EP3781719B1 - Copper-zinc-nickel-manganese alloy - Google Patents

Copper-zinc-nickel-manganese alloy Download PDF

Info

Publication number
EP3781719B1
EP3781719B1 EP19719422.8A EP19719422A EP3781719B1 EP 3781719 B1 EP3781719 B1 EP 3781719B1 EP 19719422 A EP19719422 A EP 19719422A EP 3781719 B1 EP3781719 B1 EP 3781719B1
Authority
EP
European Patent Office
Prior art keywords
alloy
weight
manganese
proportion
mnni
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19719422.8A
Other languages
German (de)
French (fr)
Other versions
EP3781719A1 (en
Inventor
Igor Altenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP3781719A1 publication Critical patent/EP3781719A1/en
Application granted granted Critical
Publication of EP3781719B1 publication Critical patent/EP3781719B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to a high-strength copper-zinc-nickel-manganese alloy.
  • Copper-zinc alloys containing between 8 and 20% by weight nickel are known as "German silver". Due to the high nickel content, they are very resistant to corrosion and have a high level of strength. Most German silver alloys contain small amounts of manganese. Particularly high-strength German silver alloys are CuNi18Zn20 and CuNi18Zn19Pb1. They have tensile strengths of up to 1000 MPa. Both alloys contain less than 1% by weight of manganese. The CuNi12Zn38Mn5Pb2 alloy contains a significantly larger proportion of manganese at around 5% by weight. Materials made from this alloy can have a tensile strength of 650 MPa.
  • the pamphlet JP2005 325413 discloses a copper alloy containing 40.0 to 50.0% Cu, 5.0 to 20.0% Ni, 1.0 to 10.0% Mn, 0.5 to 3.0% Bi and 2.0 to 6. 0% Sn.
  • an alloy with the composition 49.2% Cu, 19.7% Ni, 9.96% Mn, 2.94% Bi, 5.99% Sn, balance Zn and impurities is disclosed.
  • the object of the invention is to provide a copper alloy with high strength, hardness, ductility, wear resistance, corrosion resistance and with good antimicrobial and antifouling properties. It should be possible to produce semi-finished products from the alloy using standard process steps on an industrial scale. In particular, high degrees of cold forming should be achievable without intermediate annealing in order to keep production costs low.
  • the invention is based on the consideration that by alloying certain amounts of zinc, nickel and manganese to copper, an alloy with is formed with an exceptional property profile.
  • the proportion of zinc in the alloy is at least 17% by weight and at most 20.5% by weight.
  • Zinc as a cost-effective element, should be present in the alloy in as large a proportion as possible.
  • a zinc content of more than 20.5% by weight leads to a significant deterioration in ductility as well as to a Deterioration of corrosion resistance.
  • the proportion of nickel in the alloy is at least 17% by weight and at most 23% by weight.
  • Nickel provides the alloy with high strength and good corrosion resistance.
  • the alloy must therefore contain at least 17% by weight, preferably at least 18% by weight, of nickel.
  • the alloy should contain no more than 23% by weight, preferably no more than 21% by weight, of nickel.
  • the proportion of manganese in the alloy is at least 8% by weight and at most 11.5% by weight.
  • manganese can form manganese- and nickel-containing precipitates of the MnNi 2 and MnNi types. This effect only occurs clearly from a manganese content of approximately 8% by weight. From a manganese content of 8 wt. With manganese contents above 11.5% by weight, an increase in the formation of cracks during hot forming can be observed. The manganese content should therefore not exceed 11.5% by weight.
  • the manganese content is preferably at least 9% by weight.
  • the manganese content is preferably at most 11% by weight.
  • the ratio of the proportion of nickel to the proportion of manganese is at least 1.7, so that precipitations of the MnNi 2 and MnNi type can be formed. These precipitates are embedded in the structure of the alloy.
  • the copper content in the alloy should be at least 45% by weight.
  • the copper content largely determines the antimicrobial properties of the alloy.
  • the copper content should therefore be at least 45% by weight, preferably at least 48% by weight.
  • chromium forms an additional species of precipitates alongside the MnNi and MnNi 2 precipitates. Chromium thus contributes to a further increase in strength.
  • at least 0.2% by weight of chromium should be added to the alloy in order to achieve a significant effect.
  • iron can be added to the alloy.
  • Iron forms an additional type of precipitation in addition to the MnNi and MnNi 2 precipitations. Iron thus contributes to a further increase in strength.
  • at least 0.2% by weight of iron should be added to the alloy in order to achieve a significant effect.
  • the optional elements Ti, B and Ca result in grain refinement of the structure.
  • the optional element Pb improves the machinability of the material. It must be taken into account that Pb impairs hot workability, so that hot work is not carried out if Pb is significantly alloyed with it.
  • the alloy is free of beryllium and rare earth elements.
  • the particular advantage of the invention is that the special selection of the proportions of the elements zinc, nickel and manganese forms an alloy which, as a wrought material, has a special profile of properties. It features an excellent combination of strength, ductility, deep drawability, corrosion resistance and spring properties. It has excellent antimicrobial and anti-fouling properties. Materials with a tensile strength of at least 1100 MPa and/or a yield strength of at least 1000 MPa can be produced by precipitation hardening.
  • the alloy can either be hot worked after a cast shape has been cast without solution annealing, or the cast shape can be cold worked immediately without hot work.
  • hot forming is carried out at temperatures between 650 °C and 850 °C.
  • the alloy is then cold-formed, with a degree of forming of up to 99% being achievable.
  • a degree of deformation of at least 90% is preferred.
  • the degree of deformation is understood here to mean the relative decrease in the cross section of the workpiece.
  • the alloy is heat treated at a temperature between 310°C and 500°C for a time between 10 minutes and 30 hours.
  • the material With a degree of deformation of 90%, the material has a tensile strength R m of up to 1260 MPa and a yield point R p0.2 of up to 1200 MPa with an elongation at break of 2.1% after heat treatment.
  • the temperature for the heat treatment is preferably between 330 and 370.degree.
  • the duration of the heat treatment is between 2 and 30 hours.
  • Softer states with a tensile strength of around 700 MPa and an elongation at break of 30% can also be achieved by choosing an annealing temperature above 450 °C and a heat treatment duration of less than one hour.
  • the manganese content must therefore be set within a narrowly defined range so that, on the one hand, the advantages of precipitation formation can be used and, on the other hand, crack formation during hot forming is avoided.
  • the alloy according to the invention is therefore a particularly advantageous choice.
  • the proportions of zinc and manganese in the alloy are adjusted in such a way that the alloy can still be hot-formed without any problems and also allows a high degree of cold-forming.
  • the alloy is processed without hot forming.
  • the cast state of the alloy is cold-formed.
  • a total degree of deformation of up to 90% can be achieved.
  • the material After cold forming with a total degree of forming of at least 80%, the material has a tensile strength R m of 850 MPa and a yield point R p0.2 of 835 MPa.
  • the elongation at break is 3% and the hardness is 276 HV10.
  • a tensile strength of more than 900 MPa can be achieved by cold forming with a degree of forming of 90%.
  • alloys made from the alloy according to the invention are very resistant to fatigue, oil corrosion and low wear. They are therefore suitable for use in plain bearings, tools, relays and watch parts. Furthermore, such materials have good spring properties. Due to their high resilience, they can store a lot of energy elastically. Therefore, the alloy according to the invention is well suited for springs and spring elements. the The combination of cold formability, corrosion resistance and spring properties makes the alloy according to the invention the preferred material for frames and hinges of spectacles.
  • the ratio of the proportion of Ni to the proportion of Mn can be at most 2.3. If the ratio Ni/Mn is chosen in this way, then there are particularly favorable conditions for the formation of precipitates of the stoichiometry MnNi. When the Ni/Mn ratio is greater than 2.3, precipitates of stoichiometry MnNi 2 are increasingly formed since the excess of Ni is larger. MnNi-type precipitates cause a greater increase in strength than MnNi 2 -type precipitates. Therefore, it is preferable that the ratio Ni/Mn is 2.3 or less.
  • the ratio of the proportion of Ni to the proportion of Mn can be at least 1.8, particularly preferably at least 1.9.
  • the manganese content influences the elongation at break of the alloy and the formation of cracks during hot forming. The more manganese bound by nickel in precipitations, the greater the elongation at break and the lower the risk of cracking during hot forming. It is therefore favorable if at least 1.8 times, preferably at least 1.9 times, as much nickel as manganese is present in the alloy.
  • the resistance to surface corrosion deteriorates with increasing manganese content. It is therefore advantageous for applications that are highly relevant to corrosion if the Mn content does not exceed 10% by weight.
  • the Zn content can be at most 19.5% by weight. Limiting the Zn content further reduces the risk of alloy embrittlement. When the Zn content is 19.5 wt% or less, the alloy is very ductile and can be very good for both cold and hot forming.
  • the alloy according to the invention advantageously has a structure with an ⁇ -phase matrix. Up to 2% by volume of ⁇ -phase can be embedded in this ⁇ -phase matrix. Furthermore, the precipitates of the MnNi and MnNi 2 types are embedded in the ⁇ -phase matrix.
  • the almost pure ⁇ -phase matrix of the alloy enables high cold workability. The proportion of the ⁇ -phase is so small that it hardly affects the cold formability.
  • the alpha-phase matrix of the structure is free of beta-phase.
  • the microstructure therefore consists only of the ⁇ -phase with precipitates of the MnNi and MnNi 2 types embedded in it. This can be achieved through a special selection of the alloying elements, in particular the zinc content.
  • Samples having the composition shown in Table 1 were prepared. Table 1: Composition of the samples in % by weight. Samples 1, 2, 4 and 5 are comparative samples. Sample 1 sample 2 sample 3 sample 4 sample 5 Cu 55% 52.5% 50% 47.5% 45% Zn 20% 20% 20% 20% 20% 20% no 20% 20% 20% 20% 20% 20% Mn 5% 7.5% 10% 12.5% 15% cracking no no no Yes Yes
  • the proportions of zinc and nickel were each kept constant at 20% by weight.
  • the manganese content was varied from 5% to 15% by weight.
  • the proportion of copper decreased accordingly from 55% by weight to 45% by weight.
  • the unavoidable impurities were less than 0.1% by weight.
  • the samples were melted and cast. After solidification, the ingots were hot-rolled at 775 °C. In the last line of the table, crack formation during hot rolling is documented. After hot rolling, the specimens were cold rolled with a true deformation of 90%. Hardness, tensile strength, yield point and elongation at break were measured on the samples in this state.
  • the samples were annealed at 320°C for 12 hours. After annealing, hardness, tensile strength, yield point and elongation at break were also measured.
  • the alloy shows a graph of alloy hardness versus manganese content.
  • the lower row of measurement points represents the measurement values for the condition immediately after cold rolling, i.e. without annealing, while the upper points in the diagram represent the measurement values after annealing represent.
  • the alloy shows a steady increase in hardness from 270 to 290 HV10 with increasing manganese content.
  • the hardness of the alloy increases significantly as a result of the annealing.
  • the increase in hardness is about 50 HV10 at 5 and 7.5 wt%, while at a manganese content of at least 10 wt% the increase in hardness is more than 80 HV10.
  • the increase in hardness as a result of precipitation annealing is significantly more pronounced with a manganese content of more than 7.5% by weight than with smaller manganese proportions.
  • approximately 9% by weight of manganese is required.
  • a hardness of 350 HV10 and more is advantageous for plain bearings, for example.
  • the alloy is therefore able to replace Cu-Be alloys as a plain bearing material.
  • FIG. 12 shows a plot of tensile strength, yield strength and elongation at break versus manganese content of the alloy before heat treatment.
  • Tensile strength values are represented by filled circles, yield strength values by open squares.
  • Tensile strength and yield point refer to the left axis of the diagram.
  • Elongation at break values are represented by the open triangles and refer to the right axis of the graph. From 5 to 10 wt% manganese there is a moderate increase in tensile strength and yield strength. Between 10 and 12.5 wt% manganese, the tensile strength and yield point decrease somewhat. At 15% by weight of manganese, values are measured for the tensile strength and the yield point that are slightly above the level of the values at 10% by weight. The elongation at break decreases slightly between 5 and 10% by weight of manganese, but drops significantly from 3% to around 1% at higher manganese contents.
  • a comparison of the values of 2 and 3 shows that for a manganese content above 7.5% by weight, the effect of strengthening by annealing is particularly large. At 10 wt% manganese, annealing increased tensile strength and yield strength each by nearly 300 MPa, while at 5 wt% manganese, annealing increased tensile strength and yield strength by only about 130 MPa was hardly changed.
  • the test results show that with a manganese content of around 10% by weight, there are very favorable conditions in the alloy. On the one hand, the tensile strength and yield point are at a maximum, on the other hand, the alloy does not yet tend to crack.

Description

Die Erfindung betrifft eine hochfeste Kupfer-Zink-Nickel-Mangan-Legierung.The invention relates to a high-strength copper-zinc-nickel-manganese alloy.

Kupfer-Zink-Legierungen, die zwischen 8 und 20 Gew.-% Nickel enthalten, sind unter der Bezeichnung "Neusilber" bekannt. Aufgrund des hohen Nickel-Anteils sind sie sehr korrosionsbeständig und weisen eine hohe Festigkeit auf. Die meisten Neusilber-Legierungen enthalten geringe Mengen an Mangan. Besonders hochfeste Neusilber-Legierungen sind CuNi18Zn20 und CuNi18Zn19Pb1. Sie weisen Zugfestigkeiten von bis zu 1000 MPa auf. Beide Legierungen enthalten weniger als 1 Gew.-% Mangan. Einen mit ungefähr 5 Gew.-% deutlich größeren Anteil an Mangan enthält die Legierung CuNi12Zn38Mn5Pb2. Werkstoffe aus dieser Legierung können eine Zugfestigkeit von 650 MPa aufweisen.Copper-zinc alloys containing between 8 and 20% by weight nickel are known as "German silver". Due to the high nickel content, they are very resistant to corrosion and have a high level of strength. Most German silver alloys contain small amounts of manganese. Particularly high-strength German silver alloys are CuNi18Zn20 and CuNi18Zn19Pb1. They have tensile strengths of up to 1000 MPa. Both alloys contain less than 1% by weight of manganese. The CuNi12Zn38Mn5Pb2 alloy contains a significantly larger proportion of manganese at around 5% by weight. Materials made from this alloy can have a tensile strength of 650 MPa.

Die Druckschrift JP 2005 325413 offenbart eine Kupferlegierung enthaltend 40,0 bis 50,0 % Cu, 5,0 bis 20,0 % Ni, 1,0 bis 10,0 % Mn, 0,5 bis 3,0 % Bi und 2,0 bis 6,0 % Sn. Insbesondere ist eine Legierung mit der Zusammensetzung 49,2 % Cu, 19,7 % Ni, 9,96 % Mn, 2,94 Bi, 5,99 % Sn, Rest Zn und Verunreinigungen offenbart.The pamphlet JP2005 325413 discloses a copper alloy containing 40.0 to 50.0% Cu, 5.0 to 20.0% Ni, 1.0 to 10.0% Mn, 0.5 to 3.0% Bi and 2.0 to 6. 0% Sn. In particular, an alloy with the composition 49.2% Cu, 19.7% Ni, 9.96% Mn, 2.94% Bi, 5.99% Sn, balance Zn and impurities is disclosed.

Aus der Druckschrift FR 897484 ist bekannt, dass in Neusilber-Legierungen Nickel durch Mangan ersetzt werden kann. Die dort vorgeschlagenen manganhaltigen Neusilber-Legierungen enthalten mindestens so viel Mangan wie Nickel. Mit diesen Legierungen können Zugfestigkeiten bis 630 MPa, bei Zugabe von 1,5 Gew.-% Eisen bis zu 710 MPa erreicht werden.From the pamphlet FR897484 It is known that manganese can replace nickel in nickel silver alloys. The manganese-containing German silver alloys proposed there contain at least as much manganese as nickel. Tensile strengths of up to 630 MPa can be achieved with these alloys, and up to 710 MPa with the addition of 1.5% by weight of iron.

Der Erfindung liegt die Aufgabe zugrunde, eine Kupfer-Legierung mit hoher Festigkeit, Härte, Duktilität, Verschleißbeständigkeit, Korrosionsbeständigkeit und mit guten antimikrobiellen sowie Anti-Fouling-Eigenschaften bereitzustellen. Aus der Legierung sollen Halbfabrikate durch übliche Prozessschritte im industriellen Maßstab herstellbar sein. Insbesondere sollen hohe Kaltumformgrade ohne Zwischenglühung erreichbar sein, um die Fertigungskosten gering zu halten.The object of the invention is to provide a copper alloy with high strength, hardness, ductility, wear resistance, corrosion resistance and with good antimicrobial and antifouling properties. It should be possible to produce semi-finished products from the alloy using standard process steps on an industrial scale. In particular, high degrees of cold forming should be achievable without intermediate annealing in order to keep production costs low.

Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is represented by the features of claim 1. The further dependent claims relate to advantageous developments and refinements of the invention.

Die Erfindung betrifft eine Kupferlegierung mit folgender Zusammensetzung (in Gew.-%):

  • Zn: 17 bis 20,5 %,
  • Ni: 17 bis 23 %,
  • Mn: 8 bis 11,5 %,
  • wahlweise noch bis zu 4 % Cr,
  • wahlweise noch bis zu 5,5 % Fe,
  • wahlweise noch bis zu 0,5 % Ti,
  • wahlweise noch bis zu 0,15 % B,
  • wahlweise noch bis zu 0,1 % Ca,
  • wahlweise noch bis zu 1,0 % Pb
Rest Kupfer sowie unvermeidbare Verunreinigungen, wobei der Anteil an Kupfer mindestens 45 Gew.-% beträgt, das Verhältnis des Anteils an Ni zum Anteil an Mn mindestens 1,7 beträgt und wobei die Legierung ein Gefüge aufweist, in das Ausscheidungen vom Typ MnNi und MnNi2 eingelagert sind.The invention relates to a copper alloy with the following composition (in % by weight):
  • Zn: 17 to 20.5%,
  • Ni: 17 to 23%,
  • Mn: 8 to 11.5%,
  • optionally up to 4% Cr,
  • optionally up to 5.5% Fe,
  • optionally up to 0.5% Ti,
  • optionally up to 0.15% B,
  • optionally up to 0.1% Ca,
  • optionally up to 1.0% Pb
The remainder is copper and unavoidable impurities, the proportion of copper being at least 45% by weight, the ratio of the proportion of Ni to the proportion of Mn being at least 1.7 and the alloy having a microstructure in which precipitates of the MnNi and MnNi type 2 are stored.

Die Erfindung geht dabei von der Überlegung aus, dass durch Zulegieren von bestimmten Mengen an Zink, Nickel und Mangan zu Kupfer eine Legierung mit einem außergewöhnlichen Eigenschaftsprofil gebildet wird.The invention is based on the consideration that by alloying certain amounts of zinc, nickel and manganese to copper, an alloy with is formed with an exceptional property profile.

Der Anteil an Zink in der Legierung beträgt mindestens 17 Gew.-% und höchstens 20,5 Gew.-%. Zink als kostengünstiges Element sollte in einem möglichst großen Anteil in der Legierung vorhanden sein. Allerdings führt ein Zink-Anteil von über 20,5 Gew.-% zu einer signifikanten Verschlechterung der Duktilität sowie zu einer Verschlechterung der Korrosionsbeständigkeit.The proportion of zinc in the alloy is at least 17% by weight and at most 20.5% by weight. Zinc, as a cost-effective element, should be present in the alloy in as large a proportion as possible. However, a zinc content of more than 20.5% by weight leads to a significant deterioration in ductility as well as to a Deterioration of corrosion resistance.

Der Anteil an Nickel in der Legierung beträgt mindestens 17 Gew.-% und höchstens 23 Gew.-%. Nickel sorgt für eine hohe Festigkeit und gute Korrosionsbeständigkeit der Legierung. Deshalb muss die Legierung mindestens 17 Gew.-%, bevorzugt mindestens 18 Gew.-% Nickel enthalten. Aus Kostengründen sollte die Legierung nicht mehr als 23 Gew.-%, bevorzugt nicht mehr als 21 Gew.-% Nickel enthalten.The proportion of nickel in the alloy is at least 17% by weight and at most 23% by weight. Nickel provides the alloy with high strength and good corrosion resistance. The alloy must therefore contain at least 17% by weight, preferably at least 18% by weight, of nickel. For reasons of cost, the alloy should contain no more than 23% by weight, preferably no more than 21% by weight, of nickel.

Der Anteil an Mangan in der Legierung beträgt mindestens 8 Gew.-% und höchstens 11,5 Gew.-%. Mangan kann bei Anwesenheit von Nickel mangan- und nickelhaltige Ausscheidungen vom Typ MnNi2 und MnNi bilden. Dieser Effekt tritt erst ab einem Mangan-Anteil von ungefähr 8 Gew.-% deutlich auf. Ab einem Anteil von 8 Gew.-% Mangan ist die Konzentration der Ausscheidungen in der Legierung so hoch, dass durch eine im Anschluss von Kaltumformungen durchgeführte Glühbehandlung im Temperaturbereich zwischen 310 und 450 °C die Festigkeit der Legierung signifikant ansteigt. Bei Mangan-Anteilen über 11,5 Gew.-% ist eine Zunahme der Rissbildung bei der Warmumformung zu beobachten. Deshalb sollte der Mangan-Anteil 11,5 Gew.-% nicht überschreiten. Bevorzugt beträgt der Mangan-Anteil mindestens 9 Gew.-%. Bevorzugt beträgt der Mangananteil höchstens 11 Gew.-%.The proportion of manganese in the alloy is at least 8% by weight and at most 11.5% by weight. In the presence of nickel, manganese can form manganese- and nickel-containing precipitates of the MnNi 2 and MnNi types. This effect only occurs clearly from a manganese content of approximately 8% by weight. From a manganese content of 8 wt. With manganese contents above 11.5% by weight, an increase in the formation of cracks during hot forming can be observed. The manganese content should therefore not exceed 11.5% by weight. The manganese content is preferably at least 9% by weight. The manganese content is preferably at most 11% by weight.

Das Verhältnis des Anteils an Nickel zum Anteil an Mangen beträgt mindestens 1,7, sodass Ausscheidungen vom Typ MnNi2 und MnNi gebildet werden können. Diese Ausscheidungen sind in das Gefüge der Legierung eingelagert.The ratio of the proportion of nickel to the proportion of manganese is at least 1.7, so that precipitations of the MnNi 2 and MnNi type can be formed. These precipitates are embedded in the structure of the alloy.

Der Kupfer-Anteil in der Legierung sollte mindestens 45 Gew.-% betragen. Der Kupfer-Anteil bestimmt maßgeblich die antimikrobiellen Eigenschaften der Legierung. Deshalb sollte der Kupferanteil mindestens 45 Gew.-%, bevorzugt mindestens 48 Gew.-% betragen.The copper content in the alloy should be at least 45% by weight. The copper content largely determines the antimicrobial properties of the alloy. The copper content should therefore be at least 45% by weight, preferably at least 48% by weight.

Wahlweise können der Legierung noch bis zu 2 Gew.-% Chrom zugefügt werden. Chrom bildet eine zusätzliche Spezies von Ausscheidungen neben den MnNi- und MnNi2-Ausscheidungen. Chrom trägt damit zu einer weiteren Steigerung der Festigkeit bei. Bevorzugt sollten mindestens 0,2 Gew.-% Chrom der Legierung zugefügt werden, um einen signifikanten Effekt zu erreichen.Optionally, up to 2% by weight of chromium can be added to the alloy. Chromium forms an additional species of precipitates alongside the MnNi and MnNi 2 precipitates. Chromium thus contributes to a further increase in strength. Preferably, at least 0.2% by weight of chromium should be added to the alloy in order to achieve a significant effect.

Wahlweise können der Legierung noch bis zu 5,5 Gew.-% Eisen zugefügt werden. Eisen bildet eine zusätzliche Sorte von Ausscheidungen neben den MnNi- und MnNi2-Ausscheidungen. Eisen trägt damit zu einer weiteren Steigerung der Festigkeit bei. Bevorzugt sollten mindestens 0,2 Gew.-% Eisen der Legierung zugefügt werden, um einen signifikanten Effekt zu erreichen.Optionally, up to 5.5% by weight of iron can be added to the alloy. Iron forms an additional type of precipitation in addition to the MnNi and MnNi 2 precipitations. Iron thus contributes to a further increase in strength. Preferably, at least 0.2% by weight of iron should be added to the alloy in order to achieve a significant effect.

Die optionalen Elemente Ti, B und Ca bewirken eine Kornfeinung des Gefüges. Das optionale Element Pb verbessert die Zerspanbarkeit des Werkstoffs. Zu berücksichtigen ist, dass Pb die Warmumformbarkeit verschlechtert, so dass auf die Warmumformung verzichtet wird, falls signifikant Pb hinzulegiert wird.The optional elements Ti, B and Ca result in grain refinement of the structure. The optional element Pb improves the machinability of the material. It must be taken into account that Pb impairs hot workability, so that hot work is not carried out if Pb is significantly alloyed with it.

Die Legierung ist frei von Beryllium und Elementen aus der Gruppe der seltenen Erden.The alloy is free of beryllium and rare earth elements.

Der besondere Vorteil der Erfindung besteht darin, dass durch die spezielle Auswahl der Anteile der Elemente Zink, Nickel und Mangan eine Legierung gebildet wird, die als Knetwerkstoff ein besonderes Eigenschaftsprofil aufweist. Sie zeichnet sich durch eine exzellente Kombination von Festigkeit, Duktilität, Tiefziehfähigkeit, Korrosionsbeständigkeit und Federeigenschaften aus. Sie weist hervorragende antimikrobielle und Anti-Fouling-Eigenschaften auf. Durch eine Ausscheidungshärtung können Werkstoffe mit einer Zugfestigkeit von mindestens 1100 MPa und/oder einer Streckgrenze von mindestens 1000 MPa hergestellt werden.The particular advantage of the invention is that the special selection of the proportions of the elements zinc, nickel and manganese forms an alloy which, as a wrought material, has a special profile of properties. It features an excellent combination of strength, ductility, deep drawability, corrosion resistance and spring properties. It has excellent antimicrobial and anti-fouling properties. Materials with a tensile strength of at least 1100 MPa and/or a yield strength of at least 1000 MPa can be produced by precipitation hardening.

Die Legierung kann nach dem Gießen eines Gussformats ohne Lösungsglühen entweder warm umgeformt werden oder das Gussformat kann ohne Warmumformung unmittelbar kalt umgeformt werden. Bei der ersten Verfahrensvariante wird nach dem Gießen und Abkühlen der Legierung eine Warmumformung bei Temperaturen zwischen 650 °C und 850 °C durchgeführt. Danach wird die Legierung kalt umgeformt, wobei ein Umformgrad von bis zu 99 % erreicht werden kann. Ein Umformgrad von mindestens 90 % ist dabei bevorzugt. Unter Umformgrad wird hierbei die relative Abnahme des Querschnitts des Werkstücks verstanden. Nach der Kaltumformung wird die Legierung bei einer Temperatur zwischen 310 °C und 500 °C für eine Zeitdauer zwischen 10 Minuten und 30 Stunden wärmebehandelt. Dadurch werden Ausscheidungen vom Typ MnNi2 und MnNi im Gefüge des Werkstoffs gebildet. Die Ausscheidungen erhöhen die Festigkeit des Werkstoffs erheblich. Je größer der Umformgrad der vorangegangenen Kaltumformung ist, desto höher ist die Festigkeit des Werkstoffs nach der Wärmebehandlung. Wird die Legierung mit einem Umformgrad von mindestens 95 % kalt umgeformt, dann weist der Werkstoff nach der Wärmebehandlung eine Zugfestigkeit Rm von bis zu 1350 MPa und eine Streckgrenze Rp0.2 von bis zu 1300 MPa auf. Die Härte beträgt bei einem solchen Werkstoff bis zu 460 HV10. Bei einem Umformgrad von 90 % weist der Werkstoff nach der Wärmebehandlung eine Zugfestigkeit Rm von bis zu 1260 MPa und eine Streckgrenze Rp0.2 von bis zu 1200 MPa bei einer Bruchdehnung von 2,1 % auf. Zur Herstellung von derartigen hochfesten Werkstoffen liegt die Temperatur für die Wärmebehandlung bevorzugt zwischen 330 und 370 °C. Die Dauer der Wärmebehandlung beträgt zwischen 2 und 30 Stunden.The alloy can either be hot worked after a cast shape has been cast without solution annealing, or the cast shape can be cold worked immediately without hot work. In the first variant of the process, after the alloy has been cast and cooled, hot forming is carried out at temperatures between 650 °C and 850 °C. The alloy is then cold-formed, with a degree of forming of up to 99% being achievable. A degree of deformation of at least 90% is preferred. The degree of deformation is understood here to mean the relative decrease in the cross section of the workpiece. After cold working, the alloy is heat treated at a temperature between 310°C and 500°C for a time between 10 minutes and 30 hours. As a result, precipitations of the MnNi 2 and MnNi types are formed in the structure of the material. The precipitates increase the strength of the material considerably. The greater the degree of deformation from the previous cold forming, the higher the strength of the material after heat treatment. If the alloy is cold-formed with a degree of deformation of at least 95%, then after heat treatment the material has a tensile strength R m of up to 1350 MPa and a yield point R p0.2 of up to 1300 MPa. The hardness of such a material is up to 460 HV10. With a degree of deformation of 90%, the material has a tensile strength R m of up to 1260 MPa and a yield point R p0.2 of up to 1200 MPa with an elongation at break of 2.1% after heat treatment. For the production of such high-strength materials, the temperature for the heat treatment is preferably between 330 and 370.degree. The duration of the heat treatment is between 2 and 30 hours.

Es lassen sich auch weichere Zustände mit einer Zugfestigkeit von ungefähr 700 MPa bei einer Bruchdehnung von 30% einstellen, indem man die Glühtemperatur über 450 °C und die Dauer der Wärmebehandlung unter einer Stunde wählt.Softer states with a tensile strength of around 700 MPa and an elongation at break of 30% can also be achieved by choosing an annealing temperature above 450 °C and a heat treatment duration of less than one hour.

Untersuchungen zeigen, dass beim Warmumformen Risse auftreten, wenn die Legierung mehr als 12 Gew.-% Mangan enthält. Beim Warmwalzen bilden sich die Risse von den seitlichen Rändern des Walzbandes aus. Die nutzbare Breite des Bandes ist damit deutlich reduziert. Ferner ist davon auszugehen, dass auch in den Bereichen des Bandes, in denen mit bloßem Augen keine Risse zu erkennen sind, Mikrorisse entstehen. Um die Bildung solcher Risse zu vermeiden, darf der Mangan-Anteil der Legierung 11,5 Gew.-% nicht überschreiten.Studies show that cracks occur during hot forming if the Alloy containing more than 12% by weight manganese. During hot rolling, the cracks form from the lateral edges of the rolled strip. The usable width of the strip is thus significantly reduced. Furthermore, it can be assumed that micro-cracks will also appear in the areas of the strip where no cracks can be seen with the naked eye. In order to avoid the formation of such cracks, the manganese content of the alloy must not exceed 11.5% by weight.

Der Mangan-Anteil muss also in einem eng begrenzten Bereich eingestellt werden, so dass einerseits die Vorteile der Ausscheidungsbildung genutzt werden können, andererseits die Rissbildung bei der Warmumformung jedoch vermieden wird. Die erfindungsgemäße Legierung stellt somit eine besonders vorteilhafte Auswahl dar. Insbesondere werden die Anteile an Zink und Mangan in der Legierung so eingestellt, dass die Legierung einerseits noch problemlos warmumformbar ist, andererseits einen hohen Grad an Kaltumformung zulässt.The manganese content must therefore be set within a narrowly defined range so that, on the one hand, the advantages of precipitation formation can be used and, on the other hand, crack formation during hot forming is avoided. The alloy according to the invention is therefore a particularly advantageous choice. In particular, the proportions of zinc and manganese in the alloy are adjusted in such a way that the alloy can still be hot-formed without any problems and also allows a high degree of cold-forming.

Bei der zweiten, alternativen Verfahrensvariante wird die Legierung ohne Warmumformung verarbeitet. Hierzu wird der Gusszustand der Legierung kalt umgeformt. Es kann ein Umformgrad von insgesamt bis zu 90 % erreicht werden. Nach Kaltumformungen mit Umformgrad von insgesamt mindestens 80 % weist der Werkstoff eine Zugfestigkeit Rm von 850 MPa und eine Streckgrenze Rp0.2 von 835 MPa auf. Die Bruchdehnung beträgt 3 % und die Härte 276 HV10. Eine Zugfestigkeit über 900 MPa kann durch Kaltumformung mit Umformgrad 90 % erreicht werden.In the second, alternative process variant, the alloy is processed without hot forming. For this purpose, the cast state of the alloy is cold-formed. A total degree of deformation of up to 90% can be achieved. After cold forming with a total degree of forming of at least 80%, the material has a tensile strength R m of 850 MPa and a yield point R p0.2 of 835 MPa. The elongation at break is 3% and the hardness is 276 HV10. A tensile strength of more than 900 MPa can be achieved by cold forming with a degree of forming of 90%.

Werkstoffe aus der erfindungsgemäßen Legierung sind sehr ermüdungsbeständig, ölkorrosionsbeständig und verschleißarm. Sie eignen sich deshalb zur Verwendung in Gleitlagern, Werkzeugen, Relais und Uhrenteilen. Ferner weisen solche Werkstoff gute Federeigenschaften aus. Aufgrund ihrer hohen Resilienz können sie viel Energie elastisch speichern. Deshalb eignet sich die erfindungsgemäße Legierung gut für Federn und Federelemente. Die Kombination von Kaltumformbarkeit, Korrosionsbeständigkeit und Federeigenschaften macht die erfindungsgemäße Legierung zum bevorzugten Werkstoff für Rahmen und Scharniere von Brillen.Materials made from the alloy according to the invention are very resistant to fatigue, oil corrosion and low wear. They are therefore suitable for use in plain bearings, tools, relays and watch parts. Furthermore, such materials have good spring properties. Due to their high resilience, they can store a lot of energy elastically. Therefore, the alloy according to the invention is well suited for springs and spring elements. the The combination of cold formability, corrosion resistance and spring properties makes the alloy according to the invention the preferred material for frames and hinges of spectacles.

In bevorzugter Ausgestaltung der Erfindung kann das Verhältnis des Anteils an Ni zum Anteil an Mn höchstens 2,3 betragen. Wenn das Verhältnis Ni/Mn so gewählt wird, dann liegen besonders günstige Bedingungen für die Bildung von Ausscheidung der Stöchiometrie MnNi vor. Wenn das Verhältnis Ni/Mn über 2,3 liegt, werden zunehmend Ausscheidungen der Stöchiometrie MnNi2 gebildet, da der Überschuss an Ni größer ist. Ausscheidungen vom Typ MnNi bewirken eine größere Erhöhung der Festigkeit als Ausscheidungen vom Typ MnNi2. Deshalb ist es vorteilhaft, dass das Verhältnis Ni/Mn höchstens 2,3 beträgt.In a preferred embodiment of the invention, the ratio of the proportion of Ni to the proportion of Mn can be at most 2.3. If the ratio Ni/Mn is chosen in this way, then there are particularly favorable conditions for the formation of precipitates of the stoichiometry MnNi. When the Ni/Mn ratio is greater than 2.3, precipitates of stoichiometry MnNi 2 are increasingly formed since the excess of Ni is larger. MnNi-type precipitates cause a greater increase in strength than MnNi 2 -type precipitates. Therefore, it is preferable that the ratio Ni/Mn is 2.3 or less.

Vorteilhafterweise kann das Verhältnis des Anteils an Ni zum Anteil an Mn mindestens 1,8, besonders bevorzugt mindestens 1,9 betragen. Der Mangan-Anteil beeinflusst die Bruchdehnung der Legierung und die Rissbildung beim Warmumformen. Je mehr Mangan durch Nickel in Ausscheidungen abgebunden ist, desto größer ist die Bruchdehnung und desto geringer ist das Risiko der Rissbildung beim Warmumformen. Deshalb ist es günstig, wenn mindestens 1,8-mal, bevorzugt mindestens 1,9-mal so viel Nickel in der Legierung vorhanden ist wie Mangan.Advantageously, the ratio of the proportion of Ni to the proportion of Mn can be at least 1.8, particularly preferably at least 1.9. The manganese content influences the elongation at break of the alloy and the formation of cracks during hot forming. The more manganese bound by nickel in precipitations, the greater the elongation at break and the lower the risk of cracking during hot forming. It is therefore favorable if at least 1.8 times, preferably at least 1.9 times, as much nickel as manganese is present in the alloy.

Ferner verschlechtert sich mit zunehmendem Mangan-Anteil die Beständigkeit gegen Flächenkorrosion. Deshalb ist es für stark korrosionsrelevante Anwendungen vorteilhaft, wenn der Mn-Gehalt 10 Gew.-% nicht überschreitet.Furthermore, the resistance to surface corrosion deteriorates with increasing manganese content. It is therefore advantageous for applications that are highly relevant to corrosion if the Mn content does not exceed 10% by weight.

Bei einer vorteilhaften Ausführungsform der Erfindung kann der Zn-Anteil höchstens 19,5 Gew.-% betragen. Durch die Beschränkung des Zn-Anteils wird das Risiko einer Versprödung der Legierung weiter eingeschränkt. Wenn der Zn-Anteil höchstens 19,5 Gew.-% beträgt, ist die Legierung sehr duktil und kann sehr gut sowohl kalt als auch warm umgeformt werden.In an advantageous embodiment of the invention, the Zn content can be at most 19.5% by weight. Limiting the Zn content further reduces the risk of alloy embrittlement. When the Zn content is 19.5 wt% or less, the alloy is very ductile and can be very good for both cold and hot forming.

Vorteilhafterweise weist die erfindungsgemäße Legierung ein Gefüge mit einer α-Phase-Matrix auf. In diese α-Phase-Matrix können bis zu 2 Volumen-% β-Phase eingelagert sein. Ferner sind die Ausscheidungen vom Typ MnNi und MnNi2 in die α-Phase-Matrix eingelagert. Die nahezu reine α-Phase-Matrix der Legierung ermöglicht eine große Kaltumformbarkeit. Der Anteil der β-Phase ist so gering, dass er die Kaltumformbarkeit kaum beeinträchtigt. Bei einer besonders bevorzugten Ausführungsform der Erfindung ist die α-Phase-Matrix des Gefüges frei von β-Phase. Das Gefüge besteht also nur aus α-Phase mit darin eingelagerten Ausscheidungen vom Typ MnNi und MnNi2. Dies kann durch eine spezielle Auswahl der Legierungselemente, insbesondere des Zink-Anteils erreicht werden.The alloy according to the invention advantageously has a structure with an α-phase matrix. Up to 2% by volume of β-phase can be embedded in this α-phase matrix. Furthermore, the precipitates of the MnNi and MnNi 2 types are embedded in the α-phase matrix. The almost pure α-phase matrix of the alloy enables high cold workability. The proportion of the β-phase is so small that it hardly affects the cold formability. In a particularly preferred embodiment of the invention, the alpha-phase matrix of the structure is free of beta-phase. The microstructure therefore consists only of the α-phase with precipitates of the MnNi and MnNi 2 types embedded in it. This can be achieved through a special selection of the alloying elements, in particular the zinc content.

Die Erfindung wird anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
ein Diagramm, in dem die Härte der Legierung gegen den Mangan-Anteil aufgetragen ist.
Fig. 2
ein Diagramm, in dem Zugfestigkeit, Streckgrenze und Bruchdehnung der Legierung vor der Ausscheidungsglühung gegen den Mangan-Anteil aufgetragen sind.
Fig. 3
ein Diagramm, in dem die Zugfestigkeit und Streckgrenze der Legierung nach der Ausscheidungsglühung gegen den Mangan-Anteil aufgetragen sind.
The invention is explained in more detail using exemplary embodiments. Show it:
1
a diagram in which the hardness of the alloy is plotted against the manganese content.
2
Figure 12 is a plot of alloy tensile strength, yield strength and elongation at break versus manganese content prior to precipitation annealing.
3
Figure 12 is a graph of alloy tensile strength and yield strength versus manganese content after precipitation annealing.

Es wurden Proben mit der Zusammensetzung gemäß Tabelle 1 hergestellt. Tabelle 1: Zusammensetzung der Proben in Gew.-%. Die Proben 1, 2, 4 und 5 sind Vergleichsproben. Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Cu 55 % 52,5 % 50 % 47,5 % 45 % Zn 20 % 20 % 20 % 20 % 20 % Ni 20 % 20% 20 % 20% 20 % Mn 5% 7,5 % 10 % 12,5 % 15% Rissbildung nein nein nein ja ja Samples having the composition shown in Table 1 were prepared. Table 1: Composition of the samples in % by weight. Samples 1, 2, 4 and 5 are comparative samples. sample 1 sample 2 sample 3 sample 4 sample 5 Cu 55% 52.5% 50% 47.5% 45% Zn 20% 20% 20% 20% 20% no 20% 20% 20% 20% 20% Mn 5% 7.5% 10% 12.5% 15% cracking no no no Yes Yes

Bei den Proben wurden die Anteile an Zink und Nickel jeweils bei 20 Gew.-% konstant gehalten. Der Mangananteil wurde von 5 Gew.-% bis 15 Gew.-% variiert. Entsprechend verringerte sich der Kupferanteil von 55 Gew.-% auf 45 Gew.-%. Die unvermeidbaren Verunreinigungen betrugen weniger als 0,1 Gew.-%.In the samples, the proportions of zinc and nickel were each kept constant at 20% by weight. The manganese content was varied from 5% to 15% by weight. The proportion of copper decreased accordingly from 55% by weight to 45% by weight. The unavoidable impurities were less than 0.1% by weight.

Die Proben wurden erschmolzen und abgegossen. Nach dem Erstarren wurden die Gussblöcke bei 775 °C warmgewalzt. In der letzten Zeile der Tabelle ist die Rissbildung beim Warmwalzen dokumentiert. Nach dem Warmwalzen wurden die Proben mit einem Umformgrad von 90 % kalt gewalzt. In diesem Zustand wurden an den Proben Härte, Zugfestigkeit, Streckgrenze und Bruchdehnung gemessen.The samples were melted and cast. After solidification, the ingots were hot-rolled at 775 °C. In the last line of the table, crack formation during hot rolling is documented. After hot rolling, the specimens were cold rolled with a true deformation of 90%. Hardness, tensile strength, yield point and elongation at break were measured on the samples in this state.

Nach dem Kaltwalzen wurden die Proben für 12 Stunden bei 320 °C geglüht. Nach dem Glühen wurden ebenfalls Härte, Zugfestigkeit, Streckgrenze und Bruchdehnung gemessen.After cold rolling, the samples were annealed at 320°C for 12 hours. After annealing, hardness, tensile strength, yield point and elongation at break were also measured.

Fig. 1 zeigt ein Diagramm, in dem die Härte der Legierung gegen den Mangan-Anteil aufgetragen ist. Die untere Reihe an Messpunkten repräsentiert die Messwerte für den Zustand unmittelbar nach dem Kaltwalzen, also ohne Glühen, während die oberen Punkte im Diagramm die Messwerte nach dem Glühen repräsentieren. Die Legierung zeigt ohne Glühen mit zunehmenden Mangan-Anteil einen stetigen Anstieg der Härte von 270 auf 290 HV10. Durch das Glühen nimmt die Härte der Legierung deutlich zu. Der Anstieg beträgt bei 5 und 7,5 Gew.-% ungefähr 50 HV10, während bei einem Mangan-Anteil von mindestens 10 Gew.-% der Anstieg der Härte mehr als 80 HV10 beträgt. Die Steigerung der Härte durch die Ausscheidungsglühung ist bei einem Mangan-Anteil oberhalb von 7,5 Gew.-% deutlich ausgeprägter als bei kleineren Mangan-Anteilen. Um die Härte des Werkstoffs auf mindestens 350 HV10 anzuheben, sind ungefähr 9 Gew.-% Mangan erforderlich. Eine Härte von 350 HV10 und mehr ist beispielsweise für Gleitlager vorteilhaft. Die Legierung ist somit in der Lage, Cu-Be-Legierungen als Gleitlagerwerkstoff zu ersetzen. 1 shows a graph of alloy hardness versus manganese content. The lower row of measurement points represents the measurement values for the condition immediately after cold rolling, i.e. without annealing, while the upper points in the diagram represent the measurement values after annealing represent. Without annealing, the alloy shows a steady increase in hardness from 270 to 290 HV10 with increasing manganese content. The hardness of the alloy increases significantly as a result of the annealing. The increase in hardness is about 50 HV10 at 5 and 7.5 wt%, while at a manganese content of at least 10 wt% the increase in hardness is more than 80 HV10. The increase in hardness as a result of precipitation annealing is significantly more pronounced with a manganese content of more than 7.5% by weight than with smaller manganese proportions. In order to increase the hardness of the material to at least 350 HV10, approximately 9% by weight of manganese is required. A hardness of 350 HV10 and more is advantageous for plain bearings, for example. The alloy is therefore able to replace Cu-Be alloys as a plain bearing material.

Fig. 2 zeigt ein Diagramm, in dem die Zugfestigkeit, die Streckgrenze und die Bruchdehnung gegen den Mangan-Anteil der Legierung vor der Wärmebehandlung aufgetragen sind. Die Werte der Zugfestigkeit sind durch ausgefüllte Kreise dargestellt, die der Streckgrenze durch offene Quadrate. Zugfestigkeit und Streckgrenze beziehen sich auf die linke Achse des Diagramms. Die Werte der Bruchdehnung sind durch die offenen Dreiecke dargestellt und beziehen sich auf die rechte Achse des Diagramms. Von 5 bis 10 Gew.-% Mangan ist ein moderater Anstieg der Zugfestigkeit und der Streckgrenze festzustellen. Zwischen 10 und 12,5 Gew.-% Mangan nehmen die Zugfestigkeit und die Streckgrenze etwas ab. Bei 15 Gew.-% Mangan werden für die Zugfestigkeit und die Streckgrenze Werte gemessen, die etwas über dem Niveau der Werte bei 10 Gew.-% liegen. Die Bruchdehnung nimmt zwischen 5 und 10 Gew.-% Mangan leicht ab, bricht bei höheren Mangan-Anteilen jedoch deutlich von 3 % auf ungefähr 1 % ein. 2 Figure 12 shows a plot of tensile strength, yield strength and elongation at break versus manganese content of the alloy before heat treatment. Tensile strength values are represented by filled circles, yield strength values by open squares. Tensile strength and yield point refer to the left axis of the diagram. Elongation at break values are represented by the open triangles and refer to the right axis of the graph. From 5 to 10 wt% manganese there is a moderate increase in tensile strength and yield strength. Between 10 and 12.5 wt% manganese, the tensile strength and yield point decrease somewhat. At 15% by weight of manganese, values are measured for the tensile strength and the yield point that are slightly above the level of the values at 10% by weight. The elongation at break decreases slightly between 5 and 10% by weight of manganese, but drops significantly from 3% to around 1% at higher manganese contents.

Fig. 3 zeigt ein Diagramm, in dem die Zugfestigkeit und die Streckgrenze gegen den Mangan-Anteil der Legierung nach der Wärmebehandlung aufgetragen sind. Die Werte der Zugfestigkeit sind durch ausgefüllte Kreise dargestellt, die Werte der Streckgrenze durch offene Quadrate. Von 5 bis 10 Gew.-% Mangan ist ein deutlicher Anstieg der Zugfestigkeit und der Streckgrenze festzustellen. Insbesondere nimmt die Streckgrenze in diesem Bereich von unter 900 MPa auf 1200 MPa zu. Zwischen 10 und 12,5 Gew.-% Mangan nehmen die Zugfestigkeit und die Streckgrenze etwas ab. Bei 15 Gew.-% Mangan werden für die Zugfestigkeit und die Streckgrenze Werte gemessen, die auf dem Niveau der Werte bei 10 Gew.-% liegen. 3 Figure 12 shows a graph of tensile strength and yield strength versus manganese content of the alloy after heat treatment. Tensile strength values are represented by filled circles, the values the yield point by open squares. From 5 to 10% by weight of manganese, there is a significant increase in tensile strength and yield point. In particular, the yield point in this area increases from below 900 MPa to 1200 MPa. Between 10 and 12.5 wt% manganese, the tensile strength and yield point decrease somewhat. At 15% by weight manganese, values are measured for the tensile strength and the yield point which are on the same level as the values at 10% by weight.

Ein Vergleich der Werte von Fig. 2 und Fig. 3 zeigt, dass für einen Mangan-Anteil über 7,5 Gew.-% der Effekt der Verfestigung durch das Glühen besonders groß ist. Bei einem Mangan-Anteil von 10 Gew.-% wurden durch das Glühen die Zugfestigkeit und die Streckgrenze jeweils um fast 300 MPa erhöht, während bei 5 Gew.-% Mangan die Zugfestigkeit durch das Glühen nur um ungefähr 130 MPa erhöht wurde und die Streckgrenze kaum verändert wurde.A comparison of the values of 2 and 3 shows that for a manganese content above 7.5% by weight, the effect of strengthening by annealing is particularly large. At 10 wt% manganese, annealing increased tensile strength and yield strength each by nearly 300 MPa, while at 5 wt% manganese, annealing increased tensile strength and yield strength by only about 130 MPa was hardly changed.

Die Untersuchungsergebnisse zeigen, dass bei einem Mangan-Anteil von ungefähr 10 Gew.-% sehr günstige Verhältnisse in der Legierung vorliegen. Einerseits weisen Zugfestigkeit und Streckgrenze ein Maximum auf, andererseits neigt die Legierung hier noch nicht zur Rissbildung.The test results show that with a manganese content of around 10% by weight, there are very favorable conditions in the alloy. On the one hand, the tensile strength and yield point are at a maximum, on the other hand, the alloy does not yet tend to crack.

Claims (6)

  1. Copper alloy having the following composition (in % by weight):
    Zn: 17 to 20.5%,
    Ni: 17 to 23%,
    Mn: 8 to 11.5%,
    optionally also up to 4% Cr,
    optionally also up to 5.5% Fe,
    optionally also up to 0.5% Ti,
    optionally also up to 0.15% B,
    optionally also up to 0.1% Ca,
    optionally also up to 1.0% Pb,
    the balance being copper and inevitable impurities, wherein
    the proportion of copper is at least 45% by weight,
    the ratio of the proportion of Ni to the proportion of Mn is at least 1.7 and wherein the alloy has a structure in which precipitations of the type MnNi and MnNi2 are embedded.
  2. Copper alloy according to claim 1, characterised in that the ratio of the proportion of Ni to the proportion of Mn is a maximum of 2.3.
  3. Copper alloy according to claim 1 or claim 2, characterised in that the ratio of the proportion of Ni to the proportion of Mn is at least 1.8, preferably at least 1.9.
  4. Copper alloy according to any one of claims 1 to 3, characterised in that the Zn proportion is a maximum of 19.5% by weight.
  5. Copper alloy according to any one of claims 1 to 4, characterised in that the alloy has a structure having an α-phase matrix having a proportion of embedded β-phase of a maximum of 2% by volume and wherein the precipitations of the type MnNi and MnNi2 are embedded in the α-phase matrix.
  6. Copper alloy according to claim 5, characterised in that the α-phase matrix of the structure is free from β-phase.
EP19719422.8A 2018-04-20 2019-03-12 Copper-zinc-nickel-manganese alloy Active EP3781719B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018003216.8A DE102018003216B4 (en) 2018-04-20 2018-04-20 Copper-zinc-nickel-manganese alloy
PCT/EP2019/000074 WO2019201469A1 (en) 2018-04-20 2019-03-12 Copper-zinc-nickel-manganese alloy

Publications (2)

Publication Number Publication Date
EP3781719A1 EP3781719A1 (en) 2021-02-24
EP3781719B1 true EP3781719B1 (en) 2022-06-08

Family

ID=66286288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19719422.8A Active EP3781719B1 (en) 2018-04-20 2019-03-12 Copper-zinc-nickel-manganese alloy

Country Status (8)

Country Link
US (1) US11447847B2 (en)
EP (1) EP3781719B1 (en)
JP (1) JP7183285B2 (en)
CN (1) CN111971404B (en)
BR (1) BR112020021428B1 (en)
DE (1) DE102018003216B4 (en)
MX (1) MX2020009370A (en)
WO (1) WO2019201469A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537597B (en) * 2022-09-20 2023-07-28 重庆川仪自动化股份有限公司 Manganese-copper alloy with negative resistance temperature coefficient, preparation method and application

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR897484A (en) 1941-05-02 1945-03-22 F A Lange Metallwerke Ag Nickel silver containing manganese and nickel
DE1092218B (en) * 1952-12-20 1960-11-03 Isabellen Huette Heusler Kom G Process for the production of hardened objects from copper-nickel-manganese-zinc alloys
US3627593A (en) 1969-10-30 1971-12-14 Int Nickel Co Two phase nickel-zinc alloy
DE2051566A1 (en) * 1970-10-21 1972-04-27 Int Nickel Ltd Copper-nickel-zinc-manganese alloy - having fine two-phase structure, for mfr of springs
CH621577A5 (en) * 1976-07-15 1981-02-13 Straumann Inst Ag
SU704254A1 (en) * 1978-08-10 1983-12-07 Государственный Научно-Исследовательский И Проектный Институт Сплавов И Обработки Цветных Металлов Copper-based alloy
JPS5952223B2 (en) * 1979-04-23 1984-12-18 三菱マテリアル株式会社 Copper alloy for aquaculture cages
JPH02274828A (en) * 1989-04-17 1990-11-09 Nisshin Steel Co Ltd Nickel silver having excellent hot workability
CN1052904A (en) * 1989-05-23 1991-07-10 天津市防爆保安技术研究所 The material of manufacturing explosion-proof tools
JPH10287940A (en) * 1997-04-16 1998-10-27 Toyota Motor Corp Coppery material excellent in corrosion resistance
KR100330570B1 (en) 1999-07-29 2002-03-29 신봉일 An alloy for manufacturing mechanical appurtenance
US20040234820A1 (en) 2003-05-23 2004-11-25 Kennametal Inc. Wear-resistant member having a hard composite comprising hard constituents held in an infiltrant matrix
JP2005325413A (en) * 2004-05-14 2005-11-24 Kitz Corp Lead-free white copper alloy, and ingot and product using this alloy
JP2014512452A (en) 2011-02-04 2014-05-22 バオシダ スイスメタル アーゲー Cu-Ni-Zn-Mn alloy
DE102012014851A1 (en) * 2011-09-22 2013-03-28 Kme Germany Gmbh & Co. Kg Copper material for the production of a silver-colored product with an antimicrobial surface
US20160235073A1 (en) 2013-10-07 2016-08-18 Sloan Valve Company White antimicrobial copper alloy
EP3212815B1 (en) 2014-10-28 2021-04-07 Advanced Alloy Holdings PTY Ltd Quinary metal alloy including copper, manganese and nickel
DE102015014856A1 (en) 2015-11-17 2017-05-18 Wieland-Werke Ag Copper-nickel-zinc alloy and its use
CN106337142A (en) * 2016-08-31 2017-01-18 芜湖楚江合金铜材有限公司 Corrosion-resistant friction-resistant cupronickel wire and machining process thereof
DE102016116265A1 (en) 2016-08-31 2018-03-01 Faurecia Emissions Control Technologies, Germany Gmbh Solder based on copper and use of the solder material

Also Published As

Publication number Publication date
BR112020021428A2 (en) 2021-02-23
DE102018003216B4 (en) 2020-04-16
US11447847B2 (en) 2022-09-20
JP2021521325A (en) 2021-08-26
MX2020009370A (en) 2020-10-14
BR112020021428B1 (en) 2023-11-14
CN111971404B (en) 2022-07-12
DE102018003216A1 (en) 2019-10-24
JP7183285B2 (en) 2022-12-05
US20210032726A1 (en) 2021-02-04
CN111971404A (en) 2020-11-20
EP3781719A1 (en) 2021-02-24
WO2019201469A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
EP1683882B2 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
EP2446064B1 (en) Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component
EP2013371B1 (en) Use of a copper-nickel-tin alloy
DE102006005250B4 (en) Iron-nickel alloy
DE2350389C2 (en) Process for the production of a copper-nickel-tin alloy with improved strength and high ductility at the same time
EP2270249B1 (en) AlMgSi-sheet for applications with high shaping requirements
DE1301586B (en) Austenitic precipitation hardenable steel alloy and process for its heat treatment
EP3272888B1 (en) Material made from a copper-zinc alloy, method for producing such a material and sliding member made of such a material
DE2447137B2 (en) STEEL ALLOY RESISTANT AGAINST PITCH CORROSION
EP3908682B1 (en) Pb-free cu-zn alloy
EP3781719B1 (en) Copper-zinc-nickel-manganese alloy
DE3619706A1 (en) HIGH-STRENGTH STAINLESS STEEL
DE102013005158A1 (en) copper alloy
DE112013003390T5 (en) Carbon tool steel strip
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
EP2703508B1 (en) Aluminium alloy resistant to intercrystalline corrosion
DE202009017752U1 (en) hardened steel
EP3075870B1 (en) Copper-zinc alloy, strip material made from this alloy, method for producing a semifinished product made from this alloy and sliding element made from this alloy
WO2022049282A1 (en) Hot-rolled flat steel product and method for producing a hot-rolled flat steel product
EP3992320A1 (en) Lead-free cu-zn alloy
DE1289994B (en) Use of an austenitic stainless steel alloy for deep-drawn, cold-forged and cold-hammered objects
EP1664357B1 (en) Use of a steel for the manufacturing of chains, method for producing a chain and chain produced by said method
EP3241919B1 (en) Copper aluminium manganese alloy and its use
DE1218161B (en) Use of a nickel-copper alloy for resistance wires or bands
EP2450463B1 (en) Aluminium alloy

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1496966

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221010

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230110

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230215

Year of fee payment: 5

26N No opposition filed

Effective date: 20230310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230213

Year of fee payment: 5

Ref country code: GB

Payment date: 20230119

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230312

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230312

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331