EP3334732B1 - Dérivés de phénoxazine pour dispositifs électroluminescents organiques - Google Patents

Dérivés de phénoxazine pour dispositifs électroluminescents organiques Download PDF

Info

Publication number
EP3334732B1
EP3334732B1 EP16741536.3A EP16741536A EP3334732B1 EP 3334732 B1 EP3334732 B1 EP 3334732B1 EP 16741536 A EP16741536 A EP 16741536A EP 3334732 B1 EP3334732 B1 EP 3334732B1
Authority
EP
European Patent Office
Prior art keywords
compounds
atoms
compound
group
formulae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16741536.3A
Other languages
German (de)
English (en)
Other versions
EP3334732A1 (fr
Inventor
Holger Heil
Beate BURKHART
Lara-Isabel RODRIGUEZ
Sebastian Meyer
Rouven LINGE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP3334732A1 publication Critical patent/EP3334732A1/fr
Application granted granted Critical
Publication of EP3334732B1 publication Critical patent/EP3334732B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound of one of the formulae (1-1-b) to (1-1-i), to the use of the compound in an electronic device, and to an electronic device comprising a compound of one of the formulae (1-1-b) to (1-1-i).
  • the present invention furthermore relates to a process for the preparation of a compound of one of the formulae (1-1-b) to (1-1-i) and to a formulation comprising one or more compounds of formulae (1-1-b) to (1-1-i) .
  • the development of functional compounds for use in electronic devices is currently the subject of intensive research.
  • the aim here is, in particular, the development of compounds with which improved properties of electronic devices in one or more relevant points can be achieved, such as, for example, power efficiency, lifetime or colour coordinates of the emitted light.
  • the term electronic device is taken to mean, inter alia, organic integrated circuits (OICs), organic field-effect transistors (OFETs), organic thin-film transistors (OTFTs), organic light-emitting transistors (OLETs), organic solar cells (OSCs), organic optical detectors, organic photoreceptors, organic field-quench devices (OFQDs), organic light-emitting electrochemical cells (OLECs), organic laser diodes (O-lasers) and organic electroluminescent devices (OLEDs).
  • OICs organic integrated circuits
  • OFETs organic field-effect transistors
  • OFTs organic thin-film transistors
  • OLETs organic light-emitting transistors
  • OSCs organic solar cells
  • OFQDs organic field-quench devices
  • OLEDs organic light-emitting electrochemical cells
  • O-lasers organic laser diodes
  • OEDs organic electroluminescent devices
  • OLEDs Of particular interest is the provision of compounds for use in the lastmentioned electronic devices called OLEDs.
  • the general structure and the functional principle of OLEDs are known to the person skilled in the art and are described, inter alia, in US 4539507 , US 5151629 , EP 0676461 and WO 1998/27136 .
  • Blue-fluorescent emitters known from the prior art are a multiplicity of compounds, in particular arylamines containing one or more condensed aryl groups and/or indenofluorene groups. Examples thereof are the pyrene-arylamines disclosed in US 5,153,073 and the pyrene-arylamines disclosed in WO 2012/048780 . Further examples of arylamine emitters are benzoindenofluorenamines, for example in accordance with WO 2008/006449 or WO 2008/003464 , and dibenzoindenofluorenamines, for example in accordance with WO 2007/140847 .
  • fluorenamines which contain aromatic groups condensed onto the fluorene system are known in the prior art.
  • the compounds which contain two or more arylamino groups are employed as fluorescent emitters ( US 2012/0161615 ). However, the compounds exhibit green to green-blue emission and not blue emission.
  • KR 2009/131536 and WO 2004/061048 disclose benzofluorene derivatives which carry a diphenylamino group.
  • compounds of this type have excessively short-wave emission to be used as blue-fluorescent emitters, or their efficiency and lifetime are unsatisfactory on use in OLEDs.
  • phenoxazine derivatives as emitting compounds in OLEDs is also known from the prior art ( WO 2012/150001 , US 2007/0176541 , KR 2013/0115855 , ).
  • the prior art discloses the use, in particular, of arylamine compounds and carbazole compounds as hole-transport materials for OLEDs.
  • the applications WO 2010/083871 , WO 2011/107186 and WO 2012/150001 disclose the use of heterocyclic derivatives of anthracenes which are substituted by one or more arylamino groups or by one or more carbazole groups as functional materials in OLEDs, preferably as hole-transport and hole-injection materials.
  • EP 2 617 712 and WO 2013/157367 describe phenoxazine compounds for use as hole transporting material in organic electroluminescence devices.
  • WO 2014/148493 discloses phenoxazine compounds useful in light-emitting devices.
  • EP 2 360 201 discloses polymers comprising a phenoxazine ring for use in electroluminescent devices.
  • the present invention is thus based on the technical object of providing compounds which are suitable for use in electronic devices, such as, for example, OLEDs, and which can be employed, in particular, as blue emitters, as hole-transport materials and/or as matrix materials.
  • the invention thus relates to a compound of one of the formulae (1-1-b) to (1-1-i),
  • An aryl group in the sense of this invention contains 6 to 60 aromatic ring atoms; a heteroaryl group in the sense of this invention contains 5 to 60 aromatic ring atoms, at least one of which is a heteroatom.
  • the heteroatoms are preferably selected from N, O and S. This represents the basic definition. If other preferences are indicated in the description of the present invention, for example with respect to the number of aromatic ring atoms or the heteroatoms present, these apply.
  • An aryl group or heteroaryl group here is taken to mean either a simple aromatic ring, i.e. benzene, or a simple heteroaromatic ring, for example pyridine, pyrimidine or thiophene, or a condensed (annellated) aromatic or heteroaromatic polycycle, for example naphthalene, phenanthrene, quinoline or carbazole.
  • a condensed (annellated) aromatic or heteroaromatic polycycle in the sense of the present application consists of two or more simple aromatic or heteroaromatic rings condensed with one another.
  • An aryl or heteroaryl group which may in each case be substituted by the above-mentioned radicals and which may be linked to the aromatic or heteroaromatic ring system via any desired positions, is taken to mean, in particular, groups derived from benzene, naphthalene, anthracene, phenanthrene, pyrene, dihydropyrene, chrysene, perylene, fluoranthene, benzanthracene, benzophenanthrene, tetracene, pentacene, benzopyrene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene, pyrrole, indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline,
  • aryloxy group in accordance with the definition of the present invention is taken to mean an aryl group, as defined above, which is bonded via an oxygen atom.
  • An analogous definition applies to heteroaryloxy groups.
  • An aromatic ring system in the sense of this invention contains 6 to 60 C atoms in the ring system.
  • a heteroaromatic ring system in the sense of this invention contains 5 to 60 aromatic ring atoms, at least one of which is a heteroatom.
  • the heteroatoms are preferably selected from N, O and/or S.
  • An aromatic or heteroaromatic ring system in the sense of this invention is intended to be taken to mean a system which does not necessarily contain only aryl or heteroaryl groups, but instead in which, in addition, a plurality of aryl or heteroaryl groups may be connected by a non-aromatic unit (preferably less than 10% of the atoms other than H), such as, for example, an sp 3 -hybridised C, Si, N or O atom, an sp 2 -hybridised C or N atom or an sp-hybridised C atom.
  • systems such as 9,9'-spirobifluorene, 9,9'-diarylfluorene, triarylamine, diaryl ether, stilbene, etc., are also intended to be taken to be aromatic ring systems in the sense of this invention, as are systems in which two or more aryl groups are connected, for example, by a linear or cyclic alkyl, alkenyl or alkynyl group or by a silyl group.
  • systems in which two or more aryl or heteroaryl groups are linked to one another via single bonds are also taken to be aromatic or heteroaromatic ring systems in the sense of this invention, such as, for example, systems such as biphenyl, terphenyl or diphenyltriazine.
  • An aromatic or heteroaromatic ring system having 5-60 aromatic ring atoms, which may in each case also be substituted by radicals as defined above and which may be linked to the aromatic or heteroaromatic group via any desired positions, is taken to mean, in particular, groups derived from benzene, naphthalene, anthracene, benzanthracene, phenanthrene, benzophenanthrene, pyrene, chrysene, perylene, fluoranthene, naphthacene, pentacene, benzopyrene, biphenyl, biphenylene, terphenyl, terphenylene, quaterphenyl, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans-indenofluorene, truxene, isotruxene, spirotruxene, spirois
  • a straight-chain alkyl group having 1 to 40 C atoms or a branched or cyclic alkyl group having 3 to 40 C atoms or an alkenyl or alkynyl group having 2 to 40 C atoms in which, in addition, individual H atoms or CH 2 groups may be substituted by the groups mentioned above under the definition of the radicals, is preferably taken to mean the radicals methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s-pentyl, cyclopentyl, neopentyl, n-hexyl, cyclohexyl, neohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, cyclooct
  • An alkoxy or thioalkyl group having 1 to 40 C atoms is preferably taken to mean methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, s-pentoxy, 2-methylbutoxy, n-hexoxy, cyclohexyloxy, n-heptoxy, cycloheptyloxy, n-octyloxy, cyclooctyloxy, 2-ethylhexyloxy, pentafluoroethoxy, 2,2,2-trifluoroethoxy, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-butylthio, t-butylthio, n-penty
  • the above-mentioned formulation is also intended to be taken to mean that, in the case where one of the two radicals represents hydrogen, the second radical is bonded at the position to which the hydrogen atom was bonded, with formation of a ring. This is illustrated by the following scheme:
  • group E 1 is a group C(R 1 ) 2 .
  • the alkyl groups preferably have not more than four C atoms, particularly preferably not more than 1 C atom.
  • suitable compounds are also those which are substituted by linear, branched or cyclic alkyl groups having up to 10 C atoms or which are substituted by oligoarylene groups, for example ortho-, meta-, para- or branched terphenyl or quaterphenyl groups.
  • Examples of suitable compounds according to the invention are the compounds shown in the following table: (Symbol * indicates that the compounds are not according to the invention) 1 2 3 4 5 6 7* 8 9* 10* 11* 12* 13* 14* 15 16* 17 18 19* 20 21 22* 23 24* 25* 26* 27* 28 29* 30* 31* 32* 33* 34* 35* 36* 37* 38* 39* 40* 41* 42* 43* 44* 45* 46* 47* 48* 49* 50* 51* 52* 53 54* 55* 56* 57* 58* 59* 60* 61* 62 63 64* 65 66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 84* 85* 86* 87*
  • the synthesis of the compounds according to the invention can be carried out by processes of preparative organic chemistry which are generally known to the person skilled in the art.
  • Examples of reactions which are preferably employed are halogenations and transition metal-catalysed coupling reactions, preferably Suzuki couplings and Buchwald couplings.
  • the compounds according to the invention are preferably synthesised as shown in Scheme 1 and Scheme 2 or as shown in Scheme 1 and Scheme 3. All compounds shown may optionally be substituted by one or more organic radicals.
  • the compounds are reacted with an aryl or heteroaryl compound comprising a carboxylate ester group ROOC-Ar-X in a Suzuki coupling, which introduces the substituent on the phenoxazine backbone para to the N atom (Scheme 3).
  • the carboxylate substituents are then alkylated via a reaction using an organometallic and the compound is finally condensed.
  • the present invention thus furthermore relates to a process for the preparation of compounds of one of the formulae (1-1-b) to (1-1-i) which is characterised in that one or more transition metal-catalysed coupling reactions by means of which aromatic or heteroaromatic ring systems are introduced as substituents para to the N atom from a phenoxazine derivative.
  • the transition metal-catalysed coupling reactions are preferably selected from Hartwig-Buchwald couplings and Suzuki couplings.
  • Suitable reactive leaving groups are, for example, bromine, iodine, chlorine, boronic acids, boronic acid esters, amines, alkenyl or alkynyl groups having a terminal C-C double bond or C-C triple bond, oxiranes, oxetanes, groups which undergo a cycloaddition, for example a 1,3-dipolar cycloaddition, such as, for example, dienes or azides, carboxylic acid derivatives, alcohols and silanes.
  • the invention therefore furthermore relates to oligomers, polymers or dendrimers containing one or more compounds of formulae (1-1-b) to (1-1-i), where the bond(s) to the polymer, oligomer or dendrimer may be localised at any desired positions in formula (1) or (2) which are substituted by R or R 2 .
  • the compound is a constituent of a side chain of the oligomer or polymer or a constituent of the main chain.
  • An oligomer in the sense of this invention is taken to mean a compound which is built up from at least three monomer units.
  • a polymer in the sense of the invention is taken to mean a compound which is built up from at least ten monomer units.
  • the polymers, oligomers or dendrimers according to the invention may be conjugated, partially conjugated or non-conjugated.
  • the oligomers or polymers according to the invention may be linear, branched or dendritic.
  • the units of formulae (1-1-b) to (1-1-i) may be linked directly to one another or they may be linked to one another via a divalent group, for example via a substituted or unsubstituted alkylene group, via a heteroatom or via a divalent aromatic or heteroaromatic group.
  • branched and dendritic structures for example, three or more units of one of the formulae (1-1-b) to (1-1-i) may be linked via a trivalent or polyvalent group, for example via a trivalent or polyvalent aromatic or heteroaromatic group, to form a branched or dendritic oligomer or polymer.
  • the monomers according to the invention are homopolymerised or copolymerised with further monomers.
  • Suitable and preferred comonomers are selected from fluorenes (for example in accordance with EP 842208 or WO 2000/22026 ), spirobifluorenes (for example in accordance with EP 707020 , EP 894107 or WO 2006/ 061181 ), para-phenylenes (for example in accordance with WO 1992/ 18552 ), carbazoles (for example in accordance with WO 2004/070772 or WO 2004/113468 ), thiophenes (for example in accordance with EP 1028136 ), dihydrophenanthrenes (for example in accordance with WO 2005/014689 or WO 2007/006383 ), cis- and trans-indenofluorenes (for example in accordance with WO 2004/041901 or WO 2004/113412 ), ketones (for example in accordance with
  • the polymers, oligomers and dendrimers usually also contain further units, for example emitting (fluorescent or phosphorescent) units, such as, for example, vinyltriarylamines (for example in accordance with WO 2007/068325 ) or phosphorescent metal complexes (for example in accordance with WO 2006/003000 ), and/or charge-transport units, in particular those based on triarylamines.
  • emitting fluorescent or phosphorescent
  • vinyltriarylamines for example in accordance with WO 2007/068325
  • phosphorescent metal complexes for example in accordance with WO 2006/003000
  • charge-transport units in particular those based on triarylamines.
  • the polymers and oligomers according to the invention are generally prepared by polymerisation of one or more types of monomer, at least one monomer of which results in recurring units of one of the formulae (1-1-b) to (1-1-i) in the polymer.
  • Suitable polymerisation reactions are known to the person skilled in the art and are described in the literature.
  • Particularly suitable and preferred polymerisation reactions which result in C-C or C-N links are the following:
  • the present invention thus also relates to a process for the preparation of the polymers, oligomers and dendrimers according to the invention, which is characterised in that they are prepared by SUZUKI polymerisation, YAMAMOTO polymerisation, STILLE polymerisation or HARTWIG-BUCHWALD polymerisation.
  • the dendrimers according to the invention can be prepared by processes known to the person skilled in the art or analogously thereto. Suitable processes are described in the literature, such as, for example, in Frechet, Jean M.
  • formulations of the compounds according to the invention are necessary. These formulations can be, for example, solutions, dispersions or emulsions. It may be preferred to use mixtures of two or more solvents for this purpose.
  • Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrol, THF, methyl-THF, THP, chlorobenzene, dioxane, phenoxytoluene, in particular 3-phenoxytoluene, (-)-fenchone, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4-methylanisole, 3,4-dimethylanisole, 3,5-dimethylanisole, acetophenone, terpineol, benzothiazole, butyl benzoate, cumene, cyclohexanol, cyclohexanone, cyclohexylbenzene, decalin, dodec
  • the invention therefore furthermore relates to a formulation, in particular a solution, dispersion or emulsion, comprising at least one compound of one of the formulae (1-1-b) to (1-1-i) or at least one polymer, oligomer or dendrimer containing at least one unit of one of the formulae (1-1-b) to (1-1-i), and at least one solvent, preferably an organic solvent.
  • a formulation in particular a solution, dispersion or emulsion, comprising at least one compound of one of the formulae (1-1-b) to (1-1-i) or at least one polymer, oligomer or dendrimer containing at least one unit of one of the formulae (1-1-b) to (1-1-i), and at least one solvent, preferably an organic solvent.
  • the compounds of one of the formulae (1-1-b) to (1-1-i) according to the invention are suitable for use in electronic devices, in particular in organic electroluminescent devices (OLEDs). Depending on the substitution, the compounds are employed in different functions and layers.
  • OLEDs organic electroluminescent devices
  • the invention therefore furthermore relates to the use of a compound of one of the formulae (1-1-b) to (1-1-i) in an electronic device.
  • the electronic device here is preferably selected from the group consisting of organic integrated circuits (OICs), organic field-effect transistors (OFETs), organic thin-film transistors (OTFTs), organic light-emitting transistors (OLETs), organic solar cells (OSCs), organic optical detectors, organic photoreceptors, organic field-quench devices (OFQDs), organic light-emitting electrochemical cells (OLECs), organic laser diodes (O-lasers) and particularly preferably organic electroluminescent devices (OLEDs).
  • OICs organic integrated circuits
  • OFETs organic field-effect transistors
  • OFTs organic thin-film transistors
  • OLETs organic light-emitting transistors
  • OSCs organic solar cells
  • organic optical detectors organic photoreceptors
  • OFQDs organic field-quench devices
  • OLEDs
  • the invention furthermore relates to an electronic device comprising at least one compound of one of the formulae (1-1-b) to (1-1 -i).
  • the electronic device is preferably selected from the devices indicated above.
  • Particular preference is given to an organic electroluminescent device comprising anode, cathode and at least one emitting layer, characterised in that at least one organic layer comprises at least one compound of one of the formulae (1-1-b) to (1-1-i).
  • the organic electroluminescent device may also comprise further layers. These are selected, for example, from in each case one or more hole-injection layers, hole-transport layers, hole-blocking layers, electron-transport layers, electron-injection layers, electron-blocking layers, exciton-blocking layers, interlayers, charge-generation layers ( IDMC 2003, Taiwan; Session 21 OLED (5), T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, J. Kido, Multiphoton Organic EL Device Having Charge Generation Layer ) and/or organic or inorganic p/n junctions.
  • each of these layers does not necessarily have to be present and the choice of layers is always dependent on the compounds used and in particular also on whether the electroluminescent device is fluorescent or phosphorescent.
  • the sequence of the layers of the organic electroluminescent device is preferably the following: anode-hole-injection layer-hole-transport layer-emitting layer-electron-transport layer-electron-injection layer-cathode.
  • the organic electroluminescent device may comprise a plurality of emitting layers. These emission layers in this case particularly preferably have in total a plurality of emission maxima between 380 nm and 750 nm, resulting overall in white emission, i.e. various emitting compounds which are able to fluoresce or phosphoresce and which emit blue or yellow or orange or red light are used in the emitting layers. Particular preference is given to three-layer systems, i.e. systems having three emitting layers, where at least one of these layers preferably comprises at least one compound of one of the formulae (1-1-b) to (1-1-i) and where the three layers exhibit blue, green and orange or red emission (for the basic structure see, for example, WO 2005/011013 ). It should be noted that, for the generation of white light, an emitter compound used individually which emits in a broad wavelength range may also be suitable instead of a plurality of emitter compounds emitting in colour.
  • the compounds according to the invention may alternatively and/or additionally also be present in the hole-transport layer or in another layer.
  • the compound of formulae (1-1-b) to (1-1-i) is preferred for the compound of formulae (1-1-b) to (1-1-i) to be employed in an emitting layer.
  • the compound of formulae (1-1-b) to (1-1-i) is suitable for use as emitting material (emitter compound).
  • the compounds of formulae (1-1-b) to (1-1-i) are very particularly suitable as emitting material.
  • the compounds according to the invention are particularly suitable for use as blue-emitting emitter compound.
  • the electronic device concerned may comprise a single emitting layer comprising the compound according to the invention or it may comprise two or more emitting layers.
  • the further emitting layers here may comprise one or more compounds according to the invention or alternatively other compounds.
  • the compounds according to the invention are employed as emitting material in an emitting layer, it is preferably employed in combination with one or more matrix materials.
  • the proportion of the compound according to the invention in the mixture of the emitting layer is in this case preferably between 0.1 and 50.0% by vol., particularly preferably between 0.5 and 20.0% by vol., very particularly preferably between 1.0 and 10.0% by vol.
  • the proportion of the matrix material or matrix materials is between 50.0 and 99.9% by vol., particularly preferably between 80.0 and 99.5% by vol., very particularly preferably between 90.0 and 99.0% by vol.
  • Preferred matrix materials for use in combination with the materials according to the invention as emitters are selected from the classes of the oligoarylenes (for example 2,2',7,7'-tetraphenylspirobifluorene in accordance with EP 676461 or dinaphthylanthracene), in particular the oligoarylenes containing condensed aromatic groups, the oligoarylenevinylenes (for example DPVBi or spiro-DPVBi in accordance with EP 676461 ), the polypodal metal complexes (for example in accordance with WO 2004/ 081017 ), the hole-conducting compounds (for example in accordance with WO 2004/058911 ), the electron-conducting compounds, in particular ketones, phosphine oxides, sulfoxides, etc.
  • the oligoarylenes for example 2,2',7,7'-tetraphenylspirobifluorene in accordance with EP 676461 or dinap
  • Particularly preferred matrix materials are selected from the classes of the oligoarylenes, comprising naphthalene, anthracene, benzanthracene and/or pyrene or atropisomers of these compounds, the oligoarylenevinylenes, the ketones, the phosphine oxides and the sulfoxides.
  • Very particularly preferred matrix materials are selected from the classes of the oligoarylenes, comprising anthracene, benzanthracene, benzophenanthrene and/or pyrene or atropisomers of these compounds.
  • An oligoarylene in the sense of this invention is intended to be taken to mean a compound in which at least three aryl or arylene groups are bonded to one another.
  • Preferred matrix materials for use in combination with the compound of formulae (1-1-b) to (1-1 -i) in the emitting layer are depicted in the following table.
  • the compounds according to the invention can also be employed in other layers, for example as hole-transport materials in a hole-injection or hole-transport layer or electron-blocking layer or as matrix materials in an emitting layer, preferably as matrix materials for fluorescent emitters. ).
  • the compounds of formula (1) or (2) are very particularly suitable as hole-transport materials or as matrix materials.
  • the compounds of formulae (1-1-b) to (1-1-i) are employed as hole-transport material in a hole-transport layer, a hole-injection layer or an electron-blocking layer, the compound can be employed as pure material, i.e. in a proportion of 100%, in the hole-transport layer, or it can be employed in combination with one or more further compounds.
  • the organic layer comprising the compound of one of the formulae (1-1-b) to (1-1-i) then additionally comprises one or more p-dopants.
  • the p-dopants employed in accordance with the present invention are preferably organic electron-acceptor compounds which are able to oxidise one or more of the other compounds of the mixture.
  • p-dopants are the compounds disclosed in WO 2011/073149 , EP 1968131 , EP 2276085 , EP 2213662 , EP 1722602 , EP 2045848 , DE 102007031220 , US 8044390 , US 8057712 , WO 2009/003455 , WO 2010/094378 , WO 2011/120709 , US 2010/0096600 and WO 2012/095143 .
  • p-dopants are quinodimethane compounds, azaindenofluorendione, azaphenalene, azatriphenylene, I 2 , metal halides, preferably transition metal halides, metal oxides, preferably metal oxides containing at least one transition metal or a metal of the 3rd main group and transition metal complexes, preferably complexes of Cu, Co, Ni , Pd and Pt with ligands containing at least one oxygen atom as binding site.
  • transition metal oxides as dopants preferably oxides of rhenium, molybdenum and tungsten, particularly preferably Re 2 O 7 , MoO 3 , WO 3 and ReO 3 .
  • the p-dopants are preferably distributed substantially uniformly in the p-doped layers. This can be achieved for example by co-evaporation of the p-dopant and of the hole-transport material matrix.
  • Particularly preferred p-dopants are selected from the compounds (D-1) to (D-13):
  • the compounds of formulae (1-1-b) to (1-1-i) or the preferred embodiments are used in a hole-transport or - injection layer in combination with a layer which comprises a hexaazatriphenylene derivative, in particular hexacyanohexaazatriphenylene (for example in accordance with EP 1175470 ).
  • a layer which comprises a hexaazatriphenylene derivative in particular hexacyanohexaazatriphenylene (for example in accordance with EP 1175470 ).
  • preference is given to a combination which looks as follows: anode - hexaazatriphenylene derivative - hole-transport layer, where the hole-transport layer comprises one or more compounds of one of the formulae (1-1-b) to (1-1-i) or the preferred embodiments.
  • hole-transport layer comprises at least one compound of one of the formulae (1-1-b) to (1-1-i) or the preferred embodiments.
  • a further preferred combination looks as follows: anode - hole-transport layer - hexaazatriphenylene derivative - hole-transport layer, where at least one of the two hole-transport layers comprises one or more compounds of one of the formulae (1-1-b) to (1-1-i) or the preferred embodiments.
  • the phosphorescent emitter is preferably selected from the classes and embodiments of phosphorescent emitters indicated below. Furthermore, one or more further matrix materials are preferably present in the emitting layer in this case.
  • So-called mixed-matrix systems of this type preferably comprise two or three different matrix materials, particularly preferably two different matrix materials. It is preferred here for one of the two materials to be a material having hole-transporting properties and for the other material to be a material having electron-transporting properties.
  • the compounds of formulae (1-1-b) to (1-1-i) are preferably the material having hole-transporting properties.
  • the desired electron-transporting and hole-transporting properties of the mixed-matrix components may also be combined mainly or completely in a single mixed-matrix component, where the further mixed-matrix component or components satisfy other functions.
  • the two different matrix materials may be present here in a ratio of 1:50 to 1:1, preferably 1:20 to 1:1, particularly preferably 1:10 to 1:1 and very particularly preferably 1:4 to 1:1.
  • Mixed-matrix systems are preferably employed in phosphorescent organic electroluminescent devices. Further details on mixed-matrix systems are contained, inter alia, in the application WO 2010/ 108579 .
  • Particularly suitable matrix materials which can be used as matrix components of a mixed-matrix system in combination with the compounds according to the invention are selected from the preferred matrix materials for phosphorescent emitters indicated below or the preferred matrix materials for fluorescent emitters, depending on what type of emitter compound is employed in the mixed-matrix system.
  • Suitable phosphorescent emitters are, in particular, compounds which emit light, preferably in the visible region, on suitable excitation and in addition contain at least one atom having an atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80.
  • the phosphorescent emitters used are preferably compounds which contain copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium, in particular compounds which contain iridium, platinum or copper.
  • luminescent iridium, platinum or copper complexes are regarded as phosphorescent compounds.
  • Examples of the phosphorescent emitters described above are revealed by the applications WO 2000/70655 , WO 2001/41512 , WO 2002/02714 , WO 2002/15645 , EP 1191613 , EP 1191612 , EP 1191614 , WO 2005/ 033244 , WO 2005/019373 and US 2005/0258742 .
  • all phosphorescent complexes as used in accordance with the prior art for phosphorescent OLEDs and as are known to the person skilled in the art in the area of organic electroluminescent devices are suitable for use in the devices according to the invention.
  • the person skilled in the art will also be able to employ further phosphorescent complexes without inventive step in combination with the compounds according to the invention in OLEDs.
  • Preferred fluorescent emitters are selected from the class of the arylamines.
  • An arylamine or aromatic amine in the sense of this invention is taken to mean a compound which contains three substituted or unsubstituted aromatic or heteroaromatic ring systems bonded directly to the nitrogen. At least one of these aromatic or heteroaromatic ring systems is preferably a condensed ring system, particularly preferably having at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic anthracenamines, aromatic anthracenediamines, aromatic pyrenamines, aromatic pyrenediamines, aromatic chrysenamines or aromatic chrysenediamines.
  • An aromatic anthracenamine is taken to mean a compound in which one diarylamino group is bonded directly to an anthracene group, preferably in the 9-position.
  • An aromatic anthracenediamine is taken to mean a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in the 9,10-position.
  • Aromatic pyrenamines, pyrenediamines, chrysenamines and chrysenediamines are defined analogously thereto, where the diarylamino groups are preferably bonded to the pyrene in the 1-position or in the 1,6-position.
  • Preferred matrix materials for use with fluorescent emitters compounds are indicated above.
  • Preferred matrix materials for phosphorescent emitters are aromatic ketones, aromatic phosphine oxides or aromatic sulfoxides or sulfones, for example in accordance with WO 2004/013080 , WO 2004/093207 , WO 2006/005627 or WO 2010/006680 , triarylamines, carbazole derivatives, for example CBP (N,N-biscarbazolylbiphenyl) or the carbazole derivatives disclosed in WO 2005/039246 , US 2005/0069729 , JP 2004/ 288381 , EP 1205527 or WO 2008/086851 , indolocarbazole derivatives, for example in accordance with WO 2007/063754 or WO 2008/056746 , indenocarbazole derivatives, for example in accordance with WO 2010/ 136109 , WO 2011/000455 or WO 2013/041176 , azacarbazole derivatives, for example in accordance with EP 16177
  • suitable charge-transport materials are, for example, the compounds disclosed in Y. Shirota et al., Chem. Rev. 2007, 107(4), 953-1010 , or other materials as are employed in these layers in accordance with the prior art.
  • Materials which can be used for the electron-transport layer are all materials as are used in accordance with the prior art as electron-transport materials in the electron-transport layer. Particularly suitable are aluminium complexes, for example Alq 3 , zirconium complexes, for example Zrq 4 , lithium complexes, for example Liq, benzimidazole derivatives, triazine derivatives, pyrimidine derivatives, pyridine derivatives, pyrazine derivatives, quinoxaline derivatives, quinoline derivatives, oxadiazole derivatives, aromatic ketones, lactams, boranes, diazaphosphole derivatives and phosphine oxide derivatives. Furthermore suitable materials are derivatives of the above-mentioned compounds, as disclosed in JP 2000/053957 , WO 2003/060956 , WO 2004/028217 , WO 2004/080975 and WO 2010/ 072300 .
  • Preferred hole-transport materials which can be used in a hole-transport, hole-injection or electron-blocking layer in the electroluminescent device according to the invention are indenofluorenamine derivatives (for example in accordance with WO 06/122630 or WO 06/100896 ), the amine derivatives disclosed in EP 1661888 , hexaazatriphenylene derivatives (for example in accordance with WO 01/049806 ), amine derivatives containing condensed aromatic rings (for example in accordance with US 5,061,569 ), the amine derivatives disclosed in WO 95/09147 , monobenzoindenofluorenamines (for example in accordance with WO 08/006449 ), dibenzoindenofluorenamines (for example in accordance with WO 07/140847 ), spirobifluorenamines (for example in accordance with WO 2012/034627 or WO 2013/120577 ), fluorenamines (for example in accordance with the as yet unpublished applications
  • the cathode of the organic electroluminescent device preferably comprises metals having a low work function, metal alloys or multilayered structures comprising various metals, such as, for example, alkaline-earth metals, alkali metals, main-group metals or lanthanoids (for example Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.). Also suitable are alloys comprising an alkali metal or alkaline-earth metal and silver, for example an alloy comprising magnesium and silver.
  • further metals which have a relatively high work function such as, for example, Ag or Al
  • lithium quinolinate (LiQ) can be used for this purpose.
  • the layer thickness of this layer is preferably between 0.5 and 5 nm.
  • the anode preferably comprises materials having a high work function.
  • the anode preferably has a work function of greater than 4.5 eV vs. vacuum. Suitable for this purpose are on the one hand metals having a high redox potential, such as, for example, Ag, Pt or Au.
  • metal/metal oxide electrodes for example Al/Ni/NiO x , Al/PtO x ) may also be preferred.
  • at least one of the electrodes must be transparent or partially transparent in order to facilitate either irradiation of the organic material (organic solar cells) or the coupling-out of light (OLEDs, O-lasers).
  • Preferred anode materials here are conductive mixed metal oxides. Particular preference is given to indium tin oxide (ITO) or indium zinc oxide (IZO). Preference is furthermore given to conductive, doped organic materials, in particular conductive doped polymers.
  • the device is appropriately (depending on the application) structured, provided with contacts and finally sealed, since the lifetime of the devices according to the invention is shortened in the presence of water and/or air.
  • the organic electroluminescent device according to the invention is characterised in that one or more layers are coated by means of a sublimation process, in which the materials are applied by vapour deposition in vacuum sublimation units at an initial pressure of less than 10 -5 mbar, preferably less than 10 -6 mbar.
  • the initial pressure it is also possible here for the initial pressure to be even lower, for example less than 10 -7 mbar.
  • an organic electroluminescent device characterised in that one or more layers are coated by means of the OVPD (organic vapour phase deposition) process or with the aid of carrier-gas sublimation, in which the materials are applied at a pressure of between 10 -5 mbar and 1 bar.
  • OVPD organic vapour phase deposition
  • carrier-gas sublimation in which the materials are applied at a pressure of between 10 -5 mbar and 1 bar.
  • OVJP organic vapour jet printing
  • an organic electroluminescent device characterised in that one or more layers are produced from solution, such as, for example, by spin coating, or by means of any desired printing process, such as, for example, screen printing, flexographic printing, nozzle printing or offset printing, but particularly preferably LITI (light induced thermal imaging, thermal transfer printing) or ink-jet printing.
  • Soluble compounds of formulae (1-1-b) to (1-1-i) are necessary for this purpose. High solubility can be achieved through suitable substitution of the compounds.
  • an organic electroluminescent device For the production of an organic electroluminescent device according to the invention, it is furthermore preferred to apply one or more layers from solution and one or more layers by a sublimation process.
  • the electronic devices comprising one or more compounds according to the invention can be employed in displays, as light sources in lighting applications and as light sources in medical and/or cosmetic applications (for example light therapy).
  • This compound can be prepared analogously to Int-F-H (yield 89 %).
  • Compound can be prepared analogously to Int-F-H (yield 78 %) Compound Yield % Int-b1 98 Int-b2 95 Int-b3 89 Int-b4 93 Int-b5 85 Int-b6 89 Int-b7 86
  • the compounds A2 to A7 are prepared analogously to A1.
  • Int-c2 to Int-c4 are prepared analogously to Int-c1.
  • Int-d3 is prepared analogously to Int-d1.
  • Cerium (III) chloride (11.3 g, 0.046 mol) is initially added to dry THF, then the compound Int-d1 (14 g, 0.021 mol) is dissolved in dry THF and the solution is added dropwise to the reaction mixture, which is subsequently stirred for one hour. Afterwards, a solution of MeMgCl (3M in THF, 0.13 mol) is added to the reaction mixture dropwise. After 2 hours, the reaction is heated overnight to room temperature. Under ice cooling, the reaction is quenched with water. After phase separation, the organic phase is dried and the solvent evaporated. The organic phase is then purified via recrystallisation from heptane/toluene. The yield is 12.5 g (0.02 mol, 95% of the theory) as a yellow solid.
  • the compound B3 is prepared analogously to B1.
  • the manufacturing of the OLED devices is performed accordingly to WO 04/05891 with adapted film thicknesses and layer sequences.
  • the following examples V1 to E5 show data of various OLED devices.
  • Glass plates with structured ITO 50 nm, indium tin oxide
  • PEDOT:PSS Poly(3,4-ethylenedioxythiophene) polystyrene-sulfonate, CLEVIOS TM P VP Al 4083 from Heraeus Precious Metals GmbH Germany, spin-coated from a water-based solution) to form the sub-strates on which the OLED devices are fabricated.
  • the OLED devices have in principle the following layer structure:
  • the cathode is formed by an aluminium layer with a thickness of 100 nm.
  • the detailed stack sequence is shown in Table 1.
  • the materials used for the OLED fabrication are presented in Table 3.
  • the electron-transport layer may also consist of a mixture of two or more materials.
  • the OLED devices are characterised by standard methods.
  • the electroluminescence spectra, the current efficiency (measured in cd/A) and the external quantum efficiency (EQE, measured in % at 1000 cd/m 2 ) are determined from current/voltage/luminance characteristic lines (IUL characteristic lines) assuming a Lambertian emission profile.
  • the electroluminescence (EL) spectra are recorded at a luminous density of 1000 cd/m 2 and the CIE 1931 x an y coordinates are then calculated from the EL spectrum.
  • EQE @ 1000 cd/m 2 is defined as the external quantum efficiency at luminous density of 1000 cd/m 2 .
  • the lifetime LT95 is determined.
  • the lifetime LT95 @ 1000 cd/m 2 is defined as the time after which the initial luminous density of 1000 cd/m 2 has dropped by 5%.
  • Table 2 The device data of various OLED devices is summarized in Table 2.
  • the example V1 represents the comparative example according to the state-of-the-art.
  • the examples E1-E5 show data of inventive OLED devices.
  • inventive compounds are expecially suitable as an emitter (dopant) when blended into a fluorescent blue matrix to form the emissive layer of a fluorescent blue OLED device.
  • the representative examples are D1, D2, D3, D4 and D5.
  • Comparative compound for the state-of-the-art is represented by VD (structures see table 3).
  • inventive compound as an emitter (dopant) in a fluorescent blue OLED device results in significantly improved device data (E1, E2, E3, E4 and E5) compared to state-of-the-art example (V1), especially in term of external quantum efficiency and device lifetime.
  • V1 state-of-the-art example
  • inventive compound as emitting material in fluorescent blue OLED devices.
  • the material can be also used also as hole transporting material.
  • Table 1 Stack sequence of OLEDs Example HTL (20 nm) EML (Dicke / 20nm) V1 HTL2 BH1 (97%) : VD (3%) E1 HTL2 BH1 (97%) : D1 (3%) E2 HTL2 BH1 (97%) : D2 (3%) E3* HTL2 BH1 (97%) : D3 (3%) E4* HTL2 BH1 (97%) : D4 (3%) E5 HTL2 BH1 (97%) : D5 (3%) (* Examples are not according to the invention)
  • Table 2 Device data of OLEDs Example CIE x CIE y EQE [%] @ 1000 cd / m 2 LT 95 [h] @ 1000 cd / m 2 V1 0.14 0.18 6.2 80 E1 0.15 0.17 6.8 150 E2 0.14 0.14 6.5 200 E3* 0.14 0.15 6.7 100 E4* 0.15 0.13 6.9 130 E5 0.15 0.13 6.8 170 ( * Examples

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (3)

  1. Dispositif électronique comprenant un composé de l'une des formules (1-1-b) à (1-1-i),
    Figure imgb0192
    Figure imgb0193
    Figure imgb0194
    Figure imgb0195
    Figure imgb0196
    Figure imgb0197
    Figure imgb0198
    Figure imgb0199
    où ce qui suit s'applique aux symboles et indices : Ar est un système cyclique aromatique choisi parmi l'une des formules suivantes (ArN-1) à (ArN-14),
    Figure imgb0200
    Figure imgb0201
    Figure imgb0202
    Figure imgb0203
    où les groupes (ArN-1) à (ArN-14) peuvent être substitués sur chaque position libre par un ou plusieurs radicaux R2 ;
    V est CR2 ;
    E1 est en chaque occurrence, de manière identique ou de manière différente, choisi parmi C(R2)2, O et S ; R1 est choisi, de manière identique ou de manière différente en chaque occurrence, dans le groupe constitué par H, D, F, un groupe alkyle à chaîne linéaire ayant 1 à 10 atomes de C ou un groupe alkyle ramifié ou cyclique ayant 3 à 10 atomes de C, où les groupes mentionnés ci-dessus peuvent chacun être substitués par un ou plusieurs radicaux R4 ;
    R2 est choisi, de manière identique ou de manière différente en chaque occurrence, dans le groupe constitué par H, D, F, un groupe alkyle à chaîne linéaire ayant 1 à 10 atomes de C ou un groupe alkyle ramifié ou cyclique ayant 3 à 10 atomes de C, où les groupes mentionnés ci-dessus peuvent chacun être substitués par un ou plusieurs radicaux R4, et un groupe phényle ;
    R4 est en chaque occurrence, de manière identique ou de manière différente, H, F, un groupe alkyle à chaîne linéaire ayant 1 à 10 atomes de C ou un groupe alkyle ramifié ou cyclique ayant 3 à 10 atomes de C, où les groupes mentionnés ci-dessus peuvent chacun être substitués par un ou plusieurs radicaux R5 ;
    R5 est en chaque occurrence, de manière identique ou de manière différente, H ou un radical hydrocarboné aliphatique, aromatique et/ou hétéroaromatique ayant 1 à 20 atomes de C, dans lequel, de plus, des atomes de H peuvent être remplacés par F ; deux substituants R5 adjacents peuvent ici également former un système cyclique aliphatique ou aromatique monocyclique ou polycyclique l'un avec l'autre ; et i est, de manière identique ou de manière différente, en chaque occurrence 0, 1, 2 ou 3, où i = 0 signifie que le groupe entre parenthèses est absent et remplacé par une simple liaison,
    caractérisé en ce que le composé de l'une des formules (1-1-b) à (1-1-i) est employé en tant qu'émetteur fluorescent bleu dans une couche émettrice.
  2. Procédé pour la préparation d'un composé de l'une des formules (1-1-b) à (1-1-i) tel que défini dans la revendication 1, caractérisé en ce qu'une ou plusieurs réactions de couplage catalysé par un métal de transition sont réalisées, préférablement choisies parmi des couplages de Suzuki, au moyen desquelles des groupes aryle ou hétéroaryle sont introduits en tant que substituants para à l'atome de N d'un dérivé phénoxazine.
  3. Dispositif électronique selon la revendication 1, caractérisé en ce qu'il est choisi parmi des transistors organiques luminescents (O-LET), des cellules électrochimiques luminescentes (LEC), des diodes laser organiques (O-lasers) et des dispositifs électroluminescents organiques (OLED).
EP16741536.3A 2015-08-14 2016-07-15 Dérivés de phénoxazine pour dispositifs électroluminescents organiques Active EP3334732B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15181177 2015-08-14
PCT/EP2016/001242 WO2017028941A1 (fr) 2015-08-14 2016-07-15 Dérivés de phénoxazine pour dispositifs électroluminescents organiques

Publications (2)

Publication Number Publication Date
EP3334732A1 EP3334732A1 (fr) 2018-06-20
EP3334732B1 true EP3334732B1 (fr) 2024-03-06

Family

ID=54014491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16741536.3A Active EP3334732B1 (fr) 2015-08-14 2016-07-15 Dérivés de phénoxazine pour dispositifs électroluminescents organiques

Country Status (7)

Country Link
US (1) US11189801B2 (fr)
EP (1) EP3334732B1 (fr)
JP (1) JP6843834B2 (fr)
KR (1) KR102587272B1 (fr)
CN (1) CN107922402B (fr)
TW (1) TWI721001B (fr)
WO (1) WO2017028941A1 (fr)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949561B (zh) * 2015-08-14 2021-11-02 默克专利有限公司 用于有机电致发光器件的吩噁嗪衍生物
EP3439062B1 (fr) * 2016-05-27 2021-09-08 LG Chem, Ltd. Elément électroluminescent organique
TWI764942B (zh) 2016-10-10 2022-05-21 德商麥克專利有限公司 電子裝置
US11302870B2 (en) 2016-11-02 2022-04-12 Merck Patent Gmbh Materials for electronic devices
TW201833118A (zh) 2016-11-22 2018-09-16 德商麥克專利有限公司 用於電子裝置之材料
KR102463125B1 (ko) 2016-12-22 2022-11-04 메르크 파텐트 게엠베하 전자 디바이스용 재료
CN110325524A (zh) 2017-03-02 2019-10-11 默克专利有限公司 用于有机电子器件的材料
US11649249B2 (en) 2017-04-25 2023-05-16 Merck Patent Gmbh Compounds for electronic devices
TW201920343A (zh) 2017-06-21 2019-06-01 德商麥克專利有限公司 電子裝置用材料
TW201920598A (zh) 2017-06-23 2019-06-01 德商麥克專利有限公司 用於有機電激發光裝置之材料
TW201920070A (zh) 2017-06-28 2019-06-01 德商麥克專利有限公司 用於電子裝置之材料
KR20200033932A (ko) 2017-07-28 2020-03-30 메르크 파텐트 게엠베하 전자 디바이스에 사용하기 위한 스피로바이플루오렌 유도체
JP7250773B2 (ja) 2017-09-08 2023-04-03 メルク パテント ゲーエムベーハー 電子デバイス用材料
CN108675975A (zh) 2017-10-17 2018-10-19 默克专利有限公司 用于有机电致发光器件的材料
EP3713945A1 (fr) 2017-11-24 2020-09-30 Merck Patent GmbH Matériaux pour dispositifs électroluminescents organiques
TWI820057B (zh) 2017-11-24 2023-11-01 德商麥克專利有限公司 用於有機電致發光裝置的材料
KR20240025066A (ko) 2017-12-15 2024-02-26 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 치환된 방향족 아민
TW201938761A (zh) 2018-03-06 2019-10-01 德商麥克專利有限公司 用於有機電致發光裝置的材料
TWI802656B (zh) 2018-03-06 2023-05-21 德商麥克專利有限公司 用於有機電致發光裝置之材料
US20210020843A1 (en) 2018-03-16 2021-01-21 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3844243B1 (fr) 2018-08-28 2022-06-22 Merck Patent GmbH Matériaux pour dispositifs électroluminescents organiques
KR20210052486A (ko) 2018-08-28 2021-05-10 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
TWI823993B (zh) 2018-08-28 2023-12-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
EP3850055A1 (fr) 2018-09-12 2021-07-21 Merck Patent GmbH Matériaux pour dispositifs électroluminescents organiques
KR102154590B1 (ko) * 2018-10-31 2020-09-10 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN112930343A (zh) 2018-10-31 2021-06-08 默克专利有限公司 用于有机电致发光器件的材料
CN111349055B (zh) * 2018-12-24 2023-04-21 烟台显华光电材料研究院有限公司 一类用作电致发光材料的多环化合物及应用
US20220127286A1 (en) 2019-03-04 2022-04-28 Merck Patent Gmbh Ligands for nano-sized materials
KR20210151882A (ko) 2019-04-11 2021-12-14 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
US20230002416A1 (en) 2019-11-04 2023-01-05 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202134252A (zh) 2019-11-12 2021-09-16 德商麥克專利有限公司 有機電致發光裝置用材料
TW202200529A (zh) 2020-03-13 2022-01-01 德商麥克專利有限公司 有機電致發光裝置
KR20220157456A (ko) 2020-03-23 2022-11-29 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
EP4185574A1 (fr) 2020-07-22 2023-05-31 Merck Patent GmbH Matériaux pour dispositifs électroluminescents organiques
CN115885599A (zh) 2020-07-22 2023-03-31 默克专利有限公司 用于有机电致发光器件的材料
TW202237797A (zh) 2020-11-30 2022-10-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
CN117099507A (zh) 2021-04-09 2023-11-21 默克专利有限公司 用于有机电致发光器件的材料
TW202309243A (zh) 2021-04-09 2023-03-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
EP4320648A1 (fr) 2021-04-09 2024-02-14 Merck Patent GmbH Matériaux pour dispositifs électroluminescents organiques
EP4079742A1 (fr) 2021-04-14 2022-10-26 Merck Patent GmbH Complexes métalliques
JP2022189480A (ja) * 2021-06-11 2022-12-22 キヤノン株式会社 フェノキサジン類、それを有する有機発光素子、表示装置、撮像装置、電子機器、照明装置、移動体
KR20240058919A (ko) 2021-09-13 2024-05-03 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
WO2023052275A1 (fr) 2021-09-28 2023-04-06 Merck Patent Gmbh Matériaux pour dispositifs électroniques
WO2023052314A1 (fr) 2021-09-28 2023-04-06 Merck Patent Gmbh Matériaux pour dispositifs électroniques
WO2023052313A1 (fr) 2021-09-28 2023-04-06 Merck Patent Gmbh Matériaux pour dispositifs électroniques
WO2023052272A1 (fr) 2021-09-28 2023-04-06 Merck Patent Gmbh Matériaux pour dispositifs électroniques
WO2023094412A1 (fr) 2021-11-25 2023-06-01 Merck Patent Gmbh Matériaux pour dispositifs électroniques
WO2023117837A1 (fr) 2021-12-21 2023-06-29 Merck Patent Gmbh Procédé de préparation de composés organiques deutériés
WO2023152346A1 (fr) 2022-02-14 2023-08-17 Merck Patent Gmbh Matériaux pour dispositifs électroniques
WO2023208899A1 (fr) 2022-04-28 2023-11-02 Merck Patent Gmbh Matériaux pour dispositifs électroluminescents organiques
WO2023222559A1 (fr) 2022-05-18 2023-11-23 Merck Patent Gmbh Procédé de préparation de composés organiques deutérés
WO2024013004A1 (fr) 2022-07-11 2024-01-18 Merck Patent Gmbh Matériaux pour dispositifs électroniques
WO2024033282A1 (fr) 2022-08-09 2024-02-15 Merck Patent Gmbh Matériaux pour dispositifs électroluminescents organiques
WO2024105066A1 (fr) 2022-11-17 2024-05-23 Merck Patent Gmbh Matériaux pour dispositifs électroluminescents organiques

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250226B2 (en) * 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
JP4574936B2 (ja) * 2001-08-31 2010-11-04 日本放送協会 燐光発光性化合物及び燐光発光性組成物
WO2003090502A2 (fr) * 2002-04-19 2003-10-30 3M Innovative Properties Company Materiaux pour dispositifs electroniques organiques
KR100552683B1 (ko) * 2002-06-21 2006-02-20 삼성에스디아이 주식회사 청색 전계발광 고분자 및 이를 이용한 유기 전계발광 소자
US6984461B2 (en) * 2002-06-21 2006-01-10 Samsung Sdi Co., Ltd. Blue electroluminescent polymer and organic-electroluminescent device using the same
US6916902B2 (en) * 2002-12-19 2005-07-12 Dow Global Technologies Inc. Tricyclic arylamine containing polymers and electronic devices therefrom
KR101328972B1 (ko) * 2006-01-26 2013-11-13 삼성디스플레이 주식회사 전계발광 고분자 및 이를 이용한 유기 전계발광 소자
JP4952037B2 (ja) * 2006-04-24 2012-06-13 住友化学株式会社 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5353186B2 (ja) * 2007-11-30 2013-11-27 住友化学株式会社 アミン系高分子化合物及びそれを用いた発光素子
GB2462122B (en) * 2008-07-25 2013-04-03 Cambridge Display Tech Ltd Electroluminescent materials
JP5532824B2 (ja) * 2008-11-20 2014-06-25 住友化学株式会社 アミン系高分子化合物及びそれを用いた発光素子
KR101137386B1 (ko) * 2009-10-09 2012-04-20 삼성모바일디스플레이주식회사 고분자 및 이를 포함한 유기 발광 소자
KR20120104086A (ko) * 2010-08-31 2012-09-20 이데미쓰 고산 가부시키가이샤 질소 함유 방향족 복소환 유도체 및 이들을 이용한 유기 전계 발광 소자
JP2015155378A (ja) * 2012-04-18 2015-08-27 保土谷化学工業株式会社 トリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2016122672A (ja) * 2013-03-18 2016-07-07 出光興産株式会社 発光装置
CN107949561B (zh) * 2015-08-14 2021-11-02 默克专利有限公司 用于有机电致发光器件的吩噁嗪衍生物

Also Published As

Publication number Publication date
KR20180035913A (ko) 2018-04-06
TW201718532A (zh) 2017-06-01
EP3334732A1 (fr) 2018-06-20
WO2017028941A1 (fr) 2017-02-23
US11189801B2 (en) 2021-11-30
CN107922402B (zh) 2021-12-31
JP2018531893A (ja) 2018-11-01
US20180240983A1 (en) 2018-08-23
JP6843834B2 (ja) 2021-03-17
CN107922402A (zh) 2018-04-17
TWI721001B (zh) 2021-03-11
KR102587272B1 (ko) 2023-10-10

Similar Documents

Publication Publication Date Title
EP3334732B1 (fr) Dérivés de phénoxazine pour dispositifs électroluminescents organiques
EP3334731B1 (fr) Dérivés de phénoxazine pour dispositifs électroluminescents organiques
EP3544985B1 (fr) Dérivés de indèno[1,2-b]fluorene condensés avec dibenzofuran et composés similaires en tant que matèriaux pour dispositifs électroluminescents organiques (oled)
EP3274419B1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP3341448B1 (fr) Composés pour dispositifs électroniques
KR102602818B1 (ko) 6,9,15,18-테트라히드로-s-인다세노[1,2-b:5,6-b']디플루오렌 유도체 및 전자 소자에서의 이의 용도
KR102540425B1 (ko) 유기 전계발광 소자 (oled) 용 재료로서 비스벤조푸란-융합된 2,8-디아미노인데노[1,2-b]플루오렌 유도체 및 관련 화합물
KR102599160B1 (ko) 유기 전계발광 소자용 재료
US10559756B2 (en) Materials for electronic devices
KR102337198B1 (ko) 화합물 및 유기 전계 발광 디바이스
KR102284234B1 (ko) 2-디아릴아미노플루오렌의 유도체 및 이를 함유하는 유기 전자 화합물
EP3250658B1 (fr) Matières pour dispositifs électroniques
KR20240005971A (ko) 화합물 및 유기 전자 소자
EP3898603A1 (fr) Matériaux pour dispositifs électroniques
EP3844243B1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2020127259A2 (fr) Matériaux pour dispositifs électroniques
EP3642185B1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2018134392A1 (fr) Matériaux pour dispositifs électroluminescents organiques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RODRIGUEZ, LARA-ISABEL

Inventor name: BURKHART, BEATE

Inventor name: MEYER, SEBASTIAN

Inventor name: LINGE, ROUVEN

Inventor name: HEIL, HOLGER

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200318

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MERCK PATENT GMBH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H10K 85/60 20230101ALI20230928BHEP

Ipc: H10K 50/11 20230101ALI20230928BHEP

Ipc: H05B 33/14 20060101ALI20230928BHEP

Ipc: C07F 7/10 20060101ALI20230928BHEP

Ipc: C07D 265/38 20060101ALI20230928BHEP

Ipc: C07D 413/10 20060101ALI20230928BHEP

Ipc: C07D 413/14 20060101AFI20230928BHEP

INTG Intention to grant announced

Effective date: 20231018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016086151

Country of ref document: DE