EP3041966B1 - Copper alloy, which contains iron and phosphor - Google Patents

Copper alloy, which contains iron and phosphor Download PDF

Info

Publication number
EP3041966B1
EP3041966B1 EP14809274.5A EP14809274A EP3041966B1 EP 3041966 B1 EP3041966 B1 EP 3041966B1 EP 14809274 A EP14809274 A EP 14809274A EP 3041966 B1 EP3041966 B1 EP 3041966B1
Authority
EP
European Patent Office
Prior art keywords
copper alloy
copper
max
chip
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14809274.5A
Other languages
German (de)
French (fr)
Other versions
EP3041966A2 (en
Inventor
Hark Schulze
Dirk Rode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KME Special Products GmbH and Co KG
Original Assignee
KME Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KME Germany GmbH filed Critical KME Germany GmbH
Priority to PL14809274T priority Critical patent/PL3041966T3/en
Publication of EP3041966A2 publication Critical patent/EP3041966A2/en
Application granted granted Critical
Publication of EP3041966B1 publication Critical patent/EP3041966B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the invention relates to a copper alloy having the features in the preamble of claim 1 and the use of such a copper alloy according to the features of claim 7 or 8.
  • copper with the exception of silver, has the lowest electrical resistance of all known metals, copper alloys are preferred and used for electrical contact components merely because of the frequency of copper and the associated price advantage over silver.
  • Such contact components include, for example, mechanically connectable and separable fasteners and crimp connections.
  • Copper alloys such as CuFe0.1P (C19210) and CuFe2P (C19400) are mainly used for plug-in contacts, as they have a high solid solution and medium relaxation resistance. In contrast, the aforementioned copper alloys have a poor machinability, so that they are not or only badly suitable for the production of contact components by machining.
  • the alloys used in the prior art also sometimes contain components of lead (Pb) or beryllium (Be), so that these copper alloys can not be safely used for all applications due to the known toxicity of these alloying elements.
  • Pb lead
  • Be beryllium
  • a copper-Cu alloy which contains 0.68% Fe and 0.38% Mn, 0.20% P, remainder copper.
  • a Cu alloy is described which contains 0.021% P, 0.07% Fe, 0.0045% Ni, 1.59% Zn, 0.006% Cr, 0.003% As, 0.06% S and balance copper contains.
  • the invention has for its object to provide a both relaxation-resistant and machinable copper alloy available, which is free of the alloying elements beryllium and lead. Furthermore, the use of such a relaxation-resistant and machinable as well as lead and beryllium-free Copper alloy for non-cutting to produce semifinished products and resulting machined products are shown.
  • a copper alloy is proposed, with proportions in weight% Iron (Fe) 0.07 - 4.00 Phosphorus (P) 0.015 - 0.50 Sulfur (S) 0.10 - 0.80
  • At least one element from the following group is furthermore contained for the formation of chip-breaking phases: Manganese (Mn) 0.01 - 0.80 Tellurium (Te) 0.10 - 1.00
  • the alloy is free of beryllium (Be) and lead (Pb) to avoid toxic properties.
  • manganese (Mn) or tellurium (Te) may be contained alone or in combination within the specified limits.
  • the copper alloy contains to improve the respective required properties: Aluminum (AI) Max. 0.50 Chrome (Cr) Max. 0.50 Magnesium (Mg) Max. 0.50 Zircon (Zr) Max. 0.50 Zinc (Zn) Max. 2.50 Tin (Sn) Max. 2.50 Boron (B) Max. 0.50 Silver (Ag) Max. 0.50
  • the aforementioned group are optional alloying elements. If necessary, they can be included individually or in combination within the specified limits.
  • the alloy contains copper (Cu) as the remainder and may contain common impurities caused by melting.
  • the copper alloy according to the invention combines good machinability and high relaxation resistance. Especially with respect to lead (Pb), it has been found that its addition of not more than 0.1% does not improve the machinability. In the case of lead addition, the hot cracking risk is predominated by lead smelting on the grain boundaries of the crystallites. This is remarkable because in the case of the copper materials known in the prior art, the improvement in machinability is generally attributable to the addition of lead (Pb) in metallic form.
  • Phosphorus (P) forms iron phosphide precipitates with iron (Fe).
  • Iron (Fe) generally serves to increase the corrosion resistance of the copper alloy.
  • the machinability of the alloy according to the invention is also improved without the addition of lead (Pb) by forming chip-breaking phases.
  • Manganese (Mn) acts as a hardening agent and serves as a deoxidizer within the copper alloy. Furthermore, by manganese (Mn), the grain of the copper alloy can be refined.
  • S Sulfur
  • Mn Manganese
  • the copper alloy according to the invention has good electrical conductivity, which, depending on the composition tested, reaches up to 52 MS / m for CuFe0.02PS.
  • the alloy components of the above group may be contained in a range of 0.01 - 2.50 wt% each with respect to zinc (Zn) and tin (Sn).
  • amounts of aluminum (Al), boron (B), chromium (Cr), magnesium (Mg), silver (Ag), and zircon (Zr) may each be 0.01% - 0.5% by weight.
  • Phosphorus (P) and boron (B) have the property of counteracting hydrogen disease.
  • the oxygen dissolved in the copper mixed crystal is bound to these alloying elements by the addition of phosphorus (P) and optionally boron (B).
  • Phosphorus (P) and boron (B) act as deoxidizers.
  • phosphorus (P) prevents the oxidation of individual alloying elements. Moreover, the tile properties of the copper alloy during casting can be improved by adding phosphorus (P).
  • Aluminum (Al) is an alloying element by which the strength, machinability and wear resistance of the copper alloy at high temperatures can be improved. Incidentally, this also applies to the improvement of the oxidation resistance of the copper alloy.
  • chromium (Cr) and magnesium (Mg) also serves to improve the oxidation resistance of the copper alloy at high temperatures. Particularly good results are observed in this context when chromium (Cr) and magnesium (Mg) are added in combination with aluminum (Al). In this way, an advantageous synergy effect of these components can be achieved.
  • Zircon (Zr) can improve the hot workability of the copper material according to the invention.
  • Zinc (Zn) improves the adhesion of the tin-plating or improves the resistance to the peel-off behavior of peelings.
  • Tin (Sn) can further increase the solid solution hardening of the copper alloy according to the invention.
  • S and Te as chip breakers may preferably be combined with manganese (Mn).
  • Sulfur and manganese form manganese sulfides, which increase the machinability towards copper sulfides.
  • compositions in relation to the alloying elements phosphorus (P), sulfur (S), manganese (Mn) and tellurium (Te) are given, wherein in addition the other alloying elements specified in claim 1 may be contained in the copper alloy.
  • FIG. 1 A steel iron test sheet 1178-90 is given to refer to the resulting in the machining machining embodiments of the chips analogously to the group under investigation.
  • the resulting chip image was classified into one of eight chipforming classes (1 - 8), as can be seen in the first column, to the left of the chips shown schematically.
  • the individual chip images are associated with appropriate terminology according to their design, ranging from “band chips” to "shavings”.
  • the chip space number R is listed, which indicates the relationship between the space requirement of a disordered chip quantity (V span ) and the material volume of the same chip quantity (V).
  • V span disordered chip quantity
  • V material volume of the same chip quantity
  • the chipform classes and the respective chip space numbers R are in the far right column in FIG. 1 judging the chip forming classes 7 and 8 with their respective chip space R as “usable”, while the chip forming classes 5 and 6 are judged in combination with their respective Spanraumhot R as "good”. On the other hand, the remaining chip forming classes 1 to 4 in connection with their respective chip space number R are classified as "unfavorable", with a smooth transition to "good” occurring in chipform classes 3 and 4.
  • FIG. 2 Figure 3 shows the results of mechanical working of the examined group of known copper alloys with respect to the resulting chip forming classes in outboard turning of a workpiece thereof.
  • FIG. 2 present results are based on a constant depth of cut a p of 1.5 mm and a feed f of 0.2 mm.
  • the respective cutting speed v c was varied from 450 m / min (v c1 ) to 150 m / min (v c2 ).
  • the respective chip form classes of the materials from the group (CuSP, CuTeP and CuSMn) are all between 3 and 5.
  • the resulting chip images are also shown schematically in the present table. For better clarity, they are each assigned a single line for 20mm as a reference in order to be able to better estimate the results in the form of the chip sizes set during the examination.
  • FIG. 3 shows the results of further processing steps of the group FIG. 2 .
  • v c 450 m / min
  • the respective cutting depth a p was varied from 1.5 mm (a p1 ) to 0.75 mm (a p2 ).
  • a constant feed rate of f 0.2 mm was observed.
  • FIG. 3 shows that the variation of the depth of cut (a p ), in particular for the materials CuSP and CuTeP, leads to a change in the chipforming class, with an increase in the cutting depth a p indicating a deterioration of the chipforming class.
  • the chipform class of CuSMn remains during the variation of the depth of cut a p constant, as was the case with the variation of the cutting speed v c (see FIG. 2 ).
  • the chip form class in particular of the copper alloy CuSMn, thus remains constant both in the case of variation of the cutting speed and in the case of variation of the cutting depth in the respectively present areas.
  • the group of investigated copper alloys also moves with variation of the cutting depth a p in a range of chipforming classes 3 to 5.
  • FIG. 4 the result of the variation of the feed f results in its effect on the chip forming class of the respective copper alloys from the group studied.
  • the chipforming class of the group deteriorates with decreasing feed f as a whole.
  • the resulting feed f of 0.2 mm all three copper alloys of the test group are close to each other. Only the copper alloy CuSMn improves its chipbreaker class with increasing feed f, which was tested to 0.3 mm in the present case.
  • the respective resulting chip forms also result from the diagrams shown schematically in combination with the present table.
  • the reference value used was the well-known copper alloy CuZn39Pb3, which is considered to be the main alloy for machining, especially in Germany. Said copper alloy is used everywhere, where it increasingly depends on a cutting and cutting shaping. In connection with the CuZn39Pb3 copper alloy used herein as reference, its machinability is assumed to be 100%.
  • pure copper material achieves a stress index of 20% to a maximum of 30%.
  • These types of copper are low alloyed and hardenable copper materials which do not contain chip-breaking elements such as sulfur (S), tellurium (Te) and sulfur (S) and manganese (Mn) and lead (Pb).
  • the group investigated here is such that CuSP has a stress index of 70%, while CuTeP has a stress index of 80%. Finally, CuSMn achieves the highest stress index in the group of 90%.
  • FIG. 5 shows a tabular comparison of the materials contained therein in relation to their respective material properties.
  • the present table in FIG. 5 is constructed so that it reflects the approximate manufacturing cost of the individually listed materials, starting with the cheapest material above.
  • the table shows the copper alloy according to the invention with the orders of magnitude of its individual alloy components listed there, more specifically CuFe0.1PS0.35 and CuFe2PS0.35.
  • the copper alloy CuFe0.1PS0.35 in direct comparison with only chip-breaking alloyed materials has a somewhat lower 0.2% yield strength and tensile strength R m .
  • the elongation at break is 17% and the relaxation with "o" better than CuSP, CuTeP and CuSMn.
  • the alloy CuFe2PS0,35 has higher mechanical properties Characteristics and a higher relaxation resistance, which is indicated in the table with "+", on.
  • the determination of the mechanical characteristic values for the present table was carried out according to DIN ISO 6892-1.
  • the respective sample shape corresponded to the form A according to DIN 50125.
  • the respective conductivity was determined using a Sigmatester from Förster.
  • the respective relaxation behavior was extrapolated on the basis of internal measurements on the related materials, which, however, compared to the copper alloy of the invention contained no chip-breaking elements according to the invention.
  • FIGS. 6 to 9 each show a micrograph of the microstructures from the group of individual copper materials underlying the investigations.
  • FIG. 6 shows the material CuSP with its arrangement of the chip-breaking elements. Its microstructure shows in part closely spaced and each dark copper sulfides, which serve here as a chip breaker.
  • FIG. 7 shows in contrast the material CuTeP, which contains in its microstructure darkened Kupfertellurieden as a chip breaker. These are in their arrangement largely isolated and further apart.
  • FIG. 8 shows the microstructure of the material CuSMn, which contains manganese sulphides as a chipbreaker.
  • CuSMn contains manganese sulphides as a chipbreaker.
  • FIG. 9 shows for comparison the etched microstructure of the standardized material CuFe0.1P (C19210) without chip breaking phases.
  • iron phosphors that are not visible under light microscopy are present.
  • the iron phosphides have no chipbreaking effect.
  • FIG. 11 shows the microstructure of the material CuFe0,1PS0,35 invention. This also has copper chip sulphide as chipbreaker. As you can see, this one has the in FIG. 8 shown copper material CuSMn similarly good distribution of its chipbreaker, which manifests itself in a good machinability.
  • the copper alloy according to the invention has both a sufficient cold workability and a very good hot workability.
  • the invention is also directed to the use of such a copper alloy for the production of a product to be machined according to claim 7.
  • the invention is directed to the use of such a copper alloy for the production of a semi-finished to be produced according to claim 8.
  • This may in particular be a rolled, pressed, drawn, forged or cast product.
  • rods and wires can be delivered from press and pull sequences as semi-finished products.
  • the following products can be produced by machining: plug contacts, crimping sleeves, crimp connectors, drilled shaft nails, motor parts, screws, locating pins, clamps, welding nozzles, cutting torch nozzles, valves, fittings, nuts, fittings, contraelectrons, contact pins.
  • FIG. 13 shows a diagram for varying the Fe and P content at a constant content of the chip breaker S or S + Mn and / or Te
  • FIG. 14 shows a diagram for varying the contents of the chip breaker S or S + Mn and / or Te at a constant content of the basic elements Fe and P.

Description

Die Erfindung betrifft eine Kupferlegierung mit den Merkmalen im Oberbegriff von Patentanspruch 1 sowie die Verwendung einer solchen Kupferlegierung gemäß den Merkmalen von Patentanspruch 7 oder 8.The invention relates to a copper alloy having the features in the preamble of claim 1 and the use of such a copper alloy according to the features of claim 7 or 8.

Als an sich weiches Metall wird Kupfer insbesondere aufgrund seiner guten Legierbarkeit geschätzt. Kupferlegierungen mit beispielsweise verbesserten Festigkeitseigenschaften werden auch dort eingesetzt, wo hohe Anforderungen an die Strom- und/oder Wärmeleitfähigkeit sowie Korrosionsbeständigkeit gestellt werden. Es sind daher zumeist mehrere Anforderungen gleichzeitig zu erfüllen.As a per se, soft metal copper is appreciated in particular because of its good alloyability. Copper alloys with, for example, improved strength properties are also used where high demands are placed on current and / or thermal conductivity and corrosion resistance. Therefore, it is usually several requirements to meet simultaneously.

Da Kupfer mit Ausnahme von Silber den kleinsten elektrischen Widerstand aller bekannten Metalle aufweist, werden Kupferlegierungen schon allein wegen der Häufigkeit von Kupfer und dem damit verbundenen Preisvorteil gegenüber Silber bevorzugt und für elektrische Kontaktbauteile verwendet.Since copper, with the exception of silver, has the lowest electrical resistance of all known metals, copper alloys are preferred and used for electrical contact components merely because of the frequency of copper and the associated price advantage over silver.

Zu solchen Kontaktbauteilen zählen beispielsweise mechanisch miteinander verbindbare sowie trennbare Verbindungselemente sowie Quetschverbindungen.Such contact components include, for example, mechanically connectable and separable fasteners and crimp connections.

Kupferlegierungen wie beispielsweise CuFe0,1P (C19210) und CuFe2P (C19400) werden vorrangig für Steckkontakte eingesetzt, da diese eine hohe Mischkristallverfestigung und mittlere Relaxationsbeständigkeit aufweisen. Demgegenüber weisen die vorgenannten Kupferlegierungen eine schlechte Zerspanbarkeit auf, so dass sie sich nicht oder nur schlecht für die Herstellung von Kontaktbauteilen durch spanende Verarbeitung eignen.Copper alloys such as CuFe0.1P (C19210) and CuFe2P (C19400) are mainly used for plug-in contacts, as they have a high solid solution and medium relaxation resistance. In contrast, the aforementioned copper alloys have a poor machinability, so that they are not or only badly suitable for the production of contact components by machining.

Eine gute Zerspanbarkeit wird demgegenüber bei der Verwendung bekannter Kupferlegierungen wie CuSP, CuTeP oder CuSMn erreicht. Da es sich hierbei um nicht aushärtbare Legierungen mit sehr geringfügiger Mischkristallverfestigung handelt, besitzen diese allerdings eine nur geringe Relaxationsbeständigkeit.In contrast, good machinability is achieved when using known copper alloys such as CuSP, CuTeP or CuSMn. Since these are non-hardenable alloys with very slight solid solution hardening, however, they have only a low relaxation resistance.

Die im Stand der Technik verwendeten Legierungen beinhalten zudem mitunter Bestandteile an Blei (Pb) oder Beryllium (Be), so dass sich diese Kupferlegierungen bereits aufgrund der bekannten Toxizität dieser Legierungselemente nicht für alle Anwendungen bedenkenlos einsetzen lassen.The alloys used in the prior art also sometimes contain components of lead (Pb) or beryllium (Be), so that these copper alloys can not be safely used for all applications due to the known toxicity of these alloying elements.

Zum Stand der Technik ist noch auf folgende Dokumente zu verweisen: JOON HWAN CHOI: "Aging behavior and precipitate analysis of copperich Cu-Fe-Mn-P alloy", MATERIALS SCIENCE AND ENGINEERING A, Bd. 550, 1 Juli 2012 (2012-07-01), Seiten 183-190, ISSN: 0921-5093, DOI: 10.1016/j.msea.2012.04.055 und S RAMESH ET AL: "Corrosion inhibition of copper by new triazole phosphonate derivatives", APPLIED SURFACE SCIENCE, Bd. 229, Nr. 1-4, 1. Mai 2004 (2004-05-01), Seiten 214-225, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2004.01.063 .The following documents must be referred to the state of the art: JOON HWAN CHOI: "Aging Behavior and Precipitate Analysis of Copperich Cu-Fe-Mn-P alloy", MATERIALS SCIENCE AND ENGINEERING A, Vol. 550, 1 July 2012 (2012-07-01), pp. 183-190, ISSN: 0921 -5093, DOI: 10.1016 / j.msea.2012.04.055 and S RAMESH ET AL: "Corrosion inhibition of copper by new triazole phosphonate derivatives", APPLIED SURFACE SCIENCE, Vol. 229, No. 1-4, May 1, 2004 (2004-05-01), pages 214-225, ISSN: 0169-4332, DOI: 10.1016 / j.apsusc.2004.01.063 ,

In der zuerst genannten Veröffentlichung wird eine Kupfer-Cu-Legierung offenbart, die 0,68 % Fe und 0,38 % Mn, 0,20 % P, Rest Kupfer enthält. In der zweiten Veröffentlichung wird eine Cu-Legierung beschrieben, die 0,021 % P, 0,07 % Fe, 0,0045 % Ni, 1,59 % Zn, 0,006 % Cr, 0,003 % As, 0,06 % S und Rest Kupfer enthält.In the first mentioned publication, a copper-Cu alloy is disclosed which contains 0.68% Fe and 0.38% Mn, 0.20% P, remainder copper. In the second publication, a Cu alloy is described which contains 0.021% P, 0.07% Fe, 0.0045% Ni, 1.59% Zn, 0.006% Cr, 0.003% As, 0.06% S and balance copper contains.

Vor diesem Hintergrund bietet die Zusammensetzung von Kupferlegierungen sowie deren Verwendung in Bezug auf deren jeweilige Materialeigenschaften noch Raum für Verbesserungen.Against this background, the composition of copper alloys and their use in terms of their respective material properties still has room for improvement.

Der Erfindung liegt die Aufgabe zugrunde, eine sowohl relaxationsbeständige als auch zerspanbare Kupferlegierung zur Verfügung zu stellen, welche frei ist von den Legierungselementen Beryllium und Blei. Weiterhin soll die Verwendung einer solchen relaxationsbeständigen und zerspanbaren sowie blei- und berylliumfreien Kupferlegierung für nicht spanend zu fertigende Halbzeuge und daraus spanend herzustellende Produkte aufgezeigt werden.The invention has for its object to provide a both relaxation-resistant and machinable copper alloy available, which is free of the alloying elements beryllium and lead. Furthermore, the use of such a relaxation-resistant and machinable as well as lead and beryllium-free Copper alloy for non-cutting to produce semifinished products and resulting machined products are shown.

Die Lösung dieser Aufgabe besteht nach der Erfindung in einer Kupferlegierung mit den Merkmalen von Patentanspruch 1 sowie deren Verwendung mit den Merkmalen gemäß Patentanspruch 7 oder 8.The solution of this problem consists according to the invention in a copper alloy with the features of claim 1 and their use with the features according to claim 7 or 8.

Wenn es nachfolgend nicht anders angegeben ist, verstehen sich alle Angaben zu den Legierungselementen in Gewichtsprozent.Unless otherwise stated below, all information on alloying elements is by weight.

Es wird eine Kupferlegierung vorgeschlagen, mit Anteilen in Gewicht-% an Eisen (Fe) 0,07 - 4,00 Phosphor (P) 0,015 - 0,50 Schwefel (S) 0,10 - 0,80 A copper alloy is proposed, with proportions in weight% Iron (Fe) 0.07 - 4.00 Phosphorus (P) 0.015 - 0.50 Sulfur (S) 0.10 - 0.80

Um die geforderte Zerspanbarkeit zu erreichen, ist zur Bildung spanbrechender Phasen weiterhin wenigstens ein Element aus der nachfolgenden Gruppe enthalten: Mangan (Mn) 0,01 - 0,80 Tellur (Te) 0,10 - 1,00 In order to achieve the required machinability, at least one element from the following group is furthermore contained for the formation of chip-breaking phases: Manganese (Mn) 0.01 - 0.80 Tellurium (Te) 0.10 - 1.00

Die Legierung ist zur Vermeidung toxischer Eigenschaften frei von Beryllium (Be) und Blei (Pb).The alloy is free of beryllium (Be) and lead (Pb) to avoid toxic properties.

Je nach verwendeter Basis für die Kupferlegierung kann Mangan (Mn) oder Tellur (Te) allein oder in Kombination in den angegebenen Grenzen enthalten sein.Depending on the base used for the copper alloy, manganese (Mn) or tellurium (Te) may be contained alone or in combination within the specified limits.

Wahlweise enthält die Kupferlegierung zur Verbesserung der jeweils geforderten Eigenschaften: Aluminium (AI) max. 0,50 Chrom (Cr) max. 0,50 Magnesium (Mg) max. 0,50 Zirkon (Zr) max. 0,50 Zink (Zn) max. 2,50 Zinn (Sn) max. 2,50 Bor (B) max. 0,50 Silber (Ag) max. 0,50 Optionally, the copper alloy contains to improve the respective required properties: Aluminum (AI) Max. 0.50 Chrome (Cr) Max. 0.50 Magnesium (Mg) Max. 0.50 Zircon (Zr) Max. 0.50 Zinc (Zn) Max. 2.50 Tin (Sn) Max. 2.50 Boron (B) Max. 0.50 Silver (Ag) Max. 0.50

Bei der vorgenannten Gruppe handelt es sich um optionale Legierungselemente. Sie können bei Bedarf einzeln oder in Kombination in den angegebenen Grenzen enthalten sein.The aforementioned group are optional alloying elements. If necessary, they can be included individually or in combination within the specified limits.

Die Legierung enthält als Rest Kupfer (Cu) und kann übliche, erschmelzungsbedingte Verunreinigungen aufweisen.The alloy contains copper (Cu) as the remainder and may contain common impurities caused by melting.

Die erfindungsgemäße Kupferlegierung vereint eine gute Zerspanbarkeit sowie hohe Relaxationsbeständigkeit. Insbesondere in Bezug auf Blei (Pb) wurde festgestellt, dass dessen Zugabe von maximal 0,1 % die Zerspanbarkeit nicht verbessert. Bei der Zugabe von Blei überwiegt vielmehr die Warmrissgefahr durch Bleianschmelzungen auf den Korngrenzen der Kristallite. Das ist bemerkenswert, denn bei den im Stand der Technik bekannten Kupferwerkstoffen ist die Verbesserung der Zerspanbarkeit in der Regel auf die Zugabe von Blei (Pb) in metallischer Form zurückzuführen.The copper alloy according to the invention combines good machinability and high relaxation resistance. Especially with respect to lead (Pb), it has been found that its addition of not more than 0.1% does not improve the machinability. In the case of lead addition, the hot cracking risk is predominated by lead smelting on the grain boundaries of the crystallites. This is remarkable because in the case of the copper materials known in the prior art, the improvement in machinability is generally attributable to the addition of lead (Pb) in metallic form.

Phosphor (P) bildet mit Eisen (Fe) Eisenphosphidausscheidungen. Eisen (Fe) dient generell zur Erhöhung der Korrosionsbeständigkeit der Kupferlegierung.Phosphorus (P) forms iron phosphide precipitates with iron (Fe). Iron (Fe) generally serves to increase the corrosion resistance of the copper alloy.

Mit der Zugabe von Schwefel und optional Mangan (Mn) und/oder Tellur (Te) in den angegebenen Grenzen wird bei der erfindungsgemäßen Legierung bewirkt, dass die Zerspanbarkeit auch ohne Zugabe von Blei (Pb) verbessert wird, indem spanbrechende Phasen gebildet werden.With the addition of sulfur and optionally manganese (Mn) and / or tellurium (Te) within the specified limits, the machinability of the alloy according to the invention is also improved without the addition of lead (Pb) by forming chip-breaking phases.

Mangan (Mn) wirkt verfestigend und dient als Desoxidationsmittel innerhalb der Kupferlegierung. Weiterhin kann durch Mangan (Mn) das Korn der Kupferlegierung verfeinert werden.Manganese (Mn) acts as a hardening agent and serves as a deoxidizer within the copper alloy. Furthermore, by manganese (Mn), the grain of the copper alloy can be refined.

Schwefel (S) verbessert die Zerspanbarkeit des Kupferwerkstoffs. Durch Mangan (Mn) wird die Phasenbildung des Schwefels (S) mit anderen Legierungselementen verhindert oder vermindert.Sulfur (S) improves the machinability of the copper material. Manganese (Mn) prevents or reduces the phase formation of sulfur (S) with other alloying elements.

Neben der verbesserten Zerspanbarkeit sowie Relaxationsbeständigkeit besitzt die erfindungsgemäße Kupferlegierung eine gute elektrische Leitfähigkeit, die je nach untersuchter Zusammensetzung bis 52 MS/m für CuFe0,02PS reicht.In addition to the improved machinability and relaxation resistance, the copper alloy according to the invention has good electrical conductivity, which, depending on the composition tested, reaches up to 52 MS / m for CuFe0.02PS.

Vorteilhafte Weiterbildungen des Erfindungsgedankens sind Gegenstand der abhängigen Patentansprüche 2 bis 6.Advantageous developments of the inventive concept are the subject of the dependent claims 2 to 6.

Hiernach können die Legierungsbestandteile aus der vorstehenden Gruppe, sofern sie zulegiert werden, bezüglich Zink (Zn) und Zinn (Sn) in einem Bereich von jeweils 0,01 - 2,50 Gewicht-% enthalten sein.Hereinafter, the alloy components of the above group, if added, may be contained in a range of 0.01 - 2.50 wt% each with respect to zinc (Zn) and tin (Sn).

Weiterhin können Anteile an Aluminium (AI), Bor (B), Chrom (Cr), Magnesium (Mg), Silber (Ag) und Zirkon (Zr) jeweils 0,01 % - 0,5 Gewicht-% betragen.Further, amounts of aluminum (Al), boron (B), chromium (Cr), magnesium (Mg), silver (Ag), and zircon (Zr) may each be 0.01% - 0.5% by weight.

Phosphor (P) und Bor (B) haben die Eigenschaft, der Wasserstoffkrankheit entgegenzuwirken. Der im Kupfermischkristall gelöste Sauerstoff wird durch die Zugabe von Phosphor (P) und gegebenenfalls Bor (B) an diese Legierungselemente gebunden. Bei Aufnahme von Wasserstoff im Werkstoff kann kein Wasserdampf entstehen, der die Gefügestruktur auflockert. Phosphor (P) und Bor (B) fungieren als Desoxidationsmittel.Phosphorus (P) and boron (B) have the property of counteracting hydrogen disease. The oxygen dissolved in the copper mixed crystal is bound to these alloying elements by the addition of phosphorus (P) and optionally boron (B). When hydrogen is absorbed in the material, no water vapor can form, which loosens up the microstructure. Phosphorus (P) and boron (B) act as deoxidizers.

Weiterhin verhindert die Zugabe von Phosphor (P) die Oxidation von einzelnen Legierungselementen. Überdies können auch die Flieseigenschaften der Kupferlegierung beim Gießen durch Zugabe von Phosphor (P) verbessert werden.Furthermore, the addition of phosphorus (P) prevents the oxidation of individual alloying elements. Moreover, the tile properties of the copper alloy during casting can be improved by adding phosphorus (P).

Durch die erfindungsgemäße Zugabe von Aluminium (Al) kann die Härte des Kupferwerkstoffs und dessen Dehngrenze ohne Verminderung der Zähigkeit erhöht werden. Bei Aluminium (AI) handelt es sich um ein Legierungselement, durch welches die Festigkeit sowie die Bearbeitbarkeit und die Verschleißbeständigkeit der Kupferlegierung bei hohen Temperaturen verbessert werden kann. Dies gilt im Übrigen auch für die Verbesserung der Oxidationsresistenz der Kupferlegierung.By the addition of aluminum (Al) according to the invention, the hardness of the copper material and its yield strength can be increased without reducing the toughness. Aluminum (Al) is an alloying element by which the strength, machinability and wear resistance of the copper alloy at high temperatures can be improved. Incidentally, this also applies to the improvement of the oxidation resistance of the copper alloy.

Die Zugabe von Chrom (Cr) und Magnesium (Mg) dient ebenfalls zur Verbesserung der Oxidationsresistenz der Kupferlegierung bei hohen Temperaturen. Besonders gute Ergebnisse werden in diesem Zusammenhang beobachtet, wenn Chrom (Cr) und Magnesium (Mg) in Kombination mit Aluminium (AI) hinzulegiert werden. Auf diese Weise kann ein vorteilhafter Synergieeffekt dieser Bestandteile erzielt werden.The addition of chromium (Cr) and magnesium (Mg) also serves to improve the oxidation resistance of the copper alloy at high temperatures. Particularly good results are observed in this context when chromium (Cr) and magnesium (Mg) are added in combination with aluminum (Al). In this way, an advantageous synergy effect of these components can be achieved.

Zirkon (Zr) kann die Warmumformbarkeit des erfindungsgemäßen Kupferwerkstoffs verbessern.Zircon (Zr) can improve the hot workability of the copper material according to the invention.

Insbesondere bei einer zumindest teilweisen Verzinnung der Kupferlegierung wird vorgeschlagen, einen Anteil an Zink (Zn) in einem Bereich von 0,01 - 2,50 % hinzuzulegieren. Zink (Zn) verbessert die Haftung der Verzinnung bzw. verbessert die Beständigkeit gegenüber dem Ablöseverhalten von Verzinnungen (peeling off).In particular, in the case of an at least partial tin-plating of the copper alloy, it is proposed to add in a proportion of zinc (Zn) in a range from 0.01 to 2.50%. Zinc (Zn) improves the adhesion of the tin-plating or improves the resistance to the peel-off behavior of peelings.

Durch Zinn (Sn) kann ferner die Mischkristallverfestigung der erfindungsgemäßen Kupferlegierung gesteigert werden.Tin (Sn) can further increase the solid solution hardening of the copper alloy according to the invention.

Schwefel (S) und Tellur (Te) als Spanbrecher können bevorzugt mit Mangan (Mn) kombiniert werden. Schwefel und Mangan bilden Mangansulfide, welche die Zerspanbarkeit gegenüber Kupfersulfiden erhöhen.Sulfur (S) and tellurium (Te) as chip breakers may preferably be combined with manganese (Mn). Sulfur and manganese form manganese sulfides, which increase the machinability towards copper sulfides.

Nachfolgend sind besonders bevorzugte Zusammensetzungen in Bezug auf die Legierungselemente Phosphor (P), Schwefel (S), Mangan (Mn) und Tellur (Te) angegeben, wobei zusätzlich die weiteren im Patentanspruch 1 angegebenen Legierungselemente in der Kupferlegierung enthalten sein können. Der Rest wird von Kupfer und erschmelzungsbedingten Verunreinigungen gebildet:
A) Eisen (Fe) 0,07 - 3,50 Phosphor (P) 0,015 - 0,40 Schwefel (S) 0,15 - 0,70 und wenigstens einem Element aus der nachfolgenden Gruppe: Mangan (Mn) 0,03 - 0,75 Tellur (Te) 0,05 - 0,90
B) Eisen (Fe) 0,20 - 3,20 Phosphor (P) 0,017 - 0,30 Schwefel (S) 0,20 - 0,62 und wenigstens einem Element aus nachfolgender Gruppe: Mangan (Mn) 0,05 - 0,70 Tellur (Te) 0,20 - 0,80
C) Eisen (Fe) 0,40 - 3,00 Phosphor (P) 0,022 - 0,20 Schwefel (S) 0,25 - 0,57 und wenigstens einem Element aus nachfolgender Gruppe: Mangan (Mn) 0,08 - 0,55 Tellur (Te) 0,30 - 0,70
D) Eisen (Fe) 0,75 - 2,60 Phosphor (P) 0,025 - 0,15 Schwefel (S) 0,30 - 0,50 und wenigstens einem Element aus nachfolgender Gruppe Mangan (Mn) 0,10 - 0,40 Tellur (Te) 0,40 - 0,60
Hereinafter, particularly preferred compositions in relation to the alloying elements phosphorus (P), sulfur (S), manganese (Mn) and tellurium (Te) are given, wherein in addition the other alloying elements specified in claim 1 may be contained in the copper alloy. The remainder is formed by copper and impurities caused by melting:
A) Iron (Fe) 0.07 - 3.50 Phosphorus (P) 0.015 - 0.40 Sulfur (S) 0.15-0.70 and at least one element from the following group: Manganese (Mn) 0.03 - 0.75 Tellurium (Te) 0.05-0.90
B) Iron (Fe) 0.20 - 3.20 Phosphorus (P) 0.017 - 0.30 Sulfur (S) 0.20 - 0.62 and at least one element from the following group: Manganese (Mn) 0.05-0.70 Tellurium (Te) 0.20 - 0.80
C) Iron (Fe) 0.40 - 3.00 Phosphorus (P) 0.022 - 0.20 Sulfur (S) 0.25-0.57 and at least one element from the following group: Manganese (Mn) 0.08 - 0.55 Tellurium (Te) 0.30 - 0.70
D) Iron (Fe) 0.75 - 2.60 Phosphorus (P) 0.025 - 0.15 Sulfur (S) 0.30 - 0.50 and at least one element from the following group Manganese (Mn) 0.10 - 0.40 Tellurium (Te) 0.40 - 0.60

Die vorliegende Erfindung wird nachfolgend anhand in den Figuren dargestellter Abbildungen sowie Tabellen, insbesondere in Abgrenzung gegenüber dem Stand der Technik, näher erläutert. Es zeigen:

Figur 1
Stahl-Eisen-Prüfblatt (SEP) 1178-90 zur analogen Beurteilung der Spanformklasse der erfindungsgemäßen Kupferlegierung;
Figur 2
Untersuchungsergebnisse an den Kupferlegierungen CuSP, CuTeP und CuSMn mit Blick auf die Spanformklassen durch mechanische Bearbeitung in Form von Außenlängsdrehen bei Variation der Schnittgeschwindigkeit;
Figur 3
die Untersuchungsergebnisse an den Werkstoffen aus Figur 2 in Bezug auf die Spanformklassen bei Varianten der Schnitttiefe;
Figur 4
die Ergebnisse der Spanformklassen der Figuren 2 und 3 in Abhängigkeit von den jeweiligen Vorschub bei der mechanischen Bearbeitung;
Figur 5
eine tabellarische Übersicht der Werkstoffeigenschaften einzelner im Stand der Technik bekannter Kupferlegierungen mit einer erfindungsgemäßen Kupferlegierung;
Figur 6
ein Schliffbild durch die Gefügestruktur der im Stand der Technik bekannten Kupferlegierung CuSP;
Figur 7
ein Schliffbild durch die Gefügestruktur der im Stand der Technik bekannten Kupferlegierung CuTeP;
Figur 8
ein weiteres Schliffbild durch die Gefügestruktur der im Stand der Technik bekannten Kupferlegierung CuSMn;
Figur 9
ein Schliffbild durch die Gefügestruktur der im Stand der Technik bekannten Kupferlegierung CuFe0,1P;
Figur 10
eine Abbildung der sich bei der mechanischen Bearbeitung der im Stand der Technik bekannten Kupferlegierung aus Figur 9 ergebenden Spanausbildung;
Figur 11
ein Schliffbild durch die Gefügestruktur einer erfindungsgemäßen Kupferlegierung CuFe0,1PS;
Figur 12
eine Abbildung der sich bei der mechanischen Bearbeitung der erfindungsgemäßen Kupferlegierung aus Figur 11 ergebenden Spanausbildung;
Figur 13
Diagramm zur Variation des Fe- und P-Gehalts bei konstantem Gehalt der Spanbrecher S oder S + Mn und/oder Te und
Figur 14
Diagramm zur Variation der Gehalte der Spanbrecher S oder S + Mn und/oder Te bei konstantem Gehalt der Basiselemente Fe und P.
The present invention will be explained in more detail below with reference to figures and tables, in particular in distinction from the prior art. Show it:
FIG. 1
Steel Iron Test Sheet (SEP) 1178-90 for analogous evaluation of the chipforming class of the copper alloy according to the invention;
FIG. 2
Test results on the copper alloys CuSP, CuTeP and CuSMn with regard to the chip forming classes by mechanical machining in the form of external longitudinal turning with variation of the cutting speed;
FIG. 3
the examination results on the materials FIG. 2 in relation to the chipform classes in variants of the depth of cut;
FIG. 4
the results of the chipforming classes of Figures 2 and 3 depending on the respective feed in the mechanical processing;
FIG. 5
a tabular overview of the material properties of individual copper alloys known in the art with a copper alloy according to the invention;
FIG. 6
a microsection through the microstructure of the known in the prior art copper alloy CuSP;
FIG. 7
a microsection through the microstructure of the known in the prior art copper alloy CuTeP;
FIG. 8
a further microsection through the microstructure of the known in the prior art copper alloy CuSMn;
FIG. 9
a microsection through the microstructure of the known in the prior art copper alloy CuFe0,1P;
FIG. 10
a picture of itself in the mechanical processing of the known in the prior art copper alloy FIG. 9 resulting chip training;
FIG. 11
a microsection through the microstructure of a copper alloy according to the invention CuFe0.1PS;
FIG. 12
a picture of itself in the mechanical processing of the copper alloy according to the invention FIG. 11 resulting chip training;
FIG. 13
Diagram for the variation of the Fe and P contents at a constant content of the chipbreaker S or S + Mn and / or Te and
FIG. 14
Diagram for varying the contents of the chipbreaker S or S + Mn and / or Te at a constant content of the basic elements Fe and P.

Um die positiven Eigenschaften und Unterschiede der erfindungsgemäßen Kupferlegierung gegenüber den im Stand der Technik bekannten Kupferlegierung zu erläutern, wurden vorliegend zunächst eine Gruppe aus den bekannten Kupferlegierungen CuSP (CW114C), CuTeP (CW118C, C14500) und CuSMn (C14750) näher untersucht.In order to explain the positive properties and differences of the copper alloy according to the invention compared to the copper alloy known in the prior art, a group of the known copper alloys CuSP (CW114C), CuTeP (CW118C, C14500) and CuSMn (C14750) were first examined in more detail.

Aus Figur 1 geht ein Stahl-Eisen-Prüfblatt 1178-90 hervor, um die sich bei der spanabhebenden Bearbeitung ergebenden Ausgestaltungen der Späne analog auf die vorliegend untersuchte Gruppe zu beziehen.Out FIG. 1 A steel iron test sheet 1178-90 is given to refer to the resulting in the machining machining embodiments of the chips analogously to the group under investigation.

Das sich ergebende Spanbild wurde dabei in eine von insgesamt acht Spanformklassen (1 - 8) eingeteilt, wie in der ersten Spalte, links neben den schematisch dargestellten Spänen zu erkennen ist. Den einzelnen Spanbildern sind entsprechend ihrer Ausgestaltung passende Terminologien zugeordnet, welche von "Bandspäne" bis "Bröckelspäne" reichen.The resulting chip image was classified into one of eight chipforming classes (1 - 8), as can be seen in the first column, to the left of the chips shown schematically. The individual chip images are associated with appropriate terminology according to their design, ranging from "band chips" to "shavings".

In der rechts neben den Spanformklassen gelegenen Spalte ist die Spanraumzahl R aufgeführt, welche das Verhältnis zwischen dem Raumbedarf einer ungeordneten Spanmenge (Vspan) und dem Werkstoffvolumen derselben Spanmenge (V) angibt. Eine kleine Spanraumzahl R lässt auf kleine Späne schließen, welche in ihrer räumlichen Ausgestaltung entsprechend wenig Platz benötigen. Somit sind diese in ihrer Handhabung gegenüber großen Spänen deutlich leichter. Demgegenüber lässt eine große Spanraumzahl R auf einen hohen Platzbedarf der Späne schließen, so dass deren Handhabung aufgrund des sich ausdehnenden Volumens deutlich erschwert ist.In the column to the right of the chip forming classes, the chip space number R is listed, which indicates the relationship between the space requirement of a disordered chip quantity (V span ) and the material volume of the same chip quantity (V). A small chip space number R suggests small chips, which require little space in their spatial design. Thus, these are much easier to handle compared to large chips. In contrast, a large number of chip spaces R makes it possible to close a large space requirement of the chips, so that their handling is made considerably more difficult due to the expanding volume.

Die Spanformklassen und die jeweiligen Spanraumzahlen R sind in der ganz rechten Spalte in Figur 1 einer Beurteilung zugeführt, wobei die Spanformklassen 7 und 8 mit ihrer jeweiligen Spanraumzahl R als "brauchbar" eingestuft wurden, während die Spanformklassen 5 und 6 in Kombination mit ihren jeweiligen Spanraumzahlen R als "gut" beurteilt sind. Die verbleibenden Spanformklassen 1 bis 4 im Zusammenhang mit deren jeweiliger Spanraumzahl R sind dagegen ersichtlich als "ungünstig" eingestuft, wobei bei den Spanformklassen 3 und 4 ein fließender Übergang zu "gut" vorliegt.The chipform classes and the respective chip space numbers R are in the far right column in FIG. 1 judging the chip forming classes 7 and 8 with their respective chip space R as "usable", while the chip forming classes 5 and 6 are judged in combination with their respective Spanraumzahlen R as "good". On the other hand, the remaining chip forming classes 1 to 4 in connection with their respective chip space number R are classified as "unfavorable", with a smooth transition to "good" occurring in chipform classes 3 and 4.

Figur 2 zeigt die Ergebnisse der mechanischen Bearbeitung der untersuchten Gruppe der bekannten Kupferlegierungen in Bezug auf die sich ergebenden Spanformklassen beim Außenlängsdrehen eines daraus bestehenden Werkstücks. FIG. 2 Figure 3 shows the results of mechanical working of the examined group of known copper alloys with respect to the resulting chip forming classes in outboard turning of a workpiece thereof.

Die mit Figur 2 vorliegenden Ergebnisse basieren auf einer konstanten Schnitttiefe ap von 1,5 mm und einem Vorschub f von 0,2 mm. Die jeweilige Schnittgeschwindigkeit vc wurde dabei von 450 m/min (vc1) auf 150 m/min (vc2) variiert. Wie zu erkennen, liegen die jeweiligen Spanformklassen der Werkstoffe aus der Gruppe (CuSP, CuTeP und CuSMn) allesamt zwischen 3 und 5. Die sich jeweils ergebenden Spanbilder sind ebenfalls in der vorliegenden Tabelle schematisch dargestellt. Zur besseren Verdeutlichung ist diesen jeweils ein Einheitsstrich für 20mm als Bezug zugeordnet, um die Ergebnisse in Form der sich bei der Untersuchung eingestellten Spangrößen besser einschätzen zu können.With FIG. 2 present results are based on a constant depth of cut a p of 1.5 mm and a feed f of 0.2 mm. The respective cutting speed v c was varied from 450 m / min (v c1 ) to 150 m / min (v c2 ). As can be seen, the respective chip form classes of the materials from the group (CuSP, CuTeP and CuSMn) are all between 3 and 5. The resulting chip images are also shown schematically in the present table. For better clarity, they are each assigned a single line for 20mm as a reference in order to be able to better estimate the results in the form of the chip sizes set during the examination.

Figur 3 zeigt die Ergebnisse weiterer Bearbeitungsschritte der Gruppe aus Figur 2. Hierbei wurde bei gleich bleibender Schnittgeschwindigkeit vc von 450 m/min die jeweilige Schnitttiefe ap von 1,5 mm (ap1) nach 0,75 mm (ap2) hin variiert. Wie bereits bei die vorherigen und in Bezug auf deren Ergebnisse in Figur 2 ersichtliche Untersuchung wurde auch hierbei ein konstanter Vorschub von f = 0,2 mm eingehalten. FIG. 3 shows the results of further processing steps of the group FIG. 2 , At a constant cutting speed v c of 450 m / min, the respective cutting depth a p was varied from 1.5 mm (a p1 ) to 0.75 mm (a p2 ). As with the previous ones and in terms of their results in FIG. 2 In this case, a constant feed rate of f = 0.2 mm was observed.

Aus Figur 3 geht hervor, dass die Variation der Schnitttiefe (ap) insbesondere bei dem Werkstoffen CuSP und CuTeP zu einer Veränderung der Spanformklasse führt, wobei eine Vergrößerung der Schnitttiefe ap sich einer Verschlechterung der Spanformklasse äußert. Demgegenüber bleibt die Spanformklasse von CuSMn während der Variation der Schnitttiefe ap konstant, wie es im Übrigen auch bei der Variation der Schnittgeschwindigkeit vc der Fall war (siehe Figur 2).Out FIG. 3 shows that the variation of the depth of cut (a p ), in particular for the materials CuSP and CuTeP, leads to a change in the chipforming class, with an increase in the cutting depth a p indicating a deterioration of the chipforming class. In contrast, the chipform class of CuSMn remains during the variation of the depth of cut a p constant, as was the case with the variation of the cutting speed v c (see FIG. 2 ).

Wie zu erkennen, bleibt die Spanformklasse insbesondere der Kupferlegierung CuSMn somit sowohl bei Variation der Schnittgeschwindigkeit als auch bei Variation der Schnitttiefe in den jeweils vorliegenden Bereichen konstant.As can be seen, the chip form class, in particular of the copper alloy CuSMn, thus remains constant both in the case of variation of the cutting speed and in the case of variation of the cutting depth in the respectively present areas.

Weiterhin bewegt sich die Gruppe der untersuchten Kupferlegierungen auch bei Variation der Schnitttiefe ap in einem Bereich der Spanformklassen 3 bis 5.Furthermore, the group of investigated copper alloys also moves with variation of the cutting depth a p in a range of chipforming classes 3 to 5.

Aus Figur 4 geht das Ergebnis der Variation des Vorschubs f in ihrer Auswirkung auf die Spanformklasse der jeweiligen Kupferlegierungen aus der untersuchten Gruppe hervor. Wie zu erkennen, verschlechtert sich die Spanformklasse der Gruppe mit abnehmendem Vorschub f insgesamt. Bei dem aus den Figuren 2 und 3 hervorgehenden Vorschub f von 0,2 mm liegen alle drei Kupferlegierungen der Prüfgruppe dagegen dicht beieinander. Lediglich die Kupferlegierung CuSMn verbessert seine Spanformklasse mit zunehmendem Vorschub f, welcher vorliegend bis 0,3 mm geprüft wurde. Die sich jeweils ergebenden Spanformen gehen ebenfalls aus den schematisch dargestellten Abbildungen in Kombination mit der vorliegenden Tabelle hervor.Out FIG. 4 the result of the variation of the feed f results in its effect on the chip forming class of the respective copper alloys from the group studied. As can be seen, the chipforming class of the group deteriorates with decreasing feed f as a whole. In the case of the Figures 2 and 3 resulting feed f of 0.2 mm, however, all three copper alloys of the test group are close to each other. Only the copper alloy CuSMn improves its chipbreaker class with increasing feed f, which was tested to 0.3 mm in the present case. The respective resulting chip forms also result from the diagrams shown schematically in combination with the present table.

Die so erhaltenen und in den Figuren 2 bis 4 zusammengestellten Ergebnisse wurden anschließend mit den Untersuchungsergebnissen für die vorliegende erfindungsgemäße Kupferlegierung verglichen.The thus obtained and in the FIGS. 2 to 4 Composed results were then compared with the test results for the present copper alloy according to the invention.

Als Referenzwert wurde die bekannte Kupferlegierung CuZn39Pb3 verwendet, welche insbesondere in Deutschland als die Hauptlegierung für Zerspanung gilt. Besagter Kupferlegierung findet überall dort seinen Einsatz, wo es verstärkt auf eine spanende sowie spanabhebende Formgebung ankommt. Im Zusammenhang mit der vorliegend als Referenz genutzten Kupferlegierung CuZn39Pb3 wird deren Zerspanbarkeit mit einem Zerspanungsindex von 100% angenommen.The reference value used was the well-known copper alloy CuZn39Pb3, which is considered to be the main alloy for machining, especially in Germany. Said copper alloy is used everywhere, where it increasingly depends on a cutting and cutting shaping. In connection with the CuZn39Pb3 copper alloy used herein as reference, its machinability is assumed to be 100%.

Demgegenüber erreicht reiner Kupferwerkstoff einen Zerspannungsindex von 20% bis maximal 30%. Bei diesen Kupfersorten handelt es sich um niedrig legierte und aushärtbare Kupferwerkstoffe, welche keine spanbrechende Elemente wie Schwefel (S), Tellur (Te) sowie Schwefel (S) und Mangan (Mn) sowie Blei (Pb) beinhalten.In contrast, pure copper material achieves a stress index of 20% to a maximum of 30%. These types of copper are low alloyed and hardenable copper materials which do not contain chip-breaking elements such as sulfur (S), tellurium (Te) and sulfur (S) and manganese (Mn) and lead (Pb).

Zwischen diesen beiden Kupferwerkstoffen reiht sich die vorliegend untersuchte Gruppe derart ein, dass CuSP einen Zerspannungsindex von 70% aufweist, währen CuTeP einen Zerspannungsindex von 80% besitzt. Letztlich erreicht CuSMn den höchsten Zerspannungsindex aus der Gruppe von 90%.Between these two copper materials, the group investigated here is such that CuSP has a stress index of 70%, while CuTeP has a stress index of 80%. Finally, CuSMn achieves the highest stress index in the group of 90%.

Figur 5 zeigt hierzu eine tabellarische Gegenüberstellung der darin enthaltenen Werkstoffe in Bezug auf deren jeweilige Werkstoffeigenschaften. FIG. 5 shows a tabular comparison of the materials contained therein in relation to their respective material properties.

Neben den in der ganz linken Spalte untereinander aufgeführten Werkstoffen sind jeweils rechts daneben deren zugehörige Größen aus weiteren Untersuchungen zu entnehmen, beginnend mit der 0,2%-Dehngrenze Rp0,2. Rechts daneben findet sich die Zugfestigkeit Rm sowie Bruchdehnung A.In addition to the materials listed below each other in the left-hand column, their corresponding sizes can be found on the right next to each other, starting with the 0.2% proof stress R p0.2 . Right next to it there is the tensile strength R m and elongation at break A.

In der sich daran anschließenden rechten Spalte ist die jeweilige Brinellhärte (HBW) angegeben und in der rechts darauf folgenden Spalte die Leitfähigkeit der einzelnen Werkstoffe. Die ganz rechts gelegenen, letzten beiden Spalten zeigen zunächst qualitativ die jeweilige Relaxation sowie die Zerspanbarkeit in Form des Zerspannungsindexes in %.In the following right column, the respective Brinell hardness (HBW) is given and in the right following column, the conductivity of the individual materials. The last two columns on the far right show qualitatively the respective relaxation and the machinability in the form of the stress index in%.

Die vorliegende Tabelle in Figur 5 ist dabei so aufgebaut, dass diese die ungefähren Herstellungskosten der einzeln aufgeführten Werkstoffe widerspiegelt, beginnend mit dem preiswertesten Werkstoff oben.The present table in FIG. 5 is constructed so that it reflects the approximate manufacturing cost of the individually listed materials, starting with the cheapest material above.

In der Tabelle findet sich die erfindungsgemäße Kupferlegierung mit den dort aufgeführten Größenordnungen ihrer einzelnen Legierungskomponenten wieder, näherhin CuFe0,1PS0,35 und CuFe2PS0,35.The table shows the copper alloy according to the invention with the orders of magnitude of its individual alloy components listed there, more specifically CuFe0.1PS0.35 and CuFe2PS0.35.

Wie zu erkennen ist, weist die Kupferlegierung CuFe0,1PS0,35 im direkten Vergleich mit nur spanbrechenden legierten Werkstoffen (CuSP, CuTeP und CuSMn) eine hier etwas geringere eingestellte 0,2%-Dehngrenze sowie Zugfestigkeit Rm auf. Die Bruchdehnung ist mit 17 % und die Relaxation ist mit "o" besser gegenüber CuSP, CuTeP und CuSMn. Die Legierung CuFe2PS0,35 weist höhere mechanische Kennwerte und eine höhere Relaxationsbeständigkeit, welche in der Tabelle mit "+" kenntlich gemacht ist, auf.As can be seen, the copper alloy CuFe0.1PS0.35 in direct comparison with only chip-breaking alloyed materials (CuSP, CuTeP and CuSMn) has a somewhat lower 0.2% yield strength and tensile strength R m . The elongation at break is 17% and the relaxation with "o" better than CuSP, CuTeP and CuSMn. The alloy CuFe2PS0,35 has higher mechanical properties Characteristics and a higher relaxation resistance, which is indicated in the table with "+", on.

Die mit der Erfindung vergleichbaren Werkstoffe CuFe0,1P und CuFe2P besitzen eine jeweils ähnlich gute Relaxationsbeständigkeit, weisen demgegenüber allerdings eine deutlich schlechtere Zerspanbarkeit von lediglich 20 bzw. 25 % gegenüber der erfindungsgemäßen Kupferlegierung CuFe0,1PS und CuFe2PS auf.The comparable with the invention materials CuFe0,1P and CuFe2P each have a similar good relaxation resistance, however, on the other hand, however, have a significantly poorer machinability of only 20 or 25% compared to the copper alloy according to the invention CuFe0.1PS and CuFe2PS.

Auffällig hierbei ist, dass die in den ersten vier Zeilen aufgeführten Werkstoffe zwar einen ähnlich guten und mit 100% bei CuZn39Pb3 entsprechend höheren Zerspanungsindex besitzen, demgegenüber allerdings in ihrer jeweiligen Relaxationsbeständigkeit der Kupferlegierung CuFePS0,35 der Erfindung deutlich unterliegen.It is striking that the materials listed in the first four lines have a similarly good and with 100% CuZn39Pb3 correspondingly higher cutting index, however, in their respective relaxation resistance of the copper alloy CuFePS0.35 of the invention clearly subject.

Die vorliegend aufgeführten Werte für den jeweiligen Zerspannungsindex der im Stand der Technik bekannten Werkstoffe wurde zum Teil aus dem Informationsdruck i18 des deutschen Kupferinstituts "Richtwerte für die spanende Bearbeitung von Kupfer und Kupferlegierungen" entnommen.The values listed here for the respective stress index of the materials known in the prior art were taken in part from the information print i18 of the German copper institute "Guidelines for the Machining of Copper and Copper Alloys".

Die Bestimmung der mechanischen Kennwerte für die vorliegende Tabelle erfolgte nach DIN ISO 6892-1. Dabei entsprach die jeweilige Probenform der Form A gemäß DIN 50125. Die jeweilige Leitfähigkeit wurde mit einem Sigmatester der Firma Förster ermittelt. Das jeweilige Relaxationsverhalten wurde anhand von internen Messungen an den verwandten Werkstoffen extrapoliert, welche allerdings gegenüber der Kupferlegierung der Erfindung keine erfindungsgemäßen spanbrechenden Elemente enthielten.The determination of the mechanical characteristic values for the present table was carried out according to DIN ISO 6892-1. The respective sample shape corresponded to the form A according to DIN 50125. The respective conductivity was determined using a Sigmatester from Förster. The respective relaxation behavior was extrapolated on the basis of internal measurements on the related materials, which, however, compared to the copper alloy of the invention contained no chip-breaking elements according to the invention.

Die Figuren 6 bis 9 zeigen jeweils ein Schliffbild der Mikrostrukturen aus der den Untersuchungen zugrunde liegenden Gruppe der einzelnen Kupferwerkstoffe.The FIGS. 6 to 9 each show a micrograph of the microstructures from the group of individual copper materials underlying the investigations.

Figur 6 zeigt dabei den Werkstoff CuSP mit seiner Anordnung der spanbrechenden Elemente. Dessen Mikrostruktur zeigt zum Teil dicht beieinander liegende und jeweils dunkel dargestellte Kupfersulfide, welcher hierbei als Spanbrecher dienen. FIG. 6 shows the material CuSP with its arrangement of the chip-breaking elements. Its microstructure shows in part closely spaced and each dark copper sulfides, which serve here as a chip breaker.

Figur 7 zeigt demgegenüber den Werkstoff CuTeP, welcher in seiner Mikrostruktur dunkel dargestellte Kupfertellurieden als Spanbrecher enthält. Diese sind in ihrer Anordnung größtenteils vereinzelter und weiter auseinander gelegen. FIG. 7 shows in contrast the material CuTeP, which contains in its microstructure darkened Kupfertellurieden as a chip breaker. These are in their arrangement largely isolated and further apart.

Aus Figur 8 geht die Mikrostruktur des Werkstoffs CuSMn hervor, welcher als Spanbrecher Mangansulfide enthält. Wie bereits aus den in den Figuren 2 bis 4 und in Zeile vier der Tabelle aus Figur 5 hervorgehenden Ergebnissen weist CuSMn einen hohen Zerspanungsindex mit einer zumeist guten Spanformklasse auf, was auf die in Figur 8 ersichtliche, gleichmäßige Verteilung seiner Spanbrecher zurückzuführen ist.Out FIG. 8 shows the microstructure of the material CuSMn, which contains manganese sulphides as a chipbreaker. As already from the in the FIGS. 2 to 4 and in line four of the table FIG. 5 As a result, CuSMn has a high chipping index with a mostly good chipforming class, due to the in FIG. 8 apparent uniform distribution of its chipbreaker is due.

Figur 9 zeigt zum Vergleich die geätzte Mikrostruktur des genormten Werkstoffs CuFe0,1P (C19210) ohne spanbrechende Phasen. FIG. 9 shows for comparison the etched microstructure of the standardized material CuFe0.1P (C19210) without chip breaking phases.

Neben dem Kupfermischkristall liegen nicht lichtmikroskopisch sichtbare Eisenphosphie vor. Die Eisenphosphide haben keine spanbrechende Wirkung. Beim Zerspanen des Werkstoffs entstehen ungünstig lange Späne (Fig. 10) die sich um die Spanwerkzeuge wickeln können und den Stillstand eines Drehautomaten verursachen können (Parameter: vC = 100 m/min, f = 0,1 mm, aP = 1,0 mm).In addition to the copper mixed crystal, iron phosphors that are not visible under light microscopy are present. The iron phosphides have no chipbreaking effect. When machining the material unfavorably long chips ( Fig. 10 ) which can wrap around the cutting tools and cause the standstill of a lathe (parameters: v C = 100 m / min, f = 0.1 mm, a P = 1.0 mm).

Aus Figur 11 geht die Mikrostruktur des erfindungsgemäßen Werkstoffs CuFe0,1PS0,35 hervor. Dieser weist als Spanbrecher ebenfalls Kupfereisensulfide auf. Wie zu erkennen, besitzt dieser eine dem in Figur 8 dargestellten Kupferwerkstoff CuSMn ähnlich gute Verteilung seiner Spanbrecher, was sich in einer guten Zerspanbarkeit äußert.Out FIG. 11 shows the microstructure of the material CuFe0,1PS0,35 invention. This also has copper chip sulphide as chipbreaker. As you can see, this one has the in FIG. 8 shown copper material CuSMn similarly good distribution of its chipbreaker, which manifests itself in a good machinability.

Dessen Fertigung lag das Gießen im Strangguss zugrunde, mit einem Pressen von Durchmesser 273 mm auf Durchmesser 28 mm. Weiterhin beinhaltete die Fertigung das Ziehen von Durchmesser 28 mm auf Durchmesser 24 mm. Anschließend erfolgte ein Rekristallisationsglühen bei 540 °C über 4 Stunden hinweg an Umgebungsluft und eine weitere Verformung.Its production was based on casting in continuous casting, with a diameter of 273 mm to a diameter of 28 mm. Furthermore, the production involved the drawing of diameter 28 mm to diameter 24 mm. Subsequently, recrystallization annealing was carried out at 540 ° C for 4 hours in ambient air and further deformation.

Figur 12 zeigt die Spanausbildung nach der mechanischen Bearbeitung des erfindungsgemäßen Kupferwerkstoffs CuFe0,1PS0,35. Anhand der Gefügeausbildung der Figur 11 und der Spanformklasse des vorliegenden Werkstoffs CuFe0,1PS0,35 im Vergleich mit den Untersuchungen an den vorherigen Werkstoffen CuSP, CuTeP und CuSMn lässt sich auf einen Zerspannungsindex von mindestens 70% schließen (Spanklasse 3 - 6 nach SED1178-90, bei vC = 100m/min, f = 0,1 mm, aP = 1,0 mm). FIG. 12 shows the chip formation after the mechanical processing of the copper material according to the invention CuFe0,1PS0,35. Based on the structure of the FIG. 11 and the chipform class of the present Material CuFe0,1PS0,35 in comparison to the investigations on the previous materials CuSP, CuTeP and CuSMn can be concluded with a stress index of at least 70% (chip class 3 - 6 according to SED1178-90, at v C = 100m / min, f = 0.1 mm, a P = 1.0 mm).

Je nach Anforderungsprofil lassen sich somit aus den zerspanbaren erfindungsgemäßen Kupferlegierungen entsprechende Eigenschaftskombinationen heraussuchen. Ein besonderes Merkmal der Kupferlegierung ist, dass eine Verarbeitbarkeit mit konventionellen Fertigungs- und Bearbeitungsmaschinen möglich ist. In vorteilhafter Weise besitzt die erfindungsgemäße Kupferlegierung sowohl eine ausreichende Kaltverformbarkeit als auch eine sehr gute Warmverform barkeit.Depending on the requirement profile, it is thus possible to select suitable combinations of properties from the machinable copper alloys according to the invention. A special feature of the copper alloy is that a processability with conventional manufacturing and processing machines is possible. Advantageously, the copper alloy according to the invention has both a sufficient cold workability and a very good hot workability.

Vorliegend ist die Erfindung auch auf die Verwendung einer solchen Kupferlegierung für die Herstellung eines spanend zu fertigenden Produktes gemäß Patentanspruch 7 gerichtet.In the present case, the invention is also directed to the use of such a copper alloy for the production of a product to be machined according to claim 7.

Weiterhin ist die Erfindung auf die Verwendung einer solchen Kupferlegierung auch für die Herstellung eines nicht spanend zu fertigenden Halbzeugs gemäß Patentanspruch 8 gerichtet. Dabei kann es sich insbesondere um ein Walz-, Press-, Zieh-, Schmiede- oder Gussprodukt handeln. Zum Beispiel können Stangen und Drähte aus Press- und Ziehfolgen als Halbzeuge geliefert werden.Furthermore, the invention is directed to the use of such a copper alloy for the production of a semi-finished to be produced according to claim 8. This may in particular be a rolled, pressed, drawn, forged or cast product. For example, rods and wires can be delivered from press and pull sequences as semi-finished products.

Aus den Stangen und Drähten können zum Beispiel folgende Produkte über eine spanende Fertigung hergestellt werden: Steckkontakte, Quetschhülsen, Crimpverbinder, Nägel mit gebohrtem Schaft, Motorteile, Schrauben, Fixierstifte, Klemmen, Schweißdüsen, Schneidbrennerdüsen, Ventile, Fittings, Muttern, Armaturenteile, Kontraktrohre, Kontaktstifte.From the bars and wires, for example, the following products can be produced by machining: plug contacts, crimping sleeves, crimp connectors, drilled shaft nails, motor parts, screws, locating pins, clamps, welding nozzles, cutting torch nozzles, valves, fittings, nuts, fittings, contraelectrons, contact pins.

Figur 13 zeigt ein Diagramm zur Variation des Fe- und P-Gehalts bei konstantem Gehalt der Spanbrecher S oder S + Mn und/oder Te und Figur 14 zeigt ein Diagramm zur Variation der Gehalte der Spanbrecher S oder S + Mn und/oder Te bei konstantem Gehalt der Basiselemente Fe und P. FIG. 13 shows a diagram for varying the Fe and P content at a constant content of the chip breaker S or S + Mn and / or Te and FIG. 14 shows a diagram for varying the contents of the chip breaker S or S + Mn and / or Te at a constant content of the basic elements Fe and P.

Daraus lassen sich die gegenseitigen Wechselwirkungen der Legierungselemente ablesen.From this the mutual interactions of the alloying elements can be read off.

Claims (8)

  1. Copper alloy, comprising, in proportions in % by weight: iron (Fe) 0.07 - 4.00 phosphorus (P) 0.015 - 0.50 sulphur (S) 0.10 - 0.80
    wherein the alloy is free of beryllium (Be) and lead (Pb) and optionally contains: aluminium (Al) max. 0.50 chrome (Cr) max. 0.50 magnesium (Mg) max. 0.50 zirconium (Zr) max. 0.50 zinc (Zn) max. 2.50 tin (Sn) max. 2.50 boron (B) max. 0.50 silver (Ag) max. 0.50 manganese (Mn) 0.01 - 0.80 tellurium (Te) 0.10 - 1.00,
    the remainder being copper (Cu) and impurities caused by melting.
  2. Copper alloy according to claim 1, characterised in that it optionally contains at least one of the following alloying elements with the following proportions in % by weight: aluminium (Al) 0.01 - 0.50 chromium (Cr) 0.01 - 0.50 magnesium (Mg) 0.01 - 0.50 zirconium (Zr) 0.01 - 0.50 zinc (Zn) 0.01 - 2.50 tin (Sn) 0.01 - 2.50 boron (B) 0.01 - 0.50 silver (Ag) 0.01 - 0.50
  3. Copper alloy according to claim 1 or 2, characterised by the following proportions in % by weight: iron (Fe) 0.07 - 3.50 phosphorus (P) 0.015 - 0.40 sulphur (S) 0.15 - 0.70
    and at least one element from the following group: manganese (Mn) 0.03 - 0.75 tellurium (Te) 0.05 - 0.90
  4. Copper alloy according to claim 1 or 2, characterised by the following proportions in % by weight: iron (Fe) 0.20 - 3.20 phosphorus (P) 0.017 - 0.30 sulphur (S) 0.20 - 0.62
    and at least one element from the following group: manganese (Mn) 0.05 - 0.70 tellurium (Te) 0.20 - 0.80
  5. Copper alloy according to claim 1 or 2, characterised by the following proportions in % by weight: iron (Fe) 0.40 - 3.00 phosphorus (P) 0.022 - 0.20 sulphur (S) 0.25 - 0.57
    and at least one element from the following group: manganese (Mn) 0.08 - 0.55 tellurium (Te) 0.30 - 0.70
  6. Copper alloy according to claim 1 or 2, characterised by the following proportions in % by weight: iron (Fe) 0.75 - 2.60 phosphorus (P) 0.025 - 0.15 sulphur (S) 0.30 - 0.50
    and at least one element from the following group: manganese (Mn) 0.10-0.40 tellurium (Te) 0.40-0.60
  7. Use of a copper alloy according to any of the preceding claims 1 to 6 for the manufacture of a product to be machined.
  8. Use of a copper alloy according to any of the preceding claims 1 to 6 for the manufacture of a semi-finished product that is not to be machined, in particular in the form of a rolled, pressed, drawn, forged or cast product.
EP14809274.5A 2013-09-02 2014-08-29 Copper alloy, which contains iron and phosphor Active EP3041966B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14809274T PL3041966T3 (en) 2013-09-02 2014-08-29 Copper alloy, which contains iron and phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310014501 DE102013014501A1 (en) 2013-09-02 2013-09-02 copper alloy
PCT/DE2014/000435 WO2015027975A2 (en) 2013-09-02 2014-08-29 Copper alloy

Publications (2)

Publication Number Publication Date
EP3041966A2 EP3041966A2 (en) 2016-07-13
EP3041966B1 true EP3041966B1 (en) 2018-05-30

Family

ID=52015777

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14809274.5A Active EP3041966B1 (en) 2013-09-02 2014-08-29 Copper alloy, which contains iron and phosphor

Country Status (6)

Country Link
EP (1) EP3041966B1 (en)
DE (1) DE102013014501A1 (en)
ES (1) ES2675143T3 (en)
HU (1) HUE038253T4 (en)
PL (1) PL3041966T3 (en)
WO (1) WO2015027975A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018104958U1 (en) 2018-08-30 2018-09-12 Harting Electric Gmbh & Co. Kg Connector with components of improved material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108167A (en) * 1996-06-18 1998-01-13 Mitsubishi Shindoh Co Ltd Copper alloy excellent in hot workability
EP1731624A4 (en) * 2004-03-12 2007-06-13 Sumitomo Metal Ind Copper alloy and method for production thereof
JP4542008B2 (en) * 2005-06-07 2010-09-08 株式会社神戸製鋼所 Display device
CN102690972A (en) * 2011-03-22 2012-09-26 日立电线株式会社 Copper alloy tube for heat exchange

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015027975A2 (en) 2015-03-05
HUE038253T2 (en) 2018-10-29
HUE038253T4 (en) 2018-11-28
PL3041966T3 (en) 2018-09-28
ES2675143T3 (en) 2018-07-09
DE102013014501A1 (en) 2015-03-05
WO2015027975A3 (en) 2015-11-12
EP3041966A2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
EP2013371B1 (en) Use of a copper-nickel-tin alloy
EP2806044B1 (en) Copper-zinc alloy, method for its manufacture and use
DE2007516C2 (en) Copper based alloy
EP2467507B1 (en) Brass alloy
EP3320122B1 (en) Brass alloy
EP3198048B1 (en) Electrical clamps
WO2015027977A2 (en) Copper alloy
WO2014154191A1 (en) Copper alloy
EP3004413A1 (en) Refill for a ball-point pen and use thereof
EP3908682B1 (en) Pb-free cu-zn alloy
DE2809561A1 (en) COPPER ALLOY WITH GOOD ELECTRICAL CONDUCTIVITY AND GOOD MECHANICAL PROPERTIES
EP3581667B1 (en) Moulded parts made from a corrosion resistant and machinable alloy
EP3041966B1 (en) Copper alloy, which contains iron and phosphor
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
AT393697B (en) IMPROVED COPPER-BASED METAL ALLOY, IN PARTICULAR FOR THE CONSTRUCTION OF ELECTRONIC COMPONENTS
DE4415067C2 (en) Process for the production of a copper-nickel-silicon alloy and its use
DE102013014500A1 (en) copper alloy
EP3670691B1 (en) Magnesium alloy and its process of manufacture
EP3992320A1 (en) Lead-free cu-zn alloy
EP3781719B1 (en) Copper-zinc-nickel-manganese alloy
EP2625300B1 (en) Copper alloy
EP3992317A1 (en) Lead-free cu-zn base alloy
DE102022002927B4 (en) Wrought material made of a copper-zinc alloy, semi-finished product made of a wrought material and process for producing such a semi-finished product
DE102022002928B4 (en) Wrought material made of a copper-zinc alloy, semi-finished product made of a wrought material and process for producing such a semi-finished product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1003680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014008442

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2675143

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180709

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E038253

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180830

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4B

Ref document number: E038253

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180831

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014008442

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180830

26N No opposition filed

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180530

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210826

Year of fee payment: 8

Ref country code: LU

Payment date: 20210826

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210830

Year of fee payment: 8

Ref country code: FI

Payment date: 20210819

Year of fee payment: 8

Ref country code: CZ

Payment date: 20210830

Year of fee payment: 8

Ref country code: AT

Payment date: 20210819

Year of fee payment: 8

Ref country code: IT

Payment date: 20210820

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210823

Year of fee payment: 8

Ref country code: ES

Payment date: 20210909

Year of fee payment: 8

Ref country code: CH

Payment date: 20210823

Year of fee payment: 8

Ref country code: BE

Payment date: 20210826

Year of fee payment: 8

Ref country code: HU

Payment date: 20210815

Year of fee payment: 8

Ref country code: PL

Payment date: 20210816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211027

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014008442

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1003680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220829

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220829

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220829

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220829

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220829

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830