang der Längsrichtung der Holme ausgebildet sind. Auf diese Weise können Falze an den Holmen ausgebildet werden. Auch die Einbringung von Sicken als Spezialform des Biegens ist als eine ebenso der Versteifung dienende Umformung möglich, Sicken können an beliebiger Stelle in Längsrichtung der Holme in diese eingebracht werden. Die Versteifungsstruktur ist in diesem Fall als gewalztes und/oder gebogenes Metall-Profil mit zwischen den Sprossen, die einstückig an den Holmen ausgebildet sind, eingebrachten Öffnungen ausgebildet. Die Biegung erfolgt entsprechend der Längsrichtung der Holme. Hier können Bleche verschiedener Dicke verwendet werden, je nach geforderter Belastbarkeit beispielsweise Bleche mit Dicken von 1 mm bis 4 mm. Die Stabilität der Versteifungsstruktur wird hier also nicht durch die Materialdicke erreicht, sondern durch die Ausbildung der Holme durch Biegung, wodurch ihnen insbesondere auch eine vorgegebene Dicke aufgeprägt werden kann. Bei der Verwendung von Metall-Profilen lassen sich die Holme an den Profilrändern im einfachsten Fall als Stehfalze ausbilden. Eine höhere Stabilität wird durch Doppelstehfalze erreicht, d.h. also durch zwei in Querrichtung des Profils - mit Biegekanten längs der Längsrichtung der Holme - in kurzem Abstand aufeinander folgende Biegungen um 90° in gleicher Orientierung. Die Holme können auch als Umschläge ausgebildet sein, d.h. als Biegungen um 180°. Zur weiteren Erhöhung der Stabilität kann es vorteilhaft sein, Stehfalze und Umschläge miteinander zu kombinieren. Zwischen den Sprossen sind die Öffnungen eingebracht, dies kann beispielsweise durch Ausstanzen, Ausschneiden oder Ausfräsen erfolgen. Die Sprossen sind bevorzugt plattenförmig ausgebildet, weisen also in Längsrichtung der Holme eine vorgegebene Höhe auf, die nahe an die Abmessungen der Füße in Längsrichtung der Holme heranreicht. Bei sich verjüngenden Füssen kann auch die Form der die Sprosse bildenden Platte entsprechend angepasst werden, beispielsweise in eine Trapezform.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung einsetzbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend wird die Erfindung beispielsweise anhand der beigefügten Zeichnungen, die auch erfindungswesentliche Merkmale offenbaren, noch näher erläutert. Es zeigen
  • Fig. 1
    eine Kunststoffpalette mit einer darin eingebetteten leiterförmigen Versteifungsstruktur,
    Fig. 2
    eine Kunststoffpalette ohne Deck mit Versteifungsstrukturen,
    Fig. 3a)-c)
    eine erste Ausgestaltung einer Versteifungsstruktur,
    Fig. 4a)-c)
    eine zweite Ausgestaltung einer Versteifungsstruktur,
    Fig. 5a)-b)
    eine dritte Ausgestaltung einer Versteifungsstruktur,
    Fig. 6
    eine Abwandlung der in Fig. 5 gezeigten Versteifungsstruktur,
    Fig. 7a)-c)
    eine vierte Ausgestaltung einer Versteifungsstruktur,
    Fig. 8a)-c)
    eine fünfte Ausgestaltung einer Versteifungsstruktur,
    Fig. 9a)-d)
    eine sechste Ausgestaltung einer Versteifungsstruktur,
    Fig. 10a)-b)
    eine siebte Ausgestaltung einer Versteifungsstruktur und
    Fig. 11a)-c)
    eine achte Ausgestaltung einer Versteifungsstruktur.
    Ausführliche Beschreibung der Zeichnungen
  • Fig. 1 zeigt eine übliche Kunststoffpalette, welche ein Deck 1 zur Lagerung von zu transportierenden Objekten umfasst. In der hier gezeigten Perspektivansicht ist eine Deckoberseite 2 zu sehen, dieser gegenüberliegend ist eine nicht gezeigte Deckunterseite, Deckoberseite 2 und Deckunterseite sind voneinander durch die Dicke des Decks beabstandet. Von der Deckunterseite nach unten abstehend sind Füße 3 ausgebildet. Außerdem umfasst die Kunststoffpalette auch Kufen 4, welche jeweils mindestens zwei Füße 3 an deren Unterseiten miteinander verbindend ausgebildet sind. Das vorderste Segment der Kunststoffpalette - umfassend drei Füße und die Kufen, die die Füße verbinden - ist hier aufgeschnitten dargestellt, so dass eine dort angeordnete - durch Schraffur gekennzeichnete - Versteifungsstruktur 5 sichtbar wird. Die Versteifungsstruktur 5, von denen die Palette hier zwei in den äußeren Kufen aufweist, ist hier leiterförmig ausgebildet und umfasst in den Kufen 4 anordnete untere Holme 6 und davon beabstandet angeordnete obere Holme 7, welche über den unteren Holmen 6 parallel zu diesen verlaufend angeordnet sind. Die oberen Holme können in einem Bereich zwischen der Deckoberseite 2 und der Deckunterseite im Deck 1 angeordnet sein, sie können aber auch unterhalb des Decks 1, wie in Fig. 1 beispielhaft dargestellt, angeordnet sein. Bei einer Anordnung der oberen Holme 7 im Bereich zwischen der Deckoberseite 2 und der Deckunterseite kann die Versteifungsstruktur 5 dann im Falle einer einstückigen Fertigung vollständig vom Kunststoff der Palette umschlossen werden.
  • Die Versteifungsstruktur 5 ist leiterförmig ausgebildet und weist daher Sprossen 8 auf, welche die unteren Holme 6 in den Füßen 3 mit den oberen Holmen 7 verbinden. Die Oberfläche der Sprossen ist überwiegend geschlossen, d.h. sie weist keine Öffnungen oder Aussparungen auf, und wenn doch, dann beträgt die Fläche der Öffnungen bzw. Aussparungen anteilmäßig an der gesamten Oberfläche der Sprossen 8 weniger als 50%, in der Regel weniger als 10%. Aussparungen und Öffnungen werden nur dort angebracht, wo dies aus fertigungstechnischen Gründen notwendig oder sinnvoll ist.
  • Die Sprossen 8 sind dabei entweder einstückig an den unteren Holmen 6 bzw. den oberen Holmen 7 ausgebildet, oder sie sind mit diesen jeweils über Kontaktflächen stoffschlüssig verbunden. Je nach Ausgestaltung können auch einige der Sprossen 8 einstückig an einem oder beiden Holmen ausgebildet sein und andere Sprossen mit den Holmen 6, 7 stoffschlüssig verbunden sein. Die Art des Stoffschlusses wird abhängig vom Material gewählt. Bei metallischen Versteifungsstrukturen 5 bietet sich hier insbesondere eine Verschweißung an. In Abhängigkeit vom Material - beispielsweise lassen sich auch kohlenstofffaser- und glasfaserverstärkte Kunststoffe für die Versteifungsstruktur verwende - können sich auch andere Arten der Verbindung als sinnvoll erweisen, beispielsweise kraft- oder formschlüssige Verbindungen, wobei auch alle Arten des Formschlusses miteinander kombiniert werden können.
  • Durch die einstückige Ausbildung der Sprossen 8 an den Holmen 6 und 7 bzw. durch die stoffschlüssige Verbindung über größere Kontaktflächen einerseits und durch die überwiegend geschlossene Oberfläche der Sprossen 8 andererseits wird die Biegesteifigkeit der Kunststoffpalette und insbesondere die Schubfestigkeit der Kunststoffpalette in einer zur Deckoberseite 2 parallelen Ebene erhöht.
  • Durch die Verwendung von solchermaßen ausgebildeten Versteifungsstrukturen 5 ist es möglich, die Durchbiegung der Kunststoffpalette bei Lastauflage in der Mitte zu verringern, beispielsweise von 22 mm auf unter 10 mm bei einer Kunststoffpalette mit den Maßen 1200 mm x 800 mm und 3 mit Kufen verbundenen Füßen. Die Schubsteifigkeit wird erhöht, da Scherkräfte über die Versteifungsstrukturen 5, die insbesondere aus Metall sein können, abgeleitet bzw. von ihnen aufgefangen werden.
  • Fig. 2 zeigt eine Kunststoffpalette ohne Deck, hier sind nur die Füße 3 mit daran angeformten Kufen 4 dargestellt. In den äußeren beiden Fuß-Kufen-Elementen sind Versteifungsstrukturen 5 eingesetzt. Zusätzlich sind hier noch Querstreben 9 gezeigt, welche die Stabilität der Kunststoffpalette weiter erhöhen. Diese Querstreben 9 können ebenfalls aus Metall sein. Sie sind jedoch rein optional und für die Erzielung der gewünschten Wirkung nicht zwingend notwendig. Im Interesse einer möglichst geringen Masse der Kunststoffpalette kann auf die Querstreben 9 verzichtet werden. Sie können unabhängig von den Versteifungsstrukturen 5 in die Palette eingelegt werden, aber auch mit diesen stoffschlüssig, formschlüssig und/oder kraftschlüssig verbunden sein, um so eine noch stabilere Struktur zu bilden. Im vorliegenden Fall sind die beiden äußeren Querstreben 9 durch Öffnungen in den Versteifungsstrukturen 5 bzw. in den Sprossen 8 hindurch gesteckt und bilden mit diesen ein Gitter. Die mittlere Querstrebe 9 ist nur aufgelegt, ließe sich aber ebenfalls in das Gitter integrieren.
  • Mit Hilfe der Versteifungsstrukturen 5 ist es möglich, die Durchbiegung auf das Maß zu reduzieren, welches auch bei Holzpaletten vergleichbarer Größe als zulässig erachtet wird, oder auch auf noch geringere Maße. Je dicker die Versteifungsstrukturen - mit Dicke ist die Ausdehnung senkrecht zur Längsrichtung der Holme und senkrecht zur Längsrichtung der Sprossen gemeint - sind, desto höher werden Schub- und Biegesteifigkeit, was jedoch mit einer höheren Masse einhergeht. Obwohl Kunststoffpaletten an sich leichter als Holzpaletten gleicher Größe sind, kann bei entsprechend dicken Versteifungsstrukturen 5 das Gewicht vergleichbarer Holzpaletten übertroffen werden, wodurch ein wesentlicher Vorteil von Kunststoffpaletten wegfiele.
  • Wählt man jedoch andererseits die Dicke der unteren Holme 6, der oberen Holme 7 und der Sprossen 8 zu gering, beispielsweise als reines Blech mit konstanter Dicke, so kann dies bei zu geringer Dicke nicht die notwendige Schubsteifigkeit realisieren. Aus diesem Grund weisen mindestens die oberen Holme 6 und die unteren Holme 7 eine vorgegebene Dicke auf.
  • Im Falle einer stoffschlüssigen Verbindung der Sprossen 8 mit den Holmen 6, 7 über Kontaktflächen, und auch im Falle einer kraft- oder formschlüssigen Verbindung wird die Größe der Kontaktflächen in Abhängigkeit von einer vorgegebenen maximalen Biege- und Schubbelastung der Kunststoffpalette gewählt bzw. vorgegeben, in der Regel sollten die Kontaktflächen so groß wie baulich möglich gewählt werden.
  • In Längsrichtung der Holme 6, 7 weisen die Sprossen 8 zur Erhöhung der Schubsteifigkeit und Biegesteifigkeit in Längsrichtung der Holme 6, 7 eine vorgegebene Höhe, die sich an der Breite der Füße orientiert, sie sollte mindestens 80% der Breite des jeweiligen, die Sprosse aufnehmenden Fußes betragen. Hier wird der Ausdruck "Höhe" in Anlehnung an eine stehende Leiter verwendet, er korrespondiert für eine liegende Struktur mit der Breite. Im Falle einer Verbindung der Sprossen 8 mit den Holmen 6, 7 über Kontaktflächen entspricht die Ausdehnung der Kontaktflächen in Längsrichtung der Holme 6,7 bevorzugt der vorgegebenen Höhe.
  • Für die Ausgestaltung der Holme 6 und 7 sind dabei viele Gestaltungsvarianten möglich, beispielsweise lassen sich der untere Holm 6 und/oder der obere Holm 7 als Hohlstrukturen aus verschiedenen Flächen zusammensetzen, beispielsweise lassen sie sich als Rohre mit dem Querschnitt eines Vierecks, insbesondere eines Trapezes, Rechtecks oder Quadrats ausbilden, was die Verbindung der Kontaktflächen erleichtert; aber auch eine Ausgestaltung als T-Träger oder als Doppel-T-Träger ist denkbar. Mindestens eine der Flächen jeweils eines Holmes (6, 7) ist dann bevorzugt senkrecht zur Längsrichtung des jeweiligen Holmes 6, 7 und senkrecht zur Längsrichtung der Sprossen 8 ausgerichtet. An diesen Flächen können dann insbesondere für den Stoffschluss Kontaktflächen ausgebildet sein.
  • Im Falle einer stoffschlüssigen Verbindung der Sprossen 8 mit den Holmen 6, 7 liegt daher die Kontaktfläche bevorzugt in einer Ebene zur Längsrichtung der Sprossen 8 und der Holme 6, 7. Die Ausdehnung der Kontaktfläche in Richtung der Dicke sollte dann in der Regel mehr als die Hälfte der Dicke betragen. Die Sprossen 8 können in Abhängigkeit von der Ausgestaltung auch eine geringere Dicke aufweisen, bei einer Ausbildung aus einem Blech beispielsweise eine der Blechdicke entsprechende Dicke.
  • Verschiedene Ausgestaltungen von Versteifungsstrukturen 5 werden im Folgenden anhand der Fig. 3-11 erläutert.
  • Fig. 3a)-c) zeigen eine erste Ausgestaltung einer Versteifungsstruktur, wie sie zur Erhöhung der Biegesteifigkeit und der Schubfestigkeit der Kunststoffpalette verwendet werden kann. Fig. 3a) zeigt eine Ansicht der Versteifungsstruktur von vorne, Fig. 3b) einen Querschnitt durch die Versteifungsstruktur im Bereich einer Sprosse 8 und Fig. 3c) eine Perspektivansicht der Versteifungsstruktur, die hier als Aluminium-Strangpressprofil 10 ausgebildet ist. Der untere Holm 6 und der obere Holm 7 sind jeweils als T-Träger ausgebildet, die Dicke der Holme 6, 7 kann im Bereich des Querbalkens des "T" beispielsweise 20 mm betragen. Da es sich bei Aluminium um ein nichtrostendes Material handelt, kann auf einen gesonderten Korrosionsschutz verzichtet werden. Zwischen die Sprossen 8 sind Öffnungen 11 eingebracht, die sich im montierten Zustand zwischen den Füßen der Kunststoffpalette befinden und die Einfahrt der Gabel eines Gabelstaplers ermöglichen. Die Sprossen 8 sind hier einstückig an den Holmen 6, 7 ausgebildet und plattenförmig. Im Bereich unter dem oberen Holm 7 sind optional Durchtrittslöcher 12 angeordnet, durch sie kann während der Fertigung im Falle einer einstückigen Palette Kunststoff hindurchtreten, um für eine feste Verbindung zwischen der Versteifungsstruktur und der Kunststoffpalette zu sorgen. Die Durchtrittslöcher 12 können auch für eine andere Art der Befestigung, beispielsweise eine mechanische verwendet werden, sofern ein Einklemmen in die Gerüststruktur der Kunststoffpalette nicht möglich sein sollte, in diesem Fall werden keine Durchtrittslöcher 12 benötigt. Insbesondere eignen sich die Durchtrittslöcher 12 aber auch dazu, optionale Querstreben 9 aufzunehmen, um diese besser zu fixieren und eine versteifende Gitterstruktur in der Ebene des Decks 1 herzustellen, wie in Fig. 2 gezeigt. Ein Vorteil bei der Verwendung eines Aluminium-Strangpressprofils liegt auch in der reduzierten Masse. Während eine Holzpalette mit den Maßen 800 mm x 1200 mm 20-25kg wiegt, beträgt die Masse einer Palette mit den in Fig. 3a)-c) gezeigten Profilen etwa 15-20kg.
  • Eine zweite Ausgestaltung einer Versteifungsstruktur, die hier als weiteres Aluminium-Strangpressprofil 13 ausgebildet ist, zeigen Fig. 4a)-c). Fig. 4a) zeigt eine Ansicht des Aluminium-Strangpressprofils 13 von der Seite, Fig. 4b) einen Querschnitt durch das Profil im Bereich einer Sprosse 8 und Fig. 4c) das Aluminium-Strangpressprofil 13 in einer Perspektivansicht. Auch hier sind zwischen die Sprossen 8 Öffnungen 11 eingebracht. Das Einbringen kann beispielsweise durch Stanzen, Schneiden oder Fräsen erfolgen. Auch das in Fig. 4 gezeigte weitere Aluminium-Strangpressprofil 13 weist Durchtrittslöcher 12 auf. Im Gegensatz zu den in Fig. 3 gezeigten Strangpressprofil ist hier jedoch der untere Holm 6 als Rohr mit quadratischem Querschnitt und der obere Holm als Doppel-T-Träger ausgebildet. Dabei ist es selbstverständlich möglich, auch hier einen der Holme als T-Träger auszugestalten, ebenso kann einer der Holme des Aluminium-Strangpressprofils 10, welches in Fig. 3a)-c) dargestellt ist, als Doppel-T-Träger oder als Rohr mit quadratischem oder rechteckigem Querschnitt ausgestaltet sein.
  • Eine dritte Ausgestaltung ist in Fig. 5a)-b) dargestellt. Hier handelt es sich um eine Versteifungsstruktur, die als Rohr mit quadratischem Querschnitt 14 ausgebildet ist. Das Rohr 14 ist in die Form von zwei Holmen 6, 7 mit dazwischenliegenden Sprossen 8 gebogen. Es handelt sich um eine einstückige Ausführung mit maximal drei Sprossen 8, die insbesondere für kleinere Paletten geeignet ist. Alle Sprossen 8 werden aus dem quadratischen Rohr 14 geformt. Bei dem in Fig. 5 gezeigten Beispiel werden die äußeren Sprossen 8 der Versteifungsstruktur durch zweimaliges Umbiegen des Rohres 14 um jeweils 90° gebildet. Die mittlere oder innere Sprosse 8 wird hingegen gebildet, indem die beiden Rohrenden 15 von einem der Holme - hier ohne Beschränkung der Allgemeinheit vom oberen Holm 7 um 90° gebogen sind, durch die Biegung entsteht also die mittlere Sprosse 8. Die Rohrenden 15 sind mit dem gegenüberliegenden Holm - hier dem unteren Holm 6 - stoffschlüssig, beispielsweise durch Schweißen verbunden, hier über die ganze Dicke des unteren Holms 6. Zur Erhöhung der Biege- und Schubsteifigkeit und der Stabilität der Versteifungsstruktur können die Rohrenden 15 auch miteinander stoffschlüssig verbunden sein, bei einer entsprechenden Fixierung in der Kunststoffpalette im mittleren Fuß kann darauf jedoch auch verzichtet werden.
  • Eine Abwandlung dieser Ausgestaltung ist in Fig.6 dargestellt. Die Rohrenden 15, welche die mittlere Sprosse 8 bilden, sind hier in ihren Endbereichen voneinander weggespreizt, so dass die mittlere Sprosse 8 die Form eines "Y" bekommt. Mit einer Kante sind die Rohrenden 15 jeweils mit dem gegenüberliegenden Holm, hier dem unteren Holm 6, über die gesamte Dicke des Holms stoffschlüssig verbunden. Die betreffenden Kanten sind vorzugsweise mit größeren Fasen versehen, um eine Kontaktfläche für die stoffschlüssige Verbindung, die gegenüber einer linienförmigen, eindimensionalen Verbindung stabiler ist. Auch hier sind die Sprossen 8 einstückig am unteren Holm 6 bzw. am oberen Holm 7 ausgebildet, auch wenn zur Erhöhung der Steifigkeit die Rohrenden mit dem gegenüberliegenden Holm stoffschlüssig verbunden sind. Durch die Aufspreizung der Rohrenden 15 in "Y"-Form wird die Schubsteifigkeit in einer zum Deck 1 parallelen Ebene bzw. die Biegesteifigkeit senkrecht zur Deckebene gegenüber der in Fig. 5a)-b) gezeigten Ausführung weiter erhöht.
  • Eine weitere Ausführung für eine Versteifungsstruktur ist in Fig. 7 dargestellt. Fig. 7a) zeigt eine Projektionsansicht der Versteifungsstruktur von vorne und Fig. 7b) eine Perspektivansicht. Auch in dieser vierten Ausgestaltung sind die Holme als Rohre mit quadratischem Querschnitt ausgebildet, der untere Holm 6 und der obere Holm 7 sowie die beiden äußeren Sprossen 8 sind hier ebenfalls einstückig aus einem gebogenen Rohr 14 gebildet. Die beiden Rohrenden 15 sind im Bereich einer der äußeren Sprossen 8 miteinander stoffschlüssig verbunden. Die Rohrenden 15 können jedoch auch an einer anderen Stelle eines der Holme zusammentreffen, beispielsweise im Bereich der mittleren Sprosse 8. Die mittlere Sprosse 8 ist hier als plattenförmiges Verbindungselement 16 ausgebildet, bei dem an zwei gegenüberliegenden Seiten, nämlich den Seiten, die zu den Holmen 6 und 7 weisen, Kontaktflächen als Stehfalze angeformt sind.
  • Das plattenförmige Verbindungselement 16 ist hier - bezogen auf die Dicke des unteren Holms 6 und des oberen Holms 7 - mittig platziert. Die Ausdehung der durch die Stehfalze gebildeten Kontaktflächen in Richtung der Dicke beträgt hier die Hälfte der Dicke.
  • Diese vierte Ausgestaltung einer Versteifungsstruktur weist ein besonders gutes Kosten-Nutzen-Verhältnis auf, da zum einen das quadratische Rohr 14 nur einmal abgelängt und nur viermal gebogen werden muss. Durch das plattenförmige Verbindungselement, was im Querschnitt eine C- oder S-Form aufweisen kann, wird jedoch die Schubfestigkeit und Biegesteifigkeit gegenüber den in Fig. 5 und Fig. 6 gezeigten Ausführungen weiter erhöht, da das plattenförmige Verbindungselement 16 in Längsrichtung der Holme die maximale Höhe - in der Ansicht korrespondierend zur Breite - aufweisen kann, die es gerade noch ermöglicht, es vollständig in den entsprechenden Fuß 3 zu integrieren, wohingegen die Breite bei der Bildung der mittleren Sprosse 8 aus den gebogenen Rohrenden 15 durch die Dicke des quadratischen Rohres 14 vorgegeben ist und nicht vergrößert werden kann. Die in den Fig. 7a)-b) gezeigte Versteifungsstruktur lässt sich außerdem auch für Paletten mit mehr Füßen in einer Richtung einsetzen, da ohne weiteres mehrere der plattenförmigen Verbindungselemente 16 als innere Sprossen zwischen die einstückig ausgebildeten äußeren Sprossen gesetzt werden können.
  • Eine weitere - besonders stabile - fünfte Ausgestaltung einer Versteifungsstruktur für eine Kunststoffpalette ist in Fig. 8 gezeigt. Fig. 8a) zeigt eine Seitenansicht einer auf der Außenkante eines Holmes liegenden Versteifungsstruktur, Fig. 8b) den Querschnitt im Bereich einer Sprosse 8 und Fig. 8c) eine Perspektivansicht. Im Gegensatz zu der in Fig. 7 gezeigten Ausgestaltung sind hier auch die äußeren Sprossen 8 als plattenförmige Verbindungselemente 16 mit daran angeformten Stehfalzen 17 zur Bildung der Kontaktflächen ausgebildet. Die plattenförmigen Verbindungselemente 16 weisen im Querschnitt - wie in Fig. 8c) gezeigt - eine "C"-Form auf. Der untere Holm 6 und der obere Holm 7 sind auch in dieser Ausführung als Rohr 14 mit quadratischem Querschnitt ausgebildet. Sie können aus einem Rohr durch Sägen erzeugt werden. Jeweils drei - hier gleichartige - plattenförmige Verbindungselemente 16 verbinden den oberen Holm 7 mit dem unteren Holm 6, die Stehfalze 17, welche durch Biegen an die plattenförmigen Elemente 16 angeformt sind, bilden die Kontaktflächen. Ihre Ausdehnung in Richtung der Dicke der Holme 6, 7 entspricht hier der gesamten Dicke der Holme 6 und 7. Mittels der Kontaktflächen sind die plattenförmigen Verbindungselemente stoffschlüssig mit den Holmen 6 und 7 verbunden. Nach Herstellung der stoffschlüssigen Verbindung muss die Versteifungsstruktur zum Schutz vor Korrosion noch verzinkt werden.
  • Gegenüber den oben beschriebenen Varianten aus Aluminium-Strangpressprofil sind die in Fig. 5-8 beschriebenen Ausführungen zwar aufwendiger in ihrer Herstellung, gehen jedoch schonender mit den Materialressourcen um, da praktisch kein Abfall entsteht, wohingegen bei der Einbringung der Öffnung 11 in die im Zusammenhang mit Fig. 3 und Fig. 4 beschriebenen Aluminium-Strangpressprofile 10 und 13 ein nicht unerheblicher Anteil an Materialabfall anfällt.
  • Die Fig. 9-11 zeigen weitere Ausgestaltungen für Versteifungsstrukturen, welche sämtlich einstückig aus gewalztem und gebogenem Metall-Profil, beispielsweise (Stahl-)Blech oder Bandstahl, gebildet sind, wobei zwischen die Sprossen 8 wieder Öffnungen 11 eingebracht sind. Zusätzlich weisen auch diese Versteifungsstrukturen optionale Durchtrittslöcher 12 auf. Die Ausgestaltungen unterscheiden sich hier nur in der Ausbildung des unteren Holms 6 und des oberen Holms 7, die an den Profilrändern durch Biegen angeformt sind und als Stehfalze, doppelte Stehfalze, Umschläge oder Kombinationen davon ausgebildet sind. Das in Fig. 9a) in Perspektivansicht und in Fig. 9b) im Querschnitt im Bereich einer Sprosse 8 gezeigte Metall-Profil als sechste Ausgestaltung einer Versteifungsstruktur weist einen zum unteren Holm 6 identisch geformten oberen Holm 7 auf. Die Holme werden durch einen Stehfalz um 90° und zwei Umschläge, d.h. Biegungen von 180°, in der entgegengesetzten Orientierung gebildet. Die Biegungen sind dabei spiegelsymmetrisch zu einer horizontalen Ebene im Blatt angeordnet, so dass das Profil mit den beiden Stehfalzen eine "C"-Form bildet, die gegenüber einer ebenfalls möglichen "S"-Form eine etwas höhere Stabilität bietet. Alle Sprossen 8 sind plattenförmig und einstückig an den Holmen 6 und 7 ausgebildet.
  • Das in den Fig. 10a) perspektivisch und in Fig. 10b) im Querschnitt im Bereich einer Sprosse 8 dargestellte Metall-Profil als siebte Ausgestaltung einer Versteifungsstruktur weist durch andere Biegekombinationen ausgebildete Holme 6, 7 auf. Die plattenförmigen Sprossen 8 sind auch hier einstückig an die Holme 6, 7 angeformt, und in Bezug auf die Dicke der Holme 6 und 7 - in Fig. 10b) entsprechend der horizontalen Richtung in der Blattebene - mittig angeordnet. Der obere Holm 7 weist jedoch eine größere Breite - entsprechend der vertikalen Richtung in der Blattebene - auf als der untere Holm 6. Hier kann ausgenutzt werden, dass einerseits die Kufen 4 flach gehalten werden sollten, jedoch andererseits für den oberen Holm 7 - bei vollständiger Umschließung durch den Kunststoff - fast die gesamte Deckhöhe verwendet werden kann. Dies erhöht zusätzlich die Stabilität. Die Holme 6, 7 sind hier durch die Kombination mehrerer Biegungen um 90° (Stehfalze) und einer Biegung um 180° (Umschlag) geformt.
  • Eine achte Ausführung einer Versteifungsstruktur schließlich ist in Fig. 11 gezeigt. Fig. 11a) und Fig. 11b) zeigen die als Metall-Profil ausgebildete Versteifungsstruktur perspektivisch von zwei gegenüberliegenden Seiten, Fig. 11c) zeigt das Profil im Querschnitt im Bereich einer Sprosse 8. Auch hier ist der obere Holm 7 breiter als der untere Holm 6 ausgeführt. Beide Holme 6, 7 sind als doppelte Stehfalze ausgebildet. Pro Holm werden hier nur zwei Biegungen benötigt, die Versteifungsstruktur ist somit vergleichsweise einfach herzustellen, bietet jedoch ebenfalls eine sehr hohe Biege- und Schubfestigkeit.
  • Sämtliche Profile zeichnen sich dadurch aus, dass sie bei relativ geringer Masse in der Lage sind, einer Kunststoffpalette die benötigte Biege- und Schubsteifigkeit zu geben, so dass die Durchbiegung in der Mitte nicht größer als bei Holzpaletten ist, andererseits aber die Masse der Kunststoffpalette mit Versteifungsstrukturen noch geringer als bei herkömmlichen Holzpaletten gleicher Größe ist. Während letztere bei Abmessung von 1200 x 800 mm ein Gewicht von 20-25 kg haben, ist es mit der hier vorgestellten Erfindung möglich, das Gewicht der Kunststoffpaletten deutlich darunter, bei etwa 15-20 kg zu halten.
  • Bezugszeichenliste
  • 1
    Deck
    2
    Deckoberseite
    3
    Fuß
    4
    Kufe
    5
    Versteifungsstruktur
    6
    unterer Holm
    7
    oberer Holm
    8
    Sprosse
    9
    Querstrebe
    10
    Aluminium-Strangpressprofil
    11
    Öffnung
    12
    Durchtrittsloch
    13
    Aluminium-Strangpressprofil
    14
    Rohr mit quadratischem Querschnitt
    15
    Rohrende
    16
    Plattenförmiges Verbindungselement
    17
    Stehfalz

Claims (13)

  1. Kunststoffpalette, umfassend
    - ein Deck (1) zur Lagerung von zu transportierenden Objekten,
    - Füße (3), welche von einer Deckunterseite abstehend ausgebildet sind, und
    - Kufen (4), welche jeweils mindestens zwei Füße (3) an deren Unterseiten miteinander verbindend ausgebildet sind,
    - mindestens eine Versteifungsstruktur (5), umfassend in den Kufen (4) angeordnete untere Holme (6) und davon beabstandet angeordnete obere Holme (7), welche über den unteren Holmen (6) parallel zu diesen verlaufend angeordnet sind, dadurch gekennzeichnet, dass
    - die mindestens eine Versteifungsstruktur (5) Sprossen (8) mit jeweils überwiegend geschlossener Oberfläche aufweist, welche die unteren Holme (6) in den Füßen (3) mit den oberen Holmen (7) verbinden,
    - wobei die Sprossen (8) einstückig an den Holmen (6, 7) ausgebildet sind oder mit diesen jeweils über Kontaktflächen stoffschlüssig, kraftschlüssig oder formschlüssig verbunden sind,
    - wodurch die Biegesteifigkeit der Palette und die Schubfestigkeit der Palette in einer zur Deckoberseite (2) parallelen Ebene erhöht wird.
  2. Kunststoffpalette nach Anspruch 1, dadurch gekennzeichnet, dass die Holme (6, 7) eine vorgegebene Dicke aufweisen.
  3. Kunststoffpalette nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Falle einer Verbindung der Sprossen (8) mit den Holmen (6, 7) über Kontaktflächen die Größe der Kontaktflächen in Abhängigkeit von einer vorgegebenen maximalen Biege- und Schubbelastung der Kunststoffpalette vorgegeben ist.
  4. Kunststoffpalette nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sprossen (8) in Längsrichtung der Holme (6, 7) eine vorgegebene Höhe aufweisen, welche mindestens 80 % der Breite des jeweiligen, die Sprosse (8) aufnehmenden Fußes (3) entspricht, wobei im Falle einer stoffschlüssigen, kraftschlüssigen oder formschlüssigen Verbindung die Ausdehnung der Kontaktflächen in Längsrichtung der Holme der vorgegebenen Höhe entspricht.
  5. Kunststoffpalette nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Holme (6, 7) als aus verschiedenen Flächen zusammengesetzte Hohlstrukturen ausgebildet sind, bevorzugt als Rohre mit dem Querschnitt eines Rechtecks, oder als T-Träger oder Doppel-T-Träger ausgebildet sind, wobei mindestens eine der Flächen jeweils eines Holmes (6, 7) senkrecht zur Längsrichtung der Holme (6, 7) und der Sprossen (8) ausgerichtet ist.
  6. Kunststoffpalette nach Anspruch 5, dadurch gekennzeichnet, dass im Falle einer stoffschlüssigen Verbindung der Sprossen (8) mit den Holmen (6, 7) die Kontaktflächen in einer Ebene senkrecht zur Längsrichtung der Holme (6, 7) und Sprossen (8) liegen und die Ausdehnung der Kontaktflächen in Richtung der Dicke mindestens ein Viertel der Dicke beträgt, bevorzugt mindestens die Hälfte der Dicke beträgt, besonders bevorzugt der gesamten Dicke entspricht.
  7. Kunststoffpalette nach einem der Ansprüche 1 bis 5 mit einstückig an den Holmen (6, 7) ausgebildeten Sprossen (8), dadurch gekennzeichnet, dass die mindestens eine Versteifungsstruktur (5) als Aluminium-Strangpressprofil (10, 13) ausgebildet ist mit zwischen die Sprossen (8) eingebrachten Öffnungen (11).
  8. Kunststoffpalette nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass mindestens der untere Holm, (6), der obere Holm (7) und die beiden äußeren Sprossen (8) einstückig aus einem gebogenen Rohr (14) mit quadratischem Querschnitt gebildet sind.
  9. Kunststoffpalette nach Anspruch 8 mit drei einstückig an den Holmen ausgebildeten Sprossen, dadurch gekennzeichnet, dass das Rohr (14) in die Form von zwei Holmen (6, 7) mit dazwischenliegenden Sprossen (8) gebogen ist.
  10. Kunststoffpalette nach Anspruch 9, dadurch gekennzeichnet, dass die beiden Rohrenden (15) von einem der Holme (6, 7) zum anderen, gegenüberliegenden Holm (7, 6) gebogen sind und die mittlere Sprosse (8) formen, und stoffschlüssig miteinander und mit dem anderen, gegenüberliegenden Holm (7, 6) verbunden sind, bevorzugt über die ganze Dicke des betreffenden Holms (7, 6).
  11. Kunststoffpalette nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der untere Holm (6) und der obere Holm (7) als Rohre (14) mit quadratischem Querschnitt ausgebildet sind und mindestens die inneren Sprossen (8) als plattenförmige Verbindungselemente (16) ausgebildet sind, bei denen an zwei gegenüberliegenden Seiten Kontaktflächen als Stehfalze angeformt sind.
  12. Kunststoffpalette nach einem der Ansprüche 1 bis 4 mit einstückig an den Holmen (6, 7) ausgebildeten Sprossen (8), dadurch gekennzeichnet, dass die mindestens eine Versteifungsstruktur (5) als gewalztes und gebogenes Metall-Profil mit zwischen die Sprossen (8) eingebrachten Öffnungen (11) ausgebildet ist.
  13. Kunststoffpalette nach Anspruch 12, dadurch gekennzeichnet, dass die Holme (6, 7) an den Profilrändern als Stehfalze, doppelte Stehfalze, Umschläge oder Kombinationen davon und/oder die Sprossen (8) plattenförmig ausgebildet sind.
EP17169002.7A 2017-05-02 2017-05-02 Kunststoffpalette mit versteifungsstruktur Active EP3398870B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES17169002T ES2783823T3 (es) 2017-05-02 2017-05-02 Plataforma de carga de plástico con estructura de refuerzo
EP17169002.7A EP3398870B1 (de) 2017-05-02 2017-05-02 Kunststoffpalette mit versteifungsstruktur
PL17169002T PL3398870T3 (pl) 2017-05-02 2017-05-02 Paleta z tworzywa sztucznego ze strukturą usztywniającą
US15/968,610 US10399739B2 (en) 2017-05-02 2018-05-01 Plastic pallet with stiffening structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17169002.7A EP3398870B1 (de) 2017-05-02 2017-05-02 Kunststoffpalette mit versteifungsstruktur

Publications (2)

Publication Number Publication Date
EP3398870A1 true EP3398870A1 (de) 2018-11-07
EP3398870B1 EP3398870B1 (de) 2020-02-12

Family

ID=58664582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17169002.7A Active EP3398870B1 (de) 2017-05-02 2017-05-02 Kunststoffpalette mit versteifungsstruktur

Country Status (4)

Country Link
US (1) US10399739B2 (de)
EP (1) EP3398870B1 (de)
ES (1) ES2783823T3 (de)
PL (1) PL3398870T3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3103720C (en) * 2018-06-13 2021-06-29 Sichuan Lichuan Plastic Products Co. Ltd Assembled plastic pallet
US11027881B2 (en) * 2018-07-31 2021-06-08 Igps Logistics, Llc Plastic pallet having an integrally formed deck and method of manufacturing the same
USD915725S1 (en) * 2019-03-28 2021-04-06 Paul Craemer Gmbh Pallet for the handling of goods
CN110342062B (zh) * 2019-07-29 2023-07-04 蜂井包装工业无锡有限公司 围板箱配套用托盘加强固定结构
US20230211920A1 (en) * 2022-01-06 2023-07-06 Eco Green Equipment Llc Pallet with internal frame
WO2023150152A2 (en) * 2022-02-01 2023-08-10 Pvpallet, Inc. Transport container

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7133741U (de) * 1971-09-03 1972-05-10 Irmler F Transport-Palette
JPS5030467U (de) * 1973-07-21 1975-04-05
JPS5327562U (de) * 1976-08-13 1978-03-09
JPS56123248A (en) * 1980-12-25 1981-09-28 Daifuku Machinery Works Pallet in synthetic resin
DE4336469A1 (de) 1992-10-29 1994-05-05 Georg Utz Ag Bremgarten Palette
WO2007019833A1 (de) 2005-08-16 2007-02-22 Mark Arinstein Maschinen & Anlagen Gmbh Palette mit hoher formstabilität und tragkraft
GB2434141A (en) * 2003-04-28 2007-07-18 Rehrig Pacific Co Pallet with peripheral reinforcing rail
DE202007000985U1 (de) 2007-01-23 2008-05-29 Hintz Marketing Gmbh Palette aus armiertem Kunststoff
US20110303128A1 (en) * 2008-06-20 2011-12-15 Oria Collapsibles, Llc Pallet design with buoyant characteristics
DE102011103359A1 (de) 2011-05-27 2012-11-29 Febra-Kunststoffe Gmbh Ladungsträger
DE102011052958A1 (de) 2011-05-23 2012-11-29 Camry Packing Industrial Ltd. Plastikpalettenaufbau
DE202015100355U1 (de) 2014-04-09 2015-03-19 Ribawood, S.A. Palette in Leichtbauweise
DE102014007079A1 (de) 2014-05-14 2015-11-19 Schoeller Allibert Gmbh Versteifte Transportpalette aus Kunststoff aus mindestens zwei verrastbaren Palettenteilen

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823883A (en) * 1955-01-10 1958-02-18 Bourdon Albert Eugene Reinforcement for pallets
US3675596A (en) * 1970-05-11 1972-07-11 Cegedur Gp Load-carrying pallet
US3880092A (en) * 1972-07-21 1975-04-29 Johns Manville Rigid foamed plastic pallet
US4292899A (en) * 1978-09-11 1981-10-06 Steffen Vincent B Protective element for fork-lift pallets
JPS56123248U (de) 1980-02-20 1981-09-19
FR2590870B1 (fr) * 1985-12-04 1988-06-24 Allibert Sa Palette de chargement renforcee et procede de renforcement d'une telle palette
WO1988002725A1 (en) * 1986-10-20 1988-04-21 Depew Thomas N Pallet construction
US4869179A (en) * 1988-11-14 1989-09-26 Sammons Larry P Interchangeable part plastic pallet
US5413052A (en) * 1991-08-05 1995-05-09 Trienda Corporation Plastic pallet with two decks
US5402735A (en) * 1993-09-01 1995-04-04 Ingersoll-Rand Company Recyclable pallet assembly
SE502592C2 (sv) * 1994-03-25 1995-11-20 Mats Zetterberg Anordning vid en lastpall
US5673629A (en) * 1995-12-12 1997-10-07 Rex Development Corporation End cap construction for wooden pallets
US5868080A (en) * 1996-11-18 1999-02-09 Engineered Polymers Corp. Reinforced plastic pallets and methods of fabrication
FR2868044B1 (fr) * 2004-03-23 2006-06-09 Allibert Equipement Sa Dispositif de manutention
ITTV20040064U1 (it) * 2004-12-06 2005-03-06 Comparf Di Canonico Antonella Pallet trasporto merci e immagazzinamento
US20060201399A1 (en) * 2005-02-18 2006-09-14 Swistak Daniel J Pallet having impact resisting plastic top
WO2006094121A2 (en) * 2005-03-01 2006-09-08 The Engineered Pallet Company, Llc. Thermoplastic pallet for transporting food goods
SE528875C2 (sv) * 2005-07-11 2007-03-06 Crossborder Technologies Ab Lastpall
US20100154685A1 (en) 2005-08-16 2010-06-24 Mark Arinstein Maschinen & Anlagen Gmbh Pallet having great dimensional stability and load- bearing capacity
US20070245932A1 (en) * 2006-04-24 2007-10-25 Worthington Steelpac Systems Metal pallet
CN102046481A (zh) * 2008-03-28 2011-05-04 欧瑞亚轴环有限责任公司 复合式可堆叠托盘装置
US20110120353A1 (en) * 2009-09-22 2011-05-26 Guy Jensen Plastic rackable pallet
US20110259249A1 (en) * 2010-04-22 2011-10-27 Ogburn Sean T Pallet
US20130136573A1 (en) * 2010-06-11 2013-05-30 Andrew Berry Pallet for bags
US8424468B2 (en) * 2010-07-01 2013-04-23 Alan A Aden Alternative pallet rail, pallet assembly, and method for making same
CN103429499A (zh) * 2011-01-20 2013-12-04 比德·怀特福德 托盘边板系统
US8671848B2 (en) * 2011-08-04 2014-03-18 Wayne Randall Pallet protector device and method
WO2013040651A1 (en) * 2011-09-23 2013-03-28 Wahl Torben Pallet and method for using the pallet
CO7030192A1 (es) * 2012-02-14 2014-08-21 Rehrig Pacific Co Un ensamble de estiba que comprende una porción superior y una porción inferior
WO2018204912A1 (en) * 2017-05-05 2018-11-08 BXB Digital Pty Limited Pallet with tracking device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7133741U (de) * 1971-09-03 1972-05-10 Irmler F Transport-Palette
JPS5030467U (de) * 1973-07-21 1975-04-05
JPS5327562U (de) * 1976-08-13 1978-03-09
JPS56123248A (en) * 1980-12-25 1981-09-28 Daifuku Machinery Works Pallet in synthetic resin
DE4336469A1 (de) 1992-10-29 1994-05-05 Georg Utz Ag Bremgarten Palette
GB2434141A (en) * 2003-04-28 2007-07-18 Rehrig Pacific Co Pallet with peripheral reinforcing rail
WO2007019833A1 (de) 2005-08-16 2007-02-22 Mark Arinstein Maschinen & Anlagen Gmbh Palette mit hoher formstabilität und tragkraft
DE202007000985U1 (de) 2007-01-23 2008-05-29 Hintz Marketing Gmbh Palette aus armiertem Kunststoff
US20110303128A1 (en) * 2008-06-20 2011-12-15 Oria Collapsibles, Llc Pallet design with buoyant characteristics
DE102011052958A1 (de) 2011-05-23 2012-11-29 Camry Packing Industrial Ltd. Plastikpalettenaufbau
DE102011103359A1 (de) 2011-05-27 2012-11-29 Febra-Kunststoffe Gmbh Ladungsträger
DE202015100355U1 (de) 2014-04-09 2015-03-19 Ribawood, S.A. Palette in Leichtbauweise
DE102014007079A1 (de) 2014-05-14 2015-11-19 Schoeller Allibert Gmbh Versteifte Transportpalette aus Kunststoff aus mindestens zwei verrastbaren Palettenteilen

Also Published As

Publication number Publication date
US20180339802A1 (en) 2018-11-29
US10399739B2 (en) 2019-09-03
ES2783823T3 (es) 2020-09-18
PL3398870T3 (pl) 2020-08-24
EP3398870B1 (de) 2020-02-12

Similar Documents

Publication Publication Date Title
EP3398870B1 (de) Kunststoffpalette mit versteifungsstruktur
DE2836889C2 (de) Auslegerabschnitt für einen Teleskopkranausleger
DE102009036647A1 (de) Betonierungs-Schaltafel
DE2128609A1 (de) Verstärkte Schalungsplatte fur Be tonschalungen
DE10046947C2 (de) Träger
DE202009010716U1 (de) Betonierungs-Schaltafel
AT389729B (de) Zellensilo
EP2623435B1 (de) Stapelbarer Palettenbehälter
DE3724269A1 (de) Geruestrahmentafel aus leichtmetall-strang-press-profilteilen
DE2447093A1 (de) Tragbares stuetzelement
DE3539507A1 (de) Geruestrahmentafel
AT395457B (de) Geruestrahmentafel
DE8502756U1 (de) Gerüstrahmentafel
DE9413722U1 (de) Begehbare Planke, insbesondere Planke für den Gerüstbau
EP3753857A1 (de) Wandelement eines paletten-aufsatzrahmens, und paletten-aufsatzrahmen
EP1882641B1 (de) Transportpalette
DE9310010U1 (de) Warenträger-System
DE3141976C2 (de) Raumzelle, insbesondere Fertiggarage, aus Stahlbeton
DE202006010602U1 (de) Transportverschlag
DE202004016046U1 (de) Aufsatzrahmen und Wandungselemente für Aufsatzrahmen
WO2002040361A1 (de) Metallgitterpalette
DE2430889C3 (de) Stapelbare Palette
AT6326U1 (de) Metallgitterpalette
DE1684898C3 (de) Tafelartiges Bauelement fur die Wände von Behaltern, insbesondere Silos
DE7220441U (de) Transport und Lagerpalette

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190503

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20190503

Extension state: ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CABKA GROUP GMBH

Owner name: GREENCYCLE UMWELTMANAGEMENT GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1231800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

RIN2 Information on inventor provided after grant (corrected)

Inventor name: KLOETERS, RENE

Inventor name: MUELLER, STEFAN

Inventor name: TAPPERTZHOFEN, THOMAS

Inventor name: LENZ, THORSTEN

Inventor name: RAMON, GAT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003729

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2783823

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003729

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: PRETURN GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: GREENCYCLE UMWELTMANAGEMENT GMBH

Effective date: 20230421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017003729

Country of ref document: DE

Owner name: PRETURN GMBH, DE

Free format text: FORMER OWNERS: CABKA GROUP GMBH, 10587 BERLIN, DE; GREENCYCLE UMWELTMANAGEMENT GMBH, 74172 NECKARSULM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017003729

Country of ref document: DE

Owner name: CABKA GROUP GMBH, DE

Free format text: FORMER OWNERS: CABKA GROUP GMBH, 10587 BERLIN, DE; GREENCYCLE UMWELTMANAGEMENT GMBH, 74172 NECKARSULM, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: CABKA GROUP GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: GREENCYCLE UMWELTMANAGEMENT GMBH

Effective date: 20230605

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1231800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220502

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: PRETURN GMBH

Effective date: 20240425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240313

Year of fee payment: 8

Ref country code: FR

Payment date: 20240312

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240501

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240426

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240603

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240508

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240430

Year of fee payment: 8

Ref country code: BE

Payment date: 20240430

Year of fee payment: 8