EP3272888B1 - Material made from a copper-zinc alloy, method for producing such a material and sliding member made of such a material - Google Patents

Material made from a copper-zinc alloy, method for producing such a material and sliding member made of such a material Download PDF

Info

Publication number
EP3272888B1
EP3272888B1 EP17001112.6A EP17001112A EP3272888B1 EP 3272888 B1 EP3272888 B1 EP 3272888B1 EP 17001112 A EP17001112 A EP 17001112A EP 3272888 B1 EP3272888 B1 EP 3272888B1
Authority
EP
European Patent Office
Prior art keywords
manganese
material according
forming
phosphide
phosphides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17001112.6A
Other languages
German (de)
French (fr)
Other versions
EP3272888A1 (en
Inventor
Volker Voggeser
Jeremy Bell
Hans-Achim Kuhn
Maher Ababneh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP3272888A1 publication Critical patent/EP3272888A1/en
Application granted granted Critical
Publication of EP3272888B1 publication Critical patent/EP3272888B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to a material made of a copper-zinc alloy, a method for producing such a material and a sliding element made of such a material.
  • the proportions of silicon, manganese, iron and nickel are set so that that in the structure of the material there are both iron-nickel-manganese-containing mixed silicides with a stalked shape and mixed silicides enriched with iron and nickel with a globular shape.
  • the structure of the material consists of an ⁇ matrix, in which at least 5% by volume and up to 50% by volume of the ⁇ phase is embedded in addition to the silicides. The globular silicides are seen as the reason why the ⁇ phase stabilizes.
  • the processing of the alloy includes extrusion presses in a temperature range from 600 to 800 ° C. This hot forming is favored in that the structure in the as-cast state has up to 50% by volume of the ⁇ phase. Pipes made from these alloys have elongation at break values of up to approximately 13%.
  • the publication US 2011/0211 781 A1 discloses a Cu-Zn alloy containing 25 to 45 wt% Zn, 0.3 to 2.0 wt% Si, 1.5 to 6.0 wt% Mn and optionally other elements.
  • the alloy contains manganese silicides and is used for plain bearings.
  • a copper-zinc alloy known for plain bearings contains 66 to 90 wt% Cu, 1.0 to 8.0 wt% Mn, 0.3 to 0.7 wt% AI, 0.3 to 2.0 wt% P and balance zinc.
  • Manganese phosphides are contained in the structure in eutectic form. The eutectic excretion can be controlled by the amount of aluminum added. The ratio of phosphorus to aluminum is important for the processability of this alloy. Silicon is not used in this alloy. Materials made from this alloy can reach a hardness of up to 207 HB.
  • the invention has for its object to provide a material that Due to its strength, hardness, ductility and wear properties it is suitable for plain bearings and has a high forming capacity for economical production.
  • the material should have high heat resistance up to over 300 ° C.
  • the invention is also based on the object of a production method for such a material and one in particular with regard to temperature resistance and manufacturing costs to provide improved sliding element.
  • the invention is based on the consideration of choosing the composition of a copper-zinc alloy in such a way that a wrought material with high cold-forming properties and good wear properties is formed.
  • the material can preferably be a strip material. Such a strip material is suitable as a semi-finished product for the production of rolled plain bearing bushes or half-shells.
  • the material according to the invention is based on a copper-zinc alloy with a comparatively low proportion of zinc for bearing materials.
  • the zinc content should not fall below 21% by weight, otherwise the strength of the material is insufficient.
  • the zinc content should not exceed 27% by weight. otherwise the cold forming capacity is limited.
  • the material has a structure with an alpha-phase matrix, which is favorable for high cold formability.
  • the zinc content is preferably at least 22.6% by weight. From this zinc content, the material has very favorable properties in terms of strength and hardness.
  • the zinc content is preferably at most 25.2% by weight. Up to this upper limit of the zinc content, the cold forming capacity of the material is excellent.
  • the copper-zinc alloy of the material according to the invention also contains 0.2 to 0.8% by weight of Si, 1.1 to 1.9% by weight of Mn and 0.005 to 0.2% by weight of P. Alloys of similar composition known from the prior art describe the formation of manganese silicides. Surprisingly, manganese-containing phosphides are present in the material according to the invention in a significant amount and with a characteristic distribution, while the expected manganese silicides cannot be detected in the alloy, although the proportion of silicon in relation to the proportion of phosphorus is comparatively high. It can be assumed that in the material according to the invention, manganese silicides, which are formed as precipitates when the melt solidifies and cools, are redissolved in a subsequent heat treatment.
  • the mass ratio of manganese to phosphorus is between 2.7 and 3.3.
  • the quantitative composition of the particles is determined by means of energy dispersive X-ray spectroscopy (EDXS).
  • EDXS energy dispersive X-ray spectroscopy
  • particles can be detected in the material according to the invention which contain phosphorus, manganese and oxygen.
  • the mass-related manganese content of these particles is significantly reduced compared to the manganese-containing phosphides. It is approximately at the same level as the oxygen content of these particles.
  • the manganese-containing phosphides are globular-shaped as phosphide particles educated.
  • globular shape means not only the exact sphere, but also all shapes that can be approximately described as ellipsoids of revolution.
  • At least 90% of the phosphide particles have a size of at most 2.0 ⁇ m.
  • the maximum size of the phosphide particles is 4 ⁇ m.
  • the diameter of the particle is defined as a measure of the size of the particle.
  • size is understood to mean the volume-equivalent diameter, that is to say the diameter of a sphere of the same volume as the particle.
  • the average size of all phosphide particles which can be seen by light microscopy in the etched structure at 1000x magnification, is between 0.8 and 1.5 ⁇ m.
  • the smallest particles still visible by light microscopy have a size of 0.5 ⁇ m.
  • the averaging therefore begins only with particles with a size of at least 0.5 ⁇ m. From the globular form it can be concluded that the phosphide particles are not fragments of originally larger particles.
  • the phosphide particles are compact and there are no cracks within the particles.
  • the density of the phosphide particles embedded in the matrix is inhomogeneous. There are first areas in which the matrix is almost free of phosphide particles, while second areas are rich in phosphide particles.
  • the manganese-containing phosphides hinder the recrystallization of the structure at elevated temperatures and thus improve the wear resistance of the material.
  • the manganese content in the material according to the invention is preferably 1.3 to 1.6% by weight.
  • the silicon content in the material according to the invention is preferably 0.3 up to 0.6% by weight.
  • the phosphorus content in the material according to the invention is preferably 0.03 to 0.08% by weight.
  • nickel can be added to the copper-zinc alloy. Together with phosphorus, nickel forms precipitates that increase the strength of the material.
  • the copper content of the copper-zinc alloy of the material according to the invention can be between 72 and 76% by weight, depending on the precise composition.
  • the copper-zinc alloy of the material according to the invention can contain unavoidable impurities.
  • impurities are understood to mean elements that are unavoidable and are present in the alloy in such a small proportion that they do not significantly influence the properties of the material.
  • the degree of deformation q is the decrease in the cross-sectional area of the formed material in relation to its initial cross-sectional area.
  • the material according to the invention enables degrees of cold forming of over 65%, even over 85%, without intermediate annealing. This allows inexpensive production of thin strips, which can be used, for example, as a semi-finished product for the production of rolled plain bearing bushes.
  • the material according to the invention shows a significant tempering effect.
  • the strength and hardness of the material can be increased further by annealing at 300 ° C for 1 to 3 hours. This enables the tensile strength R m from 740 MPa to at least 780 MPa, the yield strength R p0.2 from 650 MPa to at least 720 MPa and the hardness from 200 HB 2.5 / 62.5 to at least 230 HB 2.5 / 62. 5 can be raised.
  • the elongation at break in this state is approximately 5%.
  • the material can be subjected to a further heat treatment at temperatures above 300 ° C.
  • the elongation at break can be increased to 16% to 25% by heat treatment between 380 and 420 ° C.
  • the tensile strength of the material only decreases by 13 to 24% based on the initial value.
  • the material is therefore very temperature-resistant. In particular, its strength and hardness decrease less strongly with increasing temperature than is the case with similar materials that are known from the prior art. For example, at temperatures above 440 ° C the hardness is only 20% below the value at 25 ° C. This temperature resistance is particularly important for slide bearings in modern internal combustion engines.
  • Another advantage of the material according to the invention is its high wear resistance. This is due to the manganese-containing phosphides, which are embedded in the ductile matrix as small hard particles with a globular shape. On the other hand, the ductile matrix gives the material a high dynamic resilience.
  • Plain bearings made from this material have a coefficient of friction of less than 0.1.
  • the manganese-containing phosphides can be arranged in the manner of pearl strings.
  • the phosphide particles are arranged along virtual lines like pearls on a string.
  • the lines extend essentially longitudinally to the forming direction, but they are not completely straight. There may be slight curvatures and kinks. There are also deviations from the forming direction with regard to the alignment of the lines.
  • the lines along which the particles line up follow the flow behavior of the matrix structure.
  • the manganese-containing phosphides are arranged along the sliding lines and shear bands of the material. Adjacent phosphide particles are spaced apart with a few exceptions.
  • the phosphide particles arranged like pearl strings do not form a coherent structure such as a chain or a stem-like or needle-like conglomerate.
  • the characteristic arrangement of the manganese-containing phosphides results from the stretching of the structure during forming.
  • the phosphides that are interdendritically stored as a collection during the solidification process are essentially distributed in the forming direction.
  • the length of the individual pearl string-like arrangements of phosphide particles is 10 to 60 ⁇ m.
  • the length of the pearl cord-like arrangement is related to the degree of deformation that is applied during the deformation of the material. The greater the degree of deformation, the greater the length of the pearl cord-like arrangements. Since the individual phosphide particles are predominantly embedded in the matrix at a distance from neighboring particles, they are completely enclosed by the matrix structure and their anchoring in the matrix is particularly strong. This effectively prevents the phosphides from breaking out of the matrix.
  • the manganese-containing Phosphides can be arranged so that in at least 50% of all pearl-string-like arrangements of manganese-containing phosphides there is a section of 20 ⁇ m in length, in which 7 to 30 phosphide particles with a size of 0.5 to 2.0 ⁇ m are arranged.
  • the phosphide particles have a size distribution which is influenced, among other things, by the conditions which prevail when the melt solidifies.
  • the density with which the phosphide particles are arranged along a line correlates with the degree of deformation with which the material was formed. The stronger the deformation, the further the phosphide particles are distributed.
  • the arrangement of the phosphide particles described is created by appropriate process control in the manufacture of the material.
  • this arrangement of the manganese-containing phosphide particles typical of the material is, so to speak, the characteristic "fingerprint" that the manufacturing process leaves in the material.
  • the manganese-containing phosphide particles arranged in this way ensure that the material is particularly resistant to wear.
  • the good suitability of the material for sliding elements is consequently not a property that the alloy has solely on the basis of its composition, but only the combination of alloy composition and manufacturing process result in the inventive material.
  • the structure of the material according to the invention can advantageously have first regions that are recrystallized and second regions that are not recrystallized.
  • the structure is therefore incompletely recrystallized after the final annealing.
  • the melt solidifies, almost phosphide-free dendrites are formed.
  • the phosphides accumulate in the areas between the dendrites and are pushed together to form clusters as the dendrites grow.
  • the almost phosphide-free dendrites become almost phosphide-free, that is to say low-phosphide, areas in the reshaped structure, while the interdendritic accumulations of the phosphides become areas with a large phosphide density in the reshaped structure.
  • the low-phosphide areas recrystallize at a lower temperature than the high-phosphide areas because the manganese-containing phosphides inhibit recrystallization in the high-phosphide areas.
  • the low-phosphide, recrystallized areas are advantageous for the ductility of the material, the phosphide-rich, non-recrystallized areas are advantageous for its wear resistance. In other words, there are quasi two very different material components side by side, which complement each other in their properties.
  • the copper-zinc alloy of the material according to the invention can contain at least 0.03% by weight of Ni. Together with phosphorus, nickel forms nickel phosphides, which are embedded in the structure. The nickel phosphides are so small that they are barely visible under light microscopy. They fix the grain boundaries and thus increase the strength of the material.
  • the ratio of the proportions of nickel (in% by weight) and phosphorus (in% by weight) is particularly preferably between 0.8 and 1.2. With such an alloy composition, there are particularly favorable conditions for the simultaneous formation of manganese-containing phosphides and of nickel phosphides. The former contribute to the wear resistance of the material, the latter increase the strength of the material.
  • an alloy according to the composition described is first melted.
  • the alloy can also have a restricted composition, as specified above in the description of the material according to the invention.
  • the cast format cast in step b) is preferably slab or ribbon-shaped. After casting, the surface of the cast format can be milled. For homogenization, a heat treatment between 610 ° C and 800 ° C, preferably between 655 ° C and 695 ° C, is carried out on the cast format. The duration of this heat treatment is between 1 and 6 hours. In order to get from the cast format to the final dimension of the material, forming steps are carried out.
  • At least one sequence of cold forming steps is carried out without intermediate annealing with a total degree of forming of at least 50%.
  • the total degree of deformation is the accumulated cross-sectional decrease related to the initial cross-section over the sequence of the forming steps. It is also possible to achieve a degree of deformation of at least 50% in a single cold forming step.
  • the cold forming operations can preferably be rolling steps for producing a strip-like material.
  • the high degree of cold forming leads to the formation of a structure in which in an alpha-phase matrix inhomogeneously distributed, manganese-containing phosphides with a globular shape and a maximum size of 4 ⁇ m are embedded.
  • the total degree of deformation of the cold deformations carried out without intermediate annealing is preferably at least 65%.
  • the material is subjected to a heat treatment at a temperature of at least 280 ° C and at most 440 ° C with a duration of 1 to 3 hours. If the temperature is between 280 ° C and 320 ° C, the strength and hardness of the material increase above the initial values of the work-hardened material.
  • the temperature during the heat treatment is preferably at least 370 ° C. and at most 420 ° C. Such a final heat treatment reduces the strength and hardness of the material only slightly, while at the same time increasing the ductility of the material to a level that is favorable for dynamically loaded plain bearings.
  • a band-shaped casting format can be cast in process step b) and after process step c) and before process step d) at least one cold forming, which begins with the casting format and has a degree of deformation of at least 20%, and at least one further one Heat treatment take place.
  • the heat treatment is carried out at a temperature of at least 610 ° C. and at most 800 ° C., preferably between 655 ° C. and 695 ° C., with a duration of 1 to 6 hours.
  • a band-shaped casting format is understood to mean a casting format that has a thickness of at most 20 mm, preferably at most 15 mm.
  • the casting format can be cold formed immediately after the homogenization annealing.
  • the degree of deformation is at least 20%, preferably at least 30%.
  • This first cold forming follows another heat treatment as intermediate annealing.
  • this heat treatment can optionally be used for further cold forming with a degree of deformation of at least 30% and a further heat treatment.
  • the last stage of cold forming is then carried out as described in process step d) with a degree of deformation of at least 50%, preferably at least 65%.
  • a slab or plate-shaped casting format can be cast in process step b).
  • the heat treatment in process step c) is followed by hot forming at a temperature of at least 720 ° C. and at most 830 ° C.
  • the degree of deformation during hot forming is at least 60%. It is chosen so that the dimension of the intermediate product after hot forming is as small as possible, so that the final dimension of the material can be achieved by a sequence of cold forming.
  • Another aspect of the invention includes a sliding member from one above described material according to the invention. Because of its properties, the material according to the invention is very well suited for use as a material for sliding elements.
  • the sliding element can preferably be produced from a band-shaped material. An example of this are rolled bushings for plain bearings.
  • Another example are half shells for the storage of crankshafts in internal combustion engines. Such half-shells can be made of a solid material of the material according to the invention or the material according to the invention is applied as a thin metal layer on a steel back. In the latter case, the thickness of the metal layer is 0.3 to 0.8 mm.
  • the excellent cold forming capacity of the material according to the invention enables the cost-effective production of such thin strips.
  • Table 1 shows the chemical composition of particularly preferred samples in% by weight. The two samples differ essentially in the zinc content and consequently also in the copper content. Sample 1 has about 23 wt% Zn, Sample 2 has about 25 wt% Zn. A sample made from the alloy CuZn31Si1 is used as a comparison sample. This alloy is known as an alloy for sliding elements from the prior art. Table 1: Composition of the samples in% by weight Cu Zn Mn Si P Fe Ni rest Sample 1 75.12 22.92 1.38 0.42 0.05 0.01 0.08 0.02 Sample 2 73.18 24.88 1.36 0.40 0.07 0.01 0.08 0.02
  • the alloys were cast into strips with the thickness of 13 mm using the band casting process. After milling the surface and homogenizing annealing at 690 ° C / 3 hours, a three-stage cold rolling was carried out with degrees of deformation of 25% in the first stage, 35% in the second stage and 65% in the third stage to the final dimension of 2 mm thickness. Between the individual forming steps, the alloys were annealed at 690 ° C for 3 hours. After the last cold working, a heat treatment was carried out on each alloy at different temperatures between 300 ° C and 460 ° C in order to determine the temperature resistance of the materials. The result of this investigation is documented in Table 2.
  • the yield strength R p0.2 and the tensile strength R m in MPa are shown after a two-hour heat treatment at the temperature indicated in the first column.
  • the values at 25 ° C are the strength values of the material immediately after the last cold forming, i.e. without a final one Heat treatment.
  • Table 2 Strength values after the final heat treatment.
  • the examples marked with (*) are comparative examples with regard to the inventive production process.
  • Sample 1 Sample 2 Comparative sample CuZn23Mn1.4Si0.4NiP CuZn25Mn1.4Si0.4NiP CuZn31Si1 T in ° C R p0.2 in MPa R m in MPa R p0.2 in MPa R m in MPa R p0.2 in MPa R m in MPa R p0.2 in MPa R m in MPa 25 (*) 654 740 654 748 690 800 300 714 779 735 796 730 800 340 666 738 678 747 418 588 380 566 651 569 652 322 523 420 459 571 460 570 290 501 460 (*) 385 522 398 530 250 473
  • the elongation at break of the two samples according to the invention is approximately 4% in the cold-rolled state and after the heat treatment at 300 ° C.
  • Annealing at 340 ° C increases it to approximately 7%.
  • a further increase in the annealing temperature by 40 ° C in each case leads to a further increase in the elongation at break by 10 percentage points each, so that after annealing at 460 ° C an elongation at break of almost 32% is achieved.
  • Fig. 3 shows a sketch of the structure 1 of the sample 1 according to the invention after a heat treatment at 420 ° C.
  • Fig. 4 shows a sketch of the structure 1 of the sample 2 according to the invention after a heat treatment at 420 ° C.
  • the sketches were created from light microscopic images of sections of the respective structure.
  • the manganese-containing phosphides can be seen as globular particles 2 in both figures.
  • the phosphides are distributed inhomogeneously.
  • First regions 31 can be seen in the structure which are low in phosphide.
  • the structure is recrystallized in these regions 31.
  • second regions 32 can be seen in the structure which are rich in phosphide. In these areas 32, the structure is not recrystallized.
  • the phosphide particles 2 are arranged in the manner of pearl strings, as indicated by reference number 21. Especially in Fig. 3 it becomes clear that the phosphide particles 2 are arranged along virtual lines which essentially extend in the rolling direction. Also in Fig. 4 arrange most of the phosphide particles 2 along lines that are oriented essentially in the rolling direction. In addition, in Fig. 4 however, a few phosphide particles 2 are visible, the arrangement 21 of which differs significantly from the rolling direction. In the Figures 3 and 4 corresponds to the rolling direction of the horizontal.
  • Fig. 5 shows schematically the sequence of an inventive manufacturing process in the event that a band-shaped casting format is cast after melting the alloy.
  • a degree of deformation of at least 30% may be provided. This preferably follows the intermediate annealing after the first cold rolling stage. Before the last cold rolling stage with a degree of deformation of at least 50%, intermediate annealing is carried out again.
  • Fig. 6 shows schematically the sequence of an inventive manufacturing process in the event that a slab or plate-shaped casting format is cast after melting the alloy by means of continuous casting.
  • only one cold rolling stage is shown after hot rolling.
  • a further cold rolling stage with a degree of deformation of at least 30% can be provided. This then follows the hot rolling.
  • An intermediate annealing is then carried out before the last cold rolling stage with a degree of deformation of at least 50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)

Description

Die Erfindung betrifft einen Werkstoff aus einer Kupfer-Zink-Legierung, ein Verfahren zur Herstellung eines solchen Werkstoffs und ein Gleitelement aus einem solchen Werkstoff.The invention relates to a material made of a copper-zinc alloy, a method for producing such a material and a sliding element made of such a material.

Es ist bekannt, für Gleitelemente bleireduzierte Kupfer-Zink-Legierungen zu verwenden, die manganhaltige Silizide enthalten. Silizide verleihen als Hartphasen einer Kupfer-Zink-Legierung eine hohe Beständigkeit gegen abrasiven Verschleiß. Ferner bewirken sie aufgrund ihrer geringen Neigung zum Verschweißen eine bessere Beständigkeit gegen adhäsiven Verschleiß. Die Legierungen enthalten darüber hinaus meist weitere Legierungsbestandteile in erheblicher Menge, wie beispielsweise Al, Ni und Fe. Das Gefüge solcher Legierungen besteht entweder aus einer Kombination von α- und β-Phase oder überwiegend aus β-Phase. Halbzeuge aus derartigen Legierungen werden üblicherweise mit Verfahren hergestellt, die mindestens eine Warmumformung umfassen. Für Gleitelemente, die aus bandförmigem Halbzeug hergestellt werden, werden Legierungen gesucht, die sich durch eine hohe Kaltumformbarkeit auszeichnen.It is known to use lead-reduced copper-zinc alloys containing manganese-containing silicides for sliding elements. Silicides, as hard phases, give a copper-zinc alloy high resistance to abrasive wear. Furthermore, due to their low tendency to weld, they provide better resistance to adhesive wear. In addition, the alloys usually contain other alloy components in considerable quantities, such as Al, Ni and Fe. The structure of such alloys consists either of a combination of the α and β phase or predominantly of the β phase. Semi-finished products made of such alloys are usually produced using processes which comprise at least one hot forming. Alloys that are characterized by a high degree of cold formability are sought for sliding elements that are produced from band-shaped semi-finished products.

In der Patentschrift DE 10 2007 029 991 B4 sind hinsichtlich Kaltumformbarkeit verbesserte Kupfer-Zink-Legierungen sowie Verfahren zur Herstellung von Rohren und Stangen aus diesen Legierungen offenbart. Bei den Kupfer-Zink-Legierungen sind die Anteile an Silicium, Mangan, Eisen und Nickel so eingestellt, dass im Gefüge des Werkstoffs sowohl Eisen-Nickel-Mangan-haltige Mischsilizide mit stängeliger Form als auch an Eisen und Nickel angereicherte Mischsilizide mit globularer Gestalt vorliegen. Das Gefüge des Werkstoffs besteht aus einer α-Matrix, in die zusätzlich zu den Siliziden mindestens 5 Vol.-% und bis zu 50 Vol.-% β-Phase eingelagert ist. Die globularen Silizide werden als Grund dafür gesehen, dass eine Stabilisierung der β-Phase stattfindet. Die heterogene Matrixstruktur aus α- und β-Phase gewährleistet zusammen mit dem außerordentlich hohen Gehalt an Hartphasen, insbesondere der Eisen-Nickel-Mangan-haltigen Mischsilizide, eine zielgerichtete komplexe Verschleißbeständigkeit der Bauteile aus diesen Legierungen. Die Verarbeitung der Legierung umfasst Strangpressen in einem Temperaturbereich von 600 bis 800 °C. Diese Warmumformung wird begünstigt, indem das Gefüge im Gusszustand bis zu 50 Vol.-% β-Phase aufweist. Rohre aus diesen Legierungen erreichen Bruchdehnungswerte bis ungefähr 13 %.In the patent DE 10 2007 029 991 B4 improved copper-zinc alloys and methods for producing tubes and rods from these alloys are disclosed with regard to cold formability. In the copper-zinc alloys, the proportions of silicon, manganese, iron and nickel are set so that that in the structure of the material there are both iron-nickel-manganese-containing mixed silicides with a stalked shape and mixed silicides enriched with iron and nickel with a globular shape. The structure of the material consists of an α matrix, in which at least 5% by volume and up to 50% by volume of the β phase is embedded in addition to the silicides. The globular silicides are seen as the reason why the β phase stabilizes. The heterogeneous matrix structure of the α and β phase, together with the extraordinarily high content of hard phases, in particular the mixed silicides containing iron-nickel-manganese, ensures that the components made from these alloys have complex wear resistance. The processing of the alloy includes extrusion presses in a temperature range from 600 to 800 ° C. This hot forming is favored in that the structure in the as-cast state has up to 50% by volume of the β phase. Pipes made from these alloys have elongation at break values of up to approximately 13%.

Die Druckschrift US 2011/0211 781 A1 offenbart eine Cu-Zn-Legierung, die 25 bis 45 Gew.-% Zn, 0,3 bis 2,0 Gew.-% Si, 1,5 bis 6,0 Gew.-% Mn und optional weitere Elemente beinhaltet. Die Legierung enthält Mangansilizide und wird für Gleitlager verwendet.The publication US 2011/0211 781 A1 discloses a Cu-Zn alloy containing 25 to 45 wt% Zn, 0.3 to 2.0 wt% Si, 1.5 to 6.0 wt% Mn and optionally other elements. The alloy contains manganese silicides and is used for plain bearings.

Des Weiteren ist aus der Druckschrift DE 36 26 435 A1 eine Kupfer-Zink-Legierung für Gleitlager bekannt. Die Legierung enthält 66 bis 90 Gew.-% Cu, 1,0 bis 8,0 Gew.-% Mn, 0,3 bis 0,7 Gew.-% AI, 0,3 bis 2,0 Gew.-% P und Rest Zink. Manganphosphide sind in eutektischer Form im Gefüge enthalten. Die eutektische Ausscheidung ist durch die Menge des zugegebenen Aluminiums steuerbar. Das Verhältnis von Phosphor zu Aluminium ist für die Verarbeitbarkeit dieser Legierung von Bedeutung. Silicium ist in dieser Legierung nicht vorgesehen. Werkstoffe aus dieser Legierung können eine Härte von bis zu 207 HB erreichen.Furthermore, from the publication DE 36 26 435 A1 a copper-zinc alloy known for plain bearings. The alloy contains 66 to 90 wt% Cu, 1.0 to 8.0 wt% Mn, 0.3 to 0.7 wt% AI, 0.3 to 2.0 wt% P and balance zinc. Manganese phosphides are contained in the structure in eutectic form. The eutectic excretion can be controlled by the amount of aluminum added. The ratio of phosphorus to aluminum is important for the processability of this alloy. Silicon is not used in this alloy. Materials made from this alloy can reach a hardness of up to 207 HB.

Der Erfindung liegt die Aufgabe zugrunde, einen Werkstoff bereitzustellen, der sich aufgrund seiner Festigkeit, Härte, Duktilität und Verschleißeigenschaften für Gleitlager eignet und ein hohes Umformvermögen für eine wirtschaftliche Fertigung besitzt. Zudem soll der Werkstoff eine hohe Warmfestigkeit bis über 300 °C aufweisen. Ferner liegt der Erfindung die Aufgabe zugrunde, ein Herstellverfahren für einen solchen Werkstoff sowie ein insbesondere hinsichtlich Temperaturbeständigkeit und Herstellkosten verbessertes Gleitelement anzugeben.The invention has for its object to provide a material that Due to its strength, hardness, ductility and wear properties it is suitable for plain bearings and has a high forming capacity for economical production. In addition, the material should have high heat resistance up to over 300 ° C. The invention is also based on the object of a production method for such a material and one in particular with regard to temperature resistance and manufacturing costs to provide improved sliding element.

Die Erfindung wird bezüglich eines Werkstoffs durch die Merkmale des Anspruchs 1, bezüglich eines Verfahrens durch die Merkmale des Anspruchs 6 und bezüglich eines Gleitelements durch die Merkmale des Anspruchs 9 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is given in terms of a material by the features of claim 1, in terms of a method by the features of claim 6 and in relation to a sliding element by the features of claim 9. The further back claims relate to advantageous developments and further developments of the invention.

Die Erfindung schließt einen Werkstoff aus einer Kupfer-Zink-Legierung mit folgender Zusammensetzung in Gewichts-% ein:

  • 21 bis 27 % Zn,
  • 0,2 bis 0,8 % Si,
  • 1,1 bis 1,9 % Mn,
  • 0,005 bis 0,2 % P,
  • wahlweise noch bis maximal 0,2 % Ni,
  • Rest Cu und unvermeidbare Verunreinigungen. Erfindungsgemäß weist der Werkstoff ein Gefüge mit einer alpha-Phase-Matrix auf, in die manganhaltige Phosphide eingelagert sind. Die manganhaltigen Phosphide sind als Phosphidpartikel mit globularer Form ausgebildet und mindestens 90 % dieser Phosphidpartikel weisen eine Größe von höchstens 2,0 µm auf.
The invention includes a material made of a copper-zinc alloy with the following composition in% by weight:
  • 21 to 27% Zn,
  • 0.2 to 0.8% Si,
  • 1.1 to 1.9% Mn,
  • 0.005 to 0.2% P,
  • optionally up to a maximum of 0.2% Ni,
  • Balance Cu and unavoidable impurities. According to the invention, the material has a structure with an alpha phase matrix in which manganese-containing phosphides are embedded. The manganese-containing phosphides are designed as globular-shaped phosphide particles and at least 90% of these phosphide particles have a size of at most 2.0 μm.

Die Erfindung geht dabei von der Überlegung aus, die Zusammensetzung einer Kupfer-Zink-Legierung so zu wählen, dass ein Knetwerkstoff mit hohem Kaltumformvermögen und guten Verschleißeigenschaften gebildet wird. Der Werkstoff kann dabei bevorzugt ein Bandwerkstoff sein. Als Halbzeug ist ein solcher Bandwerkstoff zur Herstellung von gerollten Gleitlagerbuchsen oder Lagerhalbschalen geeignet. Der erfindungsgemäße Werkstoff basiert auf einer Kupfer-Zink-Legierung mit einem für Lagerwerkstoffe vergleichsweise geringen Zinkanteil. Der Zinkanteil sollte 21 Gew.-% nicht unterschreiten, da sonst die Festigkeit des Werkstoffs nicht ausreichend ist. Der Zinkanteil sollte 27 Gew.-% nicht überschreiten, da sonst das Kaltumformvermögen eingeschränkt ist. Der Werkstoff weist ein Gefüge mit einer alpha-Phase-Matrix aus, was günstig für eine hohe Kaltumformbarkeit ist. Bevorzugt beträgt der Zinkanteil mindestens 22,6 Gew.-%. Ab diesem Zinkanteil besitzt der Werkstoff sehr günstige Eigenschaften hinsichtlich Festigkeit und Härte. Bevorzugt beträgt der Zinkanteil höchstens 25,2 Gew.-%. Bis zu dieser Obergrenze des Zinkanteils ist das Kaltumformvermögen des Werkstoffs exzellent.The invention is based on the consideration of choosing the composition of a copper-zinc alloy in such a way that a wrought material with high cold-forming properties and good wear properties is formed. The material can preferably be a strip material. Such a strip material is suitable as a semi-finished product for the production of rolled plain bearing bushes or half-shells. The material according to the invention is based on a copper-zinc alloy with a comparatively low proportion of zinc for bearing materials. The zinc content should not fall below 21% by weight, otherwise the strength of the material is insufficient. The zinc content should not exceed 27% by weight. otherwise the cold forming capacity is limited. The material has a structure with an alpha-phase matrix, which is favorable for high cold formability. The zinc content is preferably at least 22.6% by weight. From this zinc content, the material has very favorable properties in terms of strength and hardness. The zinc content is preferably at most 25.2% by weight. Up to this upper limit of the zinc content, the cold forming capacity of the material is excellent.

Die Kupfer-Zink-Legierung des erfindungsgemäßen Werkstoffs enthält ferner 0,2 bis 0,8 Gew.-% Si, 1,1 bis 1,9 Gew.-% Mn und 0,005 bis 0,2 Gew.-% P. Bei aus dem Stand der Technik bekannten Legierungen mit ähnlicher Zusammensetzung wird die Bildung von Mangansiliziden beschrieben. Überraschenderweise liegen im erfindungsgemäßen Werkstoff manganhaltige Phosphide in signifikanter Menge und mit charakteristischer Verteilung vor, während die erwarteten Mangansilizide in der Legierung nicht nachgewiesen werden können, obwohl der Siliciumanteil bezogen auf den Phosphoranteil vergleichsweise hoch ist. Es ist anzunehmen, dass im erfindungsgemäßen Werkstoff Mangansilizide, die beim Erstarren und Abkühlen der Schmelze als Ausscheidungen gebildet werden, bei einer nachfolgend durchgeführten Wärmebehandlung wieder rückgelöst werden.The copper-zinc alloy of the material according to the invention also contains 0.2 to 0.8% by weight of Si, 1.1 to 1.9% by weight of Mn and 0.005 to 0.2% by weight of P. Alloys of similar composition known from the prior art describe the formation of manganese silicides. Surprisingly, manganese-containing phosphides are present in the material according to the invention in a significant amount and with a characteristic distribution, while the expected manganese silicides cannot be detected in the alloy, although the proportion of silicon in relation to the proportion of phosphorus is comparatively high. It can be assumed that in the material according to the invention, manganese silicides, which are formed as precipitates when the melt solidifies and cools, are redissolved in a subsequent heat treatment.

Bei den manganhaltigen Phosphidpartikeln des erfindungsgemäßen Werkstoffs liegt das Massenverhältnis von Mangan zu Phosphor zwischen 2,7 und 3,3. Die quantitative Zusammensetzung der Partikel wird mittels energiedispersiver Röntgenspektroskopie (EDXS) bestimmt. Ferner können im erfindungsgemäßen Werkstoff Partikel detektiert werden, die Phosphor, Mangan und Sauerstoff enthalten. Der massenbezogene Mangananteil ist bei diesen Partikeln im Vergleich zu den manganhaltigen Phosphiden deutlich reduziert. Er liegt ungefähr auf dem gleichen Niveau wie der Sauerstoffanteil dieser Partikel.In the manganese-containing phosphide particles of the material according to the invention, the mass ratio of manganese to phosphorus is between 2.7 and 3.3. The quantitative composition of the particles is determined by means of energy dispersive X-ray spectroscopy (EDXS). Furthermore, particles can be detected in the material according to the invention which contain phosphorus, manganese and oxygen. The mass-related manganese content of these particles is significantly reduced compared to the manganese-containing phosphides. It is approximately at the same level as the oxygen content of these particles.

Die manganhaltigen Phosphide sind als Phosphidpartikel mit globularer Form ausgebildet. Unter globularer Form werden im Rahmen dieser Erfindung nicht nur die exakte Kugel, sondern auch alle Formen verstanden, die näherungsweise als Rotationsellipsoide beschrieben werden können. Mindestens 90 % der Phosphidpartikel weisen eine Größe von höchstens 2,0 µm auf. Die maximale Größe der Phosphidpartikel beträgt 4 µm. Bei Partikeln mit kugelförmiger Gestalt wird als Maß für die Größe des Partikels der Durchmesser des Partikels definiert. Bei Partikeln mit nicht exakt kugelförmiger Gestalt wird unter "Größe" der volumen-äquivalente Durchmesser, also der Durchmesser einer zum Partikel volumengleichen Kugel verstanden. Die mittlere Größe aller Phosphidpartikel, die bei 1000-facher Vergrößerung lichtmikroskopisch im geätzten Gefüge zu erkennen sind, liegt zwischen 0,8 und 1,5 µm. Die kleinsten lichtmikroskopisch noch sichtbaren Partikel weisen eine Größe von 0,5 µm auf. Dies bedeutet, dass Phosphidpartikel, die kleiner als 0,5 µm sind, bei einer lichtmikroskopischen Bestimmung der mittleren Größe der Phosphidpartikel nicht herangezogen werden. Die Durchschnittsbildung beginnt also erst bei Partikeln mit einer Größe von mindestens 0,5 µm. Aus der globularen Form kann gefolgert werden, dass die Phosphidpartikel keine Fragmente ursprünglich größerer Partikel sind. Die Phosphidpartikel sind kompakt und innerhalb der Partikel treten keine Risse auf. Die Dichte der in der Matrix eingelagerten Phosphidpartikel ist inhomogen. Es gibt erste Bereiche, in denen die Matrix nahezu frei von Phosphidpartikeln ist, während zweite Bereiche reich an Phosphidpartikeln sind.The manganese-containing phosphides are globular-shaped as phosphide particles educated. In the context of this invention, globular shape means not only the exact sphere, but also all shapes that can be approximately described as ellipsoids of revolution. At least 90% of the phosphide particles have a size of at most 2.0 µm. The maximum size of the phosphide particles is 4 µm. In the case of particles with a spherical shape, the diameter of the particle is defined as a measure of the size of the particle. In the case of particles with a not exactly spherical shape, “size” is understood to mean the volume-equivalent diameter, that is to say the diameter of a sphere of the same volume as the particle. The average size of all phosphide particles, which can be seen by light microscopy in the etched structure at 1000x magnification, is between 0.8 and 1.5 µm. The smallest particles still visible by light microscopy have a size of 0.5 µm. This means that phosphide particles that are smaller than 0.5 µm are not used when the mean size of the phosphide particles is determined by light microscopy. The averaging therefore begins only with particles with a size of at least 0.5 µm. From the globular form it can be concluded that the phosphide particles are not fragments of originally larger particles. The phosphide particles are compact and there are no cracks within the particles. The density of the phosphide particles embedded in the matrix is inhomogeneous. There are first areas in which the matrix is almost free of phosphide particles, while second areas are rich in phosphide particles.

Die manganhaltigen Phosphide behindern die Rekristallisation des Gefüges bei erhöhten Temperaturen und verbessern somit die Verschleißbeständigkeit des Werkstoffs.The manganese-containing phosphides hinder the recrystallization of the structure at elevated temperatures and thus improve the wear resistance of the material.

Bevorzugt beträgt bei dem erfindungsgemäßen Werkstoff der Mangananteil 1,3 bis 1,6 Gew.-%.The manganese content in the material according to the invention is preferably 1.3 to 1.6% by weight.

Bevorzugt beträgt bei dem erfindungsgemäßen Werkstoff der Siliziumanteil 0,3 bis 0,6 Gew.-%.The silicon content in the material according to the invention is preferably 0.3 up to 0.6% by weight.

Bevorzugt beträgt bei dem erfindungsgemäßen Werkstoff der Phosphoranteil 0,03 bis 0,08 Gew.-%.The phosphorus content in the material according to the invention is preferably 0.03 to 0.08% by weight.

Optional können der Kupfer-Zink-Legierung noch bis zu 0,2 Gew.-% Nickel zugegeben werden. Nickel bildet zusammen mit Phosphor Ausscheidungen, die die Festigkeit des Werkstoffs erhöhen.Optionally, up to 0.2% by weight of nickel can be added to the copper-zinc alloy. Together with phosphorus, nickel forms precipitates that increase the strength of the material.

Der Kupferanteil der Kupfer-Zink-Legierung des erfindungsgemäßen Werkstoffs kann je nach genauer Zusammensetzung zwischen 72 und 76 Gew.-% betragen.The copper content of the copper-zinc alloy of the material according to the invention can be between 72 and 76% by weight, depending on the precise composition.

Die Kupfer-Zink-Legierung des erfindungsgemäßen Werkstoffs kann unvermeidbare Verunreinigungen enthalten. Unter solchen Verunreinigungen werden Elemente verstanden, die unvermeidbar sind und in einem so geringen Anteil in der Legierung vorhanden sind, dass sie die Eigenschaften des Werkstoffs nicht signifikant beeinflussen.The copper-zinc alloy of the material according to the invention can contain unavoidable impurities. Such impurities are understood to mean elements that are unavoidable and are present in the alloy in such a small proportion that they do not significantly influence the properties of the material.

Der besondere Vorteil des erfindungsgemäßen Werkstoffs ist, dass seine alpha-Phase-Matrix hohe Kaltumformgrade auch ohne Zwischenglühungen ermöglicht. Als Umformgrad q wird im Rahmen dieser Erfindung die Abnahme der Querschnittsfläche des umgeformten Werkstoffs bezogen auf seine Ausgangsquerschnittsfläche bezeichnet. Bei bandförmigen Werkstoffen, die durch Walzen von einer Ausgangsdicke s1 zu einer Enddicke s2 umgeformt werden, berechnet sich der Umformgrad dann wie folgt: q = s 1 s 2 / s 1

Figure imgb0001
The particular advantage of the material according to the invention is that its alpha-phase matrix enables high degrees of cold forming even without intermediate annealing. In the context of this invention, the degree of deformation q is the decrease in the cross-sectional area of the formed material in relation to its initial cross-sectional area. In the case of strip-shaped materials that are formed by rolling from an initial thickness s 1 to an end thickness s 2 , the degree of deformation is then calculated as follows: q = s 1 - s 2 / s 1
Figure imgb0001

Der erfindungsgemäße Werkstoff ermöglicht Kaltumformgrade über 65 %, sogar über 85 %, ohne Zwischenglühung. Dies erlaubt eine kostengünstige Herstellung von dünnen Bändern, die beispielsweise als Halbzeug für die Herstellung von gerollten Gleitlagerbuchsen verwendet werden können.The material according to the invention enables degrees of cold forming of over 65%, even over 85%, without intermediate annealing. This allows inexpensive production of thin strips, which can be used, for example, as a semi-finished product for the production of rolled plain bearing bushes.

Ferner zeigt der erfindungsgemäße Werkstoff einen signifikanten Anlasseffekt. Nach einer Kaltumformung von mehr als 60 % ohne Zwischenglühung können Festigkeit und Härte des Werkstoffs weiter erhöht werden, indem er bei 300 °C für 1 bis 3 Stunden geglüht wird. Dadurch können die Zugfestigkeit Rm von 740 MPa auf mindestens 780 MPa, die Streckgrenze Rp0,2 von 650 MPa auf mindestens 720 MPa und die Härte von 200 HB 2,5/62,5 auf mindestens 230 HB 2,5/62,5 angehoben werden. Die Bruchdehnung beträgt in diesem Zustand ungefähr 5 %.Furthermore, the material according to the invention shows a significant tempering effect. After cold forming of more than 60% without intermediate annealing, the strength and hardness of the material can be increased further by annealing at 300 ° C for 1 to 3 hours. This enables the tensile strength R m from 740 MPa to at least 780 MPa, the yield strength R p0.2 from 650 MPa to at least 720 MPa and the hardness from 200 HB 2.5 / 62.5 to at least 230 HB 2.5 / 62. 5 can be raised. The elongation at break in this state is approximately 5%.

Um die Bruchdehnung und damit die Duktilität des Werkstoffs im Endzustand zu erhöhen, kann der Werkstoff einer weiteren Wärmebehandlung bei Temperaturen über 300 °C unterzogen werden. Durch eine Wärmebehandlung zwischen 380 und 420 °C kann die Bruchdehnung auf 16 % bis 25 % erhöht werden. Die Zugfestigkeit des Werkstoffs nimmt dabei jedoch nur um 13 bis 24 % bezogen auf den Ausgangswert ab. Der Werkstoff ist also sehr temperaturbeständig. Insbesondere nehmen seine Festigkeit und Härte mit zunehmender Temperatur weniger stark ab als dies bei ähnlichen Werkstoffen, die aus dem Stand der Technik bekannt sind, der Fall ist. Beispielsweise liegt bei Temperaturen oberhalb 440 °C die Härte lediglich um 20 % unterhalb des Wertes bei 25 °C. Diese Temperaturbeständigkeit ist insbesondere für Gleitlager in modernen Verbrennungsmotoren von großer Bedeutung.In order to increase the elongation at break and thus the ductility of the material in the final state, the material can be subjected to a further heat treatment at temperatures above 300 ° C. The elongation at break can be increased to 16% to 25% by heat treatment between 380 and 420 ° C. However, the tensile strength of the material only decreases by 13 to 24% based on the initial value. The material is therefore very temperature-resistant. In particular, its strength and hardness decrease less strongly with increasing temperature than is the case with similar materials that are known from the prior art. For example, at temperatures above 440 ° C the hardness is only 20% below the value at 25 ° C. This temperature resistance is particularly important for slide bearings in modern internal combustion engines.

Ein weiterer Vorteil des erfindungsgemäßen Werkstoffs ist seine hohe Verschleißbeständigkeit. Ursache hierfür sind die manganhaltigen Phosphide, die als kleine Hartpartikel mit globularer Form in der duktilen Matrix eingebettet sind. Die duktile Matrix verleiht dem Werkstoff andererseits eine hohe dynamische Belastbarkeit.Another advantage of the material according to the invention is its high wear resistance. This is due to the manganese-containing phosphides, which are embedded in the ductile matrix as small hard particles with a globular shape. On the other hand, the ductile matrix gives the material a high dynamic resilience.

Gleitlager, die aus diesem Werkstoff hergestellt sind, weisen einen Reibbeiwert von weniger als 0,1 auf.Plain bearings made from this material have a coefficient of friction of less than 0.1.

In bevorzugter Ausgestaltung der Erfindung kann zumindest ein Teil der manganhaltigen Phosphide perlenschnurartig angeordnet sein. Mit anderen Worten, die Phosphidpartikel sind entlang von virtuellen Linien angeordnet wie Perlen auf einer Schnur. Die Linien erstrecken sich dabei im Wesentlichen längs zur Umformrichtung, sie sind jedoch nicht vollkommen gerade. Leichte Krümmungen und Knicke können vorhanden sein. Auch sind bezüglich der Ausrichtung der Linien Abweichungen von der Umformrichtung vorhanden. Die Linien, entlang derer sich die Partikel anordnen, folgen dem Fließverhalten des Matrixgefüges. Die manganhaltigen Phosphide sind entlang der Gleitlinien und Scherbänder des Werkstoffs angeordnet. Benachbarte Phosphidpartikel sind bis auf wenige Ausnahmen voneinander beabstandet. Die perlenschnurartig angeordneten Phosphidpartikel bilden also kein zusammenhängendes Gebilde wie beispielsweise eine Kette oder ein stängeliges oder nadelartiges Konglomerat. Die charakteristische Anordnung der manganhaltigen Phosphide entsteht durch die Verstreckung des Gefüges beim Umformen. Dabei werden die während des Erstarrungsvorgangs interdendritisch als Ansammlung eingelagerten Phosphide im Wesentlichen in Umformrichtung verteilt. Im erfindungsgemäßen Werkstoff beträgt die Länge der einzelnen perlenschnurartigen Anordnungen von Phosphidpartikeln 10 bis 60 µm. Die Länge der perlenschnurartigen Anordnung steht im Zusammenhang mit dem Umformgrad, der bei der Umformung des Werkstoffs aufgebracht wird. Je größer der Umformgrad, desto größer die Länge der perlenschnurartigen Anordnungen. Da die einzelnen Phosphidpartikel überwiegend von benachbarten Partikeln beabstandet in die Matrix eingelagert sind, sind sie vollständig von Matrixgefüge umschlossen und ihre Verankerung in der Matrix ist besonders fest. Ein Herausbrechen der Phosphide aus der Matrix wird dadurch wirksam verhindert.In a preferred embodiment of the invention, at least some of the manganese-containing phosphides can be arranged in the manner of pearl strings. In other words, the phosphide particles are arranged along virtual lines like pearls on a string. The lines extend essentially longitudinally to the forming direction, but they are not completely straight. There may be slight curvatures and kinks. There are also deviations from the forming direction with regard to the alignment of the lines. The lines along which the particles line up follow the flow behavior of the matrix structure. The manganese-containing phosphides are arranged along the sliding lines and shear bands of the material. Adjacent phosphide particles are spaced apart with a few exceptions. The phosphide particles arranged like pearl strings do not form a coherent structure such as a chain or a stem-like or needle-like conglomerate. The characteristic arrangement of the manganese-containing phosphides results from the stretching of the structure during forming. The phosphides that are interdendritically stored as a collection during the solidification process are essentially distributed in the forming direction. In the material according to the invention, the length of the individual pearl string-like arrangements of phosphide particles is 10 to 60 μm. The length of the pearl cord-like arrangement is related to the degree of deformation that is applied during the deformation of the material. The greater the degree of deformation, the greater the length of the pearl cord-like arrangements. Since the individual phosphide particles are predominantly embedded in the matrix at a distance from neighboring particles, they are completely enclosed by the matrix structure and their anchoring in the matrix is particularly strong. This effectively prevents the phosphides from breaking out of the matrix.

In besonders bevorzugter Ausgestaltung der Erfindung können die manganhaltigen Phosphide so angeordnet sein, dass in mindestens 50 % aller perlenschnurartigen Anordnungen von manganhaltigen Phosphiden ein Teilabschnitt von 20 µm Länge vorhanden ist, in dem 7 bis 30 Phosphidpartikel mit einer Größe von 0,5 bis 2,0 µm angeordnet sind. Die Phosphidpartikel weisen eine Größenverteilung auf, die unter anderem von den Bedingungen, die beim Erstarren der Schmelze herrschen, beeinflusst wird. Die Dichte, mit der die Phosphidpartikel entlang einer Linie angeordnet sind, steht in Korrelation zum Umformgrad, mit dem der Werkstoff umgeformt wurde. Je stärker die Umformung, desto weiter werden die Phosphidpartikel verteilt. Durch eine entsprechende Prozessführung bei der Herstellung des Werkstoffs entsteht die beschriebene Anordnung der Phosphidpartikel. Mit anderen Worten, diese für den Werkstoff typische Anordnung der manganhaltigen Phosphidpartikel ist sozusagen der charakteristische "Fingerabdruck", den das Herstellverfahren im Werkstoff hinterlässt. Die auf diese Weise angeordneten manganhaltigen Phosphidpartikel gewährleisten die besondere Verschleißbeständigkeit des Werkstoffs. Die gute Eignung des Werkstoffs für Gleitelemente ist folglich nicht eine Eigenschaft, die die Legierung alleine aufgrund ihrer Zusammensetzung hat, sondern erst die Kombination aus Legierungszusammensetzung und Herstellverfahren ergeben den erfinderischen Werkstoff.In a particularly preferred embodiment of the invention, the manganese-containing Phosphides can be arranged so that in at least 50% of all pearl-string-like arrangements of manganese-containing phosphides there is a section of 20 µm in length, in which 7 to 30 phosphide particles with a size of 0.5 to 2.0 µm are arranged. The phosphide particles have a size distribution which is influenced, among other things, by the conditions which prevail when the melt solidifies. The density with which the phosphide particles are arranged along a line correlates with the degree of deformation with which the material was formed. The stronger the deformation, the further the phosphide particles are distributed. The arrangement of the phosphide particles described is created by appropriate process control in the manufacture of the material. In other words, this arrangement of the manganese-containing phosphide particles typical of the material is, so to speak, the characteristic "fingerprint" that the manufacturing process leaves in the material. The manganese-containing phosphide particles arranged in this way ensure that the material is particularly resistant to wear. The good suitability of the material for sliding elements is consequently not a property that the alloy has solely on the basis of its composition, but only the combination of alloy composition and manufacturing process result in the inventive material.

Vorteilhafterweise kann das Gefüge des erfindungsgemäßen Werkstoffs erste Bereiche, die rekristallisiert sind, und zweite Bereiche, die nicht rekristallisiert sind, aufweisen. Das Gefüge ist also nach dem abschließenden Glühen unvollständig rekristallisiert. Beim Erstarren der Schmelze bilden sich nahezu phosphidfreie Dendrite. In den Bereichen zwischen den Dendriten sammeln sich die Phosphide an und werden dort durch das Wachstum der Dendriten zu Anhäufungen zusammengeschoben. Durch das Umformen werden aus den nahezu phosphidfreien Dendriten nahezu phosphidfreie, also phosphidarme Bereiche im umgeformten Gefüge, während aus den interdendritischen Anhäufungen der Phosphide Bereiche mit großer Phosphiddichte im umgeformten Gefüge werden. Nach den Umformungen liegt also eine stark inhomogene Phosphidverteilung vor. Die phosphidarmen Bereiche rekristallisieren bereits bei geringerer Temperatur als die phosphidreichen Bereiche, denn die manganhaltigen Phosphide hemmen in den phosphidreichen Bereichen die Rekristallisation. Die phosphidarmen, rekristallisierten Bereiche sind vorteilhaft für die Duktilität des Werkstoffs, die phosphidreichen, nicht-rekristallisierten Bereiche sind vorteilhaft für seine Verschleißbeständigkeit. Mit anderen Worten, es liegen quasi zwei stark unterschiedliche Werkstoffbestandteile nebeneinander vor, die sich in ihren Eigenschaften günstig ergänzen.The structure of the material according to the invention can advantageously have first regions that are recrystallized and second regions that are not recrystallized. The structure is therefore incompletely recrystallized after the final annealing. When the melt solidifies, almost phosphide-free dendrites are formed. The phosphides accumulate in the areas between the dendrites and are pushed together to form clusters as the dendrites grow. As a result of the reshaping, the almost phosphide-free dendrites become almost phosphide-free, that is to say low-phosphide, areas in the reshaped structure, while the interdendritic accumulations of the phosphides become areas with a large phosphide density in the reshaped structure. After the Forming is therefore a highly inhomogeneous phosphide distribution. The low-phosphide areas recrystallize at a lower temperature than the high-phosphide areas because the manganese-containing phosphides inhibit recrystallization in the high-phosphide areas. The low-phosphide, recrystallized areas are advantageous for the ductility of the material, the phosphide-rich, non-recrystallized areas are advantageous for its wear resistance. In other words, there are quasi two very different material components side by side, which complement each other in their properties.

Bei einer vorteilhaften Ausführungsform der Erfindung kann die Kupfer-Zink-Legierung des erfindungsgemäßen Werkstoffs mindestens 0,03 Gew.-% Ni enthalten. Nickel bildet zusammen mit Phosphor Nickelphosphide, die in das Gefüge eingelagert sind. Die Nickelphosphide sind so klein, dass sie lichtmikroskopisch kaum sichtbar sind. Sie fixieren die Korngrenzen und erhöhen damit die Festigkeit des Werkstoffs. Besonders bevorzugt liegt das Verhältnis der Anteile von Nickel (in Gew.-%) und Phosphor (in Gew.-%) zwischen 0,8 und 1,2. Bei einer solchen Legierungszusammensetzung liegen besonders günstige Bedingungen für die gleichzeitige Bildung von manganhaltigen Phosphiden und von Nickelphosphiden vor. Erstere tragen zur Verschleißbeständigkeit des Werkstoffs bei, letztere erhöhen die Festigkeit des Werkstoffs.In an advantageous embodiment of the invention, the copper-zinc alloy of the material according to the invention can contain at least 0.03% by weight of Ni. Together with phosphorus, nickel forms nickel phosphides, which are embedded in the structure. The nickel phosphides are so small that they are barely visible under light microscopy. They fix the grain boundaries and thus increase the strength of the material. The ratio of the proportions of nickel (in% by weight) and phosphorus (in% by weight) is particularly preferably between 0.8 and 1.2. With such an alloy composition, there are particularly favorable conditions for the simultaneous formation of manganese-containing phosphides and of nickel phosphides. The former contribute to the wear resistance of the material, the latter increase the strength of the material.

Ein weiterer Aspekt der Erfindung schließt das Verfahren gemäß Anspruch 6 ein. Das Verfahren betrifft die Herstellung eines Werkstoffs aus einer Kupfer-Zink-Legierung mit folgender Zusammensetzung in Gewichts-%:

  • 21 bis 27 % Zn,
  • 0,2 bis 0,8 % Si,
  • 1,1 bis 1,9 % Mn,
  • 0,005 bis 0,2 % P,
  • wahlweise noch bis maximal 0,2 % Ni,
Another aspect of the invention includes the method according to claim 6. The method relates to the production of a material from a copper-zinc alloy with the following composition in% by weight:
  • 21 to 27% Zn,
  • 0.2 to 0.8% Si,
  • 1.1 to 1.9% Mn,
  • 0.005 to 0.2% P,
  • optionally up to a maximum of 0.2% Ni,

Rest Cu und unvermeidbare Verunreinigungen. Das Verfahren umfasst dabei folgende Schritte in der genannten Reihenfolge:

  1. a) Erschmelzen der Legierung,
  2. b) Gießen eines Gussformats,
  3. c) Wärmebehandlung des Gussformats bei einer Temperatur von mindestens 610 °C und höchstens 800 °C mit einer Dauer von 1 bis 6 Stunden,
  4. d) Kaltumformen in einem oder mehreren Schritten mit einem Gesamtumformgrad von mindestens 50 %,
  5. e) Wärmebehandlung bei einer Temperatur von mindestens 280 °C und höchstens 440 °C mit einer Dauer von 1 bis 3 Stunden.
Balance Cu and unavoidable impurities. The process includes the following steps in the order listed:
  1. a) melting the alloy,
  2. b) casting a casting format,
  3. c) heat treatment of the cast format at a temperature of at least 610 ° C and at most 800 ° C with a duration of 1 to 6 hours,
  4. d) cold forming in one or more steps with a total degree of forming of at least 50%,
  5. e) heat treatment at a temperature of at least 280 ° C and at most 440 ° C with a duration of 1 to 3 hours.

Bei dem erfindungsgemäßen Verfahren wird zunächst eine Legierung gemäß der beschriebenen Zusammensetzung erschmolzen. Insbesondere kann die Legierung dabei auch eine eingeschränkte Zusammensetzung aufweisen, wie sie vorstehend bei der Beschreibung des erfindungsgemäßen Werkstoffs spezifiziert ist. Das in Schritt b) gegossene Gussformat ist bevorzugt brammen- oder bandförmig. Nach dem Gießen kann die Oberfläche des Gussformats gefräst werden. Zur Homogenisierung wird an dem Gussformat eine Wärmebehandlung zwischen 610 °C und 800 °C, bevorzugt zwischen 655 °C und 695 °C, durchgeführt. Die Dauer dieser Wärmebehandlung beträgt zwischen 1 und 6 Stunden. Um vom Gussformat zur Endabmessung des Werkstoffs zu gelangen, werden Umformschritte durchgeführt. Dabei wird erfindungsgemäß mindestens eine Abfolge von Kaltumformschritten ohne Zwischenglühung mit einem Gesamtumformgrad von mindestens 50 % durchgeführt. Der Gesamtumformgrad ist dabei die über die Abfolge der Umformschritte kumulierte Querschnittsabnahme bezogen auf den Ausgangsquerschnitt. Ebenso ist es möglich, einen Umformgrad von mindestens 50 % in einem einzigen Kaltumformschritt zu erreichen. Die Kaltumformungen können bevorzugt Walzschritte zur Herstellung eines bandförmigen Werkstoffs sein. Bei der genannten Legierungszusammensetzung führt der hohe Kaltumformgrad zur Ausbildung eines Gefüges, bei dem in einer alpha-Phase-Matrix inhomogen verteilte, manganhaltige Phosphide mit globularer Form und mit einer maximalen Größe von 4 µm eingelagert sind. 90 % der Phosphidpartikel weisen eine Größe von höchstens 2,0 µm auf. Diese Struktur verleiht dem Werkstoff Eigenschaften, die für die Verwendung als Gleitlagerwerkstoff sehr vorteilhaft sind. Bevorzugt beträgt der Gesamtumformgrad der ohne Zwischenglühung durchgeführten Kaltumformungen mindestens 65 %. Der Werkstoff wird nach der letzten Kaltumformung einer Wärmebehandlung bei einer Temperatur von mindestens 280 °C und höchstens 440 °C mit einer Dauer von 1 bis 3 Stunden unterzogen. Beträgt die Temperatur dabei zwischen 280 °C und 320 °C, dann steigen Festigkeit und Härte des Werkstoffs über die Ausgangswerte des kaltverfestigten Werkstoffs an. Bevorzugt beträgt die Temperatur bei der Wärmebehandlung mindestens 370 °C und höchstens 420 °C. Durch eine solche abschließende Wärmebehandlung werden Festigkeit und Härte des Werkstoffs nur geringfügig reduziert, gleichzeitig wird die Duktilität des Werkstoffs auf ein Niveau erhöht, das für dynamisch belastete Gleitlager günstig ist.In the method according to the invention, an alloy according to the composition described is first melted. In particular, the alloy can also have a restricted composition, as specified above in the description of the material according to the invention. The cast format cast in step b) is preferably slab or ribbon-shaped. After casting, the surface of the cast format can be milled. For homogenization, a heat treatment between 610 ° C and 800 ° C, preferably between 655 ° C and 695 ° C, is carried out on the cast format. The duration of this heat treatment is between 1 and 6 hours. In order to get from the cast format to the final dimension of the material, forming steps are carried out. According to the invention, at least one sequence of cold forming steps is carried out without intermediate annealing with a total degree of forming of at least 50%. The total degree of deformation is the accumulated cross-sectional decrease related to the initial cross-section over the sequence of the forming steps. It is also possible to achieve a degree of deformation of at least 50% in a single cold forming step. The cold forming operations can preferably be rolling steps for producing a strip-like material. With the alloy composition mentioned, the high degree of cold forming leads to the formation of a structure in which in an alpha-phase matrix inhomogeneously distributed, manganese-containing phosphides with a globular shape and a maximum size of 4 µm are embedded. 90% of the phosphide particles have a size of at most 2.0 µm. This structure gives the material properties that are very advantageous for use as a plain bearing material. The total degree of deformation of the cold deformations carried out without intermediate annealing is preferably at least 65%. After the last cold forming, the material is subjected to a heat treatment at a temperature of at least 280 ° C and at most 440 ° C with a duration of 1 to 3 hours. If the temperature is between 280 ° C and 320 ° C, the strength and hardness of the material increase above the initial values of the work-hardened material. The temperature during the heat treatment is preferably at least 370 ° C. and at most 420 ° C. Such a final heat treatment reduces the strength and hardness of the material only slightly, while at the same time increasing the ductility of the material to a level that is favorable for dynamically loaded plain bearings.

In bevorzugter Ausgestaltung des erfinderischen Verfahrens kann im Verfahrensschritt b) ein bandförmiges Gussformat gegossen werden und nach dem Verfahrensschritt c) und vor dem Verfahrensschritt d) mindestens eine Kaltumformung, die mit dem Gussformat beginnt und einen Umformgrad von mindestens 20 % aufweist, sowie mindestens eine weitere Wärmebehandlung erfolgen. Die Wärmebehandlung wird dabei bei einer Temperatur von mindestens 610 °C und höchstens 800 °C, bevorzugt zwischen 655 °C und 695 °C, mit einer Dauer von 1 bis 6 Stunden durchgeführt. Unter bandförmigem Gussformat wird bei dieser bevorzugten Ausgestaltung des erfinderischen Verfahrens ein Gussformat verstanden, das eine Dicke von maximal 20 mm, bevorzugt maximal 15 mm aufweist. Bei einem Gussformat dieser geringen Dicke ist eine Warmumformung nicht erforderlich, sondern das Gussformat kann nach dem Homogenisierungsglühen sofort kalt umgeformt werden. Der Umformgrad beträgt dabei mindestens 20 %, bevorzugt mindestens 30 %. An diese erste Kaltumformung schließt sich eine weitere Wärmebehandlung als Zwischenglühung an. Je nach Abmessung des Gussformats und Abmessung des Endformats können nach dieser Wärmebehandlung optional eine weitere Kaltumformung mit einem Umformgrad von mindestens 30 % und eine weitere Wärmebehandlung durchgeführt werden. Die letzte Stufe der Kaltumformung erfolgt dann wie in Verfahrensschritt d) beschrieben mit einem Umformgrad von mindestens 50 %, bevorzugt mindestens 65 %.In a preferred embodiment of the inventive method, a band-shaped casting format can be cast in process step b) and after process step c) and before process step d) at least one cold forming, which begins with the casting format and has a degree of deformation of at least 20%, and at least one further one Heat treatment take place. The heat treatment is carried out at a temperature of at least 610 ° C. and at most 800 ° C., preferably between 655 ° C. and 695 ° C., with a duration of 1 to 6 hours. In this preferred embodiment of the inventive method, a band-shaped casting format is understood to mean a casting format that has a thickness of at most 20 mm, preferably at most 15 mm. With a casting format of this small thickness, hot forming is not necessary, but the casting format can be cold formed immediately after the homogenization annealing. The degree of deformation is at least 20%, preferably at least 30%. This first cold forming follows another heat treatment as intermediate annealing. Depending on the dimensions of the cast format and the dimensions of the final format, this heat treatment can optionally be used for further cold forming with a degree of deformation of at least 30% and a further heat treatment. The last stage of cold forming is then carried out as described in process step d) with a degree of deformation of at least 50%, preferably at least 65%.

Der Vorteil dieses Verfahrens ist, dass das Gussformat bereits relativ dünn ist und somit wenige Umformschritte bis zur Endabmessung durchgeführt werden müssen. Insbesondere muss keine Warmumformung durchgeführt werden. Ferner eignet sich dieser Herstellungsweg insbesondere für die Herstellung relativ kleiner Mengen.The advantage of this process is that the casting format is already relatively thin and therefore only a few forming steps have to be carried out to the final dimension. In particular, no hot forming has to be carried out. Furthermore, this method of production is particularly suitable for the production of relatively small quantities.

Als Alternative zu einem bandförmigen Gussformat kann im Verfahrensschritt b) ein brammen- oder plattenförmiges Gussformat gegossen werden. Bei dieser Alternative schließt sich an die Wärmebehandlung im Verfahrensschritt c) eine Warmumformung bei einer Temperatur von mindestens 720 °C und höchstens 830 °C an. Der Umformgrad bei der Warmumformung beträgt mindestens 60 %. Er wird so gewählt, dass die Abmessung des Zwischenprodukts nach der Warmumformung möglichst klein ist, sodass die Endabmessung des Werkstoffs durch eine Abfolge von Kaltumformungen erreicht werden kann. Bevorzugt stellt der oben beschriebene Verfahrensschritt d), bei dem eine Kaltumformung mit einem Gesamtumformgrad von mindestens 50 %, bevorzugt mindestens 65 % durchgeführt wird, diese Abfolge dar. Bei diesem alternativen Verfahren zur Herstellung des erfinderischen Werkstoffs ist es möglich, Umformgrade von mindestens 85 % und bis zu 95 % ohne Zwischenglühung zu erreichen. Dies ermöglicht eine sehr wirtschaftliche Herstellung des erfindungsgemäßen Werkstoffs.As an alternative to a band-shaped casting format, a slab or plate-shaped casting format can be cast in process step b). In this alternative, the heat treatment in process step c) is followed by hot forming at a temperature of at least 720 ° C. and at most 830 ° C. The degree of deformation during hot forming is at least 60%. It is chosen so that the dimension of the intermediate product after hot forming is as small as possible, so that the final dimension of the material can be achieved by a sequence of cold forming. Process step d) described above, in which cold forming is carried out with a total degree of deformation of at least 50%, preferably at least 65%, preferably represents this sequence. With this alternative process for producing the inventive material, it is possible to achieve degrees of deformation of at least 85%. and up to 95% without intermediate annealing. This enables a very economical production of the material according to the invention.

Ein weiterer Aspekt der Erfindung schließt ein Gleitelement aus einem vorstehend beschriebenen, erfindungsgemäßen Werkstoff ein. Aufgrund seiner Eigenschaften eignet sich der erfindungsgemäße Werkstoff sehr gut für die Verwendung als Werkstoff für Gleitelemente. Bevorzugt kann das Gleitelement aus einem bandförmigen Werkstoff hergestellt werden. Ein Beispiel hierfür sind gerollte Buchsen für Gleitlager. Ein anderes Beispiel sind Halbschalen für die Lagerung von Kurbelwellen in Verbrennungsmotoren. Solche Halbschalen können dabei aus einem Vollmaterial des erfindungsgemäßen Werkstoffs sein oder der erfindungsgemäße Werkstoff wird als dünne Metallschicht auf einem Stahlrücken aufgebracht. Im letztgenannten Fall beträgt die Dicke der Metallschicht 0,3 bis 0,8 mm. Das ausgezeichnete Kaltumformvermögen des erfindungsgemäßen Werkstoffs ermöglicht die kostengünstige Herstellung derart dünner Bänder.Another aspect of the invention includes a sliding member from one above described material according to the invention. Because of its properties, the material according to the invention is very well suited for use as a material for sliding elements. The sliding element can preferably be produced from a band-shaped material. An example of this are rolled bushings for plain bearings. Another example are half shells for the storage of crankshafts in internal combustion engines. Such half-shells can be made of a solid material of the material according to the invention or the material according to the invention is applied as a thin metal layer on a steel back. In the latter case, the thickness of the metal layer is 0.3 to 0.8 mm. The excellent cold forming capacity of the material according to the invention enables the cost-effective production of such thin strips.

Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.Embodiments of the invention are explained in more detail with reference to the schematic drawings.

Darin zeigen:

Fig. 1
ein erstes Diagramm zum Entfestigungsverhalten des erfindungsgemäßen Werkstoffs
Fig. 2
ein zweites Diagramm zum Entfestigungsverhalten des erfindungsgemäßen Werkstoffs
Fig. 3
eine Gefügeskizze einer ersten erfindungsgemäßen Werkstoffprobe
Fig. 4
eine Gefügeskizze einer zweiten erfindungsgemäßen Werkstoffprobe
Fig. 5
den Ablauf eines erfinderischen Herstellverfahrens
Fig. 6
den Ablauf eines alternativen erfinderischen Herstellverfahrens.
In it show:
Fig. 1
a first diagram of the softening behavior of the material according to the invention
Fig. 2
a second diagram of the softening behavior of the material according to the invention
Fig. 3
a structural sketch of a first material sample according to the invention
Fig. 4
a structural sketch of a second material sample according to the invention
Fig. 5
the sequence of an inventive manufacturing process
Fig. 6
the sequence of an alternative inventive manufacturing process.

Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in all figures.

Zur Herstellung des erfindungsgemäßen Werkstoffs wurden Legierungen erschmolzen und abgegossen. Tabelle 1 zeigt die chemische Zusammensetzung besonders bevorzugter Proben in Gew.-%. Die beiden Proben unterscheiden sich im Wesentlichen im Zink-Anteil und folglich auch im Kupferanteil. Probe 1 weist ungefähr 23 Gew.-% Zn auf, Probe 2 weist ungefähr 25 Gew.-% Zn auf. Als Vergleichsprobe wird eine Probe aus der Legierung CuZn31Si1 verwendet. Diese Legierung ist als Legierung für Gleitelemente aus dem Stand der Technik bekannt. Tabelle 1: Zusammensetzung der Proben in Gew.-% Cu Zn Mn Si P Fe Ni Rest Probe 1 75,12 22,92 1,38 0,42 0,05 0,01 0,08 0,02 Probe 2 73,18 24,88 1,36 0,40 0,07 0,01 0,08 0,02 Alloys were used to produce the material according to the invention melted and poured. Table 1 shows the chemical composition of particularly preferred samples in% by weight. The two samples differ essentially in the zinc content and consequently also in the copper content. Sample 1 has about 23 wt% Zn, Sample 2 has about 25 wt% Zn. A sample made from the alloy CuZn31Si1 is used as a comparison sample. This alloy is known as an alloy for sliding elements from the prior art. Table 1: Composition of the samples in% by weight Cu Zn Mn Si P Fe Ni rest Sample 1 75.12 22.92 1.38 0.42 0.05 0.01 0.08 0.02 Sample 2 73.18 24.88 1.36 0.40 0.07 0.01 0.08 0.02

Zur Herstellung eines bandförmigen Werkstoffs, der zur Herstellung von Gleitelementen geeignet ist, wurden die Legierungen im Bandgussverfahren zu Bändern mit der Dicke von 13 mm abgegossen. Nach Fräsen der Oberfläche und Homogenisierungsglühen bei 690 °C / 3 Stunden erfolgte ein dreistufiges Kaltwalzen mit Umformgraden von 25 % in der ersten Stufe, 35 % in der zweiten Stufe und 65 % in der dritten Stufe bis an die Endabmessung von 2 mm Dicke. Zwischen den einzelnen Umformstufen wurden die Legierungen bei 690 °C jeweils 3 Stunden geglüht. Nach der letzten Kaltumformung wurde an jeder Legierung eine Wärmebehandlung bei unterschiedlichen Temperaturen zwischen 300 °C und 460 °C durchgeführt, um die Temperaturbeständigkeit der Werkstoffe zu ermitteln. In Tabelle 2 ist das Ergebnis dieser Untersuchung dokumentiert. Dargestellt sind jeweils die Streckgrenze Rp0,2 und die Zugfestigkeit Rm im MPa nach einer zweistündigen Wärmebehandlung bei der jeweils in der ersten Spalte angegebenen Temperatur. Die Werte bei 25 °C sind die Festigkeitswerte des Werkstoffs unmittelbar nach der letzten Kaltumformung, also ohne abschließende Wärmebehandlung. Tabelle 2: Festigkeitswerte nach abschließender Wärmebehandlung. Die mit (*) gekennzeichneten Beispiele sind Vergleichsbeispiele hinsichtlich des erfinderischen Herstellverfahrens. Probe 1 Probe 2 Vergleichsprobe CuZn23Mn1,4Si0,4NiP CuZn25Mn1,4Si0,4NiP CuZn31Si1 T in °C Rp0.2 in MPa Rm in MPa Rp0,2 in MPa Rm in MPa Rp0,2 in MPa Rm in MPa 25 (*) 654 740 654 748 690 800 300 714 779 735 796 730 800 340 666 738 678 747 418 588 380 566 651 569 652 322 523 420 459 571 460 570 290 501 460 (*) 385 522 398 530 250 473 In order to produce a band-shaped material that is suitable for the production of sliding elements, the alloys were cast into strips with the thickness of 13 mm using the band casting process. After milling the surface and homogenizing annealing at 690 ° C / 3 hours, a three-stage cold rolling was carried out with degrees of deformation of 25% in the first stage, 35% in the second stage and 65% in the third stage to the final dimension of 2 mm thickness. Between the individual forming steps, the alloys were annealed at 690 ° C for 3 hours. After the last cold working, a heat treatment was carried out on each alloy at different temperatures between 300 ° C and 460 ° C in order to determine the temperature resistance of the materials. The result of this investigation is documented in Table 2. The yield strength R p0.2 and the tensile strength R m in MPa are shown after a two-hour heat treatment at the temperature indicated in the first column. The values at 25 ° C are the strength values of the material immediately after the last cold forming, i.e. without a final one Heat treatment. Table 2: Strength values after the final heat treatment. The examples marked with (*) are comparative examples with regard to the inventive production process. Sample 1 Sample 2 Comparative sample CuZn23Mn1.4Si0.4NiP CuZn25Mn1.4Si0.4NiP CuZn31Si1 T in ° C R p0.2 in MPa R m in MPa R p0.2 in MPa R m in MPa R p0.2 in MPa R m in MPa 25 (*) 654 740 654 748 690 800 300 714 779 735 796 730 800 340 666 738 678 747 418 588 380 566 651 569 652 322 523 420 459 571 460 570 290 501 460 (*) 385 522 398 530 250 473

In den Figuren 1 und 2 sind die Ergebnisse graphisch dargestellt. Im Diagramm der Figur 1 ist für alle drei Proben die Streckgrenze Rp0,2 und im Diagramm der Figur 2 die Zugfestigkeit Rm gegen die Temperatur der jeweils durchgeführten Wärmebehandlung aufgetragen. In beiden Diagrammen ist der Anlasseffekt zu erkennen: Durch eine Wärmebehandlung bei 300 °C nehmen Streckgrenze und Zugfestigkeit der Werkstoffe gegenüber dem kaltgewalzten Zustand zu. Dagegen nehmen bei einer über 300 °C hinaus gehenden Glühtemperatur die Streckgrenze und die Zugfestigkeit der Werkstoffe ab. Bei dem Vergleichswerkstoff CuZn31Si1 erfolgt diese Abnahme jedoch sehr viel schneller als bei den beiden erfindungsgemäßen Werkstoffen. Die Datenpunkte zum Vergleichswerkstoff sind durch eine gestrichelte Linie verbunden. Man erkennt, dass in beiden Diagrammen die gestrichelte Linie zwischen 300 °C und 400 °C deutlich steiler abfällt als die durchgezogenen Linien, die die Datenpunkte der erfindungsgemäßen Proben verbinden. Der erfindungsgemäße Werkstoff ist also signifikant temperaturbeständiger als der Vergleichswerkstoff. Diese verbesserte Temperaturbeständigkeit ist vorteilhaft für den Einsatz des erfindungsgemäßen Werkstoffs als Gleitlager in modernen Verbrennungsmotoren.In the Figures 1 and 2 the results are shown graphically. In the diagram of the Figure 1 is the yield strength R p0.2 for all three samples and in the diagram the Figure 2 the tensile strength R m plotted against the temperature of the heat treatment carried out in each case. The tempering effect can be seen in both diagrams: Heat treatment at 300 ° C increases the yield strength and tensile strength of the materials compared to the cold-rolled condition. In contrast, at an annealing temperature exceeding 300 ° C, the yield strength and the tensile strength of the materials decrease. With the reference material CuZn31Si1, however, this decrease takes place much faster than with the two materials according to the invention. The data points for the reference material are connected by a dashed line. It can be seen that in both diagrams the dashed line between 300 ° C. and 400 ° C. drops significantly steeper than the solid lines connecting the data points of the samples according to the invention. The material according to the invention is therefore significantly more temperature-resistant than the comparison material. This improved temperature resistance is advantageous for the use of the material according to the invention as a plain bearing in modern internal combustion engines.

Die Bruchdehnung der beiden erfindungsgemäßen Proben beträgt im kaltgewalzten Zustand und nach der Wärmebehandlung bei 300 °C ungefähr 4 %. Durch eine Glühung bei 340 °C erhöht sie sich auf ungefähr 7 %. Eine weitere Erhöhung der Glühtemperatur um jeweils 40 °C führt zu einer weiteren Vergrößerung der Bruchdehnung um jeweils 10 Prozentpunkte, so dass nach einer Glühung bei 460 °C eine Bruchdehnung von fast 32 % erreicht wird.The elongation at break of the two samples according to the invention is approximately 4% in the cold-rolled state and after the heat treatment at 300 ° C. Annealing at 340 ° C increases it to approximately 7%. A further increase in the annealing temperature by 40 ° C in each case leads to a further increase in the elongation at break by 10 percentage points each, so that after annealing at 460 ° C an elongation at break of almost 32% is achieved.

Fig. 3 zeigt eine Skizze des Gefüges 1 der erfindungsgemäßen Probe 1 nach einer Wärmebehandlung bei 420 °C. Fig. 4 zeigt eine Skizze des Gefüges 1 der erfindungsgemäßen Probe 2 nach einer Wärmebehandlung bei 420 °C. Die Skizzen entstanden aus lichtmikroskopischen Aufnahmen von Schliffen des jeweiligen Gefüges. In beiden Figuren sind die manganhaltigen Phosphide als globulare Partikel 2 zu erkennen. Die Phosphide sind inhomogen verteilt. Es sind erste Bereiche 31 im Gefüge zu erkennen, die phosphidarm sind. In diesen Bereichen 31 ist das Gefüge rekristallisiert. Ebenso sind zweite Bereiche 32 im Gefüge zu erkennen, die phosphidreich sind. In diesen Bereichen 32 ist das Gefüge nicht-rekristallisiert. Die Phosphidpartikel 2 sind perlenschnurartig angeordnet, worauf Bezugsziffer 21 hinweist. Insbesondere in Fig. 3 wird deutlich, dass sich die Phosphidpartikel 2 entlang virtueller Linien anordnen, die sich im Wesentlichen in Walzrichtung erstrecken. Auch in Fig. 4 ordnen sich die meisten Phosphidpartikel 2 entlang von Linien an, die im Wesentlichen in Walzrichtung ausgerichtet sind. Zusätzlich sind in Fig. 4 jedoch einige wenige Phosphidpartikel 2 sichtbar, deren Anordnung 21 von der Walzrichtung deutlich abweicht. In den Figuren 3 und 4 entspricht die Walzrichtung der Horizontalen. Fig. 3 shows a sketch of the structure 1 of the sample 1 according to the invention after a heat treatment at 420 ° C. Fig. 4 shows a sketch of the structure 1 of the sample 2 according to the invention after a heat treatment at 420 ° C. The sketches were created from light microscopic images of sections of the respective structure. The manganese-containing phosphides can be seen as globular particles 2 in both figures. The phosphides are distributed inhomogeneously. First regions 31 can be seen in the structure which are low in phosphide. The structure is recrystallized in these regions 31. Likewise, second regions 32 can be seen in the structure which are rich in phosphide. In these areas 32, the structure is not recrystallized. The phosphide particles 2 are arranged in the manner of pearl strings, as indicated by reference number 21. Especially in Fig. 3 it becomes clear that the phosphide particles 2 are arranged along virtual lines which essentially extend in the rolling direction. Also in Fig. 4 arrange most of the phosphide particles 2 along lines that are oriented essentially in the rolling direction. In addition, in Fig. 4 however, a few phosphide particles 2 are visible, the arrangement 21 of which differs significantly from the rolling direction. In the Figures 3 and 4 corresponds to the rolling direction of the horizontal.

Fig. 5 zeigt schematisch den Ablauf eines erfinderischen Herstellverfahrens für den Fall, dass nach dem Erschmelzen der Legierung ein bandförmiges Gussformat gegossen wird. Bei dem dargestellten Verfahrensablauf sind nur zwei Kaltwalzstufen dargestellt. Darüber hinaus kann eine weitere Kaltwalzstufe mit einem Umformgrad von mindestens 30 % vorgesehen sein. Diese schließt sich bevorzugt an die Zwischenglühung nach der ersten Kaltwalzstufe an. Vor der letzten Kaltwalzstufe mit einem Umformgrad von mindestens 50 % erfolgt dann nochmals eine Zwischenglühung. Fig. 5 shows schematically the sequence of an inventive manufacturing process in the event that a band-shaped casting format is cast after melting the alloy. In the process shown, only two cold rolling stages are shown. In addition, another cold rolling stage can be used a degree of deformation of at least 30% may be provided. This preferably follows the intermediate annealing after the first cold rolling stage. Before the last cold rolling stage with a degree of deformation of at least 50%, intermediate annealing is carried out again.

Fig. 6 zeigt schematisch den Ablauf eines erfinderischen Herstellverfahrens für den Fall, dass nach dem Erschmelzen der Legierung mittels Strangguss ein brammen- oder plattenförmiges Gussformat gegossen wird. Bei dem dargestellten Verfahrensablauf ist nach dem Warmwalzen nur eine Kaltwalzstufe dargestellt. Darüber hinaus kann eine weitere Kaltwalzstufe mit einem Umformgrad von mindestens 30 % vorgesehen sein. Diese schließt sich dann an das Warmwalzen an. Vor der letzten Kaltwalzstufe mit einem Umformgrad von mindestens 50 % erfolgt dann eine Zwischenglühung. Fig. 6 shows schematically the sequence of an inventive manufacturing process in the event that a slab or plate-shaped casting format is cast after melting the alloy by means of continuous casting. In the process shown, only one cold rolling stage is shown after hot rolling. In addition, a further cold rolling stage with a degree of deformation of at least 30% can be provided. This then follows the hot rolling. An intermediate annealing is then carried out before the last cold rolling stage with a degree of deformation of at least 50%.

BezugszeichenlisteReference list

11
Gefügestructure
22
PhosphidpartikelPhosphide particles
2121
perlenschnurartige Anordnungstring arrangement
3131
erste Bereiche, rekristallisiertfirst areas, recrystallized
3232
zweite Bereiche, nicht rekristallisiertsecond areas, not recrystallized

Claims (9)

  1. Material comprising a copper/zinc alloy having the following composition in % by weight: Zn: 21 to 27%, Si: 0.2 to 0.8%, Mn: 1.1 to 1.9%, P: 0.005 to 0.2%, optionally Ni: up to a maximum of 0.2%,
    balance Cu and inevitable impurities,
    characterised in that
    the material has a structure (1) having an alpha phase matrix in which manganese-containing phosphides are incorporated, wherein the manganese-containing phosphides are constructed as phosphide particles (2) with a globular form and wherein at least 90% of these phosphide particles (2) have a size of a maximum of 2.0 µm.
  2. Material according to claim 1, characterised in that at least a portion of the manganese-containing phosphides is arranged in the manner of a string of pearls.
  3. Material according to claim 2, characterised in that the manganese-containing phosphides are arranged in such a manner that, in at least 50% of all string-of-pearls-like arrangements (21) of manganese-containing phosphides, there is present a partial portion of 20 µm length, in which from 7 to 30 phosphide particles (2) having a size of from 0.5 to 2.0 µm are arranged.
  4. Material according to any one of the preceding claims, characterised in that the structure has first regions (31) which are recrystallised and has second regions (32) which are not recrystallised.
  5. Material according to any one of the preceding claims, characterised in that the copper/zinc alloy contains at least 0.03% by weight of Ni.
  6. Method for producing a material according to any one of claims 1 to 5,
    wherein the method comprises the following steps in the sequence mentioned:
    a) melting the alloy,
    b) casting a casting format,
    c) thermally processing the casting format at a temperature of at least 610°C and a maximum of 800°C for a duration of from 1 to 6 hours,
    d) cold-forming with an overall forming degree of at least 50%,
    e) thermal processing at a temperature of at least 280°C and a maximum of 440°C for a duration of from 1 to 3 hours.
  7. Method according to claim 6, characterised in that
    in the method step b) a strip-like casting format is cast and in that after the method step c) and before the method step d) at least one cold-forming which begins with the casting format and which has a forming degree of at least 20%, and at least one additional thermal processing operation are carried out, wherein the thermal processing operation is carried out at a temperature of at least 610°C and a maximum of 800°C for a duration of from 1 to 6 hours.
  8. Method according to claim 6,
    characterised in that in the method step b) a slab-like casting format is cast and in that the thermal processing operation is followed in the method step c) by a hot-forming operation at a temperature of at least 720°C and a maximum of 830°C.
  9. Sliding element comprising a material according to any one of claims 1 to 5.
EP17001112.6A 2016-07-21 2017-06-29 Material made from a copper-zinc alloy, method for producing such a material and sliding member made of such a material Active EP3272888B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016008928.8A DE102016008928A1 (en) 2016-07-21 2016-07-21 Material of a copper-zinc alloy, process for producing such a material and sliding element made of such a material

Publications (2)

Publication Number Publication Date
EP3272888A1 EP3272888A1 (en) 2018-01-24
EP3272888B1 true EP3272888B1 (en) 2020-03-04

Family

ID=59325107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17001112.6A Active EP3272888B1 (en) 2016-07-21 2017-06-29 Material made from a copper-zinc alloy, method for producing such a material and sliding member made of such a material

Country Status (2)

Country Link
EP (1) EP3272888B1 (en)
DE (1) DE102016008928A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992319A1 (en) 2020-10-29 2022-05-04 Otto Fuchs - Kommanditgesellschaft - Alloy product made of a lead-free copper-zinc alloy and method for producing the same
EP3992318A1 (en) 2020-10-29 2022-05-04 Otto Fuchs - Kommanditgesellschaft - Alloy product made of a lead-free copper-zinc alloy and method for producing the same
DE102022122831A1 (en) 2022-09-08 2024-03-14 Diehl Brass Solutions Stiftung & Co. Kg Lead-free brass alloy and machine element made therefrom
DE102022122830A1 (en) 2022-09-08 2024-03-14 Diehl Brass Solutions Stiftung & Co. Kg Lead-free brass alloy and bearing component made therefrom

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3626435A1 (en) 1986-08-05 1988-03-10 Diehl Gmbh & Co Copper-zinc alloy
JPH03193849A (en) * 1989-12-22 1991-08-23 Nippon Mining Co Ltd Copper alloy having fine crystalline grain and low strength and its production
DE102006009396B4 (en) * 2006-03-01 2012-08-16 Diehl Metall Stiftung & Co. Kg Brass alloy and synchronizer ring
DE102007029991B4 (en) 2007-06-28 2013-08-01 Wieland-Werke Ag Copper-zinc alloy, method of manufacture and use
JP5253440B2 (en) * 2010-03-01 2013-07-31 大同メタル工業株式会社 Sliding bearings for turbochargers for internal combustion engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102016008928A1 (en) 2018-01-25
EP3272888A1 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
EP2013371B1 (en) Use of a copper-nickel-tin alloy
DE112010003614B4 (en) High strength screw
DE112005001197B4 (en) Method for producing a workpiece made of a copper alloy
EP3272888B1 (en) Material made from a copper-zinc alloy, method for producing such a material and sliding member made of such a material
EP2742161B1 (en) Copper zinc alloy
DE2953182A1 (en) Aluminum alloy
DE4015593C2 (en)
DE3640698C2 (en)
DE3520407C2 (en) Process for the thermomechanical treatment of copper-beryllium alloys containing cobalt
EP1888798B1 (en) Aluminium plain bearing alloy
EP3320122B1 (en) Brass alloy
DE3427740A1 (en) BRASS ALLOY, MANUFACTURING METHOD AND USE
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE102017113216A1 (en) Monotectic aluminum plain bearing alloy and process for its production and thus manufactured sliding bearing
DE112019003123T5 (en) ALUMINUM ALLOY RIB MATERIAL FOR USE IN A HEAT EXCHANGER WITH EXCELLENT KINK RESISTANCE AND METHOD OF MANUFACTURING THESE
EP3417083B1 (en) Sliding component made of a copper-zinc-alloy
DE1284095B (en) Process for producing aluminum alloy sheets with high creep rupture strength
EP3252179B1 (en) Copper alloy comprising aluminium and nickel, its use and process for production
DE102016223430A1 (en) Electric cable made of aluminum alloy and wiring harness
DE202020101700U1 (en) Pb-free Cu-Zn alloy
DE60114292T2 (en) Cooling rib material for soldering
EP3366793B1 (en) Sliding element made of a copper alloy
EP3075870B1 (en) Copper-zinc alloy, strip material made from this alloy, method for producing a semifinished product made from this alloy and sliding element made from this alloy
DE60311803T2 (en) Copper alloy having excellent corrosion resistance and dezincification resistance, and a method of producing the same
EP3992319A1 (en) Alloy product made of a lead-free copper-zinc alloy and method for producing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180627

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180810

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004030

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004030

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200629

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200629

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1240421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240509

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240513

Year of fee payment: 8

Ref country code: FR

Payment date: 20240509

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240510

Year of fee payment: 8