EP2989224B1 - Kupfergusslegierung für asynchronmaschinen - Google Patents
Kupfergusslegierung für asynchronmaschinen Download PDFInfo
- Publication number
- EP2989224B1 EP2989224B1 EP14718324.8A EP14718324A EP2989224B1 EP 2989224 B1 EP2989224 B1 EP 2989224B1 EP 14718324 A EP14718324 A EP 14718324A EP 2989224 B1 EP2989224 B1 EP 2989224B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- elements
- weight
- group
- alloy
- copper alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 63
- 229910045601 alloy Inorganic materials 0.000 claims description 68
- 239000000956 alloy Substances 0.000 claims description 68
- 229910052725 zinc Inorganic materials 0.000 claims description 61
- 229910052759 nickel Inorganic materials 0.000 claims description 46
- 229910052782 aluminium Inorganic materials 0.000 claims description 44
- 229910052718 tin Inorganic materials 0.000 claims description 43
- 239000010949 copper Substances 0.000 claims description 42
- 229910052709 silver Inorganic materials 0.000 claims description 41
- 229910052698 phosphorus Inorganic materials 0.000 claims description 35
- 229910052726 zirconium Inorganic materials 0.000 claims description 35
- 229910052719 titanium Inorganic materials 0.000 claims description 34
- 229910052787 antimony Inorganic materials 0.000 claims description 33
- 229910052785 arsenic Inorganic materials 0.000 claims description 33
- 229910052796 boron Inorganic materials 0.000 claims description 33
- 229910052749 magnesium Inorganic materials 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 32
- 239000012535 impurity Substances 0.000 claims description 28
- 239000004020 conductor Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 238000010276 construction Methods 0.000 claims description 9
- 239000011701 zinc Substances 0.000 description 52
- 239000011135 tin Substances 0.000 description 43
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 29
- 229910052802 copper Inorganic materials 0.000 description 29
- 239000010936 titanium Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 14
- 239000010944 silver (metal) Substances 0.000 description 14
- 230000002349 favourable effect Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000005266 casting Methods 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000004512 die casting Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010115 full-mold casting Methods 0.000 description 2
- 238000005495 investment casting Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910003336 CuNi Inorganic materials 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
Definitions
- the invention relates to copper casting alloys and current-carrying structural parts made therefrom by means of primary molding processes.
- the invention relates to cast squirrel-cage rotors for asynchronous machines.
- the electrical conductivity is only slightly reduced by the alloy elements.
- the material must have good castability. Zirconium and / or chromium are often used as alloy components.
- JP 56010059 A a copper alloy containing zinc, chromium, zirconium and titanium is proposed for the die casting process.
- JP 2011 027280 A discloses a copper alloy with 0.1 to 2 wt% aluminum, tin from 0.1 wt% to aluminum content, zinc from 0.05 wt% to aluminum content and phosphorus from 0.001 to 0.1 wt. -%. Tubes for heat exchangers are made from the alloy.
- Copper materials processed by metal forming processes are characterized by a higher strength than copper materials in the as-cast state.
- the person skilled in the art can therefore give no indication of the above-mentioned prior art Find out which copper alloy has a favorable combination of properties with regard to electrical conductivity and strength even when cast.
- the invention is therefore based on the object of specifying improved copper casting alloys in terms of strength, conductivity and castability and improved current-carrying structural parts in terms of strength and conductivity.
- the invention is intended to provide improved, one-piece cast squirrel-cage rotors for asynchronous machines.
- the alloy elements should also be selected with regard to their effects on health and the environment. In particular, lead and cadmium should be avoided.
- the invention is given with respect to a copper alloy by the features of claim 1, with regard to a structural part with the features of claim 10 and alternatively with claim 12 and with respect to a squirrel-cage rotor with the features of claim 11 and alternatively with claim 13.
- the further back claims relate to advantageous developments and further developments of the invention.
- the invention is based on the consideration that the strength of metals is increased by the incorporation of foreign atoms. This effect is particularly interesting for cast alloys, because it enables high strength values to be achieved without further forming steps.
- a The elements Al, Sn, Ni and Zn have a particularly great effect on solid solution strengthening in copper. If the strength of pure copper is to be increased by solid solution strengthening, the addition of Al and Sn is particularly worthwhile. It is also known that the addition of alloy elements fundamentally worsens the electrical and thermal conductivity of pure copper. In the field of mixed crystal formation, however, the conductivity of copper is influenced relatively little by the elements Zn, Ag, Ni, Sn and Al. If the electrical conductivity of copper is to be impaired as little as possible, the addition of Zn and Ag is particularly worthwhile.
- a casting material can be found that has a particularly favorable combination of strength and conductivity.
- the content of the individual elements should be at least 0.05% by weight and at most 0.5% by weight.
- the effect of the alloy elements is too low for element contents less than 0.05% by weight.
- the sum of the element contents can preferably be at least 0.25% by weight.
- element contents greater than 0.5% by weight undesired segregation of the alloy or segregation can occur.
- the content of the individual elements can preferably be at most 0.3% by weight.
- Alloying three or more elements creates an alloy whose melting interval is longer than the melting interval of alloys with fewer elements. This has a favorable effect on the castability of the material.
- the copper alloy preferably contains the element Sn. This results in particularly favorable properties.
- the copper alloy contains the element Ag. This results in particularly favorable properties with regard to electrical conductivity.
- 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb can be added to the alloy. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. By deoxidizing the melt you can also reduce the gas intake.
- the sum of the contents of the elements Mg, Ti, Zr, B, P, As, Sb can be limited to a maximum of 0.5% by weight.
- the content of the individual elements can be limited to a maximum of 0.07% by weight.
- the increase in strength is not always sufficient at contents of less than 0.06% by weight. With element contents greater than 0.15% by weight, the electrical conductivity can be reduced too much, for example below 75% IACS.
- the sum of the proportions of the elements from the group consisting of Ag, Ni, Zn, Sn and Al is preferably at least 0.20% by weight and at most 0.35% by weight.
- the proportions of the alloy elements can preferably be selected such that the ratio by weight of two arbitrary alloy elements from the group consisting of Ag, Ni, Zn, Sn and Al is at most 1.5.
- the more common of the two alloying elements forms the numerator of the quotient to be calculated.
- This weight ratio is particularly preferably at most 1.3.
- the elements selected from the group consisting of Ag, Ni, Zn, Sn and Al for the respective alloy are alloyed in approximately equal parts by weight.
- the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.5% Ni: 0.06 to 0.5% Zn: 0.06 to 0.5% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
- Such an alloy has an electrical conductivity of at least 68% IACS and can exceed the strength of pure copper by up to 35%.
- the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
- IACS IACS
- such an alloy has an electrical conductivity that is approximately equal to that of a copper alloy which contains 1% by weight of Ag (CuAg1).
- the increase in strength compared to pure copper in the as-cast state is approximately 20%.
- Such an alloy thus has a very favorable combination of properties.
- the relative increase in strength is greater than the relative decrease in conductivity. Due to the low proportion of alloys, the alloy is at the cost level of commercially available copper alloys.
- the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
- Such an alloy has an electrical conductivity of approximately 85% IACS.
- the increase in strength compared to pure copper in the as-cast state is approximately 20%.
- Such an alloy thus has a very favorable combination of properties.
- the relative increase in strength is greater than the relative decrease in conductivity. Due to the low proportion of alloys, the alloy is at the cost level of commercially available copper alloys.
- the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
- Such an alloy has an electrical Conductivity of about 85% IACS. The increase in strength compared to pure copper in the as-cast state is approximately 10%. Due to the elements Zn and Al, this alloy is an inexpensive alternative.
- Another advantageous copper alloy can have the following composition in% by weight: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
- Such an alloy has an electrical conductivity of approximately 80% IACS.
- the increase in strength compared to pure copper in the as-cast state is approximately 10%. Since this alloy does not contain silver, it is a particularly inexpensive alternative.
- a further aspect of the invention relates to current-carrying structural parts made of copper alloys, the structural parts being produced by means of an original molding process and the copper alloys having the following composition in% by weight: 0.05 to 0.5% Ag, in each case 0.05 to 0.5 % of at least two elements from the group consisting of Ni, Zn, Sn and Al, balance Cu and inevitable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb exists.
- the copper alloy of the structural part can have the following composition in% by weight: Sn: 0.06 to 0.15%, Zn: 0.06 to 0.15%, Al: 0.06 to 0.15%, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
- Such structural parts can be, for example, switches, commutators, grinding wheels, busbars, contacts, brushes, bridges, components for switching devices, conductor bars or short-circuit rings of cage rotors or other components.
- Primary molding processes are understood to mean casting processes such as, for example, die casting, investment casting, full mold casting or other processes.
- the above-mentioned casting process the cast body essentially already has the shape of the desired structural part. Separation processes can be used to carry out one or more further processing steps which slightly change the shape of the structural part. Examples of this are cutting off the sprue or reworking the surface of the structural part.
- the finished construction part is therefore in the as-cast state.
- the copper alloys according to the invention have a higher strength than pure copper due to the solidification of the solid solution in the as-cast state.
- the electrical conductivity is relatively little reduced compared to pure copper.
- the alloys according to the invention also have good castability: they show only a slight tendency to absorb gas and are characterized by a good mold filling capacity.
- an alloy adapted to the respective application can be found.
- the Ag content can be limited to 0.15% by weight.
- the metal costs of the alloys according to the invention are increased by a maximum of 15% compared to pure copper.
- Construction parts produced by master molding processes are less expensive to manufacture than construction parts that are made from semi-finished products.
- the total cost of the construction parts according to the invention can consequently be cheaper than the total costs of other construction parts.
- the alloy according to the invention can optionally contain 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. By deoxidizing the melt, they can also reduce gas absorption.
- the copper alloy has the following composition in% by weight: 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
- the copper alloy of the cage rotor can have the following composition in% by weight: Sn: 0.06 to 0.15%, Zn: 0.06 to 0.15%, Al: 0.06 to 0.15%, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
- the invention is based on the idea of casting conductor bars and short-circuit rings of cage rotors in one piece. Suitable casting processes for this can be die casting, investment casting, full mold casting and other processes. Due to their high electrical conductivity, copper alloys are well suited for the manufacture of cage rotors. Since the high speeds of the asynchronous machines exert large forces, in particular on the conductor bars of the squirrel-cage rotors, the copper alloys used must have high strength even when cast. Copper alloys which have the following composition in% by weight are therefore particularly suitable: 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al exists, rest Cu and inevitable impurities.
- the copper alloys according to the invention have a higher strength than pure copper due to the solidification of the solid solution in the as-cast state.
- the electrical conductivity is relatively little reduced compared to pure copper.
- the alloys according to the invention also have good castability: they show only a slight tendency to absorb gas and are characterized by a good mold filling capacity.
- the alloy according to the invention can optionally contain 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. Through an appropriate selection of the alloying elements and the alloying composition, an alloy adapted to the respective application can be found.
- the following alloys have proven to be particularly advantageous: Copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities.
- Each of the aforementioned alloys can optionally have 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb added.
- the metal costs of the alloys according to the invention are increased by a maximum of 15% compared to pure copper.
- Table 1 shows a compilation of the alloys examined.
- the composition of the sample, the determined tensile strength R m in the as-cast state and the relative electrical conductivity, expressed by the IACS value, are given for each alloy.
- the metal costs resulting from the alloy composition are standardized to the metal costs of pure copper (sample no. 1).
- Sample No. 2 is a reference alloy with 99% copper and 1% silver. This alloy has attractive properties in terms of strength and conductivity, but due to the high metal costs, it can only be used economically in very special applications.
- Sample No. 3 is a copper alloy with approximately 0.5% silver, 0.5% nickel and 0.5% zinc. This alloy achieves a strength that is approx. 35% higher than that of pure copper.
- the electrical conductivity is 68% IACS.
- Sample No. 4 is a copper alloy with approximately 0.1% silver, 0.1% nickel and 0.1% zinc. This alloy achieves a strength that is approx. 20% higher than that of pure copper.
- the electrical conductivity is 91% IACS.
- the relative increase in strength is thus significantly greater than the relative Decrease in electrical conductivity.
- This surprising combination of properties of the alloy is not to be expected from the individual contributions of the individual alloy elements.
- the relative increase in metal costs is less than the relative increase in strength and can therefore be compensated for, for example, by reducing the cross section of the conductor bars. This alloy thus offers a very attractive combination of properties for use in cast squirrel cage rotors.
- Sample No. 5 is a copper alloy with approximately 0.1% silver, 0.13% tin and 0.1% nickel. This alloy achieves a strength that is approx. 20% higher than that of pure copper.
- the electrical conductivity is 84% IACS.
- the relative increase in strength is therefore greater than the relative decrease in electrical conductivity. This surprising combination of properties of the alloy is not to be expected from the individual contributions of the individual alloy elements.
- the relative increase in metal costs is less than the relative increase in strength.
- Sample No. 6 is a copper alloy with approximately 0.1% silver, 0.1% zinc and 0.1% aluminum. This alloy achieves a strength that is approx. 6% higher than that of pure copper.
- the electrical conductivity is 84% IACS. Due to the elements Zn and Al, this alloy is an inexpensive alternative.
- Sample No. 7 is a copper alloy with approximately 0.1% tin, 0.1% zinc and 0.1% aluminum. This alloy achieves a strength that is approx. 8% higher than that of pure copper. The electrical conductivity is 78% IACS. Since this alloy does not contain silver, it is a particularly inexpensive alternative.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Power Engineering (AREA)
Description
- Die Erfindung betrifft Kupfergusslegierungen sowie daraus mittels Urformverfahren hergestellte, stromführende Konstruktionsteile. Insbesondere betrifft die Erfindung gegossene Käfigläufer für Asynchronmaschinen.
- Bereits aus der Patentschrift
DE 503 187 ist bekannt, Käfigläufer für Asynchronmaschinen durch gleichzeitiges Gießen der Läuferstäbe und der Kurzschlussringe herzustellen. Läuferstäbe und Kurzschlussringe sind damit als einstückiges Bauteil ausgeführt, dessen Werkstoff sich im Gusszustand befindet. Als mögliche Gießverfahren sind beispielsweise inDE 43 29 679 C2 der Druckguss, inUS 7,337,526 B2 der Vollformguss und inUS 2,304,067 der Schleuderguss genannt. Kupfer und Kupferlegierungen sind aufgrund ihrer hohen elektrischen Leitfähigkeit wichtige Werkstoffe für die Herstellung von gegossenen Käfigläufern. Da sich der Werkstoff im Gusszustand befindet, ist er leicht verformbar. Deshalb kommt der Festigkeitssteigerung des Kupferwerkstoffs durch Legierungselemente eine große Bedeutung zu. Andererseits ist erwünscht, dass die elektrische Leitfähigkeit durch die Legierungselemente nur wenig reduziert wird. Ferner muss der Werkstoff eine gute Gießbarkeit aufweisen. Als Legierungsbestandteile werden oft Zirkon und/oder Chrom verwendet. InJP 56010059 A - Weitere Kupferlegierungen für Käfigläufer sind im Zusammenhang mit Herstellverfahren bekannt, bei denen der Käfigläufer nicht einstückig gegossen wird, sondern aus einzelnen Komponenten zusammengebaut wird. Dabei werden die Leiterstäbe und/oder die Kurzschlussringe mittels umformtechnischer Verfahren hergestellt. So wird beispielsweise in
GB 949,570 JP 58006950 A DE 100 14 643 C2 werden für die Kurzschlussringe die Legierungen CuCrZr und CuNi vorgeschlagen, wobei letztere zur Erzielung einer durch Ausscheidungshärtung erhöhten Festigkeit durch weitere Elemente wie beispielsweise Silicium ergänzt werden kann. InDE 10 2009 018 951 A1 sind Käfigläufer vorgeschlagen, bei denen die Kurzschlussringe aus einer Kupfer-Silber-Legierung bestehen. DerDE 33 24 687 A1 ist der Vorschlag zu entnehmen, die Leiterstäbe aus einer Kupfer-Silber-Legierung zu fertigen. In der gleichen Schrift wird alternativ auch eine Kupfer-Zink-Legierung vorgeschlagen.EP 0 652 624 A1 beschreibt einen mehrteiligen Aufbau der Leiterstäbe. Für den in Radialrichtung äußeren, keilartigen Teil werden verschiedene Kupferlegierungen vorgeschlagen, deren Leitfähigkeit mit mindestens 20% IACS charakterisiert ist. Der Fachmann kann der Schrift keinen Hinweis auf die Gießbarkeit der Legierungen entnehmen. -
JP 2011 027280 A - Durch umformtechnische Verfahren bearbeitete Kupferwerkstoffe zeichnen sich durch eine höhere Festigkeit als Kupferwerkstoffe im Gusszustand aus. Aus dem oben genannten Stand der Technik kann der Fachmann also keinen Hinweis entnehmen, welche Kupferlegierung auch im Gusszustand eine günstige Eigenschaftskombination hinsichtlich elektrischer Leitfähigkeit und Festigkeit aufweist.
- Der Erfindung liegt daher die Aufgabe zugrunde, hinsichtlich Festigkeit, Leitfähigkeit und Gießbarkeit verbesserte Kupfergusslegierungen sowie hinsichtlich Festigkeit und Leitfähigkeit verbesserte stromführende Konstruktionsteile anzugeben. Insbesondere soll die Erfindung verbesserte, einstückig gegossene Käfigläufer für Asynchronmaschinen angeben. Dabei soll die Auswahl der Legierungselemente auch im Hinblick auf Auswirkungen für Gesundheit und Umwelt erfolgen. Insbesondere sollen Blei und Cadmium vermieden werden.
- Die Erfindung wird bezüglich einer Kupferlegierung durch die Merkmale des Anspruchs 1, bezüglich eines Konstruktionsteils durch die Merkmale des Anspruchs 10 und alternativ des Anspruchs 12 und bezüglich eines Käfigläufers durch die Merkmale des Anspruchs 11 und alternativ des Anspruchs 13 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.
- Die Erfindung schließt Kupferlegierungen mit folgender Zusammensetzung in Gewichts-% ein:
- 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,
- Rest Cu sowie unvermeidbare Verunreinigungen,
- optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- Die Erfindung geht dabei von der Überlegung aus, dass die Festigkeit von Metallen durch den Einbau von Fremdatomen gesteigert wird. Insbesondere für Gusslegierungen ist dieser Effekt interessant, weil auf diese Weise ohne weitere Umformschritte bereits hohe Festigkeitswerte erreicht werden können. Eine besonders große Wirkung auf die Mischkristallverfestigung bei Kupfer haben die Elemente Al, Sn, Ni und Zn. Wenn die Festigkeit von Reinkupfer durch Mischkristallverfestigung gesteigert werden soll, ist der Zusatz von Al und Sn besonders verfolgenswert. Es ist ferner bekannt, dass der Zusatz von Legierungselementen grundsätzlich die elektrische und thermische Leitfähigkeit von Reinkupfer verschlechtert. Im Gebiet der Mischkristallbildung wird die Leitfähigkeit von Kupfer durch die Elemente Zn, Ag, Ni, Sn und Al jedoch relativ wenig beeinflusst. Soll die elektrische Leitfähigkeit von Kupfer möglichst wenig beeinträchtigt werden, ist der Zusatz von Zn und Ag besonders verfolgenswert. Durch eine geeignete Auswahl von mindestens drei Elementen aus der Gruppe, die aus den Elementen Ag, Ni, Zn, Sn und Al besteht, kann ein Gusswerkstoff gefunden werden, der eine besonders günstige Kombination von Festigkeit und Leitfähigkeit besitzt. Der Gehalt der einzelnen Elemente sollte dabei mindestens 0,05 Gew.-% und höchstens 0,5 Gew.-% betragen. Bei Elementgehalten kleiner als 0,05 Gew.-% ist die Wirkung der Legierungselemente zu gering. Bevorzugt kann auch bei weniger als fünf Legierungselementen die Summe der Elementgehalte mindestens 0,25 Gew.-% sein. Bei Elementgehalten größer als 0,5 Gew.-% kann es zu einem unerwünschten Entmischen der Legierung beziehungsweise zu Seigerungen kommen. Um solche Effekte sicher zu vermeiden, kann der Gehalt der einzelnen Elemente bevorzugt höchstens 0,3 Gew.-% betragen. Durch das Zulegieren von drei oder mehr Elementen entsteht eine Legierung, deren Schmelzintervall größer ist als das Schmelzintervall von Legierungen mit weniger Elementen. Dies wirkt sich günstig auf die Gießbarkeit des Werkstoffs aus. Bevorzugt enthält die Kupferlegierung das Element Sn. Dadurch ergeben sich besonders günstige Eigenschaften. Die Kupferlegierung enthält das Element Ag. Dadurch ergeben sich besonders günstige Eigenschaften hinsichtlich der elektrischen Leitfähigkeit. Optional kann der Legierung 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht, zugegeben werden. Diese Elemente bewirken eine Kornfeinung des Gussgefüges und erhöhen so die Festigkeit des Gusswerkstoffs. Durch Desoxidation der Schmelze können sie ferner die Gasaufnahme reduzieren. Um unerwünschte Wechselwirkungen zwischen den Elementen zu vermeiden, kann die Summe der Gehalte der Elemente Mg, Ti, Zr, B, P, As, Sb auf maximal 0,5 Gew.-% beschränkt sein. Alternativ kann der Gehalt der einzelnen Elemente auf maximal 0,07 Gew.-% beschränkt sein.
- Bevorzugt kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:
- 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,
- Rest Cu sowie unvermeidbare Verunreinigungen,
- optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- a) Kupferlegierung mit jeweils 0,05 - 0,5 Gew.-% aus Ag, Ni, Zn
- b) Kupferlegierung mit jeweils 0,05 - 0,5 Gew.-% aus Ag, Sn, Ni
- c) Kupferlegierung mit jeweils 0,05 - 0,5 Gew.-% aus Ag, Zn, Al Bevorzugt ist der Ag-Anteil hierbei maximal 0,15 Gew.-%.
Überraschenderweise ergibt auch folgende Kombination von Elementen eine Legierung mit günstigen Eigenschaften: - d) Kupferlegierung mit jeweils 0,05 - 0,5 Gew.-% aus Sn, Zn, Al.
- Zu den vorstehend mit a), b), c) und d) bezeichneten Legierungen können optional 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe hinzutreten, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- Bevorzugt kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:
- 0,06 bis 0,3 % Ag, jeweils 0,06 bis 0,3 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,
- Rest Cu sowie unvermeidbare Verunreinigungen,
- optional 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- Besonders bevorzugt kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:
- 0,06 bis 0,15 % Ag, jeweils 0,06 bis 0,15 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,
- Rest Cu sowie unvermeidbare Verunreinigungen,
- optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- Bezüglich der Elemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, ist bei Gehalten kleiner als 0,06 Gew.-% die Steigerung der Festigkeit nicht immer ausreichend. Bei Elementgehalten größer als 0,15 Gew.-% kann die elektrische Leitfähigkeit zu stark reduziert sein, beispielsweise unter 75 % IACS. Bevorzugt beträgt die Summe der Anteile der Elemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, mindestens 0,20 Gew.-% und maximal 0,35 Gew.-%. Bevorzugt können bei der erfindungsgemäßen Kupferlegierung die Anteile der Legierungselemente so ausgewählt sein, dass das Verhältnis der Gewichtsanteile zweier beliebiger Legierungselemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, maximal 1,5 beträgt. Das häufigere der beiden Legierungselemente bildet hierbei den Zähler des zu berechnenden Quotienten. Besonders bevorzugt beträgt dieses Gewichtsverhältnis maximal 1,3. Es hat sich hinsichtlich Festigkeit und Leitfähigkeit im Gusszustand als günstig erwiesen, wenn die Elemente, die aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, für die jeweilige Legierung ausgewählt sind, in ungefähr gleichen Gewichtsanteilen zulegiert sind.
- In bevorzugter Ausgestaltung der Erfindung kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:
Ag: 0,06 bis 0,5 % Ni: 0,06 bis 0,5 % Zn: 0,06 bis 0,5 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist eine elektrische Leitfähigkeit von mindestens 68 % IACS auf und kann die Festigkeit von Reinkupfer um bis zu 35 % übertreffen. - In besonders bevorzugter Ausgestaltung der Erfindung kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:
Ag: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist mit ungefähr 90 % IACS eine elektrische Leitfähigkeit auf, die ungefähr gleich zu einer Kupferlegierung ist, die 1 Gew.-% Ag enthält (CuAg1). Die Steigerung der Festigkeit gegenüber Reinkupfer beträgt im Gusszustand ungefähr 20 %. Damit weist eine solche Legierung eine sehr günstige Kombination von Eigenschaften auf. Die relative Steigerung der Festigkeit ist größer als die relative Abnahme der Leitfähigkeit. Aufgrund der geringen Legierungsanteile liegt die Legierung auf dem Kostenniveau handelsüblicher Kupferlegierungen. - Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:
Ag: 0,06 bis 0,15 % Sn: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist eine elektrische Leitfähigkeit von ungefähr 85 % IACS auf. Die Steigerung der Festigkeit gegenüber Reinkupfer beträgt im Gusszustand ungefähr 20 %. Damit weist eine solche Legierung eine sehr günstige Kombination von Eigenschaften auf. Die relative Steigerung der Festigkeit ist größer als die relative Abnahme der Leitfähigkeit. Aufgrund der geringen Legierungsanteile liegt die Legierung auf dem Kostenniveau handelsüblicher Kupferlegierungen. - Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:
Ag: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist eine elektrische Leitfähigkeit von ungefähr 85 % IACS auf. Die Steigerung der Festigkeit gegenüber Reinkupfer beträgt im Gusszustand ungefähr 10 %. Aufgrund der Elemente Zn und Al stellt diese Legierung eine kostengünstige Alternative dar. - Eine weitere vorteilhafte Kupferlegierung kann folgende Zusammensetzung in Gewichts-% aufweisen:
Sn: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist eine elektrische Leitfähigkeit von ungefähr 80 % IACS auf. Die Steigerung der Festigkeit gegenüber Reinkupfer beträgt im Gusszustand ungefähr 10 %. Da diese Legierung kein Silber enthält, stellt sie eine besonders kostengünstige Alternative dar. - Ein weiterer Aspekt der Erfindung betrifft stromführende Konstruktionsteile aus Kupferlegierungen, wobei die Konstruktionsteile mittels eines urformtechnischen Verfahrens hergestellt sind und wobei die Kupferlegierungen folgende Zusammensetzung in Gewichts-% aufweisen: 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht, Rest Cu sowie unvermeidbare Verunreinigungen, optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Alternativ kann die Kupferlegierung des Konstruktionsteils folgende Zusammensetzung in Gewichts-% aufweisen:
Sn: 0,06 bis 0,15 %, Zn: 0,06 bis 0,15 %, Al: 0,06 bis 0,15 %, - Solche Konstruktionsteile können beispielsweise Schalter, Kommutatoren, Schleifkörper, Stromschienen, Kontakte, Bürsten, Brücken, Komponenten für Schaltgeräte, Leiterstäbe oder Kurzschlussringe von Käfigläufern oder andere Bauteile sein. Unter urformtechnischen Verfahren werden Gießverfahren wie beispielsweise Druckguss, Feinguss, Vollformguss oder andere Verfahren verstanden. Im Gegensatz zum Kokillenguss, mit dem vorwiegend Ausgangsmaterial für die Halbzeugfertigung gegossen wird, hat bei den vorstehend genannten Gießverfahren der Gusskörper im Wesentlichen bereits die Gestalt des gewünschten Konstruktionsteils. Mittels Trennverfahren können ein oder mehrere weitere Bearbeitungsschritte durchgeführt werden, die die Gestalt des Konstruktionsteils geringfügig verändern. Beispiele hierfür sind das Abtrennen des Angusses oder die Nachbearbeitung der Oberfläche des Konstruktionsteils. Umformtechnische Bearbeitungsschritte, durch die der Werkstoff des Konstruktionsteils in einen anderen Zustand gebracht wird, schließen sich jedoch nicht an. Das fertige Konstruktionsteil befindet sich folglich im Gusszustand. Die erfindungsgemäßen Kupferlegierungen weisen aufgrund der Mischkristallverfestigung im Gusszustand eine höhere Festigkeit auf als Reinkupfer. Die elektrische Leitfähigkeit ist gegenüber Reinkupfer verhältnismäßig wenig reduziert. Die erfindungsgemäßen Legierungen weisen ferner eine gute Gießbarkeit aus: Sie zeigen nur eine geringe Tendenz zur Gasaufnahme und sind durch ein gutes Formfüllvermögen gekennzeichnet. Durch eine geeignete Auswahl der Legierungselemente und der Legierungszusammensetzung kann eine auf die jeweilige Anwendung angepasste Legierung gefunden werden. Insbesondere kann der Gehalt an Ag auf 0,15 Gew.-% beschränkt werden. Die Metallkosten der erfindungsgemäßen Legierungen sind gegenüber Reinkupfer um maximal 15 % erhöht. Durch urformtechnische Verfahren hergestellte Konstruktionsteile weisen einen geringeren Herstellaufwand auf als Konstruktionsteile, die aus Halbzeugen gefertigt sind. Die Gesamtkosten der erfindungsgemäßen Konstruktionsteile können folglich günstiger sein als die Gesamtkosten anderer Konstruktionsteile. Optional kann die erfindungsgemäße Legierung 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe enthalten, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Diese Elemente bewirken eine Kornfeinung des Gussgefüges und erhöhen so die Festigkeit des Gusswerkstoffs. Durch Desoxidation der Schmelze können sie ferner die Gasaufnahme reduzieren.
- Ein weiterer Aspekt der Erfindung betrifft Käfigläufer mit mehreren Leiterstäben und zwei Kurzschlussringen, die aus einer Kupferlegierungen einstückig gegossen sind. Erfindungsgemäß weist die Kupferlegierung folgende Zusammensetzung in Gewichts-% auf: 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht, Rest Cu sowie unvermeidbare Verunreinigungen, optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Alternativ kann die Kupferlegierung des Käfigläufers folgende Zusammensetzung in Gewichts-% aufweisen:
Sn: 0,06 bis 0,15 %, Zn: 0,06 bis 0,15 %, Al: 0,06 bis 0,15 %, - Die Erfindung geht dabei von der Überlegung aus, Leiterstäbe und Kurzschlussringe von Käfigläufern einstückig zu gießen. Geeignete Gießverfahren hierfür können Druckguss, Feinguss, Vollformguss und andere Verfahren sein. Aufgrund ihrer hohen elektrischen Leitfähigkeit sind Kupferlegierungen für die Herstellung von Käfigläufern gut geeignet. Da aufgrund der hohen Drehzahlen der Asynchronmaschinen große Kräfte insbesondere auf die Leiterstäbe der Käfigläufer wirken, müssen die verwendeten Kupferlegierungen bereits im Gusszustand eine hohe Festigkeit aufweisen. Besonders geeignet sind deshalb Kupferlegierungen, die folgende Zusammensetzung in Gewichts-% aufweisen: 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht, Rest Cu sowie unvermeidbare Verunreinigungen. Die erfindungsgemäßen Kupferlegierungen weisen aufgrund der Mischkristallverfestigung im Gusszustand eine höhere Festigkeit auf als Reinkupfer. Die elektrische Leitfähigkeit ist gegenüber Reinkupfer verhältnismäßig wenig reduziert. Die erfindungsgemäßen Legierungen weisen ferner eine gute Gießbarkeit auf: Sie zeigen nur eine geringe Tendenz zur Gasaufnahme und sind durch ein gutes Formfüllvermögen gekennzeichnet. Optional kann die erfindungsgemäße Legierung 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe enthalten, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Diese Elemente bewirken eine Kornfeinung des Gussgefüges und erhöhen so die Festigkeit des Gusswerkstoffs. Durch eine geeignete Auswahl der Legierungselemente und der Legierungszusammensetzung kann eine auf die jeweilige Anwendung angepasste Legierung gefunden werden. Insbesondere erweisen sich folgende Legierungen als vorteilhaft:
Kupferlegierung mit folgender Zusammensetzung in Gewichts-%:Ag: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 %
Alternativ: Kupferlegierung mit folgender Zusammensetzung in Gewichts-%:Ag: 0,06 bis 0,15 % Sn: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 %
Alternativ: Kupferlegierung mit folgender Zusammensetzung in Gewichts-%:Ag: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 %
Alternativ: Kupferlegierung mit folgender Zusammensetzung in Gewichts-%:Sn: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 % - Zu jeder der vorgenannten Legierungen kann optional 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht, hinzutreten. Die Metallkosten der erfindungsgemäßen Legierungen sind gegenüber Reinkupfer um maximal 15 % erhöht.
- Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert.
- Tabelle 1 zeigt eine Zusammenstellung der untersuchten Legierungen. Es ist für jede Legierung die Zusammensetzung der Probe, die ermittelte Zugfestigkeit Rm im Gusszustand und die relative elektrische Leitfähigkeit, ausgedrückt durch den IACS-Wert, angegeben. Die Metallkosten, die sich aus der Legierungszusammensetzung rechnerisch ergeben, sind auf die Metallkosten von reinem Kupfer (Probe Nr. 1) normiert.
Tabelle 1: Charakterisierung der untersuchten Proben Nr. Legierung Cu Ag Sn Ni Zn Al Zugfestigkeit Rm IACS Metallkosten Gew.-% Gew.-% Gew.-% Gew.-% Gew.-% Gew.-% MPa normiert 1 Cu 100 0 0 0 0 0 161 99% 1 2 CuAg1 99,0 1,00 0 0 0 0 233 92% 2,27 3 CuAgNiZn 98,6 0,48 0 0,45 0,48 0 215 68% 1,61 4 CuAgNiZn 99,7 0,10 0 0,10 0,11 0 192 91% 1,13 5 CuAgSnNi 99,7 0,12 0,13 0,09 0 0 193 84% 1,15 6 CuAgZnAl 99,7 0,10 0 0 0,10 0,09 170 84% 1,13 7 CuSnZnAl 99,7 0 0,12 0 0,11 0,12 174 78% 1 - Probe Nr. 2 ist eine Referenzlegierung mit 99 % Kupfer und 1 % Silber. Diese Legierung hat hinsichtlich Festigkeit und Leitfähigkeit attraktive Eigenschaften, aufgrund der hohen Metallkosten ist sie jedoch nur in ganz speziellen Anwendungsfällen wirtschaftlich einsetzbar.
- Probe Nr. 3 ist eine Kupferlegierung mit ungefähr 0,5 % Silber, 0,5 % Nickel und 0,5 % Zink. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 35 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 68 % IACS.
- Probe Nr. 4 ist eine Kupferlegierung mit ungefähr 0,1 % Silber, 0,1 % Nickel und 0,1 % Zink. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 20 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 91 % IACS. Die relative Steigerung der Festigkeit ist damit deutlich größer als die relative Abnahme der elektrischen Leitfähigkeit. Diese überraschende Eigenschaftskombination der Legierung ist aus den individuellen Beiträgen der einzelnen Legierungselemente nicht zu erwarten. Die relative Steigerung der Metallkosten ist geringer als die relative Steigerung der Festigkeit und kann somit beispielsweise durch eine Reduktion des Querschnitts der Leiterstäbe kompensiert werden. Damit bietet diese Legierung eine sehr attraktive Kombination von Eigenschaften für die Verwendung in gegossenen Käfigläufern von Asynchronmaschinen.
- Probe Nr. 5 ist eine Kupferlegierung mit ungefähr 0,1 % Silber, 0,13 % Zinn und 0,1 % Nickel. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 20 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 84 % IACS. Die relative Steigerung der Festigkeit ist damit größer als die relative Abnahme der elektrischen Leitfähigkeit. Diese überraschende Eigenschaftskombination der Legierung ist aus den individuellen Beiträgen der einzelnen Legierungselemente nicht zu erwarten. Die relative Steigerung der Metallkosten ist geringer als die relative Steigerung der Festigkeit.
- Probe Nr. 6 ist eine Kupferlegierung mit ungefähr 0,1 % Silber, 0,1 % Zink und 0,1 % Aluminium. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 6 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 84 % IACS. Aufgrund der Elemente Zn und Al stellt diese Legierung eine kostengünstige Alternative dar.
- Probe Nr. 7 ist eine Kupferlegierung mit ungefähr 0,1 % Zinn, 0,1 % Zink und 0,1 % Aluminium. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 8 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 78 % IACS. Da diese Legierung kein Silber enthält, stellt sie eine besonders kostengünstige Alternative dar.
Claims (13)
- Kupferlegierung mit folgender Zusammensetzung [in Gewichts-%]:0,05 bis 0,5 % Ag,jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,Rest Cu sowie unvermeidbare Verunreinigungen,optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- Kupferlegierung gemäß Anspruch 1 mit folgender Zusammensetzung [in Gewichts-%]:jeweils 0,05 bis 0,5 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,Rest Cu sowie unvermeidbare Verunreinigungen,optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- Kupferlegierung gemäß Anspruch 2 mit folgender Zusammensetzung [in Gewichts-%]:0,06 bis 0,3 % Ag,jeweils 0,06 bis 0,3 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,Rest Cu sowie unvermeidbare Verunreinigungen,optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- Kupferlegierung gemäß Anspruch 3 mit folgender Zusammensetzung [in Gewichts-%]:0,06 bis 0,15 % Ag,jeweils 0,06 bis 0,15 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,Rest Cu sowie unvermeidbare Verunreinigungen,optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
- Kupferlegierung gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Verhältnis der Gewichtsanteile jeweils zweier Legierungselemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, maximal 1,5 beträgt.
- Kupferlegierung gemäß einem der Ansprüche 2 oder 5 mit folgender Zusammensetzung [in Gewichts-%]:
Ag: 0,06 bis 0,5 % Ni: 0,06 bis 0,5 % Zn: 0,06 bis 0,5 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. - Kupferlegierung gemäß Anspruch 6 mit folgender Zusammensetzung [in Gewichts-%]:
Ag: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. - Kupferlegierung gemäß einem der Ansprüche 4 oder 5 mit folgender Zusammensetzung [in Gewichts-%]:
Ag: 0,06 bis 0,15 % Sn: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. - Kupferlegierung gemäß einem der Ansprüche 4 oder 5 mit folgender Zusammensetzung [in Gewichts-%]:
Ag: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. - Stromführendes Konstruktionsteil aus einer Kupferlegierung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Konstruktionsteil mittels eines urformtechnischen Verfahrens hergestellt ist.
- Käfigläufer aus einer Kupferlegierung gemäß einem der Ansprüche 1 bis 9, wobei der Käfigläufer mehrere Leiterstäbe und zwei Kurzschlussringe umfasst, dadurch gekennzeichnet, dass die Leiterstäbe und die Kurzschlussringe einstückig gegossen sind.
- Stromführendes Konstruktionsteil aus einer Kupferlegierung mit folgender Zusammensetzung [in Gewichts-%]:
Sn: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht,
dadurch gekennzeichnet, dass das Konstruktionsteil mittels eines urformtechnischen Verfahrens hergestellt ist. - Käfigläufer aus einer Kupferlegierung mit folgender Zusammensetzung [in Gewichts-%]:
Sn: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 %
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht,
wobei der Käfigläufer mehrere Leiterstäbe und zwei Kurzschlussringe umfasst, dadurch gekennzeichnet, dass die Leiterstäbe und die Kurzschlussringe einstückig gegossen sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013007274.3A DE102013007274B4 (de) | 2013-04-26 | 2013-04-26 | Konstruktionsteil aus einer Kupfergusslegierung |
PCT/EP2014/000957 WO2014173498A1 (de) | 2013-04-26 | 2014-04-10 | Kupfergusslegierung für asynchronmaschinen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2989224A1 EP2989224A1 (de) | 2016-03-02 |
EP2989224B1 true EP2989224B1 (de) | 2020-07-22 |
Family
ID=50513879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14718324.8A Active EP2989224B1 (de) | 2013-04-26 | 2014-04-10 | Kupfergusslegierung für asynchronmaschinen |
Country Status (9)
Country | Link |
---|---|
US (1) | US9973068B2 (de) |
EP (1) | EP2989224B1 (de) |
JP (1) | JP6254679B2 (de) |
KR (1) | KR102195080B1 (de) |
CN (1) | CN105164292A (de) |
DE (1) | DE102013007274B4 (de) |
ES (1) | ES2820568T3 (de) |
RU (1) | RU2661691C2 (de) |
WO (1) | WO2014173498A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106521232B (zh) * | 2016-11-22 | 2018-05-18 | 陕西斯瑞新材料股份有限公司 | 一种高强、中导新型铜合金Cu-Zn-Cr-RE导条及制备方法 |
CN107511469A (zh) * | 2017-10-13 | 2017-12-26 | 安阳恒安电机有限公司 | 一种电机转子鼠笼低压铸铜设备、铸铜及其铸铜方法 |
RU2709909C1 (ru) * | 2018-11-26 | 2019-12-23 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Низколегированный медный сплав |
US20230243018A1 (en) * | 2020-06-30 | 2023-08-03 | Mitsubishi Materials Corporation | Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate |
CN113234955A (zh) * | 2021-04-30 | 2021-08-10 | 浙江利丰电器股份有限公司 | 用于换向器铜片制作的银铜合金材料 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE503187C (de) | 1925-07-02 | 1930-07-22 | Heinrich Frei | Laeufer fuer Ein- oder Mehrphasen-Wechselstrommotoren mit ausgepraegten Polen und n Laeuferblechkoerpern |
US2304067A (en) | 1940-07-29 | 1942-12-08 | Fairbanks Morse & Co | Production of rotors for electric machines |
GB949570A (en) * | 1960-08-03 | 1964-02-12 | Licentia Gmbh | Improvements in and relating to dynamo-electric machines |
JPS52120222A (en) * | 1976-04-01 | 1977-10-08 | Sumitomo Electric Ind Ltd | Copper alloy for heating element |
JPS5610059A (en) | 1979-07-04 | 1981-02-02 | Yaskawa Electric Mfg Co Ltd | Cage type rotor |
JPS586950A (ja) | 1981-07-07 | 1983-01-14 | Furukawa Electric Co Ltd:The | 回転子用導電材料 |
DE3324687A1 (de) | 1983-06-14 | 1984-12-20 | BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau | Asynchronmaschine mit doppelkaefigankerwicklung |
JPS61147830A (ja) * | 1984-12-18 | 1986-07-05 | Furukawa Electric Co Ltd:The | 自動車熱交換器のフイン用銅合金 |
JPS6250425A (ja) * | 1985-08-29 | 1987-03-05 | Furukawa Electric Co Ltd:The | 電子機器用銅合金 |
DE69133422T2 (de) * | 1990-05-31 | 2006-02-02 | Kabushiki Kaisha Toshiba, Kawasaki | Leiterrahmen und diesen verwendende halbleiter verpackung |
JP2864279B2 (ja) * | 1990-06-20 | 1999-03-03 | 本田技研工業株式会社 | 摺動部材の組合せ |
JP2692507B2 (ja) | 1992-09-03 | 1997-12-17 | 日立工機株式会社 | かご形回転子の製造装置 |
JP3362479B2 (ja) | 1993-11-05 | 2003-01-07 | 株式会社日立製作所 | 回転電機の回転子 |
JPH1129379A (ja) | 1997-02-14 | 1999-02-02 | Ngk Insulators Ltd | 半導体ヒートシンク用複合材料及びその製造方法 |
DE10014643C2 (de) | 2000-03-24 | 2003-01-30 | Siemens Ag | Verfahren zur Herstellung eines Läuferkäfigs für einen Asynchronmotor |
US20050134137A1 (en) * | 2003-12-17 | 2005-06-23 | Sweo Edwin A. | Method for manufacturing squirrel cage rotor |
DE202004020873U1 (de) * | 2004-03-31 | 2006-03-30 | Ziehl-Abegg Ag | Elektrische Maschine |
JP4660735B2 (ja) * | 2004-07-01 | 2011-03-30 | Dowaメタルテック株式会社 | 銅基合金板材の製造方法 |
JP4680765B2 (ja) * | 2005-12-22 | 2011-05-11 | 株式会社神戸製鋼所 | 耐応力緩和特性に優れた銅合金 |
JP2009179864A (ja) * | 2008-01-31 | 2009-08-13 | Kobe Steel Ltd | 耐応力緩和特性に優れた銅合金板 |
RU2395151C1 (ru) * | 2009-04-22 | 2010-07-20 | Андрей Витальевич Шишов | Ротор асинхронного двигателя |
DE102009018951A1 (de) * | 2009-04-25 | 2010-11-04 | Ksb Aktiengesellschaft | Kurzschlussläufer mit gegossenen Kurzschlussstäben |
JP2011027280A (ja) * | 2009-07-22 | 2011-02-10 | Daikin Industries Ltd | 給湯用伝熱管 |
TWI539013B (zh) | 2010-08-27 | 2016-06-21 | Furukawa Electric Co Ltd | Copper alloy sheet and method of manufacturing the same |
CN102394118A (zh) * | 2011-09-13 | 2012-03-28 | 无锡市嘉邦电力管道厂 | 铜合金电缆 |
-
2013
- 2013-04-26 DE DE102013007274.3A patent/DE102013007274B4/de active Active
-
2014
- 2014-04-10 ES ES14718324T patent/ES2820568T3/es active Active
- 2014-04-10 EP EP14718324.8A patent/EP2989224B1/de active Active
- 2014-04-10 WO PCT/EP2014/000957 patent/WO2014173498A1/de active Application Filing
- 2014-04-10 US US14/779,161 patent/US9973068B2/en active Active
- 2014-04-10 RU RU2015150333A patent/RU2661691C2/ru active
- 2014-04-10 JP JP2016509319A patent/JP6254679B2/ja active Active
- 2014-04-10 KR KR1020157023572A patent/KR102195080B1/ko active IP Right Grant
- 2014-04-10 CN CN201480009627.1A patent/CN105164292A/zh active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
KR102195080B1 (ko) | 2020-12-28 |
US9973068B2 (en) | 2018-05-15 |
US20160056698A1 (en) | 2016-02-25 |
KR20160002690A (ko) | 2016-01-08 |
DE102013007274A1 (de) | 2014-10-30 |
RU2015150333A (ru) | 2017-06-02 |
CN105164292A (zh) | 2015-12-16 |
DE102013007274B4 (de) | 2020-01-16 |
RU2661691C2 (ru) | 2018-07-19 |
EP2989224A1 (de) | 2016-03-02 |
ES2820568T3 (es) | 2021-04-21 |
WO2014173498A1 (de) | 2014-10-30 |
JP2016518525A (ja) | 2016-06-23 |
JP6254679B2 (ja) | 2017-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69708578T2 (de) | Kupferlegierung und Verfahren zu ihrer Herstellung | |
DE69327470T2 (de) | Kupferlegierung mit hoher festigkeit und guter leitfähigkeit und verfahren zu deren herstellung | |
DE112009000731B4 (de) | Cu-Ni-Si-Co-Cr-Systemlegierung für elektronische Materialien | |
EP2989224B1 (de) | Kupfergusslegierung für asynchronmaschinen | |
EP3011069B1 (de) | Widerstandslegierung, daraus hergestelltes bauelement und herstellungsverfahren dafür | |
DE19816671A1 (de) | Lötmittel-Legierungen | |
DE10147968B4 (de) | Kupferlegierung von hoher mechanischer Festigkeit | |
EP3320122B1 (de) | Messinglegierung | |
EP0313036A1 (de) | Verwendung einer Kupfer-Zink-Legierung | |
EP2527479B1 (de) | Hochleitfähige Aluminiumlegierung für elektrisch leitfähige Produkte | |
DE112005000312T5 (de) | Kupferlegierung | |
EP3198048A1 (de) | Elektrisches verbindungselement | |
DE69207289T2 (de) | Legierung auf Kupfer-Nickel-Basis | |
DE2932275A1 (de) | Material fuer elektrische kontakte aus innen oxidierter ag-sn-bi-legierung | |
DE69709610T2 (de) | Kupfer-Nickel-Beryllium Legierung | |
EP2644723A1 (de) | Verbundwerkstoff | |
WO2014154191A1 (de) | Kupferlegierung | |
DE69219397T2 (de) | Metalloxidmaterial auf Silberbasis für elektrische Kontakte | |
DE112005001271T5 (de) | Kupferlegierung für elektrische und elektronische Geräte | |
DE102014105709A1 (de) | Rotor aus aluminumlegierung für eine elektromagnetische vorrichtung | |
AT393697B (de) | Verbesserte metallegierung auf kupferbasis, insbesondere fuer den bau elektronischer bauteile | |
DE3530736A1 (de) | Leitermaterial auf kupferbasis fuer anschluesse von halbleitervorrichtungen | |
DE4415067C2 (de) | Verfahren zur Herstellung einer Kupfer-Nickel-Silizium-Legierung und deren Verwendung | |
EP3670691A1 (de) | Magnesiumbasislegierung und verfahren zur herstellung derselben | |
EP1043409B1 (de) | Pulvermetallurgisch hergestellter Verbundwerkstoff und Verfahren zu dessen Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151007 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: RIEDLE, JOACHIM Inventor name: NOLL,TONY ROBERT Inventor name: ALLMENDINGER, TIMO Inventor name: THUMM, GERHARD |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181022 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200221 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014014489 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1293444 Country of ref document: AT Kind code of ref document: T Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201123 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201022 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201022 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201023 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2820568 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210421 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014014489 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
26N | No opposition filed |
Effective date: 20210423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210410 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240312 Year of fee payment: 11 Ref country code: IT Payment date: 20240313 Year of fee payment: 11 Ref country code: FR Payment date: 20240308 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240430 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240509 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240326 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |