JPS63235455A - Manufacture of high-strength copper alloy - Google Patents

Manufacture of high-strength copper alloy

Info

Publication number
JPS63235455A
JPS63235455A JP6766587A JP6766587A JPS63235455A JP S63235455 A JPS63235455 A JP S63235455A JP 6766587 A JP6766587 A JP 6766587A JP 6766587 A JP6766587 A JP 6766587A JP S63235455 A JPS63235455 A JP S63235455A
Authority
JP
Japan
Prior art keywords
copper alloy
strength
strength copper
alloy
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6766587A
Other languages
Japanese (ja)
Other versions
JPH07113143B2 (en
Inventor
Kimio Hashizume
橋爪 公男
Teruo Nakanishi
中西 輝雄
Masazumi Iwase
岩瀬 正純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62067665A priority Critical patent/JPH07113143B2/en
Publication of JPS63235455A publication Critical patent/JPS63235455A/en
Publication of JPH07113143B2 publication Critical patent/JPH07113143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To inexpensively manufacture a high-strength copper alloy excellent in fatigue strength without using Be as a rare resource, by subjecting a molten phosphor bronze with a specific composition to rapid solidification. CONSTITUTION:A molten phosphor bronze which has a composition consisting of, by weight 9-20% Sn, 0.01-0.5% P, and the balance Cu or further containing 0.01-1.0%, in total, of at least one or more elements among Ni, Zn, Fe, Ti, B, Co, Mn and Zr is cooled rapidly by means of a rapidly rotating water-cooled roll, etc., at 10<2> deg.C-10<5> deg.C/sec cooling rate so as to be formed into a sheet-like ingot, and is then cold-rolled into a metal sheet of 0.3mm thickness without homogenizing annealing. The metal sheet is annealed at 500 deg.C for 1hr and subjected to final finish cold rolling at 33% draft and then to low temp. annealing treatment at 250 deg.C for 1hr. In this way, the high-strength copper alloy having superior cold workability, suitable for use in switch, relay, etc., to be subjected to repeated stress, and excellent in fatigue strength can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は1%にスイッチ、リレー関係の繰返し応力が
負荷される用途に適した鋏れ特性の良好な高強度銅合金
の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for manufacturing a high-strength copper alloy with good scissoring properties suitable for applications where 1% repetitive stress is applied in relation to switches and relays. It is.

〔従来の技術〕[Conventional technology]

従来、市場で一般的に使用されている高強度銅合金とし
て代表的なものに2例えば雑誌二伸銅技術研究会gVo
1.9(19’l0)PID9〜P1)6に示されてい
るC1720合金(ベリリウム銅合金)があるが。
Typical high-strength copper alloys commonly used in the market include 2, for example, the magazine 2 Copper Elongation Technology Study Group gVo.
There is a C1720 alloy (beryllium copper alloy) shown in 1.9(19'l0)PID9~P1)6.

この合金は資源希少で安定供給を受けにくい高価なりe
を含有するためにコスト面で問題がある。
This alloy is a scarce resource and is difficult to secure a stable supply because it is expensive.
There is a problem in terms of cost because it contains

一方、安価なバネ材としてはCu中にanと微量のPを
含有するリン青銅系の合金があり、その機械的特性は2
例えば刊行物: A8TM 8peC,Tech。
On the other hand, as an inexpensive spring material, there is a phosphor bronze alloy containing ann and a small amount of P in Cu, and its mechanical properties are 2.
For example publication: A8TM 8peC, Tech.

Pub、 No、 183 (1958)  にも示さ
れているように。
As also shown in Pub, No. 183 (1958).

Sn含有量の増加につれて増大する傾向を有する。It has a tendency to increase as the Sn content increases.

しかし、  Sn量が多くなると、硬くて社い展延性の
乏しい化合物相9例えばδ、β相等の晶出やsnの送偏
析現象の出現により、加工性が極潮に悪化するため、圧
延等の冷開加工が不可能で、リン肯鋼鋳物としてしか利
用できない難点がある。従って現在、この合金系でバネ
材として実使用されている合金の8n含有量の最大は9
%程度どまりである。このためにCI 720合金との
特性差が大きく。
However, when the amount of Sn increases, the crystallization of compound phases 9, such as δ and β phases, which are hard and have poor malleability, and the appearance of the transport segregation phenomenon of Sn, deteriorate the workability to the extreme. It has the disadvantage that it cannot be cold-opened and can only be used as a cast iron. Therefore, the maximum 8n content of the alloys currently used as spring materials is 9.
It is only about %. For this reason, there is a large difference in properties from CI 720 alloy.

この間を埋める合金の出現が要望されている。There is a demand for the emergence of an alloy that fills this gap.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、資源希少で安定供給を受けにくい高価なB5を使
用せずに、安定供給可能なリン青銅系合金で機械的特性
、加工性に優れ、バネ材としての十分な特性を有するも
のが得られないという問題点があった。
Without using the expensive B5, which is a scarce resource and difficult to obtain in a stable supply, it is now possible to obtain a phosphor bronze alloy that can be stably supplied, has excellent mechanical properties and workability, and has sufficient properties as a spring material. The problem was that there was no.

この発明は上記のような間mAを解消するためになされ
たもので、資源希少で安定保給を受けにくいn6を使用
せずに、りン肯鋼糸合金の組織と冷間加工性の改善を図
り、バネ材として十分な特性を有する高強度銅合金を得
ることを目的とする。
This invention was made in order to eliminate the above-mentioned mA, and to improve the structure and cold workability of phosphorus steel thread alloy without using N6, which is a scarce resource and difficult to secure stable supply. The purpose of this study is to obtain a high-strength copper alloy with sufficient properties as a spring material.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の高強度銅合金は、9〜20 厘量優のSnと
0.01〜O,S亘量優のPを含有し、残部Cuからな
る#敵金属を、  1o2r/sec以上1051:/
sec未満の冷却速度で急冷凝固させて製造するもので
ある。
The high-strength copper alloy of the present invention contains Sn in an amount of 9 to 20 mm, P in an amount of 0.01 to O, S, and the balance is Cu at a rate of 1051:/
It is produced by rapid solidification at a cooling rate of less than sec.

〔作用〕[Effect]

合金の一塊製造時において溶湯を102r/sec以上
105℃/sec  未満の冷却速度で急冷凝固するこ
とにより、逆偏析の出現を抑制するとともに。
By rapidly solidifying the molten metal at a cooling rate of 102 r/sec or more and less than 105° C./sec when producing the alloy in one lump, the occurrence of reverse segregation is suppressed.

化合物相を値組に且つ均一にマ) IJラックス中分散
できるので2組織と冷間加工性の改善が図れる。
Since the compound phase can be uniformly dispersed in the IJ lux, the two-structure structure and cold workability can be improved.

〔実施例〕〔Example〕

以下にこの発明の実施例について説明する。 Examples of the present invention will be described below.

発明材は、直径200m1)で内部水冷が可能な鋳鉄製
双ロールからなる実験用の急冷凝固設備を用いて作製し
た。製造条件としては、(1)冷却ロールの回転式を1
 Orpm、 (IIロールへの注湯温度はいずれも合
金の融点から50″C高目、 (tillロールギャッ
プld l tmに設定した。得られた博&鋳塊は厚さ
1.8鰭、巾100uであった。この鋳塊では、従来の
連続鋳造法やバッチ式鋳造に比べて早い1021:/s
ec以上105r:/sec未満の冷却速度で連続的に
急冷凝固されるため、デンドライト組線や逆偏析の出現
が抑制され、しかも化合物相が懺細にマ) IJラック
ス中均一に分散した状態となっており、加工性は極めて
良好である。これらの鋳塊を均質化焼鈍なしで一気に&
厚0.3Mまで冷間圧延した後。
The invention material was produced using an experimental rapid solidification equipment consisting of twin cast iron rolls with a diameter of 200 m1) and capable of internal water cooling. The manufacturing conditions are as follows: (1) The rotation type of the cooling roll is 1
Orpm, (The temperature of pouring into the II roll was set to 50"C higher than the melting point of the alloy, and the roll gap was set to 1.8 mm. The resulting ingot had a thickness of 1.8 fins and a width of The ingot was 1021:/s, which is faster than conventional continuous casting or batch casting.
Because it is continuously rapidly solidified at a cooling rate of ec or more and less than 105 r:/sec, the appearance of dendrite braiding and reverse segregation is suppressed, and the compound phase is kept thin and uniformly dispersed in the IJ lux. The processability is extremely good. These ingots can be processed all at once without homogenization annealing.
After cold rolling to a thickness of 0.3M.

500℃で1時間のキジ浣鈍に続いて33g6の冷間加
工率にて0.2uの版厚に仕上げた。次に250でで1
時間の低温焼鈍処理を施し賄特性測定用の試料とした。
Following pheasant dulling at 500°C for 1 hour, the plate was finished to a plate thickness of 0.2u at a cold working rate of 33g6. Then 250 and 1
It was subjected to low-temperature annealing treatment for several hours and was used as a sample for measuring the mechanical properties.

第1表は、この発明材と比較材の特性値をまとめて示し
たものである。
Table 1 summarizes the characteristic values of this invention material and comparative material.

これらの結果から明らかなように、996以上のSnを
含有するCu−an系合金をこの発明のように急冷凝固
して製造することにより、冷間加工性が着しく改善され
、バネ材として適した高強度銅合金が得られることがわ
かる。例えば、バネ材として一般的に広く実用されてい
る試料7III1)の05210合金(比較材)とその
約2倍のSnを含有する試料A3(本発明材)の特性を
比較すると。
As is clear from these results, by manufacturing a Cu-an alloy containing Sn of 996 or more by rapid solidification as in the present invention, the cold workability is significantly improved, making it suitable as a spring material. It can be seen that a high-strength copper alloy can be obtained. For example, when comparing the properties of the 05210 alloy (comparative material) of Sample 7III1), which is generally widely used as a spring material, and Sample A3 (inventive material), which contains about twice as much Sn as that of Sample 7III1).

試料A3の方が引張強さで約50%、ばね限界値では約
1)0%も増大している。一方、バネ材として夏視され
る彼れ特性についても改善効果が認められ、繰返し数 
N=107回における被れ強さで32kgf/”2の値
が得られ、レベル的には05210合金と01720合
金の中間位置にある。
Sample A3 has an increase in tensile strength of about 50% and a spring limit value of about 1)0%. On the other hand, an improvement effect was also observed on the characteristics of spring material, which is considered a summer material, and the number of repetitions was
A value of 32 kgf/''2 was obtained for the wear strength at N=107 times, which is in the middle between the 05210 alloy and the 01720 alloy.

これらの機械的特性の向上は、従来品より8n含有量を
多くし固溶硬化能と加工硬化能が増大したこと並びにマ
トリックス中に微細な化合物を均一に分散させたことに
よる。特に、疲れ特性の向上については、マトリックス
中に分散した微細な化合物が彼方クラックの伝播を阻止
するためと考えられる。anの含有量としては93[1
)−傷取下では機械的特性が不十分であり、  203
i[i4以上では機械的特性は向上するものの、  C
l720合金と比べてコストメリットが薄らぐとともに
、加工性が低下するため、9〜20131−ji%の範
囲が良い。またPの含有量としては0.01夏ms以下
では実用上脱酸剤としての効果がなく、o、53B1*
以上含んでいても効果に変化はなく、電気伝尋度を下げ
ないためには少ない方が良<、  0.01〜0.5重
量%の範囲が良い。
These improvements in mechanical properties are due to the fact that the 8n content is increased compared to conventional products, resulting in increased solid solution hardening ability and work hardening ability, and the uniform dispersion of fine compounds in the matrix. In particular, the improvement in fatigue properties is thought to be due to the fine compounds dispersed in the matrix inhibiting the propagation of cracks. The content of an is 93[1
) - Mechanical properties are insufficient under scratch removal, 203
i[i4 or higher, although the mechanical properties improve, C
Since the cost advantage is weakened and the workability is lower than that of l720 alloy, a range of 9 to 20131-ji% is preferable. In addition, if the P content is less than 0.01 ms, it has no practical effect as a deoxidizing agent, and o, 53B1*
Even if it is contained above, there is no change in the effect, and in order not to lower the electrical conductivity, it is better to have a smaller amount.The range of 0.01 to 0.5% by weight is better.

第2表は微量の添加元素による効果を示したものである
Table 2 shows the effects of trace amounts of added elements.

Cu −8n −Pをペースにした試料/l&4と比較
した場合、試料A5の引張強さ、ばね限界値、疲れ強さ
は、いずれもほとんど差が認められないことから、  
Mn、 Zn、  Bはこれらの特性に悪影智を及ぼさ
ず、脱酸剤として有効であることを示している。
When compared with the Cu-8n-P-based sample/l&4, there is almost no difference in the tensile strength, spring limit value, and fatigue strength of sample A5.
Mn, Zn, and B do not adversely affect these properties, indicating that they are effective as deoxidizing agents.

但し、添加量が多くなるともろくなり、加工性や導を率
への影響が現われるため上限値を設定している。一方、
ムロ〜49の試料を比軟した場合。
However, as the amount added increases, it becomes brittle and affects workability and conductivity, so an upper limit is set. on the other hand,
When a sample of Muro~49 is softened.

Nl * Fee co、 ’ri g zrの添加元
素は、 結晶粒の微細化2強度を上げるのに貢献し、特
に疲れ特性の向上に対し効果が誌められ、その上限につ
いては成形加工性の点から制限をした。これら微量元素
の含有量は1、ozy*以上含まれると導電率を下げる
ので、実用上合計で0.01〜1.OJi量%量子以下
ましい。また各微量元素の含有量は上述の点から嫌みて
実用上下記範囲が望ましい。
Additive elements such as Nl * Fee co, 'rig zr contribute to grain refinement 2 and increase strength, and are particularly effective in improving fatigue properties, and the upper limit of this contributes to the improvement of formability. Restrictions were placed on The content of these trace elements is 0.01 to 1.0 ozy* or more in total since it lowers the conductivity if it is included. The amount of OJi is preferably less than % quantum. Further, in consideration of the above-mentioned points, the content of each trace element is practically desirably within the following ranges.

Ni−o、 o t 〜o、 s電量96   Zn−
”0.01〜0.35頁tg6Fe = 0.01〜0
.153[童% T i = 0.O2N2.5亘1l
q6B・・・・・・o、oot〜0.1n量% cm・
・・・・・0.01〜0.5ム普%廊・・・・・・O,
OS〜0.43[量%  Zr・・・・・・0.01〜
0.5夏量優なお、浴湯金属の冷却速度は種々実験した
結果。
Ni-o, o t ~o, s electrical capacity 96 Zn-
"0.01-0.35 pagestg6Fe = 0.01-0
.. 153 [child% T i = 0. O2N2.5 1l
q6B...o, oot~0.1n amount% cm・
・・・・・・0.01~0.5mu% gallery・・・・・・O,
OS~0.43 [Amount% Zr...0.01~
The cooling rate of the metal in the bath water is the result of various experiments.

102r:/sec未満では一塊組叡が従来の鋳造法に
よるものと変らず良好な加工性が得られないため。
If it is less than 102 r:/sec, the one-block molding is no different from that obtained by the conventional casting method, and good workability cannot be obtained.

また1051:/sec以上では、製造可能な版厚が極
端に薄くなり過ぎて実用に供しにくくなるため。
Moreover, if it is 1051:/sec or more, the plate thickness that can be manufactured becomes extremely thin, making it difficult to put it into practical use.

102r/sec以上to5t−/sec未満の範囲が
良い。
A range of 102r/sec or more to less than 5t-/sec is preferable.

また、参考までにこの発明合金に係る製造法はCu−8
n系合金だけではなく、 展延性の悪い化合物相が晶出
し易く難加工材として知られているNf −Be−A1
.  Cu−Ni −Mn、  Cu−Ti系合金等に
適用しても同様の効果を奏するものである。
For reference, the manufacturing method for this invention alloy is Cu-8
Not only n-based alloys, but also Nf-Be-A1, which is known as a difficult-to-process material because compound phases with poor malleability tend to crystallize.
.. Similar effects can be obtained even when applied to Cu-Ni-Mn, Cu-Ti alloys, etc.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、9〜20 頁量優の
8nとQ、01〜0.5n量%のPを含有し、 残部C
uからなる%獅金鵬を、  10 r/see  以上
105r/sec未満の冷却速度で急冷縦面させて製造
するととKより2組織の冷間加工性が者しく改善され、
スイッチ、リレー関係の繰返し応力が負荷される用途に
適した安定供給を受けられ安価で。
As described above, according to the present invention, 9 to 20 pages contain P in an amount of 8n and Q, 01 to 0.5n in amount%, and the balance is C.
When U is produced by quenching vertically at a cooling rate of 10 r/see or more and less than 105 r/sec, the cold workability of the two structures is significantly improved compared to K.
Suitable for applications such as switches and relays that are subject to repeated stress, we can provide a stable supply at low prices.

m*労性に慣れた高強度銅合金が得られる効果がある。m*It has the effect of obtaining a high-strength copper alloy that is suitable for labor.

Claims (2)

【特許請求の範囲】[Claims] (1)9〜20重量%のSnと0.01〜0.5重量%
のPを含有し、残部Cuからなる溶湯金属を、10^2
℃/sec以上10^5℃/sec未満の冷却速度で急
冷凝固させて製造する高強度銅合金の製造方法。
(1) 9-20 wt% Sn and 0.01-0.5 wt%
A molten metal containing 10^2 P and the remainder Cu
A method for producing a high-strength copper alloy by rapid solidification at a cooling rate of 10^5 °C/sec or more and less than 10^5 °C/sec.
(2)溶湯金属がNi、Zn、Fe、Ti、B、Co、
MnおよびZrを少くとも一種以上あわせて0.01〜
1.0重量%含有している特許請求の範囲第1項記載の
高強度銅合金の製造方法。
(2) The molten metal is Ni, Zn, Fe, Ti, B, Co,
At least one or more types of Mn and Zr combined from 0.01 to
The method for producing a high-strength copper alloy according to claim 1, which contains 1.0% by weight.
JP62067665A 1987-03-20 1987-03-20 Method for producing high strength copper alloy Expired - Lifetime JPH07113143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067665A JPH07113143B2 (en) 1987-03-20 1987-03-20 Method for producing high strength copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067665A JPH07113143B2 (en) 1987-03-20 1987-03-20 Method for producing high strength copper alloy

Publications (2)

Publication Number Publication Date
JPS63235455A true JPS63235455A (en) 1988-09-30
JPH07113143B2 JPH07113143B2 (en) 1995-12-06

Family

ID=13351524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067665A Expired - Lifetime JPH07113143B2 (en) 1987-03-20 1987-03-20 Method for producing high strength copper alloy

Country Status (1)

Country Link
JP (1) JPH07113143B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926251A1 (en) * 1997-12-19 1999-06-30 Wieland-Werke AG Copper-Tin-Titanium alloy
EP1063310A1 (en) * 1999-06-21 2000-12-27 Wieland-Werke AG Use of a tin rich copper-tin-iron alloy
US6346215B1 (en) 1997-12-19 2002-02-12 Wieland-Werke Ag Copper-tin alloys and uses thereof
WO2007091690A1 (en) * 2006-02-10 2007-08-16 Mitsubishi Shindoh Co., Ltd. Raw material brass alloy for casting of semi-molten alloy
WO2007094265A1 (en) * 2006-02-13 2007-08-23 Mitsubishi Shindoh Co., Ltd. Raw material phosphor bronze alloy for casting of semi-molten alloy
WO2007094300A1 (en) * 2006-02-13 2007-08-23 Mitsubishi Shindoh Co., Ltd. Aluminum bronze alloy as raw material for semi-molten alloy casting
JP2009079270A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Cu-sn-p-based copper alloy sheet material and its production method, and connector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102468119B1 (en) * 2020-12-21 2022-11-23 한국재료연구원 Copper-Tin alloy for hot rolling and method for manufacturing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143524A (en) * 1984-12-14 1986-07-01 Nippon Kokan Kk <Nkk> Manufacture of sheet-shaped slab

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143524A (en) * 1984-12-14 1986-07-01 Nippon Kokan Kk <Nkk> Manufacture of sheet-shaped slab

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926251A1 (en) * 1997-12-19 1999-06-30 Wieland-Werke AG Copper-Tin-Titanium alloy
US6346215B1 (en) 1997-12-19 2002-02-12 Wieland-Werke Ag Copper-tin alloys and uses thereof
EP1063310A1 (en) * 1999-06-21 2000-12-27 Wieland-Werke AG Use of a tin rich copper-tin-iron alloy
WO2007091690A1 (en) * 2006-02-10 2007-08-16 Mitsubishi Shindoh Co., Ltd. Raw material brass alloy for casting of semi-molten alloy
WO2007094265A1 (en) * 2006-02-13 2007-08-23 Mitsubishi Shindoh Co., Ltd. Raw material phosphor bronze alloy for casting of semi-molten alloy
WO2007094300A1 (en) * 2006-02-13 2007-08-23 Mitsubishi Shindoh Co., Ltd. Aluminum bronze alloy as raw material for semi-molten alloy casting
JP2009079270A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Cu-sn-p-based copper alloy sheet material and its production method, and connector

Also Published As

Publication number Publication date
JPH07113143B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
US8968492B2 (en) Lead-free free-machining brass having improved castability
US4142918A (en) Method for making fine-grained Cu-Ni-Sn alloys
US4055445A (en) Method for fabrication of brass alloy
PL196643B1 (en) Silver containing copper alloy
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
US4406712A (en) Cu-Ni-Sn Alloy processing
CA2284575C (en) Aluminum alloy composition and method of manufacture
JPS63235455A (en) Manufacture of high-strength copper alloy
US4072513A (en) Copper base alloys with high strength and high electrical conductivity
US3930894A (en) Method of preparing copper base alloys
KR950014423B1 (en) A copper-based metal alloy of improved type particularly for the contruction of electronic components
US6565681B1 (en) Age-hardenable copper alloy casting molds
US10364482B2 (en) Copper-zinc alloy, band material composed thereof, process for producing a semifinished part composed of a copper-zinc alloy and sliding element composed of a copper-zinc alloy
JPH0457738B2 (en)
JPH0380858B2 (en)
KR100278117B1 (en) High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it&#39;s manufacturing method
JPS6254183B2 (en)
US2011987A (en) Zinc alloy
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPS62182238A (en) Cu alloy for continuous casting mold
JPH02129351A (en) Manufacture of high strength copper alloy
JPS6337176B2 (en)
JPH0336246A (en) Production of phosphor bronze alloy