EP3398870B1 - Kunststoffpalette mit versteifungsstruktur - Google Patents

Kunststoffpalette mit versteifungsstruktur Download PDF

Info

Publication number
EP3398870B1
EP3398870B1 EP17169002.7A EP17169002A EP3398870B1 EP 3398870 B1 EP3398870 B1 EP 3398870B1 EP 17169002 A EP17169002 A EP 17169002A EP 3398870 B1 EP3398870 B1 EP 3398870B1
Authority
EP
European Patent Office
Prior art keywords
rungs
side rails
plastic pallet
stiffening structure
spars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17169002.7A
Other languages
English (en)
French (fr)
Other versions
EP3398870A1 (de
Inventor
Stefan Müller
Thorsten Lenz
Gat Ramon
René Kloeters
Thomas Tappertzhofen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Preturn GmbH
Cabka Group GmbH
Original Assignee
GreenCycle Umweltmanagement GmbH
Cabka Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GreenCycle Umweltmanagement GmbH, Cabka Group GmbH filed Critical GreenCycle Umweltmanagement GmbH
Priority to EP17169002.7A priority Critical patent/EP3398870B1/de
Priority to ES17169002T priority patent/ES2783823T3/es
Priority to PL17169002T priority patent/PL3398870T3/pl
Priority to US15/968,610 priority patent/US10399739B2/en
Publication of EP3398870A1 publication Critical patent/EP3398870A1/de
Application granted granted Critical
Publication of EP3398870B1 publication Critical patent/EP3398870B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0006Rigid pallets without side walls the load supporting surface being made of a single element
    • B65D19/0008Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface
    • B65D19/001Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of a single element
    • B65D19/0012Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of a single element forming a continuous plane contact surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D11/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material
    • B65D11/20Details of walls made of plastics material
    • B65D11/22Reinforcing for strengthening parts of members
    • B65D11/26Local reinforcements, e.g. adjacent to closures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0006Rigid pallets without side walls the load supporting surface being made of a single element
    • B65D19/0008Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface
    • B65D19/002Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element
    • B65D19/0024Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element forming discontinuous or non-planar contact surfaces
    • B65D19/0026Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element forming discontinuous or non-planar contact surfaces and each contact surface having a stringer-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00034Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00049Materials for the base surface
    • B65D2519/00069Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00084Materials for the non-integral separating spacer
    • B65D2519/00104Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00119Materials for the construction of the reinforcements
    • B65D2519/00129Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00119Materials for the construction of the reinforcements
    • B65D2519/00139Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00263Overall construction of the pallet
    • B65D2519/00273Overall construction of the pallet made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00288Overall construction of the load supporting surface made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00293Overall construction of the load supporting surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00308Overall construction of the load supporting surface grid type, e.g. perforated plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00323Overall construction of the base surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00328Overall construction of the base surface shape of the contact surface of the base
    • B65D2519/00333Overall construction of the base surface shape of the contact surface of the base contact surface having a stringer-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00368Overall construction of the non-integral separating spacer
    • B65D2519/00373Overall construction of the non-integral separating spacer whereby at least one spacer is made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00402Integral, e.g. ribs
    • B65D2519/00407Integral, e.g. ribs on the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00437Non-integral, e.g. inserts on the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00442Non-integral, e.g. inserts on the base surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00447Non-integral, e.g. inserts on the non-integral separating spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00462Applied in mold, e.g. bi-injection molded reinforcement
    • B65D2519/00467Applied in mold, e.g. bi-injection molded reinforcement on or in the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00557Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements
    • B65D2519/00562Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements chemical connection, e.g. glued, welded, sealed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00557Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements
    • B65D2519/00567Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements mechanical connection, e.g. snap-fitted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/00776Accessories for manipulating the pallet
    • B65D2519/00796Guiding means for fork-lift

Definitions

  • the invention relates to a plastic pallet, which initially comprises a deck for storing objects to be transported, and feet which are designed to protrude from the underside of the deck.
  • the plastic pallet also includes runners, which are each connected to each other at least two feet on their undersides, ie on the side opposite the deck.
  • the plastic pallet also comprises at least one stiffening structure, which in turn comprises lower spars arranged in the runners and upper spars lying exactly above the lower spars and spaced apart from them and running parallel.
  • the upper spars can be arranged in the deck in the area between a top and bottom of the deck, or also below the bottom of the deck.
  • plastic pallets for the transport and storage of goods are playing an increasingly important role today.
  • Advantages are, for example, the lower weight and the possibility to form almost any pallet structure with the help of injection molding techniques, so that a high degree of individuality can be achieved and customer-specific requirements can be met.
  • recyclate can be used to manufacture many types of pallets, unless special hygiene regulations are to be observed.
  • additives such as reinforcing fibers.
  • the deck can have a continuous, closed loading area, but the loading area can also be formed by a lattice or rib structure.
  • feet are formed projecting downwards. They have a height that allows the pallet to be picked up and transported with the fork of a forklift, the fork moves into the spaces between your feet. At the same time, however, the feet must also be able to support the permissible weight of the pallet with goods stored on it, without the material showing signs of fatigue. Although it is possible to manufacture the feet separately from a material with a higher impact strength, this type of production is more expensive compared to the one-piece production of a pallet, since more tools have to be kept available and the pallet then has to be assembled.
  • plastic pallets often also include runners which are each connected to one another on the undersides of at least two feet.
  • runners are arranged parallel to each other, in the case of rectangular pallets their longitudinal direction is usually parallel to the narrower edge of the pallet, but this is not mandatory, and a connection of the feet along the longer edge is also possible. All-round runners can also be used, i.e. Skids that also connect the feet together along the longer edge of the pallet.
  • Plastic pallets also have disadvantages compared to wooden or metal pallets.
  • One disadvantage is that plastic pallets tend to deform more than wooden pallets under load. In the worst case, this can lead to irreversible deformations. If goods with a high but still permissible mass are placed on the pallets, this leads to a deflection of the deck, whereby the feet with the runners molded onto them also deform slightly or bear their share of the deflection by the feet on their top Tilt inwards towards the middle of the deck, but strive outwards on the underside. This results in shear, bending and shear forces that can only be insufficiently reversibly absorbed by the pallet.
  • U1 describes a plastic pallet that can be assembled from several parts, in the deck of which metal rods are inserted in the longitudinal direction to increase the bending rigidity.
  • the metal bars are arranged transversely to the longitudinal direction of the runners. They reinforce the cover structure and are parallel to each other without being connected.
  • Fig. 8 a plastic pallet with reinforcing elements arranged in the corners. Except for the non-interconnected reinforcing elements, which are also called fittings, the pallet is made in one piece.
  • the reinforcement elements extend from the deck to the floor in the finished pallet and are not connected to one another. The attachment of the reinforcement elements only in the corners serves to increase the wear resistance.
  • the reinforcement elements which can be formed from a rod-shaped or rod-shaped material, form a lattice structure in the deck, and two reinforcement elements arranged one above the other lie parallel to one another along the narrow side of the pallet, one element being embedded in the deck below the surface thereof and the other in the bottom of the skid.
  • the reinforcement elements are not in direct contact with one another, they are not connected to one another.
  • WO 2007/019833 A1 describes a plastic pallet in which reinforcing elements are arranged below the base plate of the pallet in the area of the feet and within the deck.
  • Fig. 9-11 a pallet consisting of a deck and feet attached to it, with three of the feet along the longer side of the pallet being connected in the runners by foot rails, which may be made of sheet steel.
  • Reinforcing elements made of sheet steel are also arranged in the deck in the manner of a lattice, the crossing points of the longitudinal struts and cross struts are in the area of the feet.
  • the lattice structure is connected to the foot rails by means of webs, none of which are related to the type of connection further statement is made.
  • the pallet described is called styrofoam and the lattice structure serves to increase the dimensional stability.
  • the longitudinal and transverse struts arranged in the deck as well as the webs in the feet have a large number of recesses which are lined up to ensure that the plastic of the pallet can penetrate them completely; In this way, the connection with the plastic can be improved and the stability of the overall construct compared to a simple polystyrene pallet can be increased.
  • the large number of recesses also ensures that the weight of the pallet does not increase excessively compared to a pure polystyrene pallet.
  • Such a structure of the stiffening elements with recesses is very advantageous with regard to the weight and the connection with the plastic and increases the stability with regard to a direct load from above, but is hardly able to cope with a load due to shear forces.
  • the connection of the longitudinal or transverse struts with the foot rails via the struts is also only achieved through the composite in the plastic, so that the pallet can only withstand low bending and shear forces.
  • JP S56 123248 A describes a plastic pallet comprising a deck, feet and runners.
  • the range also includes a stiffening structure with lower spars, upper spars and rungs that connect the lower and upper spars.
  • the object of the invention is therefore to develop a pallet which, compared to the pallets known in the prior art, has increased strength against bending and shear forces and, consequently, less deflection.
  • the at least one stiffening structure has rungs, each with a predominantly closed surface, which connect the lower bars in the feet to the upper bars.
  • the rungs are formed in one piece on the spars or are preferably connected to them by means of contact surfaces in a cohesive manner, or also non-positively or positively, wherein the types of connection can also be combined, and both types of rungs can be realized on a stiffening structure.
  • These measures increase the flexural rigidity of the pallet on the one hand and the shear strength of the pallet in a plane parallel to the top of the deck on the other hand compared to pallets known in the prior art.
  • With a predominantly closed surface the proportion of openings in the rungs is less than 50%, usually less than 25%. Recesses and openings are only where it is necessary or advantageous for manufacturing reasons. In fact, the percentage of openings is usually less than 10% of the surface.
  • the at least one stiffening structure is thus designed as a ladder-shaped structure with bars and rungs, the bars being firmly and preferably permanently connected to the rungs so that the ladder-shaped structure is able to absorb correspondingly high shear forces.
  • the firm and preferably non-detachable connection which is inevitably present when the rungs and the spars are made in one piece and, in the case of designs in which the rungs are not formed on spars, is preferably achieved by flat material connection, for example by gluing, but particularly preferably by welding. is only a partial aspect.
  • the rungs have a predominantly closed surface.
  • the plate-shaped rung parts therefore either have no openings or only one, two or three openings through which, for example, optional cross struts can be inserted to form a lattice structure. If no cross struts are to be used, the ladder-shaped stiffening structures therefore preferably have no openings.
  • stiffening structures there are various options for connecting the stiffening structures to the pallet or inserting them into the pallet.
  • they can already be used in the mold during manufacture, for example an injection mold, so that the stiffening structure is almost completely enclosed by the hardened plastic. In this way, a firm fit can be guaranteed.
  • they can also be inserted from below or above into the pallet or the feet of a one-piece pallet. The connection with the plastic of the pallet can then also be non-positive and / or positive.
  • the pallet is preferably designed in several parts, and the stiffening structures are inserted into the runners, possibly connected via cross struts, before the deck is placed on the runners and connected to it, for example, by means of snap locks or force-fit or material-locking.
  • the stiffening structure can, for example, be made in one piece from steel strip, the spaces between the rungs being punched out, milled or introduced into the stiffening structure in another manner which is suitable in terms of processing technology.
  • the thicker the tape is chosen the more the shear strength is increased.
  • the mass of the plastic pallet is increased and if the ladder-shaped stiffening structure - as is the case preferably - is made of metal, in particular steel, this can lead to the mass of the plastic pallet with stiffening structures being higher than the mass of a comparable wooden pallet so that's an essential one The advantage of the plastic material would be lost.
  • the ladder-shaped stiffening structure can also be made from other materials that can provide the necessary flexural and shear rigidity of the pallet.
  • glass fiber or carbon fiber reinforced plastics are also suitable.
  • the spars have a corresponding thickness
  • the rungs can be designed with a smaller thickness.
  • the spars therefore have a predetermined thickness, which can be determined, for example, on the basis of the required shear strength.
  • the thickness of the spars is understood to mean the extension of the spars perpendicular to their longitudinal direction and perpendicular to the longitudinal direction of the rungs in the ladder-shaped structure.
  • the rungs are made in one piece on the spars, the spars and rungs merge into one another, which means that the rungs can be made thinner. If the rungs are cohesively, non-positively and / or positively connected to the spars via contact surfaces, the dimensions of the contact surfaces should be as large as possible, both in height - i.e. in the longitudinal direction of the bars - as well as perpendicular to it, with curved surfaces also being possible in principle perpendicular to the height.
  • the rungs have a predetermined height in the longitudinal direction of the bars - the width in the case of ladder-shaped stiffening structures in the view - which corresponds to at least 80% of the width of the respective foot receiving the rung.
  • the term “height” was used to refer to a standing ladder-shaped structure; in the case of lying ladder-shaped structures, this corresponds to the width in the view.
  • the height of the rungs is preferably selected so that the maximum available installation space in the respective foot - which is different for different feet on the same pallet - is used, i.e. in the case of an integral, non-positive or positive connection, the extension of the contact surfaces in the longitudinal direction of the bars preferably corresponds to the predetermined height.
  • the spars do not have to be made of solid material over the entire thickness, the spars can also be designed as hollow structures with different cross sections.
  • the hollow structure is particularly advantageously composed of different surfaces, with at least one of the surfaces of each spar parallel to the top of the deck - ie perpendicular to the longitudinal direction the spars and rungs - is aligned, which also contributes to increasing stability.
  • the spars are designed, for example, as tubes with the cross section of a quadrilateral, for example a trapezoid, rectangle or square, and accordingly comprise four surfaces.
  • they can also be designed as a T-beam or as a double-T beam, here too there is at least one surface - that of the crossbar of the "T" - parallel to the top of the deck.
  • these contact surfaces are preferably parallel to the top surface and the extent of the contact surface in the direction of the thickness of the spars is at least a quarter of the thickness, but preferably at least half the thickness ,
  • the extension of the contact surface in the direction of the thickness particularly preferably corresponds to the entire thickness, this guarantees the best possible stability of the integral and flat connection.
  • the contact surfaces can also lie perpendicular to the top surface in the plane spanned by rungs and spars. In the case of pipes with a rectangular cross section, for example, small plates can then be welded to the spars without the plates having to be bent.
  • the contact surfaces can also have any other shape or protrude at a different angle, it is important that the contact surfaces are chosen so large that they securely connect the rungs and bars up to a predetermined maximum thrust and bending load Spars guarantee.
  • connection can be designed, for example, as a snap lock, the contact surfaces then corresponding to the surfaces of the lock in the case of rungs and spars, which lie against one another in the connected state.
  • a correspondingly stable connection can be achieved, for example, if the snap closure is aligned along the longitudinal direction of the spars and extends over the predetermined height.
  • the rungs can be wedge-shaped on their sides facing the spars, for example, preferably also over the entire height, and the spars can have corresponding receptacles.
  • the ladder-shaped stiffening structure can be implemented in various ways, particularly advantageous configurations are described below.
  • the stiffening structure is designed as an extruded aluminum profile.
  • the rungs are formed in one piece on the spars. Openings are made between the rungs, for example by punching or milling, through which the tines of a forklift can enter.
  • Aluminum has the advantage that it is a light metal, and no corrosion protection is necessary.
  • the stiffening structure is formed in one piece as a tube with a square cross section, which is bent into the shape of two spars with rungs in between. In this way it is possible to design a stiffening structure with a maximum of three rungs, which are formed in one piece on the spars.
  • Such a stiffening structure can be implemented in different ways, which differ primarily in the location of the two pipe ends in the stiffening structure. For example, it is possible to produce a structure designed in the manner of an "8" by seven-fold bending by 90 ° each.
  • the two ends of the tube are bent from one of the spars to the other, opposite spar and form the middle rung.
  • the pipe ends are integrally connected to each other and to the other, opposite spar.
  • the connection is particularly preferably made over the entire thickness of the spar. This type of production makes it possible to provide the pipe ends with a further bend to increase the stability, so that the effective height of the rung increases in accordance with the width in the case of a lying ladder-shaped structure. This increases the stability with regard to bending and shear strength when forces are applied in the area of the middle foot.
  • the integral connection is particularly preferably produced by welding, the welds are then protected against corrosion, for example by galvanizing.
  • this profile is relatively inexpensive to manufacture, since pipes with a square cross-section, for example with a cross-section of 20x20 mm and a wall thickness of 2 mm, are available on the market in large quantities.
  • pipes with a square cross-section for example with a cross-section of 20x20 mm and a wall thickness of 2 mm, are available on the market in large quantities.
  • about a quarter of the cost is incurred by sawing the square tubes to cut them to length. These costs can be minimized by using a single, bent pipe.
  • the spars are also designed as tubes with a square cross section, but at least the inner rungs are designed as plate-shaped connecting elements, in which contact surfaces are provided on two opposite sides Standing seams are formed.
  • These are one-piece elements, which are also commercially available as so-called C-profiles with a wall thickness of, for example, 2 mm.
  • production by cutting and bending from a straight sheet is also possible.
  • Sheet steel is particularly suitable as a material, but all other metals and metal alloys that meet the requirements can also be used.
  • a standing seam is understood to mean a 90 ° bend in the edge of the plate-shaped connecting element.
  • the bent surface of the plate-shaped connecting element then forms the contact surface.
  • the extension of the contact surface in the direction of the thickness of the spar is at least a quarter of the thickness.
  • the bending edge is then at least 5 mm from the edge of the plate-shaped connecting element.
  • a particularly stable, but also production-intensive variant is obtained if all rungs are designed as such plate-shaped connecting elements, including the outer rungs.
  • the plate-shaped connecting elements are welded to the pipes at the contact surfaces, after which the welding points must be galvanized. Depending on the choice of material, it may also be necessary to galvanize the entire stiffening structure.
  • a slightly less production-intensive variant in which the high stability with regard to bending and shear strength is retained in the case of a stiffening structure with three rungs for the middle rung - which experience has shown that the greatest forces act on - consists in using the middle, inner rung as a plate-shaped connecting element designed as standing seams, as described above, but to bend the two outer rungs from a tube with a rectangular or square cross-section.
  • the two spars and the two outer rungs are formed in one piece from a bent tube.
  • Sheets of different thicknesses can be used here, depending on the required load capacity, for example sheets with a thickness of 1 mm to 4 mm.
  • the stability of the stiffening structure is therefore not achieved here by the material thickness, but rather by the design of the spars by bending, as a result of which, in particular, a predetermined thickness can also be impressed on them.
  • the spars can be formed as standing seams at the profile edges. A higher stability is achieved by double standing seams, that is, by two transverse bends in the profile - with bending edges along the longitudinal direction of the spars - successive bends by 90 ° in the same orientation.
  • the spars can also be designed as envelopes, ie as bends through 180 °.
  • the openings are made between the rungs, for example by punching, cutting or milling.
  • the rungs are preferably plate-shaped, that is to say they have a predetermined height in the longitudinal direction of the bars, which is close to the dimensions of the feet in the longitudinal direction of the bars.
  • the shape of the plate forming the rung can also be adapted accordingly, for example in a trapezoidal shape.
  • Fig. 1 shows a conventional plastic pallet, which comprises a deck 1 for storing objects to be transported.
  • a top side 2 of the deck can be seen, opposite this is a bottom side of the deck, not shown, top side 2 and bottom side of the deck are spaced apart by the thickness of the deck.
  • Feet 3 are formed protruding from the underside of the deck.
  • the plastic pallet also includes runners 4, each of which is designed to connect at least two feet 3 on their undersides. The foremost segment of the plastic pallet - comprising three feet and the runners that connect the feet - is shown cut open here, so that a stiffening structure 5 arranged there - indicated by hatching - becomes visible.
  • the stiffening structure 5, of which the pallet here has two in the outer runners, is here ladder-shaped and comprises lower spars 6 arranged in the runners 4 and spaced-apart upper spars 7, which are arranged above the lower spars 6 and run parallel to them ,
  • the upper spars can be arranged in a region between the top 2 of the deck and the underside of the deck in deck 1, but they can also be located below deck 1, as in FIG Fig. 1 shown as an example. If the upper spars 7 are arranged in the area between the upper side 2 of the cover and the lower side of the cover, the stiffening structure 5 can then be completely enclosed by the plastic of the pallet in the case of a one-piece production.
  • the stiffening structure 5 is ladder-shaped and therefore has rungs 8 which connect the lower bars 6 in the feet 3 to the upper bars 7.
  • the surface of the rungs is mostly closed, i.e. it does not have any openings or recesses, and if it does, the area of the openings or recesses is less than 50%, generally less than 10%, in proportion to the entire surface of the rungs 8. Recesses and openings are only made where this is necessary or sensible for manufacturing reasons.
  • the rungs 8 are either formed in one piece on the lower spars 6 or the upper spars 7, or they are each integrally connected to them via contact surfaces. Depending on the configuration, some of the rungs 8 can also be integrally formed on one or both spars and other rungs can be integrally connected to the spars 6, 7.
  • the type of material bond is chosen depending on the material. In the case of metallic stiffening structures 5, welding is particularly suitable here.
  • carbon fiber and glass fiber reinforced plastics can also be used for the stiffening structure - other types of connection can also be useful, for example non-positive or positive connections, whereby all types of positive locking can also be combined with one another.
  • the bending stiffness of the plastic pallet and in particular the shear strength of the plastic pallet is parallel to the top 2 of the deck Level increased.
  • stiffening structures 5 designed in this way, it is possible to reduce the deflection of the plastic pallet in the middle under load, for example from 22 mm to less than 10 mm for a plastic pallet with the dimensions 1200 mm x 800 mm and 3 feet connected with runners.
  • the shear stiffness is increased since shear forces are dissipated or absorbed by the stiffening structures 5, which can in particular be made of metal.
  • Fig. 2 shows a plastic pallet without deck, here only the feet 3 are shown with runners 4 molded thereon. Stiffening structures 5 are inserted in the outer two foot-skid elements.
  • cross struts 9 are shown here, which further increase the stability of the plastic pallet. These cross struts 9 can also be made of metal. However, they are purely optional and are not absolutely necessary to achieve the desired effect.
  • the cross struts 9 can be dispensed with. They can be inserted into the pallet independently of the stiffening structures 5, but can also be connected to them in a material, positive and / or non-positive manner in order to form an even more stable structure.
  • the two outer cross struts 9 are inserted through openings in the stiffening structures 5 or in the rungs 8 and form a grid with them.
  • the central cross strut 9 is only on, but could also be integrated into the grid.
  • stiffening structures 5 With the aid of the stiffening structures 5, it is possible to reduce the deflection to the extent which is also considered to be permissible in the case of wooden pallets of comparable size, or to even smaller dimensions.
  • the thicker the stiffening structures - by thickness is meant the expansion perpendicular to the longitudinal direction of the bars and perpendicular to the longitudinal direction of the rungs - the higher the shear and bending stiffness, but this goes hand in hand with a higher mass.
  • plastic pallets are lighter than wooden pallets of the same size, the weight of comparable wooden pallets can be exceeded if the stiffening structures 5 are correspondingly thick, as a result of which a significant advantage of plastic pallets would be eliminated.
  • the thickness of the lower bars 6, the upper bars 7 and the rungs 8 too small for example as a pure sheet with a constant thickness, this cannot achieve the necessary shear stiffness if the thickness is too small. For this reason, at least the upper bars 6 and the lower bars 7 have a predetermined thickness.
  • the size of the contact surfaces is selected or specified as a function of a predetermined maximum bending and shear load on the plastic pallet As a rule, the contact areas should be as large as possible in terms of construction.
  • the rungs 8 In the longitudinal direction of the bars 6, 7, the rungs 8 have a predetermined height in order to increase the shear stiffness and bending stiffness in the longitudinal direction of the bars 6, 7, which height is based on the width of the feet; it should be at least 80% of the width of the respective bar receiving the rung Foot.
  • the expression "height" is used in reference to a standing ladder; it corresponds to the width for a lying structure. If the rungs 8 are connected to the spars 6, 7 via contact surfaces, the extension of the contact surfaces in the longitudinal direction of the spars 6, 7 preferably corresponds to the predetermined height.
  • the lower spar 6 and / or the upper spar 7 can be assembled as hollow structures from different surfaces, for example they can be tubes with the cross section of a square, in particular a trapezoid , Rectangle or square, which facilitates the connection of the contact surfaces; but a configuration as a T-beam or as a double-T beam is also conceivable.
  • At least one of the surfaces of each spar (6, 7) is then preferably oriented perpendicular to the longitudinal direction of the respective spar 6, 7 and perpendicular to the longitudinal direction of the rungs 8. Contact surfaces can then be formed on these surfaces, in particular for the material bond.
  • the contact surface is therefore preferably in a plane to the longitudinal direction of the rungs 8 and the spars 6, 7.
  • the extent of the contact surface in the direction of the thickness should then generally be more than that Be half the thickness.
  • the rungs 8 can also have a smaller thickness, for example, in the case of a sheet metal construction, a thickness corresponding to the sheet metal thickness.
  • stiffening structures 5 are described below with reference to FIG Fig. 3-11 explained.
  • Fig. 3a ) -c) show a first embodiment of a stiffening structure as it can be used to increase the bending stiffness and the shear strength of the plastic pallet.
  • Fig. 3a shows a view of the stiffening structure from the front
  • Fig. 3b a cross section through the stiffening structure in the area of a rung 8
  • Fig. 3c A perspective view of the stiffening structure, which is designed here as an extruded aluminum profile 10.
  • the lower spar 6 and the upper spar 7 are each designed as a T-beam, the thickness of the spars 6, 7 can be, for example, 20 mm in the region of the crossbar of the "T". Since aluminum is a rustproof material, there is no need for separate corrosion protection.
  • Openings 11 are made between the rungs 8, which in the assembled state are located between the feet of the plastic pallet and allow the fork of a forklift to enter.
  • the rungs 8 are integrally formed on the bars 6, 7 and are plate-shaped.
  • through holes 12 are optionally arranged, through which plastic can pass during manufacture in the case of a one-piece pallet in order to ensure a firm connection between the stiffening structure and the plastic pallet.
  • the through holes 12 can also be used for another type of fastening, for example a mechanical one, if it should not be possible to clamp them in the framework structure of the plastic pallet, in which case no through holes 12 are required.
  • the through holes 12 are also suitable for receiving optional cross struts 9 in order to fix them better and to produce a stiffening lattice structure in the plane of the deck 1, as in FIG Fig. 2 shown.
  • Another advantage of using an extruded aluminum profile is the reduced mass. While a wooden pallet with the dimensions 800 mm x 1200 mm weighs 20-25kg, the mass of a pallet with the in Fig. 3a ) -c) shown profiles about 15-20kg.
  • FIG. 4a A second embodiment of a stiffening structure, which is designed here as a further extruded aluminum profile 13, is shown Fig. 4a ) -C).
  • Fig. 4a shows a side view of the extruded aluminum profile 13, Fig. 4b ) a cross section through the profile in the area of a rung 8 and Fig. 4c ) the aluminum extruded profile 13 in a perspective view.
  • 8 openings 11 are introduced between the rungs. The insertion can take place, for example, by punching, cutting or milling. That too Fig. 4 shown further aluminum extruded profile 13 has through holes 12.
  • Fig. 4a shows a side view of the extruded aluminum profile 13
  • Fig. 4b a cross section through the profile in the area of a rung 8
  • Fig. 4c the aluminum extruded profile 13 in a perspective view.
  • 8 openings 11 are introduced between the rungs. The insertion can take place, for example, by punching,
  • the lower spar 6 is designed as a tube with a square cross section and the upper spar as a double-T beam. It is, of course, also possible to design one of the spars as a T-beam here, just as one of the spars of the extruded aluminum profile 10, which in Fig. 3a ) -c) is shown as a double T-beam or as a tube with a square or rectangular cross-section.
  • a third embodiment is in Fig. 5a ) -b).
  • This is a stiffening structure which is designed as a tube with a square cross section 14.
  • the tube 14 is bent in the form of two bars 6, 7 with rungs 8 in between. It is a one-piece design with a maximum of three rungs 8, which is particularly suitable for smaller pallets. All rungs 8 are formed from the square tube 14.
  • the outer rungs 8 of the stiffening structure are formed by bending the tube 14 twice by 90 °.
  • the middle or inner rung 8 is formed by the two pipe ends 15 being bent by one of the spars - here without restriction of generality from the upper spar 7 by 90 °, so that the middle rung 8 is created by the bend.
  • the pipe ends 15 are also the opposite spar - here the lower spar 6 - integrally connected, for example by welding, here over the entire thickness of the lower spar 6.
  • the tube ends 15 can also be integrally connected to each other A corresponding fixation in the plastic pallet in the middle foot can also be dispensed with.
  • FIG. 6 A modification of this embodiment is in Figure 6 shown.
  • the tube ends 15, which form the middle rung 8, are spread apart in their end regions here, so that the middle rung 8 takes the shape of a "Y".
  • the tube ends 15 are integrally connected to the opposite spar, here the lower spar 6, over the entire thickness of the spar.
  • the edges in question are preferably provided with larger chamfers in order to provide a contact surface for the integral connection, which is more stable compared to a linear, one-dimensional connection.
  • the rungs 8 are formed in one piece on the lower spar 6 or on the upper spar 7, even if the pipe ends are integrally connected to the opposite spar in order to increase the rigidity.
  • Fig. 7 shows a projection view of the stiffening structure from the front and Fig. 7b ) a perspective view.
  • the spars are designed as tubes with a square cross-section
  • the lower spar 6 and the upper spar 7 and the two outer rungs 8 are likewise formed in one piece from a bent tube 14.
  • the two pipe ends 15 are integrally connected to one another in the area of one of the outer rungs 8.
  • the pipe ends 15 can also meet at another point on one of the spars, for example in the area of the middle rung 8.
  • the middle rung 8 is designed here as a plate-shaped connecting element 16, with the two opposite sides, namely the sides leading to the spars 6 and 7 have, contact surfaces are formed as standing seams.
  • the plate-shaped connecting element 16 is here - in relation to the thickness of the lower spar 6 and the upper spar 7 - placed in the middle.
  • the expansion of the contact surfaces formed by the standing seams in the direction of the thickness here is half the thickness.
  • This fourth embodiment of a stiffening structure has a particularly good cost-benefit ratio, since on the one hand the square tube 14 has to be cut to length only and bent only four times. Due to the plate-shaped connecting element, which can have a C or S shape in cross section, the shear strength and bending stiffness compared to the in Fig. 5 and Fig. 6 Embodiments shown further increased, since the plate-shaped connecting element 16 in the longitudinal direction of the spars can have the maximum height - in the view corresponding to the width - that just makes it possible to fully integrate it into the corresponding foot 3, whereas the width in the formation the middle rung 8 from the bent tube ends 15 is predetermined by the thickness of the square tube 14 and cannot be enlarged.
  • the in the Fig. 7a ) -b) stiffening structure shown can also be used for pallets with more feet in one direction, since several of the plate-shaped connecting elements 16 can easily be placed as inner rungs between the integrally formed outer rungs.
  • FIG. 8 Another - particularly stable - fifth embodiment of a stiffening structure for a plastic pallet is in Fig. 8 shown.
  • Fig. 8a shows a side view of a stiffening structure lying on the outer edge of a spar
  • Fig. 8b the cross section in the area of a rung 8
  • Fig. 8c a perspective view.
  • the outer rungs 8 are also designed as plate-shaped connecting elements 16 with standing seams 17 formed thereon to form the contact surfaces.
  • the plate-shaped connecting elements 16 have a cross section - as in FIG Fig. 8c ) shown - a "C" shape.
  • the lower spar 6 and the upper spar 7 are also formed in this embodiment as a tube 14 with a square cross section. They can be created from a pipe by sawing.
  • three - here identical - plate-shaped connecting elements 16 connect the upper spar 7 to the lower spar 6, the standing seams 17, which are formed on the plate-shaped elements 16 by bending, form the contact surfaces.
  • Their extension in the direction of the thickness of the bars 6, 7 corresponds here to the total thickness of the bars 6 and 7.
  • the plate-shaped connecting elements are integrally connected to the bars 6 and 7. After the integral connection has been established, the stiffening structure must still be galvanized to protect it from corrosion.
  • Fig. 9-11 show further configurations for stiffening structures, all of which are formed in one piece from rolled and bent metal profiles, for example (steel) sheet metal or strip steel, openings 11 again being introduced between the rungs 8.
  • these stiffening structures also have optional through holes 12.
  • the configurations differ here only in the design of the lower spar 6 and the upper spar 7, which are formed on the profile edges by bending and are designed as standing seams, double standing seams, envelopes or combinations thereof.
  • the metal profile shown in cross section in the area of a rung 8 as a sixth embodiment of a stiffening structure has an upper spar 7 which is shaped identically to the lower spar 6.
  • the spars are formed by a standing seam by 90 ° and two envelopes, ie bends of 180 °, in the opposite orientation.
  • the bends are arranged mirror-symmetrically to a horizontal plane in the sheet, so that the profile with the two standing seams forms a "C" shape, which offers a somewhat higher stability compared to an also possible "S” shape.
  • All rungs 8 are plate-shaped and integrally formed on the bars 6 and 7.
  • the metal profile as the seventh embodiment of a stiffening structure has bars 6, 7 formed by other bending combinations.
  • the plate-shaped rungs 8 are also integrally formed on the bars 6, 7, and in relation to the thickness of the bars 6 and 7 - in Fig. 10b ) according to the horizontal direction in the sheet plane - arranged in the middle.
  • the upper spar 7, however, has a greater width - corresponding to the vertical direction in the sheet plane - than the lower spar 6.
  • the runners 4 should be kept flat on the one hand, but on the other hand for the upper spar 7 - with complete Enclosure through the plastic - almost the entire deck height can be used. This also increases stability.
  • the spars 6, 7 are formed here by the combination of several bends by 90 ° (standing seams) and a bend by 180 ° (fold).
  • Fig. 11 shown. 11a) and 11b show the stiffening structure designed as a metal profile in perspective from two opposite sides
  • Fig. 11c shows the profile in cross-section in the area of a rung 8.
  • the upper spar 7 is wider than the lower spar 6.
  • Both spars 6, 7 are designed as double standing seams. Only two bends are required per spar here, making the stiffening structure comparatively easy to manufacture, but also offering very high bending and shear strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pallets (AREA)

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft eine Kunststoffpalette, welche zunächst ein Deck zur Lagerung von zu transportierenden Objekten umfasst sowie Füße, welche von einer Deckunterseite abstehend ausgebildet sind. Die Kunststoffpalette umfasst außerdem Kufen, welche jeweils mindestens jeweils zwei Füße an deren Unterseiten, also an der dem Deck gegenüberliegenden Seite, miteinander verbindend ausgebildet sind. Schließlich umfasst die Kunststoffpalette auch mindestens eine Versteifungsstruktur, welche ihrerseits in den Kufen angeordnete untere Holme und genau über den unteren Holmen liegende und zu diesen beabstandet angeordnete und parallel verlaufende obere Holme umfasst. Die oberen Holme können im Deck im Bereich zwischen einer Deckoberseite und der Deckunterseite angeordnet sein, oder auch unterhalb der Deckunterseite.
  • Neben den klassischen Holzpaletten kommt Kunststoffpaletten für den Transport und für die Lagerung von Waren heutzutage eine immer größere Rolle zu. Vorteilhaft sind beispielsweise das geringere Gewicht und die Möglichkeit, nahezu jede beliebige Palettenstruktur mit Hilfe von Spritzgusstechniken zu formen, so dass hier ein hoher Grad an Individualität erreicht und besonders auf kundenspezifische Wünsche eingegangen werden kann. Darüber hinaus kann für die Herstellung vieler Palettentypen, sofern nicht besondere Hygienevorschriften einzuhalten sind, Rezyklat verwendet werden. Auch die Verwendung von Zusatzstoffen wie beispielsweise verstärkenden Fasern ist möglich. Das Deck kann eine durchgehende, geschlossene Ladefläche aufweisen, die Ladefläche kann aber auch durch ein Gitter- oder Rippenstruktur gebildet werden.
  • An der Unterseite des Decks, d.h. dem Boden zugewandt, sind Füße nach unten abstehend ausgebildet. Sie weisen eine Höhe auf, die es erlaubt, dass die Palette mit der Gabel eines Gabelstaplers aufgenommen und transportiert werden kann, die Gabel fährt in die Zwischenräume zwischen den Füßen ein. Gleichzeitig müssen die Füße jedoch auch in der Lage sein, das zulässige Gewicht der Palette mit darauf gelagerten Waren zu tragen, ohne dass es zu Ermüdungserscheinungen des Materials kommt. Zwar ist es möglich, die Füße separat aus einem Material mit einer höheren Schlagzähigkeit herzustellen, jedoch ist diese Art der Herstellung teurer im Vergleich zur einstückigen Herstellung einer Palette, da mehr Werkzeuge bereitgehalten werden müssen und die Palette anschließend zusammengesetzt werden muss.
  • Für den Transport auf Rollen- und Kettenförderern einerseits und zur Erhöhung der Stabilität andererseits umfassen Kunststoffpaletten oft auch Kufen, welche jeweils mindestens zwei Füße an deren Unterseiten miteinander verbindend ausgebildet sind. Meist sind die Kufen parallel zueinander angeordnet, bei rechteckigen Paletten liegt ihre Längsrichtung üblicherweise parallel zur schmaleren Kante der Palette, was aber nicht zwingend ist, auch eine Verbindung der Füße entlang der längeren Kante ist möglich. Auch umlaufende Kufen lassen sich verwenden, d.h. Kufen, welche zusätzlich noch die Füße entlang der längeren Kante der Palette miteinander verbinden.
  • Gegenüber Holz- oder Metallpaletten haben Kunststoffpaletten allerdings auch Nachteile. Ein Nachteil liegt darin, dass Kunststoffpaletten unter Belastung zu größeren Verformungen neigen als Holzpaletten. Schlimmstenfalls kann dies zu irreversiblen Verformungen führen. Werden Waren mit hoher, jedoch noch zulässiger Masse auf den Paletten abgestellt, so führt dies zu einer Durchbiegung des Decks, wobei sich auch die Füße mit daran angeformten Kufen leicht verformen bzw. ihren Anteil an der Durchbiegung tragen, indem sich die Füße an ihrer Oberseite nach innen in Richtung Deckmitte neigen, sie an ihrer Unterseite jedoch nach außen streben. Es treten somit Schub-, Biege- und Scherkräfte auf, die von der Palette nur ungenügend reversibel resorbiert werden können.
  • Stand der Technik
  • Um die Verformung unter Last zu verringern, ist es im Stand der Technik bekannt, Kunststoffpaletten mit Versteifungsstrukturen zu verstärken, um insbesondere die Biegesteifigkeit der Paletten zu erhöhen.
  • So wird beispielsweise in der DE 20 2015 100 355 U1 eine aus mehreren Teilen zusammensetzbare Kunststoffpalette beschrieben, in deren Deck in Längsrichtung zur Erhöhung der Biegesteifigkeit Metallstangen eingesetzt sind. Die Metallstangen werden hier quer zur Längsrichtung der Kufen angeordnet. Sie verstärken die Deckstruktur und liegen parallel zueinander, ohne miteinander verbunden zu sein.
  • In der DE 10 2014 007 079 A1 wird eine zweiteilige Kunststoffpalette mit Verstärkungsprofilen, welche die Funktion von Versteifungselementen haben, beschrieben. Die Versteifungselemente sind stangenartig und werden separat in die Kufen eingeschoben. Hier wird die Kufenstruktur im Bereich der Bodenebene verstärkt.
  • In der DE 10 2011 103 359 A1 zeigt Fig. 8 eine Kunststoffpalette, bei der in den Ecken Verstärkungselemente angeordnet sind. Bis auf die nicht miteinander verbundenen Verstärkungselemente, welche auch als Beschläge bezeichnet werden, ist die Palette einstückig gefertigt. Die Verstärkungselemente erstrecken sich in der fertigen Palette vom Deck bis zum Boden und sind nicht miteinander verbunden. Die Anbringung der Verstärkungselemente ausschließlich in den Ecken dient der Erhöhung der Verschleißfestigkeit.
  • In der DE 10 2011 052958 A1 wird eine aus mehreren Teilen zusammengesetzte Palette beschrieben, bei der Fußelemente bogenförmig ausgebildet und über Kreuz angeordnet sind. An ihrer zum Deck weisenden Seite, im Bereich des Scheitelpunkts der Bögen, sind sich über die Länge der Fußelemente erstreckende Stützstangen eingesetzt, welche auch aus Metall gefertigt sein können. Durch die gitterförmige Anordnung wird die Tragfähigkeit der Palette erhöht. Auch in der DE 43 36 469 A1 wird eine Kunststoffpalette beschrieben, bei der die Deckstruktur mit einem Gerüst aus Verstärkungsrohren, die beispielsweise aus Stahl gefertigt sein können, verstärkt wird.
  • In der DE 20 2007 000 985 U1 wird eine Kunststoffpalette beschrieben, welche mit Armierungen sowohl im Bereich unterhalb des Decks als auch im Bereich der Füße knapp oberhalb des Bodens versehen ist. Gemäß der in Fig. 1-3 gezeigten Ausgestaltung bilden die Armierungselemente, die aus einem stangen- oder stabförmigen Material gebildet sein können, eine Gitterstruktur im Deck, und entlang der Schmalseite der Palette liegen zwei übereinander angeordnete Armierungselemente zueinander parallel, wobei das eine Element unterhalb der Oberfläche des Decks in dieses eingebettet ist und das andere in die Unterseite der Kufe. Die Armierungselemente stehen jedoch nicht in direktem Kontakt zueinander, sie sind nicht miteinander verbunden.
  • In der WO 2007/019833 A1 wird eine Kunststoffpalette beschrieben, bei der Verstärkungselemente unterhalb der Grundplatte der Palette im Bereich der Füße und innerhalb des Decks angeordnet sind. Hier zeigen die Fig. 9-11 eine Palette aus einem Deck und daran angebrachten Füßen, wobei jeweils drei der Füße entlang der längeren Seite der Palette durch Fußschienen, die aus Stahlblech bestehen können, in den Kufen verbunden sind. Im Deck sind ebenfalls aus Stahlblech gefertigte Verstärkungselemente nach Art eines Gitters angeordnet, die Kreuzungspunkte der Längsstreben und Querstreben liegen im Bereich Füße. Dort ist die Gitterstruktur über Stege mit den Fußschienen verbunden, wobei über die Art der Verbindung keine nähere Aussage getroffen wird. Als bevorzugtes Material für die in der WO 2007/019833 A1 beschriebene Palette wird Styropor genannt und die Gitterstruktur dient der Erhöhung der Formstabilität. Die im Deck angeordneten Längs- und Querstreben sowie die Stege in den Füßen weisen eine Vielzahl aneinandergereihter Aussparungen auf, welche gewährleisten sollen, dass sie vom Kunststoff der Palette vollständig durchdrungen werden können; auf diese Weise kann die Verbindung mit dem Kunststoff verbessert und die Stabilität des Gesamtkonstrukts gegenüber einer einfachen Styroporpalette erhöht werden. Die hohe Anzahl an Aussparungen sorgt außerdem dafür, dass das Gewicht der Palette gegenüber einer reinen Styroporpalette nicht übermäßig zunimmt.
  • Zwar ist eine solche Struktur der Versteifungselemente mit Aussparungen sehr vorteilhaft hinsichtlich des Gewichts und der Verbindung mit dem Kunststoff und erhöht die Stabilität hinsichtlich einer direkten Belastung von oben, ist jedoch einer Belastung durch Scherkräfte kaum gewachsen. Die Verbindung der Längs- bzw. Querstreben mit den Fußschienen über die Streben kommt darüber hinaus nur durch den Verbund im Kunststoff zustande, so dass die Palette nur geringen Biege- und Scherkräften standhalten kann.
  • In der JP S56 123248 A wird eine Kunststoffpalette umfassend ein Deck, Füße und Kufen beschrieben. Die Palette umfasst weiterhin eine Versteifungsstruktur mit unteren Holmen, oberen Holmen und Sprossen, welche die unteren und oberen Holme miteinander verbinden.
  • Beschreibung der Erfindung
  • Die Aufgabe der Erfindung besteht daher darin, eine Palette zu entwickeln, welche gegenüber den im Stand der Technik bekannten Paletten eine erhöhte Festigkeit gegenüber Biege- und Scherkräften aufweist und infolgedessen eine geringere Durchbiegung.
  • Diese Aufgabe wird bei einer Kunststoffpalette der eingangs beschriebenen Art durch die alternativen Merkmalskombinationen gemäß Anspruch 1 gelöst. Die mindestens eine Versteifungsstruktur weist Sprossen mit jeweils überwiegend geschlossener Oberfläche auf, welche die unteren Holme in den Füßen mit den oberen Holmen verbinden. Dabei sind die Sprossen einstückig an den Holmen ausgebildet oder mit diesen jeweils über Kontaktflächen bevorzugt stoffschlüssig, oder auch kraftschlüssig oder formschlüssig verbunden, wobei die Verbindungsarten auch kombiniert werden können, und wobei durchaus beide Arten von Sprossen an einer Versteifungsstruktur realisiert werden können. Durch diese Maßnahmen wird die Biegesteifigkeit der Palette einerseits und die Schubfestigkeit der Palette in einer zur Oberseite des Decks parallelen Ebene andererseits gegenüber im Stand der Technik bekannten Paletten erhöht. Bei einer überwiegend geschlossenen Oberfläche beträgt der Anteil der Öffnungen in den Sprossen weniger als 50 %, meist weniger als 25 %. Aussparungen und Öffnungen befinden sich nur dort, wo es aus fertigungstechnischen Gründen notwendig oder vorteilhaft ist. Tatsächlich liegt der Anteil der Öffnungen daher in der Regel bei weniger als 10 % der Oberfläche.
  • Die mindestens eine Versteifungsstruktur ist also als leiterförmige Struktur mit Holmen und Sprossen ausgebildet, wobei die Holme mit den Sprossen fest und bevorzugt unlösbar miteinander verbunden sind, so dass die leiterförmige Struktur in der Lage ist, entsprechend hohe Scherkräfte aufzunehmen. Die feste und bevorzugt unlösbare Verbindung, die bei einstückiger Ausbildung der Sprossen und der Holme zwangsläufig vorhanden ist und bei Ausbildungen, bei denen die Sprossen nicht an Holmen ausgebildet sind, bevorzugt durch flächigen Stoffschluss, beispielsweise durch Kleben, besonders bevorzugt aber durch Schweißen erreicht wird, ist dabei nur ein Teilaspekt. Zur Erhöhung der Biegesteifigkeit bzw. Schubfestigkeit ebenso unerlässlich ist es, dass die Sprossen eine überwiegend geschlossene Oberfläche aufweisen, bei plattenförmigen Sprossen beispielsweise heißt dies, dass in den plattenförmigen Sprossenteilen so wenig Öffnungen oder Aussparungen ausgebildet sind, wie nötig, die aber in jedem Falle weniger als 50 % der gesamten Oberfläche des plattenförmigen Sprossenteils einnehmen, da eine Vielzahl solcher Aussparungen die Schubfestigkeit verringern. Wenn möglich, sollte auf solche Öffnungen verzichtet werden. In der Regel weisen die plattenförmigen Sprossenteile daher entweder keine Öffnungen auf, oder nur eine, zwei oder drei Öffnungen, durch die beispielsweise optionale Querstreben zur Bildung einer Gitterstruktur gesteckt werden können. Sollen keine Querstreben verwendet werden, weisen die leiterförmigen Versteifungsstrukturen daher bevorzugt keine Öffnungen auf.
  • Um die Versteifungsstrukturen mit der Palette zu verbinden bzw. sie in diese einzusetzen, gibt es verschiedene Möglichkeiten. Sie können beispielsweise schon bei der Herstellung in die Form, beispielsweise eine Spritzgussform, eingesetzt werden, so dass die Versteifungsstruktur nahezu vollständig von dem ausgehärteten Kunststoff umschlossen wird. Auf diese Weise kann besonders ein fester Sitz garantiert werden. Um die Versteifungsstrukturen im Falle eines Verschleißes auswechseln zu können, kann sie auch von unten oder oben in die Palette bzw. die Füße einer einteiligen Palette eingeschoben werden. Die Verbindung mit dem Kunststoff der Palette kann dann auch kraft- und/oder formschlüssig erfolgen. Bevorzugt ist aber die Palette mehrteilig ausgeführt, und die Versteifungsstrukturen werden - ggf. über Querstreben verbunden - in die Kufen eingesetzt, bevor das Deck auf die Kufen gesetzt und mit diesem beispielsweise über Schnappverschlüsse bzw. kraft- form- oder stoffschlüssig, verbunden wird.
  • In einer einfachen Ausgestaltung kann die Versteifungsstruktur beispielsweise einstückig aus Bandstahl gefertigt sein, wobei die Zwischenräume zwischen den Sprossen ausgestanzt, gefräst oder auf sonstige, bearbeitungstechnisch geeignete Weise in die Versteifungsstruktur eingebracht werden. Je dicker dabei das Band gewählt wird, desto mehr wird auch die Schubfestigkeit erhöht. Gleichzeitig wird jedoch auch die Masse der Kunststoffpalette erhöht und wenn die leiterförmige Versteifungsstruktur - wie es bevorzugt der Fall ist - aus Metall, insbesondere aus Stahl ist, kann dies dazu führen, dass die Masse der Kunststoffpalette mit Versteifungsstrukturen höher als die Masse einer vergleichbaren Holzpalette wird, so dass ein wesentlicher Vorteil des Materials Kunststoff verloren ginge. Ein zu dünnes Blech als leiterförmige Versteifungsstruktur andererseits kann die erforderliche Schubfestigkeit nicht herstellen. Anstelle aus Metall lässt sich die leiterförmige Versteifungsstruktur auch aus anderen Materialien, die die notwendigen Biege- und Schubsteifigkeit der Palette bereitstellen können, herstellen. Beispielsweise kommen auch glasfaser- oder kohlenstofffaserverstärkte Kunststoffe in Frage.
  • Es hat sich jedoch herausgestellt, dass eine ausreichend hohe Schubfestigkeit hergestellt werden kann, wenn insbesondere die Holme eine entsprechende Dicke aufweisen, wohingegen die Sprossen mit geringerer Dicke ausgeführt werden können. In einer bevorzugten Ausgestaltung weisen daher die Holme eine vorgegebene Dicke auf, die beispielsweise anhand der geforderten Schubfestigkeit festgelegt werden kann. Unter der Dicke der Holme wird dabei die Ausdehnung der Holme senkrecht zur ihrer Längsrichtung und senkrecht zur Längsrichtung der Sprossen in der leiterförmigen Struktur verstanden. Indem nur die Holme dicker ausgeführt werden, lässt sich entscheidend Material und damit Gewicht sparen, ohne dass es zu Einbußen bei der Schubfestigkeit kommt.
  • Sind die Sprossen einstückig an den Holmen ausgeführt, so gehen Holme und Sprossen ineinander über, die Sprossen können daher dünner ausgefertigt werden. Sind die Sprossen stoffschlüssig, kraftschlüssig und/oder formschlüssig mit den Holmen über Kontaktflächen verbunden, so werden die Kontaktflächen in ihrer Ausdehnung so groß wie möglich gewählt, und zwar sowohl in der Höhe - d.h. in Längsrichtung der Holme - als auch senkrecht dazu, wobei grundsätzlich senkrecht zur Höhe auch gekrümmte Flächen in Frage kommen.
  • Um eine hohe Stabilität bezüglich Biege- und Schubfestigkeit zu gewährleisten, weisen die Sprossen in Längsrichtung der Holme eine vorgegebene Höhe - bei liegenden leiterförmigen Versteifungsstrukturen in der Ansicht die Breite - auf, die mindestens 80 % der Breite des jeweiligen, in Sprosse aufnehmenden Fußes entspricht. Der Begriff "Höhe" wurde dabei der Anschaulichkeit halber auf eine stehende leiterförmige Struktur bezogen, bei liegenden leiterförmigen Strukturen entspricht dies in der Ansicht der Breite. Vorzugsweise wird die Höhe der Sprossen so gewählt, dass der maximal zur Verfügung stehende Bauraum im jeweiligen Fuß - dieser für verschiedene Füße an derselben Palette verschieden sein - ausgenutzt wird, d.h. im Falle einer stoffschlüssigen, kraftschlüssigen oder formschlüssigen Verbindung entspricht die Ausdehnung der Kontaktflächen in Längsrichtung der Holme bevorzugt der vorgegebenen Höhe.
  • Dabei müssen die Holme nicht über die gesamte Dicke massiv aus Material sein, die Holme können auch als Hohlstrukturen mit verschiedenen Querschnitten ausgebildet sein. Besonders vorteilhaft ist die Hohlstruktur aus verschiedenen Flächen zusammengesetzt, wobei mindestens eine der Flächen jeweils eines Holmes parallel zur Deckoberseite - d.h. senkrecht zur Längsrichtung der Holme und der Sprossen - ausgerichtet ist, was ebenfalls zur Erhöhung der Stabilität beiträgt. Im Falle der Verwendung von Hohlstrukturen sind die Holme beispielweise als Rohre mit dem Querschnitt eines Vierecks, beispielsweise eines Trapezes, Rechtecks oder Quadrats ausgebildet und umfassen dann dementsprechend vier Flächen. Alternativ können sie auch als T-Träger oder als Doppel-T-Träger ausgebildet sein, auch hier liegt mindestens eine Fläche - die des Querbalkens des "T" - parallel zur Deckoberseite.
  • Auf diese Weise kann eine hohe Stabilität der Versteifungsstruktur bzgl. Biegung und Scherung in der Palette senkrecht zur Richtung der Kufen, also senkrecht zu einer Ebene, in der die leiterförmige Struktur liegt, erreicht werden.
  • Sind die Sprossen stoffschlüssig mit den als Rohre mit viereckigem Querschnitt ausgebildeten Holmen über Kontaktflächen verbunden, so liegen diese Kontaktflächen bevorzugt parallel zur Deckoberfläche und beträgt die Ausdehnung der Kontaktfläche in Richtung der Dicke der Holme mindestens ein Viertel der Dicke, bevorzugt jedoch mindestens die Hälfte der Dicke. Besonders bevorzugt entspricht die Ausdehnung der Kontaktfläche in Richtung der Dicke jedoch der gesamten Dicke, dies garantiert die bestmögliche Stabilität der stoffschlüssigen und flächigen Verbindung.
  • Die Kontaktflächen können allerdings auch senkrecht zur Deckoberfläche in der von Sprossen und Holmen aufgespannten Ebene liegen, bei Rohren mit rechteckigem Querschnitt können dann beispielsweise kleine Platten mit den Holmen verschweißt werden, ohne dass die Platten gebogen werden müssten. In Abhängigkeit von der Form der Holme können die Kontaktflächen auch jede andere Form aufweisen oder in einem anderen Winkel abstehen, wichtig ist, dass die Kontaktflächen so groß gewählt werden, dass sie bis zu einer vorgegebenen maximalen Schub- und Biegebelastung eine sichere Verbindung von Sprossen und Holmen garantieren.
  • Dies gilt auch im Falle einer kraftschlüssigen oder formschlüssigen Verbindung. Letztere kann beispielsweise als Schnappverschluss ausgeführt werden, wobei die Kontaktflächen dann den Flächen des Verschlusses bei Sprossen und Holmen entsprechen, die im verbundenen Zustand aneinander liegen. Eine entsprechend stabile Verbindung kann beispielsweise erreicht werden, wenn der Schnappverschluss entlang der Längsrichtung der Holme ausgerichtet ist und sich über die vorgegebene Höhe erstreckt.
  • Um eine ausreichend stabile kraftschlüssige Verbindung herzustellen, können die Sprossen an ihren den Holmen zugewandten Seiten beispielsweise keilförmig - auch hier bevorzugt über die gesamte Höhe - ausgebildet sein und die Holme entsprechende Aufnahmen aufweisen.
  • Die leiterförmige Versteifungsstruktur kann auf verschiedene Weise realisiert werden, besonders vorteilhafte Ausgestaltungen sind im Folgenden beschrieben.
  • In einer besonders bevorzugten, besonders für sehr hohe Stückzahlen geeigneter Ausführung ist die Versteifungsstruktur als Aluminium-Strangpressprofil ausgebildet. Die Sprossen sind in diesem Fall einstückig an den Holmen ausgebildet. Zwischen die Sprossen werden Öffnungen eingebracht, beispielsweise durch Stanzen oder Fräsen, durch die die Zinken eines Gabelstaplers einfahren können. Aluminium hat den Vorteil, dass es ein Leichtmetall ist, zudem ist kein Korrosionsschutz notwendig.
  • In einer weiteren bevorzugten Ausgestaltung, die sich insbesondere für kleinere und mittlere Stückzahlen von weniger als 10.000 eignet, ist die Versteifungsstruktur einstückig als Rohr mit quadratischem Querschnitt ausgebildet, welches in die Form von zwei Holmen mit dazwischenliegenden Sprossen gebogen ist. Auf diese Weise ist es möglich, eine Versteifungsstruktur mit maximal drei Sprossen, die einstückig an den Holmen ausgebildet sind, zu gestalten. Eine solche Versteifungsstruktur kann auf verschiedene Weisen realisiert werden, die sich vor allem dadurch unterscheiden, wo die beiden Rohrenden in der Versteifungsstruktur angeordnet sind. Beispielsweise ist es möglich, durch siebenfache Biegung um jeweils 90° eine nach Art einer "8" ausgebildete Struktur herzustellen. In einer bevorzugten Ausgestaltung, die nur sechs Biegungen benötigt, sind die beiden Enden des Rohres von einem der Holme zum anderen, gegenüberliegenden Holm gebogen und formen die mittlere Sprosse. Die Rohrenden sind stoffschlüssig miteinander und mit dem anderen, gegenüberliegenden Holm verbunden. Die Verbindung erfolgt dabei besonders bevorzugt über die ganze Dicke des Holms. Diese Art der Herstellung ermöglicht es, die Rohrenden zur Erhöhung der Stabilität mit einer weiteren Biegung zu versehen, so dass die effektive Höhe der Sprosse, bei einer liegenden leiterförmigen Struktur der Breite entsprechend, wächst. Dies erhöht die Stabilität bezüglich Biegung und Schubfestigkeit, wenn Kräfte im Bereich des mittleren Fußes angreifen. Die stoffschlüssige Verbindung wird besonders bevorzugt durch Schweißen hergestellt, die Schweißstellen werden anschließend gegen Korrosion beispielsweise durch Verzinken geschützt. Grundsätzlich ist dieses Profil relativ preiswert herzustellen, da Rohre mit quadratischem Querschnitt, beispielsweise mit einem Querschnitt von 20x20 mm und einer Wandstärke von 2 mm, auf dem Markt in großen Mengen erhältlich sind. Bei der Herstellung von Profilen entsteht etwa ein Viertel der Kosten durch das Sägen der Quadratrohre, um diese abzulängen. Durch die Verwendung eines einzigen, gebogenen Rohres können diese Kosten minimiert werden.
  • In einer anderen Ausgestaltung, die in der Herstellung etwas teuer ist und aufgrund der zeitintensiveren Fertigung teurer ist, sind die Holme ebenfalls als Rohre mit quadratischem Querschnitt ausgebildet, jedoch sind mindestens die inneren Sprossen als plattenförmige Verbindungselemente ausgebildet, bei denen an zwei gegenüberliegenden Seiten Kontaktflächen als Stehfalze angeformt sind. Es handelt sich um einstückige Elemente, die als sogenannte C-Profile mit einer Wandstärke von beispielsweise 2 mm ebenfalls kommerziell erhältlich sind, alternativ ist auch eine Herstellung durch Schneiden und Biegen aus einem geraden Blech möglich. Als Material kommt insbesondere Stahlblech in Frage, aber auch alle anderen Metalle und Metalllegierungen, die die Anforderungen erfüllen, können verwendet werden.
  • Unter einem Stehfalz wird dabei eine Abbiegung des Randes des plattenförmigen Verbindungselements um 90° verstanden. Die abgebogene Fläche des plattenförmigen Verbindungselements bildet dann die Kontaktfläche. Die Ausdehnung der Kontaktfläche in Richtung der Dicke des Holmes beträgt mindestens ein Viertel der Dicke. Bei einem Rohrdurchmesser des Quadratrohres von etwa 2 cm liegt die Biegekante dann mindestens 5mm von der Randkante des plattenförmigen Verbindungselements entfernt. Für eine stabile Verbindung ist es jedoch vorteilhaft, die Kontaktfläche so groß wie möglich zu machen, so dass die Biegekante mindestens die Hälfte, d.h. 10 mm, am besten sogar der Dicke des Rohres entsprechend 20 mm von der Randkante des plattenförmigen Verbindungselements entfernt, parallel zu dieser liegt.
  • Ein besonders stabile, allerdings auch fertigungsintensive Variante erhält man, wenn sämtliche Sprossen als solche plattenförmigen Verbindungselemente ausgestaltet sind, einschließlich der äußeren Sprossen. An den Kontaktflächen werden die plattenförmigen Verbindungselemente mit den Rohren verschweißt, anschließend müssen die Schweißstellen verzinkt werden. Je nach Materialwahl kann es auch erforderlich sein, die gesamte Versteifungsstruktur zu verzinken.
  • Eine etwas weniger fertigungsintensive Variante, bei der die hohe Stabilität hinsichtlich Biegung und Schubfestigkeit im Falle einer Versteifungsstruktur mit drei Sprossen für die mittlere Sprosse - an der erfahrungsgemäß die größten Kräfte angreifen - erhalten bleibt, besteht darin, die mittlere, innere Sprosse als plattenförmiges Verbindungselement mit als Stehfalzen ausgebildeten Kontaktflächen, wie vorangehend beschrieben, zu gestalten, jedoch die beiden äußeren Sprossen aus einem Rohr mit rechteckigem oder quadratischem Querschnitt zu biegen. Die beiden Holme und die beiden äußeren Sprossen sind in diesem Fall einstückig aus einem gebogenen Rohr gebildet.
  • Weitere Möglichkeiten, den Materialverbrauch bei hoher Stabilität bzgl. Biegung und Scherung möglichst gering zu halten, bestehen darin, anstelle von dicken Blechen oder dicken Versteifungsstrukturen dünnere Bleche zu verwenden, bei denen die Holme durch Biegung entlang der Längsrichtung der Holme ausgebildet sind. Auf diese Weise können Falze an den Holmen ausgebildet werden. Auch die Einbringung von Sicken als Spezialform des Biegens ist als eine ebenso der Versteifung dienende Umformung möglich, Sicken können an beliebiger Stelle in Längsrichtung der Holme in diese eingebracht werden. Die Versteifungsstruktur ist in diesem Fall als gewalztes und gebogenes Metall-Profil mit zwischen den Sprossen, die einstückig an den Holmen ausgebildet sind, eingebrachten Öffnungen ausgebildet. Die Biegung erfolgt entsprechend der Längsrichtung der Holme. Hier können Bleche verschiedener Dicke verwendet werden, je nach geforderter Belastbarkeit beispielsweise Bleche mit Dicken von 1 mm bis 4 mm. Die Stabilität der Versteifungsstruktur wird hier also nicht durch die Materialdicke erreicht, sondern durch die Ausbildung der Holme durch Biegung, wodurch ihnen insbesondere auch eine vorgegebene Dicke aufgeprägt werden kann. Bei der Verwendung von Metall-Profilen lassen sich die Holme an den Profilrändern im einfachsten Fall als Stehfalze ausbilden. Eine höhere Stabilität wird durch Doppelstehfalze erreicht, d.h. also durch zwei in Querrichtung des Profils - mit Biegekanten längs der Längsrichtung der Holme - in kurzem Abstand aufeinander folgende Biegungen um 90° in gleicher Orientierung. Die Holme können auch als Umschläge ausgebildet sein, d.h. als Biegungen um 180°. Zur weiteren Erhöhung der Stabilität kann es vorteilhaft sein, Stehfalze und Umschläge miteinander zu kombinieren. Zwischen den Sprossen sind die Öffnungen eingebracht, dies kann beispielsweise durch Ausstanzen, Ausschneiden oder Ausfräsen erfolgen. Die Sprossen sind bevorzugt plattenförmig ausgebildet, weisen also in Längsrichtung der Holme eine vorgegebene Höhe auf, die nahe an die Abmessungen der Füße in Längsrichtung der Holme heranreicht. Bei sich verjüngenden Füssen kann auch die Form der die Sprosse bildenden Platte entsprechend angepasst werden, beispielsweise in eine Trapezform.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung einsetzbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend wird die Erfindung beispielsweise anhand der beigefügten Zeichnungen, die auch erfindungswesentliche Merkmale offenbaren, noch näher erläutert. Es zeigen
  • Fig. 1
    eine Kunststoffpalette mit einer darin eingebetteten leiterförmigen Versteifungsstruktur,
    Fig. 2
    eine Kunststoffpalette ohne Deck mit Versteifungsstrukturen,
    Fig. 3a)-c)
    eine erste Ausgestaltung einer Versteifungsstruktur,
    Fig. 4a)-c)
    eine zweite Ausgestaltung einer Versteifungsstruktur,
    Fig. 5a)-b)
    eine dritte Ausgestaltung einer Versteifungsstruktur,
    Fig. 6
    eine Abwandlung der in Fig. 5 gezeigten Versteifungsstruktur,
    Fig. 7a)-c)
    eine vierte Ausgestaltung einer Versteifungsstruktur,
    Fig. 8a)-c)
    eine fünfte Ausgestaltung einer Versteifungsstruktur,
    Fig. 9a)-d)
    eine sechste Ausgestaltung einer Versteifungsstruktur,
    Fig. 10a)-b)
    eine siebte Ausgestaltung einer Versteifungsstruktur und
    Fig. 11a)-c)
    eine achte Ausgestaltung einer Versteifungsstruktur.
    Ausführliche Beschreibung der Zeichnungen
  • Fig. 1 zeigt eine übliche Kunststoffpalette, welche ein Deck 1 zur Lagerung von zu transportierenden Objekten umfasst. In der hier gezeigten Perspektivansicht ist eine Deckoberseite 2 zu sehen, dieser gegenüberliegend ist eine nicht gezeigte Deckunterseite, Deckoberseite 2 und Deckunterseite sind voneinander durch die Dicke des Decks beabstandet. Von der Deckunterseite nach unten abstehend sind Füße 3 ausgebildet. Außerdem umfasst die Kunststoffpalette auch Kufen 4, welche jeweils mindestens zwei Füße 3 an deren Unterseiten miteinander verbindend ausgebildet sind. Das vorderste Segment der Kunststoffpalette - umfassend drei Füße und die Kufen, die die Füße verbinden - ist hier aufgeschnitten dargestellt, so dass eine dort angeordnete - durch Schraffur gekennzeichnete - Versteifungsstruktur 5 sichtbar wird. Die Versteifungsstruktur 5, von denen die Palette hier zwei in den äußeren Kufen aufweist, ist hier leiterförmig ausgebildet und umfasst in den Kufen 4 anordnete untere Holme 6 und davon beabstandet angeordnete obere Holme 7, welche über den unteren Holmen 6 parallel zu diesen verlaufend angeordnet sind. Die oberen Holme können in einem Bereich zwischen der Deckoberseite 2 und der Deckunterseite im Deck 1 angeordnet sein, sie können aber auch unterhalb des Decks 1, wie in Fig. 1 beispielhaft dargestellt, angeordnet sein. Bei einer Anordnung der oberen Holme 7 im Bereich zwischen der Deckoberseite 2 und der Deckunterseite kann die Versteifungsstruktur 5 dann im Falle einer einstückigen Fertigung vollständig vom Kunststoff der Palette umschlossen werden.
  • Die Versteifungsstruktur 5 ist leiterförmig ausgebildet und weist daher Sprossen 8 auf, welche die unteren Holme 6 in den Füßen 3 mit den oberen Holmen 7 verbinden. Die Oberfläche der Sprossen ist überwiegend geschlossen, d.h. sie weist keine Öffnungen oder Aussparungen auf, und wenn doch, dann beträgt die Fläche der Öffnungen bzw. Aussparungen anteilmäßig an der gesamten Oberfläche der Sprossen 8 weniger als 50%, in der Regel weniger als 10%. Aussparungen und Öffnungen werden nur dort angebracht, wo dies aus fertigungstechnischen Gründen notwendig oder sinnvoll ist.
  • Die Sprossen 8 sind dabei entweder einstückig an den unteren Holmen 6 bzw. den oberen Holmen 7 ausgebildet, oder sie sind mit diesen jeweils über Kontaktflächen stoffschlüssig verbunden. Je nach Ausgestaltung können auch einige der Sprossen 8 einstückig an einem oder beiden Holmen ausgebildet sein und andere Sprossen mit den Holmen 6, 7 stoffschlüssig verbunden sein. Die Art des Stoffschlusses wird abhängig vom Material gewählt. Bei metallischen Versteifungsstrukturen 5 bietet sich hier insbesondere eine Verschweißung an. In Abhängigkeit vom Material - beispielsweise lassen sich auch kohlenstofffaser- und glasfaserverstärkte Kunststoffe für die Versteifungsstruktur verwende - können sich auch andere Arten der Verbindung als sinnvoll erweisen, beispielsweise kraft- oder formschlüssige Verbindungen, wobei auch alle Arten des Formschlusses miteinander kombiniert werden können.
  • Durch die einstückige Ausbildung der Sprossen 8 an den Holmen 6 und 7 bzw. durch die stoffschlüssige Verbindung über größere Kontaktflächen einerseits und durch die überwiegend geschlossene Oberfläche der Sprossen 8 andererseits wird die Biegesteifigkeit der Kunststoffpalette und insbesondere die Schubfestigkeit der Kunststoffpalette in einer zur Deckoberseite 2 parallelen Ebene erhöht.
  • Durch die Verwendung von solchermaßen ausgebildeten Versteifungsstrukturen 5 ist es möglich, die Durchbiegung der Kunststoffpalette bei Lastauflage in der Mitte zu verringern, beispielsweise von 22 mm auf unter 10 mm bei einer Kunststoffpalette mit den Maßen 1200 mm x 800 mm und 3 mit Kufen verbundenen Füßen. Die Schubsteifigkeit wird erhöht, da Scherkräfte über die Versteifungsstrukturen 5, die insbesondere aus Metall sein können, abgeleitet bzw. von ihnen aufgefangen werden.
  • Fig. 2 zeigt eine Kunststoffpalette ohne Deck, hier sind nur die Füße 3 mit daran angeformten Kufen 4 dargestellt. In den äußeren beiden Fuß-Kufen-Elementen sind Versteifungsstrukturen 5 eingesetzt. Zusätzlich sind hier noch Querstreben 9 gezeigt, welche die Stabilität der Kunststoffpalette weiter erhöhen. Diese Querstreben 9 können ebenfalls aus Metall sein. Sie sind jedoch rein optional und für die Erzielung der gewünschten Wirkung nicht zwingend notwendig. Im Interesse einer möglichst geringen Masse der Kunststoffpalette kann auf die Querstreben 9 verzichtet werden. Sie können unabhängig von den Versteifungsstrukturen 5 in die Palette eingelegt werden, aber auch mit diesen stoffschlüssig, formschlüssig und/oder kraftschlüssig verbunden sein, um so eine noch stabilere Struktur zu bilden. Im vorliegenden Fall sind die beiden äußeren Querstreben 9 durch Öffnungen in den Versteifungsstrukturen 5 bzw. in den Sprossen 8 hindurch gesteckt und bilden mit diesen ein Gitter. Die mittlere Querstrebe 9 ist nur aufgelegt, ließe sich aber ebenfalls in das Gitter integrieren.
  • Mit Hilfe der Versteifungsstrukturen 5 ist es möglich, die Durchbiegung auf das Maß zu reduzieren, welches auch bei Holzpaletten vergleichbarer Größe als zulässig erachtet wird, oder auch auf noch geringere Maße. Je dicker die Versteifungsstrukturen - mit Dicke ist die Ausdehnung senkrecht zur Längsrichtung der Holme und senkrecht zur Längsrichtung der Sprossen gemeint - sind, desto höher werden Schub- und Biegesteifigkeit, was jedoch mit einer höheren Masse einhergeht. Obwohl Kunststoffpaletten an sich leichter als Holzpaletten gleicher Größe sind, kann bei entsprechend dicken Versteifungsstrukturen 5 das Gewicht vergleichbarer Holzpaletten übertroffen werden, wodurch ein wesentlicher Vorteil von Kunststoffpaletten wegfiele.
  • Wählt man jedoch andererseits die Dicke der unteren Holme 6, der oberen Holme 7 und der Sprossen 8 zu gering, beispielsweise als reines Blech mit konstanter Dicke, so kann dies bei zu geringer Dicke nicht die notwendige Schubsteifigkeit realisieren. Aus diesem Grund weisen mindestens die oberen Holme 6 und die unteren Holme 7 eine vorgegebene Dicke auf.
  • Im Falle einer stoffschlüssigen Verbindung der Sprossen 8 mit den Holmen 6, 7 über Kontaktflächen, und auch im Falle einer kraft- oder formschlüssigen Verbindung wird die Größe der Kontaktflächen in Abhängigkeit von einer vorgegebenen maximalen Biege- und Schubbelastung der Kunststoffpalette gewählt bzw. vorgegeben, in der Regel sollten die Kontaktflächen so groß wie baulich möglich gewählt werden.
  • In Längsrichtung der Holme 6, 7 weisen die Sprossen 8 zur Erhöhung der Schubsteifigkeit und Biegesteifigkeit in Längsrichtung der Holme 6, 7 eine vorgegebene Höhe, die sich an der Breite der Füße orientiert, sie sollte mindestens 80% der Breite des jeweiligen, die Sprosse aufnehmenden Fußes betragen. Hier wird der Ausdruck "Höhe" in Anlehnung an eine stehende Leiter verwendet, er korrespondiert für eine liegende Struktur mit der Breite. Im Falle einer Verbindung der Sprossen 8 mit den Holmen 6, 7 über Kontaktflächen entspricht die Ausdehnung der Kontaktflächen in Längsrichtung der Holme 6,7 bevorzugt der vorgegebenen Höhe.
  • Für die Ausgestaltung der Holme 6 und 7 sind dabei viele Gestaltungsvarianten möglich, beispielsweise lassen sich der untere Holm 6 und/oder der obere Holm 7 als Hohlstrukturen aus verschiedenen Flächen zusammensetzen, beispielsweise lassen sie sich als Rohre mit dem Querschnitt eines Vierecks, insbesondere eines Trapezes, Rechtecks oder Quadrats ausbilden, was die Verbindung der Kontaktflächen erleichtert; aber auch eine Ausgestaltung als T-Träger oder als Doppel-T-Träger ist denkbar. Mindestens eine der Flächen jeweils eines Holmes (6, 7) ist dann bevorzugt senkrecht zur Längsrichtung des jeweiligen Holmes 6, 7 und senkrecht zur Längsrichtung der Sprossen 8 ausgerichtet. An diesen Flächen können dann insbesondere für den Stoffschluss Kontaktflächen ausgebildet sein.
  • Im Falle einer stoffschlüssigen Verbindung der Sprossen 8 mit den Holmen 6, 7 liegt daher die Kontaktfläche bevorzugt in einer Ebene zur Längsrichtung der Sprossen 8 und der Holme 6, 7. Die Ausdehnung der Kontaktfläche in Richtung der Dicke sollte dann in der Regel mehr als die Hälfte der Dicke betragen. Die Sprossen 8 können in Abhängigkeit von der Ausgestaltung auch eine geringere Dicke aufweisen, bei einer Ausbildung aus einem Blech beispielsweise eine der Blechdicke entsprechende Dicke.
  • Verschiedene Ausgestaltungen von Versteifungsstrukturen 5 werden im Folgenden anhand der Fig. 3-11 erläutert.
  • Fig. 3a)-c) zeigen eine erste Ausgestaltung einer Versteifungsstruktur, wie sie zur Erhöhung der Biegesteifigkeit und der Schubfestigkeit der Kunststoffpalette verwendet werden kann. Fig. 3a) zeigt eine Ansicht der Versteifungsstruktur von vorne, Fig. 3b) einen Querschnitt durch die Versteifungsstruktur im Bereich einer Sprosse 8 und Fig. 3c) eine Perspektivansicht der Versteifungsstruktur, die hier als Aluminium-Strangpressprofil 10 ausgebildet ist. Der untere Holm 6 und der obere Holm 7 sind jeweils als T-Träger ausgebildet, die Dicke der Holme 6, 7 kann im Bereich des Querbalkens des "T" beispielsweise 20 mm betragen. Da es sich bei Aluminium um ein nichtrostendes Material handelt, kann auf einen gesonderten Korrosionsschutz verzichtet werden. Zwischen die Sprossen 8 sind Öffnungen 11 eingebracht, die sich im montierten Zustand zwischen den Füßen der Kunststoffpalette befinden und die Einfahrt der Gabel eines Gabelstaplers ermöglichen. Die Sprossen 8 sind hier einstückig an den Holmen 6, 7 ausgebildet und plattenförmig. Im Bereich unter dem oberen Holm 7 sind optional Durchtrittslöcher 12 angeordnet, durch sie kann während der Fertigung im Falle einer einstückigen Palette Kunststoff hindurchtreten, um für eine feste Verbindung zwischen der Versteifungsstruktur und der Kunststoffpalette zu sorgen. Die Durchtrittslöcher 12 können auch für eine andere Art der Befestigung, beispielsweise eine mechanische verwendet werden, sofern ein Einklemmen in die Gerüststruktur der Kunststoffpalette nicht möglich sein sollte, in diesem Fall werden keine Durchtrittslöcher 12 benötigt. Insbesondere eignen sich die Durchtrittslöcher 12 aber auch dazu, optionale Querstreben 9 aufzunehmen, um diese besser zu fixieren und eine versteifende Gitterstruktur in der Ebene des Decks 1 herzustellen, wie in Fig. 2 gezeigt. Ein Vorteil bei der Verwendung eines Aluminium-Strangpressprofils liegt auch in der reduzierten Masse. Während eine Holzpalette mit den Maßen 800 mm x 1200 mm 20-25kg wiegt, beträgt die Masse einer Palette mit den in Fig. 3a)-c) gezeigten Profilen etwa 15-20kg.
  • Eine zweite Ausgestaltung einer Versteifungsstruktur, die hier als weiteres Aluminium-Strangpressprofil 13 ausgebildet ist, zeigen Fig. 4a)-c). Fig. 4a) zeigt eine Ansicht des Aluminium-Strangpressprofils 13 von der Seite, Fig. 4b) einen Querschnitt durch das Profil im Bereich einer Sprosse 8 und Fig. 4c) das Aluminium-Strangpressprofil 13 in einer Perspektivansicht. Auch hier sind zwischen die Sprossen 8 Öffnungen 11 eingebracht. Das Einbringen kann beispielsweise durch Stanzen, Schneiden oder Fräsen erfolgen. Auch das in Fig. 4 gezeigte weitere Aluminium-Strangpressprofil 13 weist Durchtrittslöcher 12 auf. Im Gegensatz zu den in Fig. 3 gezeigten Strangpressprofil ist hier jedoch der untere Holm 6 als Rohr mit quadratischem Querschnitt und der obere Holm als Doppel-T-Träger ausgebildet. Dabei ist es selbstverständlich möglich, auch hier einen der Holme als T-Träger auszugestalten, ebenso kann einer der Holme des Aluminium-Strangpressprofils 10, welches in Fig. 3a)-c) dargestellt ist, als Doppel-T-Träger oder als Rohr mit quadratischem oder rechteckigem Querschnitt ausgestaltet sein.
  • Eine dritte Ausgestaltung ist in Fig. 5a)-b) dargestellt. Hier handelt es sich um eine Versteifungsstruktur, die als Rohr mit quadratischem Querschnitt 14 ausgebildet ist. Das Rohr 14 ist in die Form von zwei Holmen 6, 7 mit dazwischenliegenden Sprossen 8 gebogen. Es handelt sich um eine einstückige Ausführung mit maximal drei Sprossen 8, die insbesondere für kleinere Paletten geeignet ist. Alle Sprossen 8 werden aus dem quadratischen Rohr 14 geformt. Bei dem in Fig. 5 gezeigten Beispiel werden die äußeren Sprossen 8 der Versteifungsstruktur durch zweimaliges Umbiegen des Rohres 14 um jeweils 90° gebildet. Die mittlere oder innere Sprosse 8 wird hingegen gebildet, indem die beiden Rohrenden 15 von einem der Holme - hier ohne Beschränkung der Allgemeinheit vom oberen Holm 7 um 90° gebogen sind, durch die Biegung entsteht also die mittlere Sprosse 8. Die Rohrenden 15 sind mit dem gegenüberliegenden Holm - hier dem unteren Holm 6 - stoffschlüssig, beispielsweise durch Schweißen verbunden, hier über die ganze Dicke des unteren Holms 6. Zur Erhöhung der Biege- und Schubsteifigkeit und der Stabilität der Versteifungsstruktur können die Rohrenden 15 auch miteinander stoffschlüssig verbunden sein, bei einer entsprechenden Fixierung in der Kunststoffpalette im mittleren Fuß kann darauf jedoch auch verzichtet werden.
  • Eine Abwandlung dieser Ausgestaltung ist in Fig.6 dargestellt. Die Rohrenden 15, welche die mittlere Sprosse 8 bilden, sind hier in ihren Endbereichen voneinander weggespreizt, so dass die mittlere Sprosse 8 die Form eines "Y" bekommt. Mit einer Kante sind die Rohrenden 15 jeweils mit dem gegenüberliegenden Holm, hier dem unteren Holm 6, über die gesamte Dicke des Holms stoffschlüssig verbunden. Die betreffenden Kanten sind vorzugsweise mit größeren Fasen versehen, um eine Kontaktfläche für die stoffschlüssige Verbindung, die gegenüber einer linienförmigen, eindimensionalen Verbindung stabiler ist. Auch hier sind die Sprossen 8 einstückig am unteren Holm 6 bzw. am oberen Holm 7 ausgebildet, auch wenn zur Erhöhung der Steifigkeit die Rohrenden mit dem gegenüberliegenden Holm stoffschlüssig verbunden sind. Durch die Aufspreizung der Rohrenden 15 in "Y"-Form wird die Schubsteifigkeit in einer zum Deck 1 parallelen Ebene bzw. die Biegesteifigkeit senkrecht zur Deckebene gegenüber der in Fig. 5 a)-b) gezeigten Ausführung weiter erhöht.
  • Eine weitere Ausführung für eine Versteifungsstruktur ist in Fig. 7 dargestellt. Fig. 7a) zeigt eine Projektionsansicht der Versteifungsstruktur von vorne und Fig. 7b) eine Perspektivansicht. Auch in dieser vierten Ausgestaltung sind die Holme als Rohre mit quadratischem Querschnitt ausgebildet, der untere Holm 6 und der obere Holm 7 sowie die beiden äußeren Sprossen 8 sind hier ebenfalls einstückig aus einem gebogenen Rohr 14 gebildet. Die beiden Rohrenden 15 sind im Bereich einer der äußeren Sprossen 8 miteinander stoffschlüssig verbunden. Die Rohrenden 15 können jedoch auch an einer anderen Stelle eines der Holme zusammentreffen, beispielsweise im Bereich der mittleren Sprosse 8. Die mittlere Sprosse 8 ist hier als plattenförmiges Verbindungselement 16 ausgebildet, bei dem an zwei gegenüberliegenden Seiten, nämlich den Seiten, die zu den Holmen 6 und 7 weisen, Kontaktflächen als Stehfalze angeformt sind.
  • Das plattenförmige Verbindungselement 16 ist hier - bezogen auf die Dicke des unteren Holms 6 und des oberen Holms 7 - mittig platziert. Die Ausdehung der durch die Stehfalze gebildeten Kontaktflächen in Richtung der Dicke beträgt hier die Hälfte der Dicke.
  • Diese vierte Ausgestaltung einer Versteifungsstruktur weist ein besonders gutes Kosten-Nutzen-Verhältnis auf, da zum einen das quadratische Rohr 14 nur einmal abgelängt und nur viermal gebogen werden muss. Durch das plattenförmige Verbindungselement, was im Querschnitt eine C- oder S-Form aufweisen kann, wird jedoch die Schubfestigkeit und Biegesteifigkeit gegenüber den in Fig. 5 und Fig. 6 gezeigten Ausführungen weiter erhöht, da das plattenförmige Verbindungselement 16 in Längsrichtung der Holme die maximale Höhe - in der Ansicht korrespondierend zur Breite - aufweisen kann, die es gerade noch ermöglicht, es vollständig in den entsprechenden Fuß 3 zu integrieren, wohingegen die Breite bei der Bildung der mittleren Sprosse 8 aus den gebogenen Rohrenden 15 durch die Dicke des quadratischen Rohres 14 vorgegeben ist und nicht vergrößert werden kann. Die in den Fig. 7a)-b) gezeigte Versteifungsstruktur lässt sich außerdem auch für Paletten mit mehr Füßen in einer Richtung einsetzen, da ohne weiteres mehrere der plattenförmigen Verbindungselemente 16 als innere Sprossen zwischen die einstückig ausgebildeten äußeren Sprossen gesetzt werden können.
  • Eine weitere - besonders stabile - fünfte Ausgestaltung einer Versteifungsstruktur für eine Kunststoffpalette ist in Fig. 8 gezeigt. Fig. 8a) zeigt eine Seitenansicht einer auf der Außenkante eines Holmes liegenden Versteifungsstruktur, Fig. 8b) den Querschnitt im Bereich einer Sprosse 8 und Fig. 8c) eine Perspektivansicht. Im Gegensatz zu der in Fig. 7 gezeigten Ausgestaltung sind hier auch die äußeren Sprossen 8 als plattenförmige Verbindungselemente 16 mit daran angeformten Stehfalzen 17 zur Bildung der Kontaktflächen ausgebildet. Die plattenförmigen Verbindungselemente 16 weisen im Querschnitt - wie in Fig. 8c) gezeigt - eine "C"-Form auf. Der untere Holm 6 und der obere Holm 7 sind auch in dieser Ausführung als Rohr 14 mit quadratischem Querschnitt ausgebildet. Sie können aus einem Rohr durch Sägen erzeugt werden. Jeweils drei - hier gleichartige - plattenförmige Verbindungselemente 16 verbinden den oberen Holm 7 mit dem unteren Holm 6, die Stehfalze 17, welche durch Biegen an die plattenförmigen Elemente 16 angeformt sind, bilden die Kontaktflächen. Ihre Ausdehnung in Richtung der Dicke der Holme 6, 7 entspricht hier der gesamten Dicke der Holme 6 und 7. Mittels der Kontaktflächen sind die plattenförmigen Verbindungselemente stoffschlüssig mit den Holmen 6 und 7 verbunden. Nach Herstellung der stoffschlüssigen Verbindung muss die Versteifungsstruktur zum Schutz vor Korrosion noch verzinkt werden.
  • Gegenüber den oben beschriebenen Varianten aus Aluminium-Strangpressprofil sind die in Fig. 5-8 beschriebenen Ausführungen zwar aufwendiger in ihrer Herstellung, gehen jedoch schonender mit den Materialressourcen um, da praktisch kein Abfall entsteht, wohingegen bei der Einbringung der Öffnung 11 in die im Zusammenhang mit Fig. 3 und Fig. 4 beschriebenen Aluminium-Strangpressprofile 10 und 13 ein nicht unerheblicher Anteil an Materialabfall anfällt.
  • Die Fig. 9-11 zeigen weitere Ausgestaltungen für Versteifungsstrukturen, welche sämtlich einstückig aus gewalztem und gebogenem Metall-Profil, beispielsweise (Stahl-)Blech oder Bandstahl, gebildet sind, wobei zwischen die Sprossen 8 wieder Öffnungen 11 eingebracht sind. Zusätzlich weisen auch diese Versteifungsstrukturen optionale Durchtrittslöcher 12 auf. Die Ausgestaltungen unterscheiden sich hier nur in der Ausbildung des unteren Holms 6 und des oberen Holms 7, die an den Profilrändern durch Biegen angeformt sind und als Stehfalze, doppelte Stehfalze, Umschläge oder Kombinationen davon ausgebildet sind. Das in Fig. 9a) in Perspektivansicht und in Fig. 9b) im Querschnitt im Bereich einer Sprosse 8 gezeigte Metall-Profil als sechste Ausgestaltung einer Versteifungsstruktur weist einen zum unteren Holm 6 identisch geformten oberen Holm 7 auf. Die Holme werden durch einen Stehfalz um 90° und zwei Umschläge, d.h. Biegungen von 180°, in der entgegengesetzten Orientierung gebildet. Die Biegungen sind dabei spiegelsymmetrisch zu einer horizontalen Ebene im Blatt angeordnet, so dass das Profil mit den beiden Stehfalzen eine "C"-Form bildet, die gegenüber einer ebenfalls möglichen "S"-Form eine etwas höhere Stabilität bietet. Alle Sprossen 8 sind plattenförmig und einstückig an den Holmen 6 und 7 ausgebildet.
  • Das in den Fig. 10a) perspektivisch und in Fig. 10b) im Querschnitt im Bereich einer Sprosse 8 dargestellte Metall-Profil als siebte Ausgestaltung einer Versteifungsstruktur weist durch andere Biegekombinationen ausgebildete Holme 6, 7 auf. Die plattenförmigen Sprossen 8 sind auch hier einstückig an die Holme 6, 7 angeformt, und in Bezug auf die Dicke der Holme 6 und 7 - in Fig. 10b) entsprechend der horizontalen Richtung in der Blattebene - mittig angeordnet. Der obere Holm 7 weist jedoch eine größere Breite - entsprechend der vertikalen Richtung in der Blattebene - auf als der untere Holm 6. Hier kann ausgenutzt werden, dass einerseits die Kufen 4 flach gehalten werden sollten, jedoch andererseits für den oberen Holm 7 - bei vollständiger Umschließung durch den Kunststoff - fast die gesamte Deckhöhe verwendet werden kann. Dies erhöht zusätzlich die Stabilität. Die Holme 6, 7 sind hier durch die Kombination mehrerer Biegungen um 90° (Stehfalze) und einer Biegung um 180° (Umschlag) geformt.
  • Eine achte Ausführung einer Versteifungsstruktur schließlich ist in Fig. 11 gezeigt. Fig. 11a) und Fig. 11b) zeigen die als Metall-Profil ausgebildete Versteifungsstruktur perspektivisch von zwei gegenüberliegenden Seiten, Fig. 11c) zeigt das Profil im Querschnitt im Bereich einer Sprosse 8. Auch hier ist der obere Holm 7 breiter als der untere Holm 6 ausgeführt. Beide Holme 6, 7 sind als doppelte Stehfalze ausgebildet. Pro Holm werden hier nur zwei Biegungen benötigt, die Versteifungsstruktur ist somit vergleichsweise einfach herzustellen, bietet jedoch ebenfalls eine sehr hohe Biege- und Schubfestigkeit.
  • Sämtliche Profile zeichnen sich dadurch aus, dass sie bei relativ geringer Masse in der Lage sind, einer Kunststoffpalette die benötigte Biege- und Schubsteifigkeit zu geben, so dass die Durchbiegung in der Mitte nicht größer als bei Holzpaletten ist, andererseits aber die Masse der Kunststoffpalette mit Versteifungsstrukturen noch geringer als bei herkömmlichen Holzpaletten gleicher Größe ist. Während letztere bei Abmessung von 1200 x 800 mm ein Gewicht von 20-25 kg haben, ist es mit der hier vorgestellten Erfindung möglich, das Gewicht der Kunststoffpaletten deutlich darunter, bei etwa 15-20 kg zu halten.
  • Bezugszeichenliste
  • 1
    Deck
    2
    Deckoberseite
    3
    Fuß
    4
    Kufe
    5
    Versteifungsstruktur
    6
    unterer Holm
    7
    oberer Holm
    8
    Sprosse
    9
    Querstrebe
    10
    Aluminium-Strangpressprofil
    11
    Öffnung
    12
    Durchtrittsloch
    13
    Aluminium-Strangpressprofil
    14
    Rohr mit quadratischem Querschnitt
    15
    Rohrende
    16
    Plattenförmiges Verbindungselement
    17
    Stehfalz

Claims (9)

  1. Kunststoffpalette, umfassend
    - ein Deck (1) zur Lagerung von zu transportierenden Objekten,
    - Füße (3), welche von einer Deckunterseite abstehend ausgebildet sind, und
    - Kufen (4), welche jeweils mindestens zwei Füße (3) an deren Unterseiten miteinander verbindend ausgebildet sind,
    - mindestens eine Versteifungsstruktur (5), umfassend in den Kufen (4) angeordnete untere Holme (6) und davon beabstandet angeordnete obere Holme (7), welche über den unteren Holmen (6) parallel zu diesen verlaufend angeordnet sind,
    - wobei die mindestens eine Versteifungsstruktur (5) Sprossen (8) mit jeweils überwiegend geschlossener Oberfläche aufweist, welche die unteren Holme (6) in den Füßen (3) mit den oberen Holmen (7) verbinden,
    - dadurch gekennzeichnet, dass
    - die Sprossen (8) einstückig an den Holmen (6, 7) ausgebildet sind oder mit diesen jeweils über Kontaktflächen stoffschlüssig, kraftschlüssig oder formschlüssig verbunden sind, wobei
    i. die mindestens eine Versteifungsstruktur (5) ausschließlich einstückig an den Holmen (6, 7) ausgebildete Sprossen (8) aufweist und als Aluminium-Strangpressprofil (10, 13) oder als gewalztes und gebogenes Metall-Profil ausgebildet ist, jeweils mit zwischen die Sprossen (8) eingebrachten Öffnungen (11), oder
    ii. der untere Holm (6) und der obere Holm (7) als Rohre (14) mit viereckigem Querschnitt ausgebildet sind und mindestens die inneren Sprossen (8) als plattenförmige Verbindungselemente (16) ausgebildet sind, bei denen an zwei gegenüberliegenden Seiten Kontaktflächen als Stehfalze angeformt sind, oder
    iii. mindestens der untere Holm (6), der obere Holm (7) und die beiden äußeren Sprossen (8) einstückig aus einem gebogenen Rohr (14) mit viereckigem Querschnitt gebildet sind,
    - wodurch die Biegesteifigkeit der Palette und die Schubfestigkeit der Palette in einer zur Deckoberseite (2) parallelen Ebene erhöht wird.
  2. Kunststoffpalette nach Anspruch 1, dadurch gekennzeichnet, dass die Holme (6, 7) eine vorgegebene Dicke aufweisen.
  3. Kunststoffpalette nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Falle einer Verbindung der Sprossen (8) mit den Holmen (6, 7) über Kontaktflächen die Größe der Kontaktflächen in Abhängigkeit von einer vorgegebenen maximalen Biege- und Schubbelastung der Kunststoffpalette vorgegeben ist.
  4. Kunststoffpalette nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sprossen (8) in Längsrichtung der Holme (6, 7) eine vorgegebene Höhe aufweisen, welche mindestens 80 % der Breite des jeweiligen, die Sprosse (8) aufnehmenden Fußes (3) entspricht, wobei im Falle einer stoffschlüssigen, kraftschlüssigen oder formschlüssigen Verbindung die Ausdehnung der Kontaktflächen in Längsrichtung der Holme der vorgegebenen Höhe entspricht.
  5. Kunststoffpalette nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Holme (6, 7) als aus verschiedenen Flächen zusammengesetzte Hohlstrukturen ausgebildet sind, bevorzugt als Rohre mit dem Querschnitt eines Rechtecks, oder als T-Träger oder Doppel-T-Träger ausgebildet sind, wobei mindestens eine der Flächen jeweils eines Holmes (6, 7) senkrecht zur Längsrichtung der Holme (6, 7) und der Sprossen (8) ausgerichtet ist.
  6. Kunststoffpalette nach Anspruch 5, dadurch gekennzeichnet, dass im Falle einer stoffschlüssigen Verbindung der Sprossen (8) mit den Holmen (6, 7) die Kontaktflächen in einer Ebene senkrecht zur Längsrichtung der Holme (6, 7) und Sprossen (8) liegen und die Ausdehnung der Kontaktflächen in Richtung der Dicke mindestens ein Viertel der Dicke beträgt, bevorzugt mindestens die Hälfte der Dicke beträgt, besonders bevorzugt der gesamten Dicke entspricht.
  7. Kunststoffpalette nach Anspruch 1, Alternative iii, dadurch gekennzeichnet, dass die Versteifungsstruktur (5) drei einstückig an den Holmen ausgebildete Sprossen (8) aufweist, wobei das Rohr (14) in die Form von zwei Holmen (6, 7) mit dazwischenliegenden Sprossen (8) gebogen ist.
  8. Kunststoffpalette nach Anspruch 7, dadurch gekennzeichnet, dass die beiden Rohrenden (15) von einem der Holme (6, 7) zum anderen, gegenüberliegenden Holm (7, 6) gebogen sind und die mittlere Sprosse (8) formen, und stoffschlüssig miteinander und mit dem anderen, gegenüberliegenden Holm (7, 6) verbunden sind, bevorzugt über die ganze Dicke des betreffenden Holms (7, 6).
  9. Kunststoffpalette nach Anspruch 1, Alternative i, wobei die mindestens eine Versteifungsstruktur (5) als gewalztes und gebogenes Metall-Profil ausgebildet ist, dadurch gekennzeichnet, dass die Holme (6, 7) an den Profilrändern als Stehfalze, doppelte Stehfalze, Umschläge oder Kombinationen davon und/oder die Sprossen (8) plattenförmig ausgebildet sind.
EP17169002.7A 2017-05-02 2017-05-02 Kunststoffpalette mit versteifungsstruktur Active EP3398870B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17169002.7A EP3398870B1 (de) 2017-05-02 2017-05-02 Kunststoffpalette mit versteifungsstruktur
ES17169002T ES2783823T3 (es) 2017-05-02 2017-05-02 Plataforma de carga de plástico con estructura de refuerzo
PL17169002T PL3398870T3 (pl) 2017-05-02 2017-05-02 Paleta z tworzywa sztucznego ze strukturą usztywniającą
US15/968,610 US10399739B2 (en) 2017-05-02 2018-05-01 Plastic pallet with stiffening structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17169002.7A EP3398870B1 (de) 2017-05-02 2017-05-02 Kunststoffpalette mit versteifungsstruktur

Publications (2)

Publication Number Publication Date
EP3398870A1 EP3398870A1 (de) 2018-11-07
EP3398870B1 true EP3398870B1 (de) 2020-02-12

Family

ID=58664582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17169002.7A Active EP3398870B1 (de) 2017-05-02 2017-05-02 Kunststoffpalette mit versteifungsstruktur

Country Status (4)

Country Link
US (1) US10399739B2 (de)
EP (1) EP3398870B1 (de)
ES (1) ES2783823T3 (de)
PL (1) PL3398870T3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3103720C (en) * 2018-06-13 2021-06-29 Sichuan Lichuan Plastic Products Co. Ltd Assembled plastic pallet
TWI821347B (zh) * 2018-07-31 2023-11-11 美商iGPS物流公司 具有一體成形甲板之塑膠棧板及製造彼之方法
USD915725S1 (en) * 2019-03-28 2021-04-06 Paul Craemer Gmbh Pallet for the handling of goods
CN110342062B (zh) * 2019-07-29 2023-07-04 蜂井包装工业无锡有限公司 围板箱配套用托盘加强固定结构
US20230211920A1 (en) * 2022-01-06 2023-07-06 Eco Green Equipment Llc Pallet with internal frame
WO2023150152A2 (en) * 2022-02-01 2023-08-10 Pvpallet, Inc. Transport container

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823883A (en) * 1955-01-10 1958-02-18 Bourdon Albert Eugene Reinforcement for pallets
US3675596A (en) * 1970-05-11 1972-07-11 Cegedur Gp Load-carrying pallet
DE7133741U (de) * 1971-09-03 1972-05-10 Irmler F Transport-Palette
US3880092A (en) * 1972-07-21 1975-04-29 Johns Manville Rigid foamed plastic pallet
JPS5030467U (de) * 1973-07-21 1975-04-05
JPS5628932Y2 (de) * 1976-08-13 1981-07-09
US4292899A (en) * 1978-09-11 1981-10-06 Steffen Vincent B Protective element for fork-lift pallets
JPS56123248U (de) 1980-02-20 1981-09-19
JPS56123248A (en) * 1980-12-25 1981-09-28 Daifuku Machinery Works Pallet in synthetic resin
FR2590870B1 (fr) * 1985-12-04 1988-06-24 Allibert Sa Palette de chargement renforcee et procede de renforcement d'une telle palette
WO1988002725A1 (en) * 1986-10-20 1988-04-21 Depew Thomas N Pallet construction
US4869179A (en) * 1988-11-14 1989-09-26 Sammons Larry P Interchangeable part plastic pallet
US5413052A (en) * 1991-08-05 1995-05-09 Trienda Corporation Plastic pallet with two decks
CH685549A5 (de) 1992-10-29 1995-08-15 Utz Ag Georg Palette.
US5402735A (en) * 1993-09-01 1995-04-04 Ingersoll-Rand Company Recyclable pallet assembly
SE502592C2 (sv) * 1994-03-25 1995-11-20 Mats Zetterberg Anordning vid en lastpall
US5673629A (en) * 1995-12-12 1997-10-07 Rex Development Corporation End cap construction for wooden pallets
US5868080A (en) * 1996-11-18 1999-02-09 Engineered Polymers Corp. Reinforced plastic pallets and methods of fabrication
GB2434141B (en) * 2003-04-28 2008-02-13 Rehrig Pacific Co Pallet assembly
FR2868044B1 (fr) * 2004-03-23 2006-06-09 Allibert Equipement Sa Dispositif de manutention
ITTV20040064U1 (it) * 2004-12-06 2005-03-06 Comparf Di Canonico Antonella Pallet trasporto merci e immagazzinamento
US20060201399A1 (en) * 2005-02-18 2006-09-14 Swistak Daniel J Pallet having impact resisting plastic top
WO2006094121A2 (en) * 2005-03-01 2006-09-08 The Engineered Pallet Company, Llc. Thermoplastic pallet for transporting food goods
SE528875C2 (sv) * 2005-07-11 2007-03-06 Crossborder Technologies Ab Lastpall
US20100154685A1 (en) 2005-08-16 2010-06-24 Mark Arinstein Maschinen & Anlagen Gmbh Pallet having great dimensional stability and load- bearing capacity
EP1919787A1 (de) 2005-08-16 2008-05-14 Mark Arinstein Maschinen & Anlagen GmbH Palette mit hoher formstabilität und tragkraft
US20070245932A1 (en) * 2006-04-24 2007-10-25 Worthington Steelpac Systems Metal pallet
DE202007000985U1 (de) 2007-01-23 2008-05-29 Hintz Marketing Gmbh Palette aus armiertem Kunststoff
WO2009121056A2 (en) * 2008-03-28 2009-10-01 Oria Collapsibles, Llc Composite stackable pallet construction
US8438981B2 (en) * 2008-06-20 2013-05-14 Oria Collapsibles, Llc Pallet design with buoyant characteristics
US20110120353A1 (en) * 2009-09-22 2011-05-26 Guy Jensen Plastic rackable pallet
US20110259249A1 (en) * 2010-04-22 2011-10-27 Ogburn Sean T Pallet
US20130136573A1 (en) * 2010-06-11 2013-05-30 Andrew Berry Pallet for bags
US8424468B2 (en) * 2010-07-01 2013-04-23 Alan A Aden Alternative pallet rail, pallet assembly, and method for making same
EP2665658A4 (de) * 2011-01-20 2015-10-28 Bede Whiteford Palettenführungstafelsystem
TWI458662B (zh) 2011-05-23 2014-11-01 Air Bag Packing Co Ltd 塑料棧板結構
DE102011103359A1 (de) 2011-05-27 2012-11-29 Febra-Kunststoffe Gmbh Ladungsträger
US8671848B2 (en) * 2011-08-04 2014-03-18 Wayne Randall Pallet protector device and method
WO2013040651A1 (en) * 2011-09-23 2013-03-28 Wahl Torben Pallet and method for using the pallet
CO7030192A1 (es) * 2012-02-14 2014-08-21 Rehrig Pacific Co Un ensamble de estiba que comprende una porción superior y una porción inferior
BE1022550B1 (fr) 2014-04-09 2016-05-30 Ribawood Sa Palette a structure allegee et connecteur de plateau-patin pour ladite palette muni de moyens d'extraction facile
DE102014007079A1 (de) 2014-05-14 2015-11-19 Schoeller Allibert Gmbh Versteifte Transportpalette aus Kunststoff aus mindestens zwei verrastbaren Palettenteilen
WO2018204912A1 (en) * 2017-05-05 2018-11-08 BXB Digital Pty Limited Pallet with tracking device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20180339802A1 (en) 2018-11-29
US10399739B2 (en) 2019-09-03
PL3398870T3 (pl) 2020-08-24
EP3398870A1 (de) 2018-11-07
ES2783823T3 (es) 2020-09-18

Similar Documents

Publication Publication Date Title
EP3398870B1 (de) Kunststoffpalette mit versteifungsstruktur
EP2462296B1 (de) Betonierungs-schaltafel
DE2128609A1 (de) Verstärkte Schalungsplatte fur Be tonschalungen
DE202009010716U1 (de) Betonierungs-Schaltafel
EP2623435B1 (de) Stapelbarer Palettenbehälter
EP2977526B1 (de) Befestigungswinkel für deckenrandabschalungen
DE3539507A1 (de) Geruestrahmentafel
AT395457B (de) Geruestrahmentafel
EP3753857B1 (de) Wandelement eines paletten-aufsatzrahmens und paletten-aufsatzrahmen
EP1867577B1 (de) Transport- und Lagergestell
DE9310010U1 (de) Warenträger-System
EP3427851A1 (de) Konstruktionsprofil sowie kombinationsprofil bestehend aus mindestens zwei konstruktionsprofilen und geländerstütze
DE3141976C2 (de) Raumzelle, insbesondere Fertiggarage, aus Stahlbeton
DE202009000604U1 (de) Abdeckung hoher Tragfähigkeit
DE102007047439A1 (de) Schalungsanrodnung für den Freivorbau von Brücken
DE202006010602U1 (de) Transportverschlag
EP0674067A1 (de) Rahmenschalung für das Betonieren
DE202004016046U1 (de) Aufsatzrahmen und Wandungselemente für Aufsatzrahmen
DE9209272U1 (de) Palettenkiste aus Kunststoff
DE1684898C3 (de) Tafelartiges Bauelement fur die Wände von Behaltern, insbesondere Silos
AT6326U1 (de) Metallgitterpalette
DE202005009622U1 (de) Kunststoff-Palette
DE3512733A1 (de) Verfahren zur herstellung von hochbauten, modul-bauteile zur duchfuehrung des verfahrens und daraus erstellte bauwerke
EP0911269A2 (de) Palette oder Vielwegpalette sowie Verfahren zur Herstellung einer Palette
DE8113101U1 (de) Raumzelle, insbesondere fertiggarage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190503

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20190503

Extension state: ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CABKA GROUP GMBH

Owner name: GREENCYCLE UMWELTMANAGEMENT GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1231800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

RIN2 Information on inventor provided after grant (corrected)

Inventor name: KLOETERS, RENE

Inventor name: MUELLER, STEFAN

Inventor name: TAPPERTZHOFEN, THOMAS

Inventor name: LENZ, THORSTEN

Inventor name: RAMON, GAT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003729

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2783823

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003729

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: PRETURN GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: GREENCYCLE UMWELTMANAGEMENT GMBH

Effective date: 20230421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017003729

Country of ref document: DE

Owner name: PRETURN GMBH, DE

Free format text: FORMER OWNERS: CABKA GROUP GMBH, 10587 BERLIN, DE; GREENCYCLE UMWELTMANAGEMENT GMBH, 74172 NECKARSULM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017003729

Country of ref document: DE

Owner name: CABKA GROUP GMBH, DE

Free format text: FORMER OWNERS: CABKA GROUP GMBH, 10587 BERLIN, DE; GREENCYCLE UMWELTMANAGEMENT GMBH, 74172 NECKARSULM, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: CABKA GROUP GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: GREENCYCLE UMWELTMANAGEMENT GMBH

Effective date: 20230605

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1231800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230510

Year of fee payment: 7

Ref country code: ES

Payment date: 20230601

Year of fee payment: 7

Ref country code: DE

Payment date: 20230515

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230428

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230531

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: PRETURN GMBH

Effective date: 20240425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240313

Year of fee payment: 8

Ref country code: FR

Payment date: 20240312

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240501

Year of fee payment: 8