KR100330570B1 - An alloy for manufacturing mechanical appurtenance - Google Patents

An alloy for manufacturing mechanical appurtenance Download PDF

Info

Publication number
KR100330570B1
KR100330570B1 KR1019990031155A KR19990031155A KR100330570B1 KR 100330570 B1 KR100330570 B1 KR 100330570B1 KR 1019990031155 A KR1019990031155 A KR 1019990031155A KR 19990031155 A KR19990031155 A KR 19990031155A KR 100330570 B1 KR100330570 B1 KR 100330570B1
Authority
KR
South Korea
Prior art keywords
weight
alloy
manganese
heat
nickel
Prior art date
Application number
KR1019990031155A
Other languages
Korean (ko)
Other versions
KR20010011676A (en
Inventor
정구진
Original Assignee
신봉일
주식회사 신원금속
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신봉일, 주식회사 신원금속 filed Critical 신봉일
Priority to KR1019990031155A priority Critical patent/KR100330570B1/en
Publication of KR20010011676A publication Critical patent/KR20010011676A/en
Application granted granted Critical
Publication of KR100330570B1 publication Critical patent/KR100330570B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

본 발명에서는 구리 42~58중량%, 아연 18~30중량%, 니켈 7~25중량% 및 망간 4~10중량%를 함유하는 기계부품 가공용 합금에 대해서 공개한다. 이 합금은 재료를 배합하여 용해시키는 제 1 공정; 상기 제 1 공정의 용해물을 일정한 형태로 주조하는 제 2 공정; 상기 제 2 공정의 주조물을 압연한 후 680~720℃에 1~2시간 열처리하는 제 3 공정; 상기 제 3 공정의 처리물을 다시 압연한 후 680~720℃에 0.8~1.2시간 열처리하는 제 4 공정; 및, 상기 제 4 공정의 처리물을 압출 연신하는 제 5 공정을 포함하는 방법에 의해 제조되는데, 납 대신에 망간을 사용함으로써 제조공정이 간단해지고 쾌삭성과 내마모성이 향상되며, 부품 가공시 불량이 현저하게 줄어드는 효과를 갖는다.The present invention discloses a machine part processing alloy containing 42 to 58% by weight of copper, 18 to 30% by weight of zinc, 7 to 25% by weight of nickel, and 4 to 10% by weight of manganese. The alloy is a first step of mixing and dissolving the material; A second step of casting the melt of the first step into a predetermined form; A third step of heat-treating the casting of the second step for 1 to 2 hours at 680 to 720 ° C .; A fourth step of heat-treating the processed material of the third step and then performing a heat treatment at 680 to 720 ° C. for 0.8 to 1.2 hours; And a fifth process of extruding and stretching the processed material of the fourth process, by using manganese instead of lead, the manufacturing process is simplified, free machinability and wear resistance are improved, and defects are remarkable when machining parts. To reduce the effect.

Description

기계부품용 합금 및 그 제조방법 { An alloy for manufacturing mechanical appurtenance }Alloy for machine parts and manufacturing method thereof {An alloy for manufacturing mechanical appurtenance}

본 발명은 기계부품용 합금에 관한 것으로서, 보다 상세하게는 절삭이 잘 되고 재료의 일부가 저온에서 녹아서 뭉치는 현상이 발생하지 않기 때문에 가공 불량이 현저히 줄어드는 기계부품용 합금 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy for mechanical parts, and more particularly, to an alloy for mechanical parts and a method of manufacturing the same, in which machining defects are significantly reduced because a part of the material is melted at a low temperature and no agglomeration occurs. .

기계부품용 재료는 내구성, 내마모성이 우수해야 하고, 양산 가능토록 절삭이 잘 되어야 하는데, 흔히 쓰이는 것으로 동, 아연, 니켈 및 납을 각각 60.0~64.0중량%, 18.0~19.0중량%, 16.5~19.5중량% 및 0.8~2.0중량%의 비율로 배합하여 만드는 쾌삭양백이란 합금이 있다.Materials for mechanical parts should have excellent durability and abrasion resistance, and should be well cut for mass production. Commonly used are 60.0 ~ 64.0% by weight, 18.0 ~ 19.0% by weight, 16.5 ~ 19.5% by weight of copper, zinc, nickel and lead, respectively. There is an alloy called free cutting silver nickel, which is formulated in% and 0.8 to 2.0% by weight.

이 쾌삭양백은 다음과 같은 공정으로 제조된다. 먼저 상기 재료를 배합하여 용해시킨 후 직경 30φ로 주조한 후 23.5φ가 되도록 면삭을 진행한다. 이후 20.5φ가 되도록 단조(스웨징)하고, 680℃에서 3시간동안 열처리한다. 같은 방법으로 17.5φ가 되도록 단조한 후 다시 680℃에서 3시간동안 열처리한다. 다음에는 12.3φ가 되도록 압연한 후 680℃에서 3시간동안 열처리하고, 다시 직경이 9.0φ가 되도록 압연한 후 또 680℃에서 3시간동안 열처리한다. 이후 7.0φ가 되도록 압출 연신한 후 또 680℃에서 3시간동안 열처리하면, 쾌삭양백이 만들어진다.This free cutting silver nickel is manufactured by the following process. First, the above materials are blended and dissolved, then cast to a diameter of 30φ, and then face-cut to reach 23.5φ. After forging (swaging) to 20.5φ and heat-treated for 3 hours at 680 ℃. In the same way, forged to 17.5φ and then heat-treated again at 680 ℃ for 3 hours. Next, it was rolled to 12.3φ and then heat-treated at 680 ° C. for 3 hours, again rolled to a diameter of 9.0φ, and then heat-treated at 680 ° C. for 3 hours. After extrusion stretching to 7.0 φ and further heat-treated at 680 ° C. for 3 hours, a high yielding nickel silver is produced.

이와 같은 쾌삭양백은 재료로서 극소량의 망간과 철을 함유할 수 있으며, 함유된 납에 의해 우수한 절삭성을 가지게 되므로 각종 기계부품 가공용으로 널리 사용되고 있다.Such high-cutting nickel silver can contain a very small amount of manganese and iron as a material, and is widely used for processing various mechanical parts because it has excellent machinability by the contained lead.

하지만 쾌삭양백은 납의 용융점이 낮기 때문에 주조 후에 계속되는 열처리 과정에서 납 성분이 녹아서 고형화된 금속조직 사이로 흘러 뭉치게 되므로 이것이 추후 부품 가공시에 불량의 원인으로 작용하게 된다. 따라서 기계부품 가공시에 불량이 많이 발생할 수밖에 없어 부품단가의 상승을 초래하였다.However, since the high-quality nickel silver has a low melting point of lead, the molten lead component melts and flows between the solidified metal structures during the subsequent heat treatment after casting, thereby causing defects in the later processing of parts. As a result, a lot of defects can occur during machining of the mechanical parts, resulting in an increase in the parts cost.

또한, 합금의 구성 성분으로 납을 사용하므로 쾌삭양백에 대해 적당한 내구성 및 내마모성을 부여하기 위해 보다 큰 직경의 주조물을 만들고 이것에 대해 수많은 단조 및 열처리 공정을 진행하기 때문에 합금 제조 공정이 길고 까다로울 수밖에 없었다.In addition, the use of lead as a constituent of the alloy made the alloy a long and difficult process because of the casting of larger diameters and numerous forging and heat treatment processes to give adequate durability and abrasion resistance to the free cutting nickel silver. .

본 발명의 목적은 절삭성이 좋아 각종 기계부품의 양산이 가능함은 물론 품질이 균일하고 내마모성이 향상되어 가공시 불량 발생이 현저히 줄어들고 기계부품 수명도 함께 연장시킬 수 있는 기계부품용 합금을 제공하는 데에 있다.An object of the present invention is to provide an alloy for mechanical parts that can be mass-produced various mechanical parts with good machinability, uniform quality and improved wear resistance, significantly reduce the occurrence of defects during machining and extend the life of mechanical parts together have.

본 발명의 다른 목적은 상기 기계부품용 합금을 간단한 공정에 의해 제조할 수 있는 방법을 함께 제공하는 데에 있다.Another object of the present invention is to provide a method for producing the alloy for mechanical parts by a simple process together.

본 발명의 목적을 달성하기 위한 기계부품용 합금은 구리 42~58중량%, 아연18~30중량%, 니켈 7~25중량% 및 망간 4~10중량%를 함유하는 데에 특징이 있다.Alloy for mechanical parts for achieving the object of the present invention is characterized by containing 42 to 58% by weight of copper, 18 to 30% by weight of zinc, 7 to 25% by weight of nickel and 4 to 10% by weight of manganese.

또한 극소량의 다른 금속성분을 함유할 수 있는데, 예를 들면 납은 0.10중량% 이하, 철은 0.25중량% 이하로 함유할 수 있다.It may also contain very small amounts of other metal components, for example lead up to 0.10% by weight and iron up to 0.25% by weight.

본 발명에 있어서 합금 재료는 쾌삭양백과 많은 차이가 있는데, 구리는 약 6-10중량% 정도 적게 함유하고, 아연은 0~11중량% 정도 더 많이 함유한다. 그리고 납 대신에 보다 많은 양의 망간을 함유한다.In the present invention, the alloying material has many differences from the high-cutting nickel silver, and copper contains about 6-10% by weight, and zinc contains 0-11% by weight. And contains more manganese in place of lead.

그 이유는 기존의 쾌삭양백의 문제점인 납 대신에 망간을 사용하는데서 기인하는 것으로, 납의 불사용에 따라 절삭성이 나빠지는 것을 억제하기 위하여 구리 성분을 줄이고 가급적 아연의 사용량을 증가시킨 것이다. 이러한 배합비는 실험에 의해 얻어진 것으로서, 특히 망간의 경우 4중량% 이하로 사용하면 절삭성이 떨어지고 10중량% 이상 사용하면 합금에 크랙이 발생한다.이때, 본 발명(일명: 망간쾌삭)에서 납 성분 대신 망간을 함유 성분으로 포함시켰으며, 그로인해 기계적 강도 및 경도, 연신율이 증가되었고, 또한 니켈의 구성 범위가 종래의 기계 부품용 합금(일명: 쾌삭양백)에서의 니켈의 범위보다 넓은 구성 범위(7∼25중량%)를 갖더라도 충분히 그 기계적 강도면에서 종래의 쾌삭양백에 비하여 우수하도록 합금을 제조할 수 있다.단, 납의 불사용으로 인한 절삭성의 감소를 억제시키기 위해 구리와 아연의 함유비율을 조절하고, 망간의 경우 절삭성이 떨어지지 않으면서 합금에 크랙이 발생치 않을 정도의 범위는 필히 유지해야만 한다. 구리와 아연, 망간의 구성 범위를 유지할 경우, 니켈은 7∼25중량%의 범위내에서 자유롭게 합금을 제조할 수 있다.또한, 본 발명에 따른 기계부품용 합금의 제조방법은 구리 42~58중량%, 아연 18~30중량%, 니켈7~25중량% 및 망간4~10중량%를 배합하여 용해시키는 제 1 공정; 상기 제 1 공정; 상기 제 1 공정의 용해물을 일정한 형태로 주조하는 제 2 공정; 상기 제 2 공정의 주조물을 압연한 후 700℃에 1.5시간 열처리하는 제 3 공정; 상기 제 3 공정의 처리물을 다시 압연한 후 700℃에 1시간 열처리하는 제 4 공정; 및, 상기 제 4 공정을 거친 처리물을 압출 연신하는 제 5 공정을 포함하여 이루어지는 데에 특징이 있다.The reason for this is due to the use of manganese instead of lead, which is a problem of the conventional high-cutting nickel silver, to reduce the copper content and to increase the amount of zinc, if possible, in order to suppress the deterioration of machinability due to the inactivity of lead. Such a compounding ratio is obtained by experiments, in particular, in the case of using manganese at 4% by weight or less, the machinability is inferior, and when used at 10% by weight or more, cracks occur in the alloy. Manganese was included as a component, thereby increasing mechanical strength, hardness, and elongation, and the composition range of nickel was wider than that of nickel in conventional alloys for mechanical parts (aka: free cutting silver) (7 Alloys can be made to be sufficiently superior to the conventional free cutting bags in terms of their mechanical strength even if they have a weight ratio of -25% by weight). In the case of manganese, it is necessary to maintain a range in which the cracking does not occur in the alloy without degrading the machinability. When the composition range of copper, zinc, and manganese is maintained, nickel can be freely produced in the range of 7 to 25% by weight. In addition, the method for producing an alloy for machine parts according to the present invention is 42 to 58% by weight of copper. %, 18-30 wt% zinc, 7-25 wt% nickel, and 4-10 wt% manganese to dissolve and mix; The first step; A second step of casting the melt of the first step into a predetermined form; A third step of heat-treating the casting of the second step at 700 ° C. for 1.5 hours; A fourth step of heat-treating the processed material of the third step for 1 hour at 700 ° C .; And a fifth step of extruding and stretching the processed material having undergone the fourth step.

배합된 재료의 용해는 기존과 같이 1250~1300℃ 정도에서 진행되고, 주조는 1200~1250℃에서 이루어진다. 그리고 재료 중에서 특별히 저온에서 용해되는 것이 없어서, 이후 진행되는 압연, 열처리, 압연, 열처리, 압출 연신 과정에서 재료가녹지 않아 품질 불량이 발생할 우려가 거의 없다.Dissolution of the blended material proceeds at about 1250 ~ 1300 ℃ as before, casting is carried out at 1200 ~ 1250 ℃. In addition, since the material is not particularly dissolved at a low temperature, there is almost no possibility that the material does not melt during the rolling, heat treatment, rolling, heat treatment, and extrusion stretching process, which are subsequently performed, so that quality defects do not occur.

이하, 본 발명에 따른 기계부품용 합금에 대해 실시예를 참조하여 상세히 설명하고자 한다.Hereinafter, with reference to the embodiment for the alloy for mechanical parts according to the present invention will be described in detail.

실시예 1Example 1

용해 1탕에 구리 104㎏, 아연 54㎏, 니켈 33㎏ 및 망간 9㎏을 넣고 1300℃로 가열 용해시킨 후 1250℃에서 직경 20φ의 와이어를 주조한다. 와이어를 상온에서 냉각시킨 후 비올라압연기를 사용하여 12.3φ의 직경으로 압연하고 700℃에 1.5시간동안 열처리를 진행한 후 냉각시킨다. 또 콤바인더 머신을 사용하여 다시 9.0φ의 직경으로 압연하고 700℃에서 1시간동안 열처리를 진행한 후 냉각한다. 다음, 수형기를 이용하여 직경 7.5φ가 되도록 면삭을 진행하고, 압출 연신하여 직경 7φ의 합금 와이어(망간쾌삭)를 제조하였다.104 kg of copper, 54 kg of zinc, 33 kg of nickel, and 9 kg of manganese were added to one melted solution, and heated and dissolved at 1300 ° C., and a wire having a diameter of 20φ was cast at 1250 ° C. After the wire is cooled at room temperature, it is rolled to a diameter of 12.3φ using a viola rolling machine, and heat-treated at 700 ° C. for 1.5 hours, and then cooled. In addition, using a combine machine, rolled to a diameter of 9.0φ again, the heat treatment for 1 hour at 700 ℃ and then cooled. Next, the surface was processed to have a diameter of 7.5 mm using a water shaping machine, followed by extrusion stretching to produce an alloy wire (manganese free cutting) having a diameter of 7 mm.

실시예 2Example 2

상기 실시예 1과 같은 조성으로 재료를 배합, 주조, 압연, 열처리한 후 수형기로 통한 면삭을 진행하지 않고 바로 압출 연신하여 직경 8φ의 합금 와이어를 제조하였다.After blending, casting, rolling, and heat-treating materials with the same composition as in Example 1, an alloy wire having a diameter of 8φ was manufactured by extrusion drawing immediately without proceeding the surface grinding through a water-making machine.

비교예Comparative example

용해 1탕으로 동 128㎏, 아연 36㎏, 니켈 33㎏ 및 납 1.8㎏을 넣고 가열 용해시킨 후 직경 30φ의 봉을 주조, 냉각한 후 면삭기를 이용하여 23.5φ가 되도록 절삭한다. 이후 20.5φ가 되도록 단조하고 680℃에서 3시간동안 열처리를 진행한다. 또 동일한 방법으로 17.5φ가 되도록 단조하고 680℃에서 3시간동안 열처리를진행한다. 다음 비올라 압연기를 사용하여 12.3φ가 되도록 압연한 후 680℃에서 3시간동안 열처리를 진행한다. 그리고 콤바인더 머신을 사용하여 직경 9.0φ가 되도록 압연한 후 680℃에서 3시간동안 열처리를 진행하고, 수형기로 7.0φ가 되도록 압출 연신한 다음에 680℃에서 다시 3시간동안 열처리하여 쾌삭양백을 만들었다.Put 128 kg of copper, 36 kg of zinc, 33 kg of nickel, and 1.8 kg of lead in 1 cup of melted solution, heat dissolve it, and cast and cool a rod with a diameter of 30φ and cut it to 23.5φ using a face cutter. After forging to 20.5φ and heat treatment for 3 hours at 680 ℃. In the same way, forge to 17.5φ and heat treatment at 680 ℃ for 3 hours. Next, using a viola rolling mill to roll to 12.3φ and then heat treatment for 3 hours at 680 ℃. After using a combine machine, the roll was rolled to a diameter of 9.0φ and heat-treated at 680 ° C. for 3 hours, extruded and stretched to 7.0φ with a water receiving machine, and then heat-treated at 680 ° C. for 3 hours to make a free cutting silver .

상기 실시예 1 및 비교예에서 만든 망간쾌삭과 쾌삭양백의 기계적 성질을 알아보기 위한 시험을 실시하였는 바 그 결과는 다음의 표 1 에 나타냈다.The test was carried out to determine the mechanical properties of the manganese free cutting and the free cutting nickel silver made in Example 1 and Comparative Example and the results are shown in Table 1 below.

표 1. 시험결과Table 1. Test Results

종 류Kinds 인장강도The tensile strength 연신율Elongation 경도(HV)Hardness (HV) 경도(HRB)Hardness (HRB) 망간쾌삭Manganese Free Cutting 76.076.0 4.04.0 212.0212.0 93.193.1 쾌삭양백Free cutting 56.556.5 2.02.0 178.0178.0 67.267.2

그 외에도 선반가공시험을 한 결과 망간쾌삭은 절삭되는 칩이 부서지지 않고 말리면서 떨어졌는데 반해 쾌삭양백은 부서지면서 떨어졌다. 또한 연마포 #1200을 이용하여 3분정도 연마시험을 한 결과 망간쾌삭은 연마상태가 양호하고 광택이 났는데 반해 쾌삭양백은 연마상태가 미흡하고 광택이 없었다.In addition, as a result of the lathe test, the manganese free cutting fell as the chips being cut did not break and dried, while the free cutting bags fell as they were broken. In addition, after 3 minutes of polishing test using abrasive cloth # 1200, manganese free cutting showed good polishing condition and gloss, while free cutting silver did not have good polishing condition and was not glossy.

그리고 부품 가공중에 본 발명의 망간쾌삭은 가공불량이 거의 발생하지 않았는데, 그 이유는 이미 언급한 바 있듯이 납 대신에 용융점이 높은 망간을 사용함으로써 합금 제조과정의 열처리 중에 합금의 일부 성분이 녹아 뭉치는 현상이 발생하지 않았기 때문이다.And during the machining of the part, the manganese free cutting of the present invention hardly produced defects. The reason for this is that, as mentioned above, by using manganese with high melting point instead of lead, some components of the alloy melt during the heat treatment of the alloy manufacturing process. This is because the phenomenon did not occur.

이상에서 상세히 설명한 바와 같이, 본 발명에 따른 기계부품용 합금은 납 대신에 망간을 사용함에 따라 그 제조 공정이 매우 간단하고, 절삭성이 기존 쾌삭양백과 비슷하면서도 내마모성은 향상되어 기계부품의 수명을 연장시킴은 물론 부품의 가공 중에 발생하는 불량이 현저하게 줄어들어 값싼 가격으로 각종 기계부품을 공급할 수 있는 효과를 가진다.As described in detail above, the alloy for mechanical parts according to the present invention is very simple manufacturing process by using manganese instead of lead, and the machinability is similar to the existing high-quality free cutting silver, but wear resistance is improved to extend the life of the mechanical parts Of course, the defects that occur during the machining of the parts is significantly reduced, it has the effect that can supply various mechanical parts at a low price.

Claims (3)

구리 42~58중량%, 아연 18~30중량%, 니켈 7~25중량% 및 망간 4~10중량%를 함유하는 기계부품용 합금.Alloy for machine parts containing 42 to 58 weight percent copper, 18 to 30 weight percent zinc, 7 to 25 weight percent nickel and 4 to 10 weight percent manganese. 구리 42~58중량%, 아연 18~30중량%, 니켈 7~25중량% 및 망간4~10중량%를 배합하여 용해시키는 제 1 공정; 상기 제 1 공정의 용해물을 일정한 형태로 주조하는 제 2 공정; 상기 제 2 공정의 주조물을 압연한 후 700℃에 1.5시간 열처리하는 제 3 공정; 상기 제 3 공정의 처리물을 다시 압연한 후 700℃에 1시간 열처리하는 제 4 공정; 및, 상기 제 4 공정의 처리물을 압출 연신하는 제 5 공정을 포함하는 기계부품용 합금의 제조방법.1st process which mix | blends 42-58 weight% of copper, 18-30 weight% of zinc, 7-25 weight% of nickel, and 4-10 weight% of manganese; A second step of casting the melt of the first step into a predetermined form; A third step of heat-treating the casting of the second step at 700 ° C. for 1.5 hours; A fourth step of heat-treating the processed material of the third step for 1 hour at 700 ° C .; And a fifth step of extruding and stretching the processed material of the fourth step. 제 2 항에 있어서, 상기 제 4 공정과 제 5 공정 사이에 열처리물을 일정한 두께로 면삭하는 공정을 더 진행하는 것을 특징으로 하는 기계부품용 합금의 제조방법.The method of manufacturing an alloy for mechanical parts according to claim 2, further comprising the step of chamfering the heat-treated material to a predetermined thickness between the fourth step and the fifth step.
KR1019990031155A 1999-07-29 1999-07-29 An alloy for manufacturing mechanical appurtenance KR100330570B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990031155A KR100330570B1 (en) 1999-07-29 1999-07-29 An alloy for manufacturing mechanical appurtenance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990031155A KR100330570B1 (en) 1999-07-29 1999-07-29 An alloy for manufacturing mechanical appurtenance

Publications (2)

Publication Number Publication Date
KR20010011676A KR20010011676A (en) 2001-02-15
KR100330570B1 true KR100330570B1 (en) 2002-03-29

Family

ID=19605649

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990031155A KR100330570B1 (en) 1999-07-29 1999-07-29 An alloy for manufacturing mechanical appurtenance

Country Status (1)

Country Link
KR (1) KR100330570B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893953B1 (en) * 2007-08-29 2009-04-22 (주) 에스디씨 Washing apparatus for machinery part
KR200458364Y1 (en) * 2010-06-01 2012-02-15 해경 기 Receptacle
DE102018003216B4 (en) 2018-04-20 2020-04-16 Wieland-Werke Ag Copper-zinc-nickel-manganese alloy

Also Published As

Publication number Publication date
KR20010011676A (en) 2001-02-15

Similar Documents

Publication Publication Date Title
US8454766B2 (en) Extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature
EP1882753A1 (en) Aluminium alloy
US6248188B1 (en) Free-cutting aluminum alloy, processes for the production thereof and use thereof
JPWO2007015549A1 (en) High strength copper alloy for electronic parts and electronic parts
EP1882754B1 (en) Aluminium alloy
WO2021128434A1 (en) Easy-to-cut zinc-copper-nickel alloy, preparation method therefor and use thereof
US6660111B2 (en) Method of manufacturing Al-Mg-Si series alloy plate excellent in thermal conductivity and intensity
CN101654749A (en) Easily-cutting brass and processing method of strips thereof
KR100330570B1 (en) An alloy for manufacturing mechanical appurtenance
US4130421A (en) Free machining Cu-Ni-Sn alloys
EP1359233B1 (en) Aluminium alloy with good cuttability, method for producing a forged article and the forged article obtained
USRE30854E (en) Free machining Cu--Ni--Sn alloys
US20220136086A1 (en) Lead-free CU-Zn alloy
JPS63235455A (en) Manufacture of high-strength copper alloy
JPS6135249B2 (en)
KR20120097763A (en) Mechanical appurtenance alloy
US5074921A (en) Copper alloy and method
KR100512154B1 (en) Wrought aluminum alloy and process for producing an extruded object comprised of the same
KR100370436B1 (en) Cu-Zn-Ce, La, Nd, Pr alloys for EDM(Energy Discharge Machine) wire
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JPS622623B2 (en)
KR101002862B1 (en) High-workable magnesium alloy and process for producing the same
JPS6022055B2 (en) Non-heat treated aluminum alloy for cutting and its manufacturing method
JP2002047520A (en) Electrode wire for wire electric discharge machining and its production method
CN117568656A (en) Copper alloy strip and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130318

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170317

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180319

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190418

Year of fee payment: 18

EXPY Expiration of term