EP2989224B1 - Cast copper alloy for asynchronous machines - Google Patents

Cast copper alloy for asynchronous machines Download PDF

Info

Publication number
EP2989224B1
EP2989224B1 EP14718324.8A EP14718324A EP2989224B1 EP 2989224 B1 EP2989224 B1 EP 2989224B1 EP 14718324 A EP14718324 A EP 14718324A EP 2989224 B1 EP2989224 B1 EP 2989224B1
Authority
EP
European Patent Office
Prior art keywords
elements
weight
group
alloy
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14718324.8A
Other languages
German (de)
French (fr)
Other versions
EP2989224A1 (en
Inventor
Timo ALLMENDINGER
Tony Robert NOLL
Joachim Riedle
Gerhard Thumm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP2989224A1 publication Critical patent/EP2989224A1/en
Application granted granted Critical
Publication of EP2989224B1 publication Critical patent/EP2989224B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/165Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors characterised by the squirrel-cage or other short-circuited windings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Definitions

  • the invention relates to copper casting alloys and current-carrying structural parts made therefrom by means of primary molding processes.
  • the invention relates to cast squirrel-cage rotors for asynchronous machines.
  • the electrical conductivity is only slightly reduced by the alloy elements.
  • the material must have good castability. Zirconium and / or chromium are often used as alloy components.
  • JP 56010059 A a copper alloy containing zinc, chromium, zirconium and titanium is proposed for the die casting process.
  • JP 2011 027280 A discloses a copper alloy with 0.1 to 2 wt% aluminum, tin from 0.1 wt% to aluminum content, zinc from 0.05 wt% to aluminum content and phosphorus from 0.001 to 0.1 wt. -%. Tubes for heat exchangers are made from the alloy.
  • Copper materials processed by metal forming processes are characterized by a higher strength than copper materials in the as-cast state.
  • the person skilled in the art can therefore give no indication of the above-mentioned prior art Find out which copper alloy has a favorable combination of properties with regard to electrical conductivity and strength even when cast.
  • the invention is therefore based on the object of specifying improved copper casting alloys in terms of strength, conductivity and castability and improved current-carrying structural parts in terms of strength and conductivity.
  • the invention is intended to provide improved, one-piece cast squirrel-cage rotors for asynchronous machines.
  • the alloy elements should also be selected with regard to their effects on health and the environment. In particular, lead and cadmium should be avoided.
  • the invention is given with respect to a copper alloy by the features of claim 1, with regard to a structural part with the features of claim 10 and alternatively with claim 12 and with respect to a squirrel-cage rotor with the features of claim 11 and alternatively with claim 13.
  • the further back claims relate to advantageous developments and further developments of the invention.
  • the invention is based on the consideration that the strength of metals is increased by the incorporation of foreign atoms. This effect is particularly interesting for cast alloys, because it enables high strength values to be achieved without further forming steps.
  • a The elements Al, Sn, Ni and Zn have a particularly great effect on solid solution strengthening in copper. If the strength of pure copper is to be increased by solid solution strengthening, the addition of Al and Sn is particularly worthwhile. It is also known that the addition of alloy elements fundamentally worsens the electrical and thermal conductivity of pure copper. In the field of mixed crystal formation, however, the conductivity of copper is influenced relatively little by the elements Zn, Ag, Ni, Sn and Al. If the electrical conductivity of copper is to be impaired as little as possible, the addition of Zn and Ag is particularly worthwhile.
  • a casting material can be found that has a particularly favorable combination of strength and conductivity.
  • the content of the individual elements should be at least 0.05% by weight and at most 0.5% by weight.
  • the effect of the alloy elements is too low for element contents less than 0.05% by weight.
  • the sum of the element contents can preferably be at least 0.25% by weight.
  • element contents greater than 0.5% by weight undesired segregation of the alloy or segregation can occur.
  • the content of the individual elements can preferably be at most 0.3% by weight.
  • Alloying three or more elements creates an alloy whose melting interval is longer than the melting interval of alloys with fewer elements. This has a favorable effect on the castability of the material.
  • the copper alloy preferably contains the element Sn. This results in particularly favorable properties.
  • the copper alloy contains the element Ag. This results in particularly favorable properties with regard to electrical conductivity.
  • 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb can be added to the alloy. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. By deoxidizing the melt you can also reduce the gas intake.
  • the sum of the contents of the elements Mg, Ti, Zr, B, P, As, Sb can be limited to a maximum of 0.5% by weight.
  • the content of the individual elements can be limited to a maximum of 0.07% by weight.
  • the increase in strength is not always sufficient at contents of less than 0.06% by weight. With element contents greater than 0.15% by weight, the electrical conductivity can be reduced too much, for example below 75% IACS.
  • the sum of the proportions of the elements from the group consisting of Ag, Ni, Zn, Sn and Al is preferably at least 0.20% by weight and at most 0.35% by weight.
  • the proportions of the alloy elements can preferably be selected such that the ratio by weight of two arbitrary alloy elements from the group consisting of Ag, Ni, Zn, Sn and Al is at most 1.5.
  • the more common of the two alloying elements forms the numerator of the quotient to be calculated.
  • This weight ratio is particularly preferably at most 1.3.
  • the elements selected from the group consisting of Ag, Ni, Zn, Sn and Al for the respective alloy are alloyed in approximately equal parts by weight.
  • the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.5% Ni: 0.06 to 0.5% Zn: 0.06 to 0.5% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such an alloy has an electrical conductivity of at least 68% IACS and can exceed the strength of pure copper by up to 35%.
  • the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • IACS IACS
  • such an alloy has an electrical conductivity that is approximately equal to that of a copper alloy which contains 1% by weight of Ag (CuAg1).
  • the increase in strength compared to pure copper in the as-cast state is approximately 20%.
  • Such an alloy thus has a very favorable combination of properties.
  • the relative increase in strength is greater than the relative decrease in conductivity. Due to the low proportion of alloys, the alloy is at the cost level of commercially available copper alloys.
  • the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such an alloy has an electrical conductivity of approximately 85% IACS.
  • the increase in strength compared to pure copper in the as-cast state is approximately 20%.
  • Such an alloy thus has a very favorable combination of properties.
  • the relative increase in strength is greater than the relative decrease in conductivity. Due to the low proportion of alloys, the alloy is at the cost level of commercially available copper alloys.
  • the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such an alloy has an electrical Conductivity of about 85% IACS. The increase in strength compared to pure copper in the as-cast state is approximately 10%. Due to the elements Zn and Al, this alloy is an inexpensive alternative.
  • Another advantageous copper alloy can have the following composition in% by weight: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such an alloy has an electrical conductivity of approximately 80% IACS.
  • the increase in strength compared to pure copper in the as-cast state is approximately 10%. Since this alloy does not contain silver, it is a particularly inexpensive alternative.
  • a further aspect of the invention relates to current-carrying structural parts made of copper alloys, the structural parts being produced by means of an original molding process and the copper alloys having the following composition in% by weight: 0.05 to 0.5% Ag, in each case 0.05 to 0.5 % of at least two elements from the group consisting of Ni, Zn, Sn and Al, balance Cu and inevitable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb exists.
  • the copper alloy of the structural part can have the following composition in% by weight: Sn: 0.06 to 0.15%, Zn: 0.06 to 0.15%, Al: 0.06 to 0.15%, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such structural parts can be, for example, switches, commutators, grinding wheels, busbars, contacts, brushes, bridges, components for switching devices, conductor bars or short-circuit rings of cage rotors or other components.
  • Primary molding processes are understood to mean casting processes such as, for example, die casting, investment casting, full mold casting or other processes.
  • the above-mentioned casting process the cast body essentially already has the shape of the desired structural part. Separation processes can be used to carry out one or more further processing steps which slightly change the shape of the structural part. Examples of this are cutting off the sprue or reworking the surface of the structural part.
  • the finished construction part is therefore in the as-cast state.
  • the copper alloys according to the invention have a higher strength than pure copper due to the solidification of the solid solution in the as-cast state.
  • the electrical conductivity is relatively little reduced compared to pure copper.
  • the alloys according to the invention also have good castability: they show only a slight tendency to absorb gas and are characterized by a good mold filling capacity.
  • an alloy adapted to the respective application can be found.
  • the Ag content can be limited to 0.15% by weight.
  • the metal costs of the alloys according to the invention are increased by a maximum of 15% compared to pure copper.
  • Construction parts produced by master molding processes are less expensive to manufacture than construction parts that are made from semi-finished products.
  • the total cost of the construction parts according to the invention can consequently be cheaper than the total costs of other construction parts.
  • the alloy according to the invention can optionally contain 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. By deoxidizing the melt, they can also reduce gas absorption.
  • the copper alloy has the following composition in% by weight: 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • the copper alloy of the cage rotor can have the following composition in% by weight: Sn: 0.06 to 0.15%, Zn: 0.06 to 0.15%, Al: 0.06 to 0.15%, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • the invention is based on the idea of casting conductor bars and short-circuit rings of cage rotors in one piece. Suitable casting processes for this can be die casting, investment casting, full mold casting and other processes. Due to their high electrical conductivity, copper alloys are well suited for the manufacture of cage rotors. Since the high speeds of the asynchronous machines exert large forces, in particular on the conductor bars of the squirrel-cage rotors, the copper alloys used must have high strength even when cast. Copper alloys which have the following composition in% by weight are therefore particularly suitable: 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al exists, rest Cu and inevitable impurities.
  • the copper alloys according to the invention have a higher strength than pure copper due to the solidification of the solid solution in the as-cast state.
  • the electrical conductivity is relatively little reduced compared to pure copper.
  • the alloys according to the invention also have good castability: they show only a slight tendency to absorb gas and are characterized by a good mold filling capacity.
  • the alloy according to the invention can optionally contain 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. Through an appropriate selection of the alloying elements and the alloying composition, an alloy adapted to the respective application can be found.
  • the following alloys have proven to be particularly advantageous: Copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities.
  • Each of the aforementioned alloys can optionally have 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb added.
  • the metal costs of the alloys according to the invention are increased by a maximum of 15% compared to pure copper.
  • Table 1 shows a compilation of the alloys examined.
  • the composition of the sample, the determined tensile strength R m in the as-cast state and the relative electrical conductivity, expressed by the IACS value, are given for each alloy.
  • the metal costs resulting from the alloy composition are standardized to the metal costs of pure copper (sample no. 1).
  • Sample No. 2 is a reference alloy with 99% copper and 1% silver. This alloy has attractive properties in terms of strength and conductivity, but due to the high metal costs, it can only be used economically in very special applications.
  • Sample No. 3 is a copper alloy with approximately 0.5% silver, 0.5% nickel and 0.5% zinc. This alloy achieves a strength that is approx. 35% higher than that of pure copper.
  • the electrical conductivity is 68% IACS.
  • Sample No. 4 is a copper alloy with approximately 0.1% silver, 0.1% nickel and 0.1% zinc. This alloy achieves a strength that is approx. 20% higher than that of pure copper.
  • the electrical conductivity is 91% IACS.
  • the relative increase in strength is thus significantly greater than the relative Decrease in electrical conductivity.
  • This surprising combination of properties of the alloy is not to be expected from the individual contributions of the individual alloy elements.
  • the relative increase in metal costs is less than the relative increase in strength and can therefore be compensated for, for example, by reducing the cross section of the conductor bars. This alloy thus offers a very attractive combination of properties for use in cast squirrel cage rotors.
  • Sample No. 5 is a copper alloy with approximately 0.1% silver, 0.13% tin and 0.1% nickel. This alloy achieves a strength that is approx. 20% higher than that of pure copper.
  • the electrical conductivity is 84% IACS.
  • the relative increase in strength is therefore greater than the relative decrease in electrical conductivity. This surprising combination of properties of the alloy is not to be expected from the individual contributions of the individual alloy elements.
  • the relative increase in metal costs is less than the relative increase in strength.
  • Sample No. 6 is a copper alloy with approximately 0.1% silver, 0.1% zinc and 0.1% aluminum. This alloy achieves a strength that is approx. 6% higher than that of pure copper.
  • the electrical conductivity is 84% IACS. Due to the elements Zn and Al, this alloy is an inexpensive alternative.
  • Sample No. 7 is a copper alloy with approximately 0.1% tin, 0.1% zinc and 0.1% aluminum. This alloy achieves a strength that is approx. 8% higher than that of pure copper. The electrical conductivity is 78% IACS. Since this alloy does not contain silver, it is a particularly inexpensive alternative.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)

Description

Die Erfindung betrifft Kupfergusslegierungen sowie daraus mittels Urformverfahren hergestellte, stromführende Konstruktionsteile. Insbesondere betrifft die Erfindung gegossene Käfigläufer für Asynchronmaschinen.The invention relates to copper casting alloys and current-carrying structural parts made therefrom by means of primary molding processes. In particular, the invention relates to cast squirrel-cage rotors for asynchronous machines.

Bereits aus der Patentschrift DE 503 187 ist bekannt, Käfigläufer für Asynchronmaschinen durch gleichzeitiges Gießen der Läuferstäbe und der Kurzschlussringe herzustellen. Läuferstäbe und Kurzschlussringe sind damit als einstückiges Bauteil ausgeführt, dessen Werkstoff sich im Gusszustand befindet. Als mögliche Gießverfahren sind beispielsweise in DE 43 29 679 C2 der Druckguss, in US 7,337,526 B2 der Vollformguss und in US 2,304,067 der Schleuderguss genannt. Kupfer und Kupferlegierungen sind aufgrund ihrer hohen elektrischen Leitfähigkeit wichtige Werkstoffe für die Herstellung von gegossenen Käfigläufern. Da sich der Werkstoff im Gusszustand befindet, ist er leicht verformbar. Deshalb kommt der Festigkeitssteigerung des Kupferwerkstoffs durch Legierungselemente eine große Bedeutung zu. Andererseits ist erwünscht, dass die elektrische Leitfähigkeit durch die Legierungselemente nur wenig reduziert wird. Ferner muss der Werkstoff eine gute Gießbarkeit aufweisen. Als Legierungsbestandteile werden oft Zirkon und/oder Chrom verwendet. In JP 56010059 A wird für das Druckgussverfahren eine Kupferlegierung vorgeschlagen, die Zink, Chrom, Zirkon und Titan enthält.Already from the patent specification DE 503 187 is known to produce squirrel-cage rotors for asynchronous machines by simultaneously casting the rotor bars and the short-circuit rings. Rotor bars and short-circuit rings are thus designed as a one-piece component, the material of which is in the as-cast state. For example, in DE 43 29 679 C2 die casting, in US 7,337,526 B2 the full cast and in US 2,304,067 called the centrifugal casting. Due to their high electrical conductivity, copper and copper alloys are important materials for the production of cast cage rotors. Since the material is in the as-cast state, it is easily deformable. For this reason, increasing the strength of the copper material through alloying elements is of great importance. On the other hand, it is desirable that the electrical conductivity is only slightly reduced by the alloy elements. Furthermore, the material must have good castability. Zirconium and / or chromium are often used as alloy components. In JP 56010059 A a copper alloy containing zinc, chromium, zirconium and titanium is proposed for the die casting process.

Weitere Kupferlegierungen für Käfigläufer sind im Zusammenhang mit Herstellverfahren bekannt, bei denen der Käfigläufer nicht einstückig gegossen wird, sondern aus einzelnen Komponenten zusammengebaut wird. Dabei werden die Leiterstäbe und/oder die Kurzschlussringe mittels umformtechnischer Verfahren hergestellt. So wird beispielsweise in GB 949,570 für stromführende Teile eine kalt umgeformte und wärmebehandelte Kupferlegierung vorgeschlagen, die zwischen 0,1 % und 0,25 % Zirkon enthält. In JP 58006950 A wird eine Kupferlegierung vorgeschlagen, die Eisen, Zink und optional Zinn und Phosphor enthält. Der aus dieser Legierung hergestellte Käfigläufer wird aus einem warmgewalzten Band gefertigt. In DE 100 14 643 C2 werden für die Kurzschlussringe die Legierungen CuCrZr und CuNi vorgeschlagen, wobei letztere zur Erzielung einer durch Ausscheidungshärtung erhöhten Festigkeit durch weitere Elemente wie beispielsweise Silicium ergänzt werden kann. In DE 10 2009 018 951 A1 sind Käfigläufer vorgeschlagen, bei denen die Kurzschlussringe aus einer Kupfer-Silber-Legierung bestehen. Der DE 33 24 687 A1 ist der Vorschlag zu entnehmen, die Leiterstäbe aus einer Kupfer-Silber-Legierung zu fertigen. In der gleichen Schrift wird alternativ auch eine Kupfer-Zink-Legierung vorgeschlagen. EP 0 652 624 A1 beschreibt einen mehrteiligen Aufbau der Leiterstäbe. Für den in Radialrichtung äußeren, keilartigen Teil werden verschiedene Kupferlegierungen vorgeschlagen, deren Leitfähigkeit mit mindestens 20% IACS charakterisiert ist. Der Fachmann kann der Schrift keinen Hinweis auf die Gießbarkeit der Legierungen entnehmen.Other copper alloys for squirrel-cage rotors are known in connection with manufacturing processes in which the squirrel-cage rotor is not cast in one piece, but rather is assembled from individual components. The conductor bars and / or the short-circuit rings are manufactured by means of metal-forming processes. For example, in GB 949,570 A cold-formed and heat-treated copper alloy is suggested for current-carrying parts, which contains between 0.1% and 0.25% zircon. In JP 58006950 A a copper alloy is proposed which contains iron, zinc and optionally tin and phosphorus. The squirrel-cage rotor made from this alloy is made from a hot-rolled strip. In DE 100 14 643 C2 the alloys CuCrZr and CuNi are proposed for the short-circuit rings, the latter being able to be supplemented with further elements such as silicon in order to achieve a strength increased by precipitation hardening. In DE 10 2009 018 951 A1 squirrel-cage rotors are proposed in which the short-circuit rings consist of a copper-silver alloy. Of the DE 33 24 687 A1 the suggestion can be found to manufacture the conductor bars from a copper-silver alloy. Alternatively, a copper-zinc alloy is also proposed in the same document. EP 0 652 624 A1 describes a multi-part structure of the conductor bars. Various copper alloys are proposed for the radially outer, wedge-like part, the conductivity of which is characterized by at least 20% IACS. The person skilled in the art cannot find any indication of the castability of the alloys in the document.

JP 2011 027280 A offenbart eine Kupferlegierung mit 0,1 bis 2 Gew.-% Aluminium, Zinn von 0,1 Gew.-% bis zum Aluminiumgehalt, Zink von 0,05 Gew.-% bis zum Aluminiumgehalt und Phosphor von 0,001 bis 0,1 Gew.-%. Aus der Legierung werden Rohre für Wärmetauscher hergestellt. JP 2011 027280 A discloses a copper alloy with 0.1 to 2 wt% aluminum, tin from 0.1 wt% to aluminum content, zinc from 0.05 wt% to aluminum content and phosphorus from 0.001 to 0.1 wt. -%. Tubes for heat exchangers are made from the alloy.

Durch umformtechnische Verfahren bearbeitete Kupferwerkstoffe zeichnen sich durch eine höhere Festigkeit als Kupferwerkstoffe im Gusszustand aus. Aus dem oben genannten Stand der Technik kann der Fachmann also keinen Hinweis entnehmen, welche Kupferlegierung auch im Gusszustand eine günstige Eigenschaftskombination hinsichtlich elektrischer Leitfähigkeit und Festigkeit aufweist.Copper materials processed by metal forming processes are characterized by a higher strength than copper materials in the as-cast state. The person skilled in the art can therefore give no indication of the above-mentioned prior art Find out which copper alloy has a favorable combination of properties with regard to electrical conductivity and strength even when cast.

Der Erfindung liegt daher die Aufgabe zugrunde, hinsichtlich Festigkeit, Leitfähigkeit und Gießbarkeit verbesserte Kupfergusslegierungen sowie hinsichtlich Festigkeit und Leitfähigkeit verbesserte stromführende Konstruktionsteile anzugeben. Insbesondere soll die Erfindung verbesserte, einstückig gegossene Käfigläufer für Asynchronmaschinen angeben. Dabei soll die Auswahl der Legierungselemente auch im Hinblick auf Auswirkungen für Gesundheit und Umwelt erfolgen. Insbesondere sollen Blei und Cadmium vermieden werden.The invention is therefore based on the object of specifying improved copper casting alloys in terms of strength, conductivity and castability and improved current-carrying structural parts in terms of strength and conductivity. In particular, the invention is intended to provide improved, one-piece cast squirrel-cage rotors for asynchronous machines. The alloy elements should also be selected with regard to their effects on health and the environment. In particular, lead and cadmium should be avoided.

Die Erfindung wird bezüglich einer Kupferlegierung durch die Merkmale des Anspruchs 1, bezüglich eines Konstruktionsteils durch die Merkmale des Anspruchs 10 und alternativ des Anspruchs 12 und bezüglich eines Käfigläufers durch die Merkmale des Anspruchs 11 und alternativ des Anspruchs 13 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is given with respect to a copper alloy by the features of claim 1, with regard to a structural part with the features of claim 10 and alternatively with claim 12 and with respect to a squirrel-cage rotor with the features of claim 11 and alternatively with claim 13. The further back claims relate to advantageous developments and further developments of the invention.

Die Erfindung schließt Kupferlegierungen mit folgender Zusammensetzung in Gewichts-% ein:

  • 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,
  • Rest Cu sowie unvermeidbare Verunreinigungen,
  • optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
The invention includes copper alloys with the following composition in% by weight:
  • 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al,
  • Balance Cu and unavoidable impurities,
  • optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.

Die Erfindung geht dabei von der Überlegung aus, dass die Festigkeit von Metallen durch den Einbau von Fremdatomen gesteigert wird. Insbesondere für Gusslegierungen ist dieser Effekt interessant, weil auf diese Weise ohne weitere Umformschritte bereits hohe Festigkeitswerte erreicht werden können. Eine besonders große Wirkung auf die Mischkristallverfestigung bei Kupfer haben die Elemente Al, Sn, Ni und Zn. Wenn die Festigkeit von Reinkupfer durch Mischkristallverfestigung gesteigert werden soll, ist der Zusatz von Al und Sn besonders verfolgenswert. Es ist ferner bekannt, dass der Zusatz von Legierungselementen grundsätzlich die elektrische und thermische Leitfähigkeit von Reinkupfer verschlechtert. Im Gebiet der Mischkristallbildung wird die Leitfähigkeit von Kupfer durch die Elemente Zn, Ag, Ni, Sn und Al jedoch relativ wenig beeinflusst. Soll die elektrische Leitfähigkeit von Kupfer möglichst wenig beeinträchtigt werden, ist der Zusatz von Zn und Ag besonders verfolgenswert. Durch eine geeignete Auswahl von mindestens drei Elementen aus der Gruppe, die aus den Elementen Ag, Ni, Zn, Sn und Al besteht, kann ein Gusswerkstoff gefunden werden, der eine besonders günstige Kombination von Festigkeit und Leitfähigkeit besitzt. Der Gehalt der einzelnen Elemente sollte dabei mindestens 0,05 Gew.-% und höchstens 0,5 Gew.-% betragen. Bei Elementgehalten kleiner als 0,05 Gew.-% ist die Wirkung der Legierungselemente zu gering. Bevorzugt kann auch bei weniger als fünf Legierungselementen die Summe der Elementgehalte mindestens 0,25 Gew.-% sein. Bei Elementgehalten größer als 0,5 Gew.-% kann es zu einem unerwünschten Entmischen der Legierung beziehungsweise zu Seigerungen kommen. Um solche Effekte sicher zu vermeiden, kann der Gehalt der einzelnen Elemente bevorzugt höchstens 0,3 Gew.-% betragen. Durch das Zulegieren von drei oder mehr Elementen entsteht eine Legierung, deren Schmelzintervall größer ist als das Schmelzintervall von Legierungen mit weniger Elementen. Dies wirkt sich günstig auf die Gießbarkeit des Werkstoffs aus. Bevorzugt enthält die Kupferlegierung das Element Sn. Dadurch ergeben sich besonders günstige Eigenschaften. Die Kupferlegierung enthält das Element Ag. Dadurch ergeben sich besonders günstige Eigenschaften hinsichtlich der elektrischen Leitfähigkeit. Optional kann der Legierung 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht, zugegeben werden. Diese Elemente bewirken eine Kornfeinung des Gussgefüges und erhöhen so die Festigkeit des Gusswerkstoffs. Durch Desoxidation der Schmelze können sie ferner die Gasaufnahme reduzieren. Um unerwünschte Wechselwirkungen zwischen den Elementen zu vermeiden, kann die Summe der Gehalte der Elemente Mg, Ti, Zr, B, P, As, Sb auf maximal 0,5 Gew.-% beschränkt sein. Alternativ kann der Gehalt der einzelnen Elemente auf maximal 0,07 Gew.-% beschränkt sein.The invention is based on the consideration that the strength of metals is increased by the incorporation of foreign atoms. This effect is particularly interesting for cast alloys, because it enables high strength values to be achieved without further forming steps. A The elements Al, Sn, Ni and Zn have a particularly great effect on solid solution strengthening in copper. If the strength of pure copper is to be increased by solid solution strengthening, the addition of Al and Sn is particularly worthwhile. It is also known that the addition of alloy elements fundamentally worsens the electrical and thermal conductivity of pure copper. In the field of mixed crystal formation, however, the conductivity of copper is influenced relatively little by the elements Zn, Ag, Ni, Sn and Al. If the electrical conductivity of copper is to be impaired as little as possible, the addition of Zn and Ag is particularly worthwhile. Through a suitable selection of at least three elements from the group consisting of the elements Ag, Ni, Zn, Sn and Al, a casting material can be found that has a particularly favorable combination of strength and conductivity. The content of the individual elements should be at least 0.05% by weight and at most 0.5% by weight. The effect of the alloy elements is too low for element contents less than 0.05% by weight. With less than five alloy elements, the sum of the element contents can preferably be at least 0.25% by weight. With element contents greater than 0.5% by weight, undesired segregation of the alloy or segregation can occur. In order to reliably avoid such effects, the content of the individual elements can preferably be at most 0.3% by weight. Alloying three or more elements creates an alloy whose melting interval is longer than the melting interval of alloys with fewer elements. This has a favorable effect on the castability of the material. The copper alloy preferably contains the element Sn. This results in particularly favorable properties. The copper alloy contains the element Ag. This results in particularly favorable properties with regard to electrical conductivity. Optionally, 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb can be added to the alloy. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. By deoxidizing the melt you can also reduce the gas intake. In order to avoid undesired interactions between the elements, the sum of the contents of the elements Mg, Ti, Zr, B, P, As, Sb can be limited to a maximum of 0.5% by weight. Alternatively, the content of the individual elements can be limited to a maximum of 0.07% by weight.

Bevorzugt kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:

  • 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,
  • Rest Cu sowie unvermeidbare Verunreinigungen,
  • optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
Die Zugabe von genau drei Legierungselementen aus der Gruppe, die aus den Elementen Ag, Ni, Zn, Sn und Al besteht, ermöglicht eine ausreichende Variation der Parameter, um einen Gusswerkstoff zu finden, der eine besonders günstige Kombination von Festigkeit und Leitfähigkeit besitzt. Bei genau drei Legierungselementen kann die Legierung leicht kontrollierbar hergestellt werden. Die Kupferlegierung enthält das Element Ag. Dadurch ergeben sich besonders günstige Eigenschaften hinsichtlich der elektrischen Leitfähigkeit. Die anderen beiden Legierungselemente sind dann aus der Gruppe auszuwählen, die aus den Elementen Ni, Zn, Sn und Al besteht. Folgende Kombinationen von Legierungselementen haben sich als besonders attraktiv erwiesen:
  1. a) Kupferlegierung mit jeweils 0,05 - 0,5 Gew.-% aus Ag, Ni, Zn
  2. b) Kupferlegierung mit jeweils 0,05 - 0,5 Gew.-% aus Ag, Sn, Ni
  3. c) Kupferlegierung mit jeweils 0,05 - 0,5 Gew.-% aus Ag, Zn, Al Bevorzugt ist der Ag-Anteil hierbei maximal 0,15 Gew.-%.
    Überraschenderweise ergibt auch folgende Kombination von Elementen eine Legierung mit günstigen Eigenschaften:
  4. d) Kupferlegierung mit jeweils 0,05 - 0,5 Gew.-% aus Sn, Zn, Al.
The copper alloy can preferably have the following composition in% by weight:
  • 0.05 to 0.5% Ag, each 0.05 to 0.5% of two elements from the group consisting of Ni, Zn, Sn and Al,
  • Balance Cu and unavoidable impurities,
  • optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
The addition of exactly three alloy elements from the group consisting of the elements Ag, Ni, Zn, Sn and Al enables the parameters to be varied sufficiently to find a casting material which has a particularly favorable combination of strength and conductivity. With exactly three alloy elements, the alloy can be manufactured in an easily controllable manner. The copper alloy contains the element Ag. This results in particularly favorable properties with regard to electrical conductivity. The other two alloy elements are then to be selected from the group consisting of the elements Ni, Zn, Sn and Al. The following combinations of alloying elements have proven to be particularly attractive:
  1. a) copper alloy with 0.05-0.5% by weight of Ag, Ni, Zn
  2. b) copper alloy with 0.05-0.5% by weight each of Ag, Sn, Ni
  3. c) Copper alloy with 0.05-0.5% by weight each of Ag, Zn, Al. The Ag content is preferably a maximum of 0.15% by weight.
    Surprisingly, the following combination of elements also results in an alloy with favorable properties:
  4. d) copper alloy with 0.05-0.5% by weight of Sn, Zn, Al.

Zu den vorstehend mit a), b), c) und d) bezeichneten Legierungen können optional 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe hinzutreten, die aus Mg, Ti, Zr, B, P, As, Sb besteht.In addition to the alloys referred to above with a), b), c) and d), 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb exists.

Bevorzugt kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:

  • 0,06 bis 0,3 % Ag, jeweils 0,06 bis 0,3 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,
  • Rest Cu sowie unvermeidbare Verunreinigungen,
  • optional 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
Bezüglich der Elemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, ist bei Gehalten kleiner als 0,06 Gew.-% die Steigerung der Festigkeit nicht immer ausreichend. Bei Elementgehalten größer als 0,3 Gew.-% kann die elektrische Leitfähigkeit zu stark reduziert sein, beispielsweise unter 70 % IACS. Bevorzugt beträgt die Summe der Anteile der Elemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, mindestens 0,20 Gew.-% und maximal 0,75 Gew.-%. Damit ergeben sich Legierungen mit besonders günstigen Eigenschaftskombinationen bezüglich Festigkeit und elektrischer Leitfähigkeit im Gusszustand. Besonders bevorzugt ist der Ag-Anteil aus Kostengründen maximal 0,15 Gew.-%.The copper alloy can preferably have the following composition in% by weight:
  • 0.06 to 0.3% Ag, each 0.06 to 0.3% of two elements from the group consisting of Ni, Zn, Sn and Al,
  • Balance Cu and unavoidable impurities,
  • optionally 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
With regard to the elements from the group consisting of Ag, Ni, Zn, Sn and Al, the increase in strength is not always sufficient at contents of less than 0.06% by weight. With element contents greater than 0.3% by weight, the electrical conductivity can be reduced too much, for example below 70% IACS. The sum of the proportions of the elements from the group consisting of Ag, Ni, Zn, Sn and Al is preferably at least 0.20% by weight and at most 0.75% by weight. This results in alloys with particularly favorable combinations of properties with regard to strength and electrical conductivity in the as-cast state. The Ag portion is particularly preferred for reasons of cost, at most 0.15% by weight.

Besonders bevorzugt kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen:

  • 0,06 bis 0,15 % Ag, jeweils 0,06 bis 0,15 % von zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht,
  • Rest Cu sowie unvermeidbare Verunreinigungen,
  • optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.
The copper alloy can particularly preferably have the following composition in% by weight:
  • 0.06 to 0.15% Ag, each 0.06 to 0.15% of two elements from the group consisting of Ni, Zn, Sn and Al,
  • Balance Cu and unavoidable impurities,
  • optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.

Bezüglich der Elemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, ist bei Gehalten kleiner als 0,06 Gew.-% die Steigerung der Festigkeit nicht immer ausreichend. Bei Elementgehalten größer als 0,15 Gew.-% kann die elektrische Leitfähigkeit zu stark reduziert sein, beispielsweise unter 75 % IACS. Bevorzugt beträgt die Summe der Anteile der Elemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, mindestens 0,20 Gew.-% und maximal 0,35 Gew.-%. Bevorzugt können bei der erfindungsgemäßen Kupferlegierung die Anteile der Legierungselemente so ausgewählt sein, dass das Verhältnis der Gewichtsanteile zweier beliebiger Legierungselemente aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, maximal 1,5 beträgt. Das häufigere der beiden Legierungselemente bildet hierbei den Zähler des zu berechnenden Quotienten. Besonders bevorzugt beträgt dieses Gewichtsverhältnis maximal 1,3. Es hat sich hinsichtlich Festigkeit und Leitfähigkeit im Gusszustand als günstig erwiesen, wenn die Elemente, die aus der Gruppe, die aus Ag, Ni, Zn, Sn und Al besteht, für die jeweilige Legierung ausgewählt sind, in ungefähr gleichen Gewichtsanteilen zulegiert sind.With regard to the elements from the group consisting of Ag, Ni, Zn, Sn and Al, the increase in strength is not always sufficient at contents of less than 0.06% by weight. With element contents greater than 0.15% by weight, the electrical conductivity can be reduced too much, for example below 75% IACS. The sum of the proportions of the elements from the group consisting of Ag, Ni, Zn, Sn and Al is preferably at least 0.20% by weight and at most 0.35% by weight. In the copper alloy according to the invention, the proportions of the alloy elements can preferably be selected such that the ratio by weight of two arbitrary alloy elements from the group consisting of Ag, Ni, Zn, Sn and Al is at most 1.5. The more common of the two alloying elements forms the numerator of the quotient to be calculated. This weight ratio is particularly preferably at most 1.3. In terms of strength and conductivity in the as-cast state, it has proven to be advantageous if the elements selected from the group consisting of Ag, Ni, Zn, Sn and Al for the respective alloy are alloyed in approximately equal parts by weight.

In bevorzugter Ausgestaltung der Erfindung kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen: Ag: 0,06 bis 0,5 % Ni: 0,06 bis 0,5 % Zn: 0,06 bis 0,5 % Rest Cu sowie unvermeidbare Verunreinigungen,
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist eine elektrische Leitfähigkeit von mindestens 68 % IACS auf und kann die Festigkeit von Reinkupfer um bis zu 35 % übertreffen.
In a preferred embodiment of the invention, the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.5% Ni: 0.06 to 0.5% Zn: 0.06 to 0.5% Balance Cu and unavoidable impurities,
optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. Such an alloy has an electrical conductivity of at least 68% IACS and can exceed the strength of pure copper by up to 35%.

In besonders bevorzugter Ausgestaltung der Erfindung kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen: Ag: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Rest Cu sowie unvermeidbare Verunreinigungen,
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist mit ungefähr 90 % IACS eine elektrische Leitfähigkeit auf, die ungefähr gleich zu einer Kupferlegierung ist, die 1 Gew.-% Ag enthält (CuAg1). Die Steigerung der Festigkeit gegenüber Reinkupfer beträgt im Gusszustand ungefähr 20 %. Damit weist eine solche Legierung eine sehr günstige Kombination von Eigenschaften auf. Die relative Steigerung der Festigkeit ist größer als die relative Abnahme der Leitfähigkeit. Aufgrund der geringen Legierungsanteile liegt die Legierung auf dem Kostenniveau handelsüblicher Kupferlegierungen.
In a particularly preferred embodiment of the invention, the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15% Balance Cu and unavoidable impurities,
optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. With approximately 90% IACS, such an alloy has an electrical conductivity that is approximately equal to that of a copper alloy which contains 1% by weight of Ag (CuAg1). The increase in strength compared to pure copper in the as-cast state is approximately 20%. Such an alloy thus has a very favorable combination of properties. The relative increase in strength is greater than the relative decrease in conductivity. Due to the low proportion of alloys, the alloy is at the cost level of commercially available copper alloys.

Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen: Ag: 0,06 bis 0,15 % Sn: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 % Rest Cu sowie unvermeidbare Verunreinigungen,
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist eine elektrische Leitfähigkeit von ungefähr 85 % IACS auf. Die Steigerung der Festigkeit gegenüber Reinkupfer beträgt im Gusszustand ungefähr 20 %. Damit weist eine solche Legierung eine sehr günstige Kombination von Eigenschaften auf. Die relative Steigerung der Festigkeit ist größer als die relative Abnahme der Leitfähigkeit. Aufgrund der geringen Legierungsanteile liegt die Legierung auf dem Kostenniveau handelsüblicher Kupferlegierungen.
In a further advantageous embodiment of the invention, the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15% Balance Cu and unavoidable impurities,
optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. Such an alloy has an electrical conductivity of approximately 85% IACS. The increase in strength compared to pure copper in the as-cast state is approximately 20%. Such an alloy thus has a very favorable combination of properties. The relative increase in strength is greater than the relative decrease in conductivity. Due to the low proportion of alloys, the alloy is at the cost level of commercially available copper alloys.

Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung kann die Kupferlegierung folgende Zusammensetzung in Gewichts-% aufweisen: Ag: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 % Rest Cu sowie unvermeidbare Verunreinigungen,
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist eine elektrische Leitfähigkeit von ungefähr 85 % IACS auf. Die Steigerung der Festigkeit gegenüber Reinkupfer beträgt im Gusszustand ungefähr 10 %. Aufgrund der Elemente Zn und Al stellt diese Legierung eine kostengünstige Alternative dar.
In a further advantageous embodiment of the invention, the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities,
optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. Such an alloy has an electrical Conductivity of about 85% IACS. The increase in strength compared to pure copper in the as-cast state is approximately 10%. Due to the elements Zn and Al, this alloy is an inexpensive alternative.

Eine weitere vorteilhafte Kupferlegierung kann folgende Zusammensetzung in Gewichts-% aufweisen: Sn: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 % Rest Cu sowie unvermeidbare Verunreinigungen,
optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Eine derartige Legierung weist eine elektrische Leitfähigkeit von ungefähr 80 % IACS auf. Die Steigerung der Festigkeit gegenüber Reinkupfer beträgt im Gusszustand ungefähr 10 %. Da diese Legierung kein Silber enthält, stellt sie eine besonders kostengünstige Alternative dar.
Another advantageous copper alloy can have the following composition in% by weight: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities,
optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. Such an alloy has an electrical conductivity of approximately 80% IACS. The increase in strength compared to pure copper in the as-cast state is approximately 10%. Since this alloy does not contain silver, it is a particularly inexpensive alternative.

Ein weiterer Aspekt der Erfindung betrifft stromführende Konstruktionsteile aus Kupferlegierungen, wobei die Konstruktionsteile mittels eines urformtechnischen Verfahrens hergestellt sind und wobei die Kupferlegierungen folgende Zusammensetzung in Gewichts-% aufweisen: 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht, Rest Cu sowie unvermeidbare Verunreinigungen, optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Alternativ kann die Kupferlegierung des Konstruktionsteils folgende Zusammensetzung in Gewichts-% aufweisen: Sn: 0,06 bis 0,15 %, Zn: 0,06 bis 0,15 %, Al: 0,06 bis 0,15 %, Rest Cu sowie unvermeidbare Verunreinigungen, optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.A further aspect of the invention relates to current-carrying structural parts made of copper alloys, the structural parts being produced by means of an original molding process and the copper alloys having the following composition in% by weight: 0.05 to 0.5% Ag, in each case 0.05 to 0.5 % of at least two elements from the group consisting of Ni, Zn, Sn and Al, balance Cu and inevitable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb exists. Alternatively, the copper alloy of the structural part can have the following composition in% by weight: Sn: 0.06 to 0.15%, Zn: 0.06 to 0.15%, Al: 0.06 to 0.15%, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.

Solche Konstruktionsteile können beispielsweise Schalter, Kommutatoren, Schleifkörper, Stromschienen, Kontakte, Bürsten, Brücken, Komponenten für Schaltgeräte, Leiterstäbe oder Kurzschlussringe von Käfigläufern oder andere Bauteile sein. Unter urformtechnischen Verfahren werden Gießverfahren wie beispielsweise Druckguss, Feinguss, Vollformguss oder andere Verfahren verstanden. Im Gegensatz zum Kokillenguss, mit dem vorwiegend Ausgangsmaterial für die Halbzeugfertigung gegossen wird, hat bei den vorstehend genannten Gießverfahren der Gusskörper im Wesentlichen bereits die Gestalt des gewünschten Konstruktionsteils. Mittels Trennverfahren können ein oder mehrere weitere Bearbeitungsschritte durchgeführt werden, die die Gestalt des Konstruktionsteils geringfügig verändern. Beispiele hierfür sind das Abtrennen des Angusses oder die Nachbearbeitung der Oberfläche des Konstruktionsteils. Umformtechnische Bearbeitungsschritte, durch die der Werkstoff des Konstruktionsteils in einen anderen Zustand gebracht wird, schließen sich jedoch nicht an. Das fertige Konstruktionsteil befindet sich folglich im Gusszustand. Die erfindungsgemäßen Kupferlegierungen weisen aufgrund der Mischkristallverfestigung im Gusszustand eine höhere Festigkeit auf als Reinkupfer. Die elektrische Leitfähigkeit ist gegenüber Reinkupfer verhältnismäßig wenig reduziert. Die erfindungsgemäßen Legierungen weisen ferner eine gute Gießbarkeit aus: Sie zeigen nur eine geringe Tendenz zur Gasaufnahme und sind durch ein gutes Formfüllvermögen gekennzeichnet. Durch eine geeignete Auswahl der Legierungselemente und der Legierungszusammensetzung kann eine auf die jeweilige Anwendung angepasste Legierung gefunden werden. Insbesondere kann der Gehalt an Ag auf 0,15 Gew.-% beschränkt werden. Die Metallkosten der erfindungsgemäßen Legierungen sind gegenüber Reinkupfer um maximal 15 % erhöht. Durch urformtechnische Verfahren hergestellte Konstruktionsteile weisen einen geringeren Herstellaufwand auf als Konstruktionsteile, die aus Halbzeugen gefertigt sind. Die Gesamtkosten der erfindungsgemäßen Konstruktionsteile können folglich günstiger sein als die Gesamtkosten anderer Konstruktionsteile. Optional kann die erfindungsgemäße Legierung 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe enthalten, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Diese Elemente bewirken eine Kornfeinung des Gussgefüges und erhöhen so die Festigkeit des Gusswerkstoffs. Durch Desoxidation der Schmelze können sie ferner die Gasaufnahme reduzieren.Such structural parts can be, for example, switches, commutators, grinding wheels, busbars, contacts, brushes, bridges, components for switching devices, conductor bars or short-circuit rings of cage rotors or other components. Primary molding processes are understood to mean casting processes such as, for example, die casting, investment casting, full mold casting or other processes. In contrast to gravity die casting, which is mainly used to cast starting material for semi-finished products, the above-mentioned casting process the cast body essentially already has the shape of the desired structural part. Separation processes can be used to carry out one or more further processing steps which slightly change the shape of the structural part. Examples of this are cutting off the sprue or reworking the surface of the structural part. Forming processing steps that bring the material of the structural part into a different state do not follow. The finished construction part is therefore in the as-cast state. The copper alloys according to the invention have a higher strength than pure copper due to the solidification of the solid solution in the as-cast state. The electrical conductivity is relatively little reduced compared to pure copper. The alloys according to the invention also have good castability: they show only a slight tendency to absorb gas and are characterized by a good mold filling capacity. Through an appropriate selection of the alloying elements and the alloying composition, an alloy adapted to the respective application can be found. In particular, the Ag content can be limited to 0.15% by weight. The metal costs of the alloys according to the invention are increased by a maximum of 15% compared to pure copper. Construction parts produced by master molding processes are less expensive to manufacture than construction parts that are made from semi-finished products. The total cost of the construction parts according to the invention can consequently be cheaper than the total costs of other construction parts. The alloy according to the invention can optionally contain 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. By deoxidizing the melt, they can also reduce gas absorption.

Ein weiterer Aspekt der Erfindung betrifft Käfigläufer mit mehreren Leiterstäben und zwei Kurzschlussringen, die aus einer Kupferlegierungen einstückig gegossen sind. Erfindungsgemäß weist die Kupferlegierung folgende Zusammensetzung in Gewichts-% auf: 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht, Rest Cu sowie unvermeidbare Verunreinigungen, optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Alternativ kann die Kupferlegierung des Käfigläufers folgende Zusammensetzung in Gewichts-% aufweisen: Sn: 0,06 bis 0,15 %, Zn: 0,06 bis 0,15 %, Al: 0,06 bis 0,15 %, Rest Cu sowie unvermeidbare Verunreinigungen, optional 0,01 bis 0,2 % von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht.Another aspect of the invention relates to squirrel-cage rotors with a plurality of conductor bars and two short-circuit rings which are made in one piece from a copper alloy are poured. According to the invention, the copper alloy has the following composition in% by weight: 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. Alternatively, the copper alloy of the cage rotor can have the following composition in% by weight: Sn: 0.06 to 0.15%, Zn: 0.06 to 0.15%, Al: 0.06 to 0.15%, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.

Die Erfindung geht dabei von der Überlegung aus, Leiterstäbe und Kurzschlussringe von Käfigläufern einstückig zu gießen. Geeignete Gießverfahren hierfür können Druckguss, Feinguss, Vollformguss und andere Verfahren sein. Aufgrund ihrer hohen elektrischen Leitfähigkeit sind Kupferlegierungen für die Herstellung von Käfigläufern gut geeignet. Da aufgrund der hohen Drehzahlen der Asynchronmaschinen große Kräfte insbesondere auf die Leiterstäbe der Käfigläufer wirken, müssen die verwendeten Kupferlegierungen bereits im Gusszustand eine hohe Festigkeit aufweisen. Besonders geeignet sind deshalb Kupferlegierungen, die folgende Zusammensetzung in Gewichts-% aufweisen: 0,05 bis 0,5 % Ag, jeweils 0,05 bis 0,5 % von mindestens zwei Elementen aus der Gruppe, die aus Ni, Zn, Sn und Al besteht, Rest Cu sowie unvermeidbare Verunreinigungen. Die erfindungsgemäßen Kupferlegierungen weisen aufgrund der Mischkristallverfestigung im Gusszustand eine höhere Festigkeit auf als Reinkupfer. Die elektrische Leitfähigkeit ist gegenüber Reinkupfer verhältnismäßig wenig reduziert. Die erfindungsgemäßen Legierungen weisen ferner eine gute Gießbarkeit auf: Sie zeigen nur eine geringe Tendenz zur Gasaufnahme und sind durch ein gutes Formfüllvermögen gekennzeichnet. Optional kann die erfindungsgemäße Legierung 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe enthalten, die aus Mg, Ti, Zr, B, P, As, Sb besteht. Diese Elemente bewirken eine Kornfeinung des Gussgefüges und erhöhen so die Festigkeit des Gusswerkstoffs. Durch eine geeignete Auswahl der Legierungselemente und der Legierungszusammensetzung kann eine auf die jeweilige Anwendung angepasste Legierung gefunden werden. Insbesondere erweisen sich folgende Legierungen als vorteilhaft:
Kupferlegierung mit folgender Zusammensetzung in Gewichts-%: Ag: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Rest Cu sowie unvermeidbare Verunreinigungen;
Alternativ: Kupferlegierung mit folgender Zusammensetzung in Gewichts-%: Ag: 0,06 bis 0,15 % Sn: 0,06 bis 0,15 % Ni: 0,06 bis 0,15 % Rest Cu sowie unvermeidbare Verunreinigungen;
Alternativ: Kupferlegierung mit folgender Zusammensetzung in Gewichts-%: Ag: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 % Rest Cu sowie unvermeidbare Verunreinigungen;
Alternativ: Kupferlegierung mit folgender Zusammensetzung in Gewichts-%: Sn: 0,06 bis 0,15 % Zn: 0,06 bis 0,15 % Al: 0,06 bis 0,15 % Rest Cu sowie unvermeidbare Verunreinigungen.
The invention is based on the idea of casting conductor bars and short-circuit rings of cage rotors in one piece. Suitable casting processes for this can be die casting, investment casting, full mold casting and other processes. Due to their high electrical conductivity, copper alloys are well suited for the manufacture of cage rotors. Since the high speeds of the asynchronous machines exert large forces, in particular on the conductor bars of the squirrel-cage rotors, the copper alloys used must have high strength even when cast. Copper alloys which have the following composition in% by weight are therefore particularly suitable: 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al exists, rest Cu and inevitable impurities. The copper alloys according to the invention have a higher strength than pure copper due to the solidification of the solid solution in the as-cast state. The electrical conductivity is relatively little reduced compared to pure copper. The alloys according to the invention also have good castability: they show only a slight tendency to absorb gas and are characterized by a good mold filling capacity. The alloy according to the invention can optionally contain 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. Through an appropriate selection of the alloying elements and the alloying composition, an alloy adapted to the respective application can be found. The following alloys have proven to be particularly advantageous:
Copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15% Balance Cu and unavoidable impurities;
Alternatively: copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15% Balance Cu and unavoidable impurities;
Alternatively: copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities;
Alternatively: copper alloy with the following composition in% by weight: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities.

Zu jeder der vorgenannten Legierungen kann optional 0,01 bis 0,2 Gew.-% von einem oder mehreren Elementen aus der Gruppe, die aus Mg, Ti, Zr, B, P, As, Sb besteht, hinzutreten. Die Metallkosten der erfindungsgemäßen Legierungen sind gegenüber Reinkupfer um maximal 15 % erhöht.Each of the aforementioned alloys can optionally have 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb added. The metal costs of the alloys according to the invention are increased by a maximum of 15% compared to pure copper.

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert.The invention is explained in more detail using the following exemplary embodiments.

Tabelle 1 zeigt eine Zusammenstellung der untersuchten Legierungen. Es ist für jede Legierung die Zusammensetzung der Probe, die ermittelte Zugfestigkeit Rm im Gusszustand und die relative elektrische Leitfähigkeit, ausgedrückt durch den IACS-Wert, angegeben. Die Metallkosten, die sich aus der Legierungszusammensetzung rechnerisch ergeben, sind auf die Metallkosten von reinem Kupfer (Probe Nr. 1) normiert. Tabelle 1: Charakterisierung der untersuchten Proben Nr. Legierung Cu Ag Sn Ni Zn Al Zugfestigkeit Rm IACS Metallkosten Gew.-% Gew.-% Gew.-% Gew.-% Gew.-% Gew.-% MPa normiert 1 Cu 100 0 0 0 0 0 161 99% 1 2 CuAg1 99,0 1,00 0 0 0 0 233 92% 2,27 3 CuAgNiZn 98,6 0,48 0 0,45 0,48 0 215 68% 1,61 4 CuAgNiZn 99,7 0,10 0 0,10 0,11 0 192 91% 1,13 5 CuAgSnNi 99,7 0,12 0,13 0,09 0 0 193 84% 1,15 6 CuAgZnAl 99,7 0,10 0 0 0,10 0,09 170 84% 1,13 7 CuSnZnAl 99,7 0 0,12 0 0,11 0,12 174 78% 1 Table 1 shows a compilation of the alloys examined. The composition of the sample, the determined tensile strength R m in the as-cast state and the relative electrical conductivity, expressed by the IACS value, are given for each alloy. The metal costs resulting from the alloy composition are standardized to the metal costs of pure copper (sample no. 1). Table 1: Characterization of the examined samples No. alloy Cu Ag Sn Ni Zn Al Tensile strength R m IACS Metal costs % By weight % By weight % By weight % By weight % By weight % By weight MPa standardized 1 Cu 100 0 0 0 0 0 161 99% 1 2nd CuAg1 99.0 1.00 0 0 0 0 233 92% 2.27 3rd CuAgNiZn 98.6 0.48 0 0.45 0.48 0 215 68% 1.61 4th CuAgNiZn 99.7 0.10 0 0.10 0.11 0 192 91% 1.13 5 CuAgSnNi 99.7 0.12 0.13 0.09 0 0 193 84% 1.15 6 CuAgZnAl 99.7 0.10 0 0 0.10 0.09 170 84% 1.13 7 CuSnZnAl 99.7 0 0.12 0 0.11 0.12 174 78% 1

Probe Nr. 2 ist eine Referenzlegierung mit 99 % Kupfer und 1 % Silber. Diese Legierung hat hinsichtlich Festigkeit und Leitfähigkeit attraktive Eigenschaften, aufgrund der hohen Metallkosten ist sie jedoch nur in ganz speziellen Anwendungsfällen wirtschaftlich einsetzbar.Sample No. 2 is a reference alloy with 99% copper and 1% silver. This alloy has attractive properties in terms of strength and conductivity, but due to the high metal costs, it can only be used economically in very special applications.

Probe Nr. 3 ist eine Kupferlegierung mit ungefähr 0,5 % Silber, 0,5 % Nickel und 0,5 % Zink. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 35 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 68 % IACS.Sample No. 3 is a copper alloy with approximately 0.5% silver, 0.5% nickel and 0.5% zinc. This alloy achieves a strength that is approx. 35% higher than that of pure copper. The electrical conductivity is 68% IACS.

Probe Nr. 4 ist eine Kupferlegierung mit ungefähr 0,1 % Silber, 0,1 % Nickel und 0,1 % Zink. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 20 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 91 % IACS. Die relative Steigerung der Festigkeit ist damit deutlich größer als die relative Abnahme der elektrischen Leitfähigkeit. Diese überraschende Eigenschaftskombination der Legierung ist aus den individuellen Beiträgen der einzelnen Legierungselemente nicht zu erwarten. Die relative Steigerung der Metallkosten ist geringer als die relative Steigerung der Festigkeit und kann somit beispielsweise durch eine Reduktion des Querschnitts der Leiterstäbe kompensiert werden. Damit bietet diese Legierung eine sehr attraktive Kombination von Eigenschaften für die Verwendung in gegossenen Käfigläufern von Asynchronmaschinen.Sample No. 4 is a copper alloy with approximately 0.1% silver, 0.1% nickel and 0.1% zinc. This alloy achieves a strength that is approx. 20% higher than that of pure copper. The electrical conductivity is 91% IACS. The relative increase in strength is thus significantly greater than the relative Decrease in electrical conductivity. This surprising combination of properties of the alloy is not to be expected from the individual contributions of the individual alloy elements. The relative increase in metal costs is less than the relative increase in strength and can therefore be compensated for, for example, by reducing the cross section of the conductor bars. This alloy thus offers a very attractive combination of properties for use in cast squirrel cage rotors.

Probe Nr. 5 ist eine Kupferlegierung mit ungefähr 0,1 % Silber, 0,13 % Zinn und 0,1 % Nickel. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 20 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 84 % IACS. Die relative Steigerung der Festigkeit ist damit größer als die relative Abnahme der elektrischen Leitfähigkeit. Diese überraschende Eigenschaftskombination der Legierung ist aus den individuellen Beiträgen der einzelnen Legierungselemente nicht zu erwarten. Die relative Steigerung der Metallkosten ist geringer als die relative Steigerung der Festigkeit.Sample No. 5 is a copper alloy with approximately 0.1% silver, 0.13% tin and 0.1% nickel. This alloy achieves a strength that is approx. 20% higher than that of pure copper. The electrical conductivity is 84% IACS. The relative increase in strength is therefore greater than the relative decrease in electrical conductivity. This surprising combination of properties of the alloy is not to be expected from the individual contributions of the individual alloy elements. The relative increase in metal costs is less than the relative increase in strength.

Probe Nr. 6 ist eine Kupferlegierung mit ungefähr 0,1 % Silber, 0,1 % Zink und 0,1 % Aluminium. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 6 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 84 % IACS. Aufgrund der Elemente Zn und Al stellt diese Legierung eine kostengünstige Alternative dar.Sample No. 6 is a copper alloy with approximately 0.1% silver, 0.1% zinc and 0.1% aluminum. This alloy achieves a strength that is approx. 6% higher than that of pure copper. The electrical conductivity is 84% IACS. Due to the elements Zn and Al, this alloy is an inexpensive alternative.

Probe Nr. 7 ist eine Kupferlegierung mit ungefähr 0,1 % Zinn, 0,1 % Zink und 0,1 % Aluminium. Mit dieser Legierung wird eine Festigkeit erreicht, die ca. 8 % über der von Reinkupfer liegt. Die elektrische Leitfähigkeit beträgt 78 % IACS. Da diese Legierung kein Silber enthält, stellt sie eine besonders kostengünstige Alternative dar.Sample No. 7 is a copper alloy with approximately 0.1% tin, 0.1% zinc and 0.1% aluminum. This alloy achieves a strength that is approx. 8% higher than that of pure copper. The electrical conductivity is 78% IACS. Since this alloy does not contain silver, it is a particularly inexpensive alternative.

Claims (13)

  1. Copper alloy having the following composition [in % by weight] :
    from 0.05 to 0.5% Ag,
    in each case from 0.05 to 0.5% of at least two elements from the group which comprises Ni, Zn, Sn and Al,
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb.
  2. Copper alloy according to claim 1 having the following composition [in % by weight]:
    in each case from 0.05 to 0.5% of two elements from the group which comprises Ni, Zn, Sn and Al,
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb.
  3. Copper alloy according to claim 2 having the following composition [in % by weight]:
    from 0.06 to 0.3% Ag,
    in each case from 0.06 to 0.3% of two elements from the group which comprises Ni, Zn, Sn and Al,
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb.
  4. Copper alloy according to claim 3 having the following composition [in % by weight]:
    from 0.06 to 0.15% Ag,
    in each case from 0.06 to 0.15% of two elements from the group which comprises Ni, Zn, Sn and Al,
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb.
  5. Copper alloy according to any one of claims 1 to 4, characterised in that the ratio of the weight proportions in each case of two alloy elements from the group which comprises Ag, Ni, Zn, Sn and Al is a maximum of 1.5.
  6. Copper alloy according to either claim 2 or claim 5, having the following composition [in % by weight]: Ag: 0.06 to 0.5% Ni: 0.06 to 0.5% Zn: 0.06 to 0.5%
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb.
  7. Copper alloy according claim 6 having the following composition [in % by weight]: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15%
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb.
  8. Copper alloy according to either claim 4 or claim 5 having the following composition [in % by weight]: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15%
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb.
  9. Copper alloy according to either claim 4 or claim 5 having the following composition [in % by weight]: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15%
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb.
  10. Current-carrying construction component comprising a copper alloy according to any one of the preceding claims, characterised in that the construction component is produced by means of a technical original forming method.
  11. Cage rotor comprising a copper alloy according to any one of claims 1 to 9, wherein the cage rotor comprises a plurality of conductor rods and two short-circuit rings, characterised in that the conductor rods and the short-circuit rings are cast integrally.
  12. Current-carrying construction component comprising a copper alloy having the following composition [in % by weight] : Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15%
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb, characterised in that the construction component is produced by means of a technical original forming method.
  13. Cage rotor comprising a copper alloy having the following composition [in % by weight]: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15%
    balance Cu and inevitable impurities,
    optionally from 0.01 to 0.2% of one or more elements from the group which comprises Mg, Ti, Zr, B, P, As, Sb,
    wherein the cage rotor comprises a plurality of conductor rods and two short-circuit rings, characterised in that the conductor rods and the short-circuit rings are cast integrally.
EP14718324.8A 2013-04-26 2014-04-10 Cast copper alloy for asynchronous machines Active EP2989224B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013007274.3A DE102013007274B4 (en) 2013-04-26 2013-04-26 Construction part made of a cast copper alloy
PCT/EP2014/000957 WO2014173498A1 (en) 2013-04-26 2014-04-10 Cast copper alloy for asynchronous machines

Publications (2)

Publication Number Publication Date
EP2989224A1 EP2989224A1 (en) 2016-03-02
EP2989224B1 true EP2989224B1 (en) 2020-07-22

Family

ID=50513879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14718324.8A Active EP2989224B1 (en) 2013-04-26 2014-04-10 Cast copper alloy for asynchronous machines

Country Status (9)

Country Link
US (1) US9973068B2 (en)
EP (1) EP2989224B1 (en)
JP (1) JP6254679B2 (en)
KR (1) KR102195080B1 (en)
CN (1) CN105164292A (en)
DE (1) DE102013007274B4 (en)
ES (1) ES2820568T3 (en)
RU (1) RU2661691C2 (en)
WO (1) WO2014173498A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521232B (en) * 2016-11-22 2018-05-18 陕西斯瑞新材料股份有限公司 It is a kind of it is high-strength, in lead Novel copper alloy Cu-Zn-Cr-RE conducting bars and preparation method
CN107511469A (en) * 2017-10-13 2017-12-26 安阳恒安电机有限公司 A kind of squirrel cage motor rotor low pressure cast copper equipment, cast copper and its cast copper method
RU2709909C1 (en) * 2018-11-26 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Low-alloyed copper alloy
US20230243018A1 (en) * 2020-06-30 2023-08-03 Mitsubishi Materials Corporation Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
CN113234955A (en) * 2021-04-30 2021-08-10 浙江利丰电器股份有限公司 Silver-copper alloy material for manufacturing commutator copper sheet

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE503187C (en) 1925-07-02 1930-07-22 Heinrich Frei Runner for single or multi-phase AC motors with pronounced poles and n sheet metal runners
US2304067A (en) 1940-07-29 1942-12-08 Fairbanks Morse & Co Production of rotors for electric machines
GB949570A (en) 1960-08-03 1964-02-12 Licentia Gmbh Improvements in and relating to dynamo-electric machines
JPS52120222A (en) * 1976-04-01 1977-10-08 Sumitomo Electric Ind Ltd Copper alloy for heating element
JPS5610059A (en) 1979-07-04 1981-02-02 Yaskawa Electric Mfg Co Ltd Cage type rotor
JPS586950A (en) 1981-07-07 1983-01-14 Furukawa Electric Co Ltd:The Electrically conductive material for rotor
DE3324687A1 (en) 1983-06-14 1984-12-20 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Asynchronous machine with a double-cage armature winding
JPS61147830A (en) * 1984-12-18 1986-07-05 Furukawa Electric Co Ltd:The Copper alloy for fin of heat exchanger for automobile
JPS6250425A (en) 1985-08-29 1987-03-05 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance
JP3431139B2 (en) 1990-05-31 2003-07-28 株式会社東芝 Lead frame, method of manufacturing the same, and semiconductor package
JP2864279B2 (en) * 1990-06-20 1999-03-03 本田技研工業株式会社 Combination of sliding members
JP2692507B2 (en) 1992-09-03 1997-12-17 日立工機株式会社 Squirrel cage rotor manufacturing equipment
JP3362479B2 (en) 1993-11-05 2003-01-07 株式会社日立製作所 Rotating electric machine rotor
JPH1129379A (en) 1997-02-14 1999-02-02 Ngk Insulators Ltd Composite material for semiconductor heat sink and its production
DE10014643C2 (en) 2000-03-24 2003-01-30 Siemens Ag Method of manufacturing a rotor cage for an asynchronous motor
US20050134137A1 (en) 2003-12-17 2005-06-23 Sweo Edwin A. Method for manufacturing squirrel cage rotor
DE202004020873U1 (en) * 2004-03-31 2006-03-30 Ziehl-Abegg Ag Electric motor for ventilator fan has inner stator supplied with three-phase current and outer squirrel-cage rotor connected to housing with attached fan blades
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet
JP4680765B2 (en) * 2005-12-22 2011-05-11 株式会社神戸製鋼所 Copper alloy with excellent stress relaxation resistance
JP2009179864A (en) * 2008-01-31 2009-08-13 Kobe Steel Ltd Copper alloy sheet superior in stress relaxation resistance
RU2395151C1 (en) * 2009-04-22 2010-07-20 Андрей Витальевич Шишов Rotor of asynchronous motor
DE102009018951A1 (en) 2009-04-25 2010-11-04 Ksb Aktiengesellschaft Squirrel cage with cast shorting bars
JP2011027280A (en) * 2009-07-22 2011-02-10 Daikin Industries Ltd Heat transfer pipe for hot water supply
KR101503185B1 (en) 2010-08-27 2015-03-16 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and manufacturing method for same
CN102394118A (en) * 2011-09-13 2012-03-28 无锡市嘉邦电力管道厂 Copper alloy cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9973068B2 (en) 2018-05-15
RU2661691C2 (en) 2018-07-19
JP2016518525A (en) 2016-06-23
ES2820568T3 (en) 2021-04-21
WO2014173498A1 (en) 2014-10-30
JP6254679B2 (en) 2017-12-27
EP2989224A1 (en) 2016-03-02
DE102013007274A1 (en) 2014-10-30
DE102013007274B4 (en) 2020-01-16
US20160056698A1 (en) 2016-02-25
KR102195080B1 (en) 2020-12-28
KR20160002690A (en) 2016-01-08
RU2015150333A (en) 2017-06-02
CN105164292A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
DE112009000731B4 (en) Cu-Ni-Si-Co-Cr system alloy for electronic materials
EP2989224B1 (en) Cast copper alloy for asynchronous machines
DE3346882C2 (en) Use of an aluminum alloy for constructions with high specific electrical resistance
DE19816671A1 (en) Lead-free tin-antimony-silver solder alloy
EP3011069B1 (en) Resistor alloy, component produced therefrom and production method therefor
EP3320122B1 (en) Brass alloy
EP0313036A1 (en) Use of a copper-zinc alloy
DE112005000312T5 (en) copper alloy
DE2932275A1 (en) MATERIAL FOR ELECTRICAL CONTACTS MADE OF INNER OXIDIZED AG-SN-BI ALLOY
EP3198048A1 (en) Electrical connection element
EP2527479B1 (en) Highly conductive aluminium alloy for electrically conductive products
DE3908513C2 (en)
EP2644723A1 (en) Composite material
WO2014154191A1 (en) Copper alloy
DE112005001271T5 (en) Copper alloy for electrical and electronic devices
DE102014105709A1 (en) ROTOR OF ALUMINUM ALLOY FOR AN ELECTROMAGNETIC DEVICE
AT393697B (en) IMPROVED COPPER-BASED METAL ALLOY, IN PARTICULAR FOR THE CONSTRUCTION OF ELECTRONIC COMPONENTS
DE4415067C2 (en) Process for the production of a copper-nickel-silicon alloy and its use
EP3670691B1 (en) Magnesium alloy and its process of manufacture
DE4201065A1 (en) METHOD FOR IMPROVING THE BENDING STRENGTH OF SEMI-PRODUCTS FROM COPPER ALLOYS
EP1043409B1 (en) Composite material prepared by powder metallurgy
EP3041966B1 (en) Copper alloy, which contains iron and phosphor
DE4338769A1 (en) Copper@ alloy for use in mfr. of electrical components - contg. nickel@, tin@, silicon@, zinc@, iron@, phosphorus@, and magnesium@
DE3511999A1 (en) USE OF A COPPER-TITANIUM-COBALT ALLOY AS A MATERIAL FOR ELECTRONIC COMPONENTS
DE19927646C1 (en) Use of a tin-rich copper-tin-iron alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIEDLE, JOACHIM

Inventor name: NOLL,TONY ROBERT

Inventor name: ALLMENDINGER, TIMO

Inventor name: THUMM, GERHARD

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014489

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293444

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2820568

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210410

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230310

Year of fee payment: 10

Ref country code: IT

Payment date: 20230310

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230510

Year of fee payment: 10

Ref country code: DE

Payment date: 20230430

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230327

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722