WO2007091690A1 - Raw material brass alloy for casting of semi-molten alloy - Google Patents

Raw material brass alloy for casting of semi-molten alloy Download PDF

Info

Publication number
WO2007091690A1
WO2007091690A1 PCT/JP2007/052412 JP2007052412W WO2007091690A1 WO 2007091690 A1 WO2007091690 A1 WO 2007091690A1 JP 2007052412 W JP2007052412 W JP 2007052412W WO 2007091690 A1 WO2007091690 A1 WO 2007091690A1
Authority
WO
WIPO (PCT)
Prior art keywords
brass alloy
alloy
mass
brass
semi
Prior art date
Application number
PCT/JP2007/052412
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichiro Oishi
Original Assignee
Mitsubishi Shindoh Co., Ltd.
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co., Ltd., Mitsubishi Materials Corporation filed Critical Mitsubishi Shindoh Co., Ltd.
Priority to US12/278,688 priority Critical patent/US20090016927A1/en
Publication of WO2007091690A1 publication Critical patent/WO2007091690A1/en
Priority to US12/537,381 priority patent/US20090294087A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the present invention relates to a raw brass alloy for producing semi-fused gold, which can produce a brass alloy cake with fine crystal grains by producing the semi-fused gold without stirring the molten metal.
  • Brass used in industry contains Zn: 8 to 50 mass%, and is distinguished according to its use.
  • ⁇ 11 a brass alloy containing 25 to 35% by mass with the balance being Cu and unavoidable impurities.
  • Brass alloy containing 8 to 20% by mass has the color closest to the golden color, and its strength is also used in the manufacture of decorative products.
  • brass alloys containing ⁇ 11: 25-35% by mass are representative of copper: 70% by mass, zinc: 30% by mass, known as 7-3 brass with a uniform oc solid solution structure.
  • a typical brass alloy containing 35 to 45% by mass of Zn is composed of 60% by mass of copper and 40% by mass of zinc, as 6-4 brass having an ⁇ + ⁇ solid solution structure.
  • These brass alloys are widely used in the manufacture of various machine parts.
  • Special brass alloys with single or multiple additions of Al, Fe, Mn, Ni, etc. to improve wear are also known.
  • the dendrite produced in the solid-liquid mixed slurry is divided by stirring, and the primary crystal solid in the solid-liquid mixed slurry becomes spherical, so that the fluidity can be maintained up to a high solid phase ratio.
  • Non-Patent Document 1 “Metal Handbook Revised 5th Edition” edited by the Japan Institute of Metals, Maruzen (issued April 20, 1992), P1041 ⁇ 1042
  • the present invention has been made in view of the above circumstances, and can be used to produce a brass alloy product with fine crystal grains by producing a semi-fused metal without a stirring means.
  • An object is to provide a raw material brass alloy for gold making.
  • the present inventors have improved the fluidity of the half-melted brass alloy without applying a stirring means for breaking up the dendrites in the liquid phase and granulating them, so that the half-melted brass can be obtained at a low temperature.
  • Research was conducted to produce a brass alloy product with no crystal defects and fine crystal grains even when the alloy was manufactured. As a result, the following (A) to (D) were discovered for the first time.
  • the raw material brass alloy for producing semi-fused gold according to the above (1) or (2) further comprises, in mass%, Pb: 0.005-0.45%, Bi: 0.005-0.45%, Se: 0.03-0.45% Te: may have a component composition containing one or more of 0.01 to 0.45%.
  • the raw brass alloy for semi-fused gold fabrication of the present invention contains, in mass%, Zn: 8 to 40%, Zr: 0.000 5 to 0.04%, P: 0.01 to 0.25%, the remainder being Cu and inevitable impurities It has a component composition consisting of
  • the raw brass alloy for semi-fused gold fabrication of the present invention contains, in mass%, Zn: 8 to 40%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, and Si : Contains 2 to 5%, Sn: 0.05 to 6% by mass, and A1: 0.05-3. 5% by mass or more, and has a component composition of residual force Cu and inevitable impurity.
  • the brass alloy for producing semi-fused gold according to the present invention is, in mass%, Zn: 8 to 40%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, Si: 2 to 5% , Sn: 0.05 to 6 mass 0/0 and A1:. 0.05 to 3 containing 5 wt% of one or more of the further, Pb:. 0.005 ⁇ 0 45%, Bi: 0.005 ⁇ 0.45% Se: 0.03 to 0.45%, Te: 0.01 to 0.45% of one or two or more may be included.
  • the raw brass alloy for producing semi-fused gold according to the present invention is prepared by preparing and storing ingots whose components have been adjusted in advance. It is possible to produce a brass alloy product with fine crystal grains by forging the obtained half-melted brass alloy.
  • Zn when added to Cu, lowers the melting point and improves the fluidity of the molten alloy, and further improves the corrosion resistance of the porcelain and improves the mechanical strength, but its content is 8 If it is less than mass%, the fluidity of the molten metal will be lowered. On the other hand, if it exceeds 40%, it will become hard and brittle and the mechanical strength will be lowered. Therefore, Zn contained in the brass alloy material for producing semi-fused gold according to the present invention is determined to be 8 mass% or more and 40 mass% or less.
  • Zr promotes the crystallization of the fine granular ex initial phase in the semi-fused gold state, and by re-dissolving it makes the ⁇ solid phase coexist in the liquid phase of the half-melted brass alloy,
  • the brass alloy obtained by improving the fluidity of the half-melted brass alloy and forging it, and having the effect of refining the crystal grains of the porcelain. If the content is less than 0.0005% by mass, the brass alloy is forged. This is not preferable because it does not exert a sufficient effect on the refinement of the crystal grains of the porcelain. On the other hand, if the content exceeds 0.04% by mass, the crystal grains of the brass alloy porcelain are increased, which is not preferable. Therefore, Zr contained in the brass alloy raw material for semi-fused metal fabrication of the present invention is determined to be 0.0005 mass% or more and 0.04 mass% or less.
  • P coexists with Zr to promote the crystallization of fine granular oc initial phase in the semi-fused gold state, and the OC solid phase in the liquid phase of the half-melted brass alloy obtained by re-dissolution. Co-existing, thereby improving the fluidity of the half-melted brass alloy and forging brass alloy. On the other hand, it is not preferable because it does not exert a sufficient effect on the refinement of the crystal grains of the product. On the other hand, if the content exceeds 0.25% by mass, the crystal grains of the product become large, which is not preferable. Therefore, it is included in the raw brass alloy for semi-fused gold fabrication of this invention.
  • the P content is determined to be not less than 0.01% by mass and not more than 0.25% by mass.
  • Si, Sn, A1 can improve mechanical strength, corrosion resistance, machinability, wear resistance, and peritectic reaction by adding one or more of them together with Zr, P, Cu and Zn. It is added as necessary in order to widen the composition range given to the steel, exhibit a remarkable crystal grain refining effect, and further improve the fluidity of the half-melted brass alloy.
  • the Si content is less than 2% by mass, the desired effect cannot be obtained.
  • the Si content exceeds 5% by mass, the thermal conductivity is lowered and the fluidity of the half-melted brass is increased. It is preferable because it starts to decrease.
  • Sn has the effect of improving the seawater property in the above-mentioned corrosion resistance. If its content is less than 0.05% by mass, the desired effect cannot be obtained. On the other hand, Sn exceeds 6% by mass. Then, since it becomes brittle and thermal conductivity is lowered, the fluidity of the half-melted brass is lowered, which is preferable.
  • A1 has the effect of improving the fluidity of the molten metal, reducing the loss of Zr, and further improving the erosion corrosion resistance of the corrosion resistance. If the amount is less than 0.05% by mass, the desired effect cannot be obtained. On the other hand, if it exceeds 3.5% by mass, the thermal conductivity decreases and the fluidity of the half-melted brass decreases. It is preferable because it becomes! /.
  • Si is 2 to 5 mass contained in the semi-fusible alloy ⁇ raw material for the brass alloy of the present invention 0/0, Sn is 0.05 to 6 mass 0/0, A1 is 0.05 to 3.5 mass 0 / Set to 0 respectively.
  • Si is the most effective, and it is most preferable to always contain Si.
  • the raw brass alloy for producing semi-fused gold according to the present invention may further contain one or more of Pb , Bi , Se , Te, etc., if necessary. ⁇ if included in the brass alloy or, in the mass 0/0, Pb:. 0. 005 ⁇ 0 45%, Bi:. 0. 005 ⁇ 0 45%, Se:. 0. 03 ⁇ 0 45%, Te : It is included in the range of 0.01 to 0.45%.
  • the material brass alloy for semi-fused gold fabrication of the present invention has the above component composition.
  • the material brass alloy for semi-fused gold fabrication of the examples of the present invention having the component composition shown in Tables 1 to 8 below (hereinafter referred to as the material brass alloy of the examples of the present invention) 1 to Ingots consisting of 1 to 8 and 105 and a comparative brass alloy raw material brass alloy (hereinafter referred to as comparative raw material brass alloy) were produced.
  • a molten brass alloy with a temperature of 1200 ° C was prepared, and the resulting brass alloy melt was forged and solidified to have a conventional brass alloy for raw material for semi-fused metal fabrication having the composition shown in Table 7 below.
  • An ingot made of gold hereinafter referred to as a conventional raw material brass alloy 1 to 2 was produced.
  • the ingot thus cut and cut is heated to a predetermined temperature in the range exceeding the solidus temperature and less than the liquidus temperature, thereby remelting to produce a molten metal alloy.
  • a quench specimen was prepared by ultra-quenching the molten alloy. By observing the microstructure of this rapidly cooled specimen with an optical microscope, the shape of the OC solid phase coexisting with the liquid phase in the molten metal alloy is estimated, and the average particle size is obtained. Shown in 8
  • the raw material brass alloy 1 105 shows that in the semi-molten state, the ⁇ solid phase of the quenching specimen exhibits fine particles. It is presumed that a fine ⁇ -solid phase coexists with the liquid phase.
  • the conventional raw material brass alloys 1-2 since the oc solid phase of the rapid cooling test piece is dendritic, the conventional raw material brass alloys 1-2 do not generate dendrites in the semi-molten state. It is estimated that Therefore, the half-melted brass alloy produced with the raw material brass alloy 1 to 105 of the embodiment of the present invention has excellent fluidity compared to the conventional half-melted brass alloy produced with the raw material brass alloy 1-2.
  • the half-melted brass alloy obtained by melting the raw material brass alloys 1 to 105 in the examples of the present invention has a fine granular OC solid phase formed in the liquid phase, so that the half-melted brass alloy is not stirred. It can be seen that a forged product having fine crystal grains can be obtained even by forging.
  • the comparative raw material brass alloys 1 to 6 containing Zn, Zr, and soot are out of the conditions of the present invention (range of the composition of the present invention). In the semi-molten state, dendrite is generated or crystal grains are refined. This is preferable because it becomes insufficient or brittle, and Zr: 0.0005 to 0.04%, P: 0.01 to 0.25% force S is contained in the coexistence of the comparative example. Brass alloys 7-8 are not free of dendrites.
  • the cut ingot is completely melted to produce a completely molten brass alloy melt, which is then cooled and maintained at a predetermined temperature within the range above the solidus temperature and below the liquidus temperature.
  • a molten alloy was prepared, and a quenched specimen was prepared by ultra-quenching the molten metal alloy. By observing the microstructure of this rapidly cooled specimen with an optical microscope, the ⁇ primary crystal shape crystallized in the melt of the half-melted brass alloy was estimated, and the average particle size was obtained. As a result, almost the same result as in Example 1 was obtained. Obtained.
  • the raw brass alloy for producing the semi-fused gold alloy of this invention is dissolved to produce a solid-mixed slurry half-melted brass alloy, and this half-fused brass alloy is forged by the usual method, the liquid phase of the half-fused brass alloy.
  • the fine ⁇ initial phase was crystallized or a solid phase coexisted, it was possible to forge without impairing the fluidity of the half-melted brass alloy without providing a stirring means.
  • the brass alloy product obtained by forging a half-melted brass alloy has one crystal grain There is an excellent effect that the mechanical strength is further improved by miniaturization. Therefore, the present invention is extremely useful industrially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

Disclosed is a raw material brass alloy for casting of a semi-molten alloy. The brass alloy has the following chemical composition (by mass): 8-40% of Zn, 0.0005-0.04% of Zr and 0.01-0.25% of P and, if required, one or more elements selected from 2-5% of Si, 0.05-6% of Sn and 0.05-3.5% of Al and, if further required, one or more elements selected from 0.005-0.45% of Pb, 0.005-0.45% of Bi, 0.03-0.45% of Se and 0.01-0.45% of Te, with the remainder being Cu and unavoidable impurities.

Description

明 細 書  Specification
半融合金铸造用原料黄銅合金  Raw material brass alloy for semi-fusion gold fabrication
技術分野  Technical field
[0001] 本発明は、溶湯を撹拌処理することなく半融合金铸造することにより結晶粒が微細 な黄銅合金铸物を製造することができる半融合金铸造用原料黄銅合金に関する。 本願は、 2006年 2月 10曰に曰本に出願された特願 2006— 034126号に基づき 優先権を主張し、その内容をここに援用する。  TECHNICAL FIELD [0001] The present invention relates to a raw brass alloy for producing semi-fused gold, which can produce a brass alloy cake with fine crystal grains by producing the semi-fused gold without stirring the molten metal. This application claims priority based on Japanese Patent Application No. 2006-034126 filed in Japan on February 10, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 工業上使用されている黄銅は Zn : 8〜50質量%を含有し、その用途によって区別 されている。代表的なものとして Zn : 8〜20質量%を含有し、残部が Cuおよび不可 避不純物からなる黄銅合金、∑11 : 25〜35質量%を含有し、残部が Cuおよび不可避 不純物からなる黄銅合金、∑11 : 35〜45質量%を含有し、残部が Cuおよび不可避不 純物からなる黄銅合金などに分類されている。∑11 : 8〜20質量%を含有する黄銅合 金は黄金色に最も近い色調を呈するところ力も装飾品の製造に使用されている。さら に、∑11 : 25〜35質量%を含有する黄銅合金は代表的なものとして、銅: 70質量%, 亜鉛: 30質量%からなり、均一な oc固溶体組織を有する 7— 3黄銅として知られてお り、さらに Zn : 35〜45質量%を含有する黄銅合金は代表的なものは銅: 60質量%, 亜鉛: 40質量%からなり、 α + β固溶体組織を有する 6— 4黄銅として知られており、 これらの黄銅合金は各種機械部品の製造に広く使用されている。さらに、 Siを添加し て湯流れ性を改善した特殊黄銅合金、快削性を向上させるために Pb、 Bi、 Se、 Teを 単独又は複数添加した特殊黄銅合金、さらに、強度、耐蝕性、耐摩耗性を向上させ るために Al, Fe, Mn, Niなどを単独又は複数添加した特殊黄銅合金なども知られ ている。  [0002] Brass used in industry contains Zn: 8 to 50 mass%, and is distinguished according to its use. As a typical example, a brass alloy containing Zn: 8 to 20% by mass with the balance being Cu and unavoidable impurities, and ∑11: a brass alloy containing 25 to 35% by mass with the balance being Cu and unavoidable impurities. ∑11: Contains 35-45% by mass, and the balance is classified into brass alloys made of Cu and inevitable impurities. ∑11: Brass alloy containing 8 to 20% by mass has the color closest to the golden color, and its strength is also used in the manufacture of decorative products. In addition, brass alloys containing ∑11: 25-35% by mass are representative of copper: 70% by mass, zinc: 30% by mass, known as 7-3 brass with a uniform oc solid solution structure. In addition, a typical brass alloy containing 35 to 45% by mass of Zn is composed of 60% by mass of copper and 40% by mass of zinc, as 6-4 brass having an α + β solid solution structure. These brass alloys are widely used in the manufacture of various machine parts. Furthermore, a special brass alloy with improved hot-water flow by adding Si, a special brass alloy with one or more Pb, Bi, Se, Te added to improve free-cutting properties, and strength, corrosion resistance, resistance Special brass alloys with single or multiple additions of Al, Fe, Mn, Ni, etc. to improve wear are also known.
[0003] カゝかる黄銅合金の溶湯を通常の方法で溶解し铸造しても、デンドライト組織が生成 して微細な結晶粒を有する黄銅合金铸物は得られない。そこで、結晶粒が微細な黄 銅合金铸物を得るためのいろいろな铸造法が提案されており、その一例として半融 合金铸造法が提案されている。この方法は、合金の液相線温度未満でかつ固相線 温度を越える温度範囲内に保持して固体金属と液体金属とが混合したスラリー状態 に保持された合金 (このスラリー状態の合金を「半融合金」と呼んで!/ヽる)を、機械的 撹拌や電磁撹拌などにより撹拌しながら冷却し凝固させ、所定の固相率となったとこ ろで撹拌を停止したのち铸造する方法である。この方法によると撹拌により固液混合 スラリー中に生成したデンドライトは分断され、固液混合スラリー中の初晶固体は球 状となり、そのために高い固相率まで流動性を保持することが出来るとされている。ま た、この方法によると、結晶粒が微細な黄銅合金铸物を得ることができるとされている[0003] Even if the molten brass alloy is melted and formed by a usual method, a dendrite structure is formed and a brass alloy product having fine crystal grains cannot be obtained. Therefore, various forging methods have been proposed for obtaining brass alloy products with fine crystal grains, and a semi-molten alloy forging method has been proposed as an example. This method is less than the liquidus temperature of the alloy and is An alloy held in a slurry state in which solid metal and liquid metal are mixed within a temperature range exceeding the temperature (this alloy in slurry state is called “semi-fused gold!”) Is mechanically In this method, the mixture is cooled and solidified while stirring by stirring or electromagnetic stirring, and the stirring is stopped when a predetermined solid phase ratio is reached. According to this method, the dendrite produced in the solid-liquid mixed slurry is divided by stirring, and the primary crystal solid in the solid-liquid mixed slurry becomes spherical, so that the fluidity can be maintained up to a high solid phase ratio. ing. Also, according to this method, it is said that brass alloy ceramics with fine crystal grains can be obtained.
(非特許文献 1参照)。 (See Non-Patent Document 1).
非特許文献 1:「金属便覧 改訂 5版」日本金属学会編、丸善 (平成 4年 4月 20日発行 )、 P1041〜1042  Non-Patent Document 1: “Metal Handbook Revised 5th Edition” edited by the Japan Institute of Metals, Maruzen (issued April 20, 1992), P1041 ~ 1042
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、溶湯を攪拌する半融合金铸造法を実施するには、溶湯温度を制御しながら 攪拌する必要があることから装置が大型化し、条件によって溶湯中に余分なガスを卷 き込む恐れがあった。さらに金型の損耗を考慮した場合には、溶湯温度を下げる必 要があるが、上記従来の黄銅合金は半融状態で攪拌してもデンドライト組織の生成 を完全に避けることができず、そのために溶湯の流動性が著しく悪くなり、最終的に は铸造不良につながる恐れもあった。 [0004] However, in order to carry out the semi-fused metal forging method in which the molten metal is agitated, it is necessary to agitate while controlling the molten metal temperature, which increases the size of the apparatus, and injects extra gas into the molten metal depending on the conditions. There was a fear. Furthermore, considering the wear of the mold, it is necessary to lower the molten metal temperature. However, the conventional brass alloy cannot completely prevent the formation of a dendrite structure even if it is stirred in a semi-molten state. In addition, the fluidity of the molten metal deteriorated remarkably, which could eventually lead to forging defects.
本発明は、上記事情に鑑みてなされたものであって、溶湯を撹拌手段を設けること なく半融合金铸造することにより、結晶粒が微細な黄銅合金铸物を製造することがで きる半融合金铸造用原料黄銅合金を提供することを目的とする。  The present invention has been made in view of the above circumstances, and can be used to produce a brass alloy product with fine crystal grains by producing a semi-fused metal without a stirring means. An object is to provide a raw material brass alloy for gold making.
課題を解決するための手段  Means for solving the problem
[0005] そこで、本発明者等は、液相中のデンドライトを分断して粒状ィ匕するための攪拌手 段を施すことなぐ半融黄銅合金の流動性を向上させ、低温での半融黄銅合金を铸 造しても铸造不良がなく結晶粒が微細な黄銅合金铸物を製造すべく研究を行った。 その結果、以下の(A)から(D)のことを初めて知見した。 [0005] Therefore, the present inventors have improved the fluidity of the half-melted brass alloy without applying a stirring means for breaking up the dendrites in the liquid phase and granulating them, so that the half-melted brass can be obtained at a low temperature. Research was conducted to produce a brass alloy product with no crystal defects and fine crystal grains even when the alloy was manufactured. As a result, the following (A) to (D) were discovered for the first time.
(八)211: 8〜40質量%を含む黄銅合金に、さらに、質量%で、 Zr: 0. 0005〜0. 04 wt%, P : 0. 01-0. 25wt%を含有せしめた黄銅合金を原料合金として、これを完 全溶解したのち冷却して得られた半融黄銅合金または再溶解して得られた半融黄銅 合金はいずれも流動性に優れ、この半融黄銅合金を铸造すると、結晶粒が微細な黄 銅合金铸物を製造することができ、したがって、従来のように半融合金状態で撹拌処 理を施す必要がな 、ことがわかった。 (8) 211: Brass alloy containing 8-40% by mass of Zr: 0.0005-0.04 wt%, P: 0.01-0.25 wt% As a raw material alloy. The half-melted brass alloy obtained by completely melting and then cooling or the half-melted brass alloy obtained by re-dissolution is excellent in fluidity. It has been found that an alloy can be produced and therefore it is not necessary to perform a stirring process in the semi-fused state as in the prior art.
(B)質量%で、 Zr: 0. 0005〜0. 04wt%, P : 0. 01〜0. 25wt%を含有する前記( A)記載の黄銅合金に、さらに、質量%で、 Si: 2〜5%、 Sn: 0. 05〜6質量%ぉよび A1: 0. 05〜3. 5質量%の内の 1種または 2種以上を含有せしめた黄銅合金を原料 合金とし、これを完全溶解したのち冷却して得られた半融黄銅合金または再溶解し て得られた半融黄銅合金は ヽずれも流動性に優れ、この半融黄銅合金を铸造すると 、結晶粒が微細な黄銅合金铸物を製造することができ、したがって、従来のように半 融合金状態で撹拌処理を施す必要がないことがわかった。  (B) By mass%, Zr: 0.0005 to 0.04 wt%, P: 0.01 to 0.25 wt%, the brass alloy according to (A) described above, and further by mass%, Si: 2 ~ 5%, Sn: 0.05-6% by mass and A1: 0.05-5.3.5% by mass of brass alloy containing one or more of 5% by mass is used as a raw material alloy and completely dissolved Then, the half-melted brass alloy obtained by cooling or the half-melted brass alloy obtained by re-melting has excellent fluidity, and when this half-melted brass alloy is prepared, It was found that the product can be manufactured, and therefore it is not necessary to perform the stirring process in the semi-fused state as in the prior art.
(C)前記 (A)または(B)記載の黄銅合金に、さらに、質量%で、 Pb : 0. 005-0. 45 %、 Bi: 0. 005〜0. 45%、 Se : 0. 03〜0. 45%、Te : 0. 01〜0. 45%の内の 1種 または 2種以上含有する成分組成を有する黄銅合金についても同様の効果を奏する ことがわかった。  (C) In addition to the brass alloy described in the above (A) or (B), Pb: 0.005-0.45%, Bi: 0.005-0.45%, Se: 0.03 It was found that a brass alloy having a component composition containing one or more of ˜0.45% and Te: 0.01˜0.45% has the same effect.
(D)前記 (A)〜 (C)記載の黄銅合金が半融合金状態で流動性が良 、理由は、前記 (A)〜 (C)記載の黄銅合金が完全溶解したのち冷却して凝固する過程にぉ 、てデ ンドライトではなく粒状の微細な α初晶が晶出することによるものであり、また、前記( Α)〜(C)記載の黄銅合金を再溶解して得られた半融黄銅合金は液相中に粒状の 微細な α固相が共存していることによるものである、などの研究結果が得られたので ある。  (D) The brass alloy described in (A) to (C) is semi-fused and has good fluidity because the brass alloy described in (A) to (C) is completely dissolved and then cooled and solidified. This is due to the fact that fine α primary crystals, not dendrites, are crystallized during the process, and the brass alloys described in (ii) to (C) above are remelted. Research results such as that the molten brass alloy is due to the coexistence of fine particulate α solid phase in the liquid phase.
この発明は、力かる研究結果に基づいてなされたものであって、  This invention was made based on the results of strong research,
(1)質量0 /0で、 Zn: 8〜40%、 Zr: 0. 0005〜0. 04%、 P : 0. 01〜0. 25%を含有し 、残りが Cuおよび不可避不純物からなる成分組成をする半融合金铸造用原料黄銅 合金である。 (1) the mass 0/0, Zn: 8~40% , Zr:. 0. 0005~0 04%, P:. Containing 0.01 to 0 25%, the remainder being Cu and inevitable impurities components This is a raw material brass alloy for producing semi-fused gold.
(2)質量0 /0で、 Zn: 8〜40%、 Zr: 0. 0005〜0. 04%、 P : 0. 01〜0. 25%を含有し 、さらに、 Si: 2〜5%、 Sn: 0. 05〜6質量0 /0および A1: 0. 05〜3. 5質量0 /0の内の 1 種または 2種以上を含有し、残りが Cuおよび不可避不純物からなる成分組成を有す る半融合金铸造用原料黄銅合金である。 (2) the mass 0/0, Zn: 8~40% , Zr:. 0. 0005~0 04%, P:. 0. 01~0 containing 25% addition, Si: 2 to 5% sn: 0. 05 to 6 mass 0/0 and A1:. 0. 05~3 containing 5 mass 0/0 one or more of, have a component composition balance being Cu and inevitable impurities You This is a raw brass alloy for semi-fused gold fabrication.
(3)前記(1)または (2)の記載の半融合金铸造用原料黄銅合金は、さらに、質量% で、 Pb:0.005〜0.45%、 Bi:0.005〜0.45%、 Se:0.03〜0.45%、 Te:0.0 1〜0.45%の内の 1種または 2種以上含有する成分組成を有していてもよい。  (3) The raw material brass alloy for producing semi-fused gold according to the above (1) or (2) further comprises, in mass%, Pb: 0.005-0.45%, Bi: 0.005-0.45%, Se: 0.03-0.45% Te: may have a component composition containing one or more of 0.01 to 0.45%.
発明の効果  The invention's effect
[0007] この発明の半融合金铸造用原料黄銅合金を溶解して固液混合スラリー状態の半 融黄銅合金を作製し、この半融黄銅合金を通常の方法で铸造すると、半融黄銅合金 の液相中に微細な粒状 α初相が晶出しあるいは a固相が共存しているため、攪拌 処理装置を用いて撹拌を行わなくても半融黄銅合金の流動性が損なわれることなく 铸造することができ、さらに得られた半融黄銅合金を铸造して得られた黄銅合金铸物 は結晶粒が一層微細化されて機械的強度が一段と向上するという優れた効果を奏 するものである。  [0007] When the raw brass alloy for producing the semi-fused gold alloy of the present invention is dissolved to produce a solid-liquid mixed slurry half-melted brass alloy, and this half-fused brass alloy is produced by a usual method, Fine granular α initial phase is crystallized in the liquid phase or a solid phase coexists, so that it can be fabricated without impairing the fluidity of the half-melted brass alloy without stirring using a stirrer. Further, the brass alloy product obtained by forging the obtained half-melted brass alloy has an excellent effect that the crystal grains are further refined and the mechanical strength is further improved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本発明を詳細に説明する。 [0008] Hereinafter, the present invention will be described in detail.
本発明の半融合金铸造用原料黄銅合金は、質量%で、 Zn:8〜40%、 Zr:0.000 5〜0.04%、 P:0.01〜0. 25%を含有し、残りが Cuおよび不可避不純物からなる 成分組成を有する。  The raw brass alloy for semi-fused gold fabrication of the present invention contains, in mass%, Zn: 8 to 40%, Zr: 0.000 5 to 0.04%, P: 0.01 to 0.25%, the remainder being Cu and inevitable impurities It has a component composition consisting of
また、本発明の半融合金铸造用原料黄銅合金は、質量%で、 Zn:8〜40%、 Zr:0 .0005〜0.04%、 P:0.01〜0. 25%を含有し、さらに、 Si:2〜5%、 Sn:0.05〜 6質量%および A1:0.05-3. 5質量%の内の 1種又は 2種以上を含有し、残り力Cu および不可避不純物力 なる成分組成を有する。  Further, the raw brass alloy for semi-fused gold fabrication of the present invention contains, in mass%, Zn: 8 to 40%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, and Si : Contains 2 to 5%, Sn: 0.05 to 6% by mass, and A1: 0.05-3. 5% by mass or more, and has a component composition of residual force Cu and inevitable impurity.
また、本発明の半融合金铸造用原料黄銅合金は、質量%で、 Zn:8〜40%、 Zr:0 .0005〜0.04%、 P:0.01〜0. 25%、 Si:2〜5%、 Sn:0.05〜6質量0 /0および A1:0.05〜3. 5質量%の内の 1種又は 2種以上を含有し、さらに、 Pb:0.005〜0. 45%、 Bi:0.005〜0.45%、 Se:0.03〜0.45%、 Te:0.01〜0.45%の内の 1 種または 2種以上含有する成分組成を有するものであってもよい。 Further, the brass alloy for producing semi-fused gold according to the present invention is, in mass%, Zn: 8 to 40%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, Si: 2 to 5% , Sn: 0.05 to 6 mass 0/0 and A1:. 0.05 to 3 containing 5 wt% of one or more of the further, Pb:. 0.005~0 45%, Bi: 0.005~0.45% Se: 0.03 to 0.45%, Te: 0.01 to 0.45% of one or two or more may be included.
[0009] この発明の半融合金铸造用原料黄銅合金は、予め成分調整したインゴットを作製 して貯蔵しておき、必要量を取り出して再溶解することにより半融黄銅合金を作製し、 得られた半融黄銅合金を铸造することにより結晶粒が微細な黄銅合金铸物を製造す ることがでさる。 [0009] The raw brass alloy for producing semi-fused gold according to the present invention is prepared by preparing and storing ingots whose components have been adjusted in advance. It is possible to produce a brass alloy product with fine crystal grains by forging the obtained half-melted brass alloy.
この発明の半融合金铸造用原料黄銅合金の成分組成を前述の如く限定した理由 を説明する。  The reason why the component composition of the raw brass alloy for producing semi-fused gold according to the present invention is limited as described above will be described.
Zn :  Zn:
Znは、 Cuに添加することにより融点を低下させるとともに合金溶湯の流動性を向上 させ、さらに铸物の耐食性を向上させるとともに機械的強度を向上させる作用を有す るが、その含有量が 8質量%未満では溶湯の流動性が低下するので好ましくなぐ一 方、 40%を越えて含有すると硬く脆くなつて機械的強度が低下するようになるので好 ましくない。したがって、この発明の半融合金铸造用原料黄銅合金に含まれる Znは 8 質量%以上 40質量%以下に定めた。  Zn, when added to Cu, lowers the melting point and improves the fluidity of the molten alloy, and further improves the corrosion resistance of the porcelain and improves the mechanical strength, but its content is 8 If it is less than mass%, the fluidity of the molten metal will be lowered. On the other hand, if it exceeds 40%, it will become hard and brittle and the mechanical strength will be lowered. Therefore, Zn contained in the brass alloy material for producing semi-fused gold according to the present invention is determined to be 8 mass% or more and 40 mass% or less.
Zr : Zr:
Zrは、 Pと共存することにより半融合金状態において微細な粒状 ex初相の晶出を促 進させ、また再溶解することにより半融黄銅合金の液相中に α固相を共存せしめ、そ れによって半融黄銅合金の流動性を改善させるとともに铸造して得られた黄銅合金 铸物の結晶粒を微細化させる作用を有する力 その含有量が 0. 0005質量%未満 では铸造した黄銅合金铸物の結晶粒の微細化に十分な効果を発揮することがない ので好ましくなぐ一方、 0. 04質量%を超えて含有すると、かえって黄銅合金铸物の 結晶粒が大きくなるので好ましくない。したがって、この発明の半融合金铸造用原料 黄銅合金に含まれる Zrは 0. 0005質量%以上 0. 04質量%以下に定めた。  By coexisting with P, Zr promotes the crystallization of the fine granular ex initial phase in the semi-fused gold state, and by re-dissolving it makes the α solid phase coexist in the liquid phase of the half-melted brass alloy, The brass alloy obtained by improving the fluidity of the half-melted brass alloy and forging it, and having the effect of refining the crystal grains of the porcelain. If the content is less than 0.0005% by mass, the brass alloy is forged. This is not preferable because it does not exert a sufficient effect on the refinement of the crystal grains of the porcelain. On the other hand, if the content exceeds 0.04% by mass, the crystal grains of the brass alloy porcelain are increased, which is not preferable. Therefore, Zr contained in the brass alloy raw material for semi-fused metal fabrication of the present invention is determined to be 0.0005 mass% or more and 0.04 mass% or less.
P : P:
Pは、 Zrと共存することにより半融合金状態において微細な粒状 oc初相の晶出を促 進させ、また再溶解することにより得られた半融黄銅合金の液相中に OC固相を共存 せしめ、それによつて半融黄銅合金の流動性を改善させるとともに铸造した黄銅合金 铸物の結晶粒を微細化させる作用を有する力 その含有量が 0. 01質量%未満では 铸造した黄銅合金铸物の結晶粒の微細化に十分な効果を発揮することがないので 好ましくなぐ一方、 0. 25質量%を超えて含有すると、力えって铸物の結晶粒が大き くなるので好ましくない。したがって、この発明の半融合金铸造用原料黄銅合金に含 まれる Pは 0. 01質量%以上 0. 25質量%以下に定めた。 P coexists with Zr to promote the crystallization of fine granular oc initial phase in the semi-fused gold state, and the OC solid phase in the liquid phase of the half-melted brass alloy obtained by re-dissolution. Co-existing, thereby improving the fluidity of the half-melted brass alloy and forging brass alloy. On the other hand, it is not preferable because it does not exert a sufficient effect on the refinement of the crystal grains of the product. On the other hand, if the content exceeds 0.25% by mass, the crystal grains of the product become large, which is not preferable. Therefore, it is included in the raw brass alloy for semi-fused gold fabrication of this invention. The P content is determined to be not less than 0.01% by mass and not more than 0.25% by mass.
Siゝ Sn、 A1: Si ゝ Sn, A1:
Si、 Sn、 A1は、それらの 1種又は 2種以上を Zr、 P、 Cuおよび Znと共添させると、機 械的強度、耐食性、被削性、耐摩耗性を向上させ、包晶反応に与える組成範囲を広 げ、顕著な結晶粒微細化効果を発揮し、さらに半融黄銅合金の流動性を一層改善さ せるために必要に応じて添加する。  Si, Sn, A1 can improve mechanical strength, corrosion resistance, machinability, wear resistance, and peritectic reaction by adding one or more of them together with Zr, P, Cu and Zn. It is added as necessary in order to widen the composition range given to the steel, exhibit a remarkable crystal grain refining effect, and further improve the fluidity of the half-melted brass alloy.
この場合、 Siの含有量は 2質量%未満では所望の効果が得られず、一方、 5質量 %を超えて含有すると、熱伝導性が低下するとともに、力えって半融黄銅の流動性が 低下するようになるので好ましくな 、。  In this case, if the Si content is less than 2% by mass, the desired effect cannot be obtained. On the other hand, if the Si content exceeds 5% by mass, the thermal conductivity is lowered and the fluidity of the half-melted brass is increased. It is preferable because it starts to decrease.
また、 Snは、前記耐食性の内でも特に而海水性を向上させる効果を有する力 そ の含有量は 0. 05質量%未満では所望の効果が得られず、一方、 6質量%を超えて 含有すると、脆くなり、熱伝導性が低下するとともに、かえって半融黄銅の流動性が 低下するようになるので好ましくな 、。  In addition, Sn has the effect of improving the seawater property in the above-mentioned corrosion resistance. If its content is less than 0.05% by mass, the desired effect cannot be obtained. On the other hand, Sn exceeds 6% by mass. Then, since it becomes brittle and thermal conductivity is lowered, the fluidity of the half-melted brass is lowered, which is preferable.
また、 A1は、前記効果のほかに溶湯の流動性を向上させ、 Zrのロスを減少させ、さ らに前記耐食性の内でも特に耐エロージョンコロージヨン性を改善する作用を有する 力 その含有量は 0. 05質量%未満では所望の効果が得られず、一方、 3. 5質量% を超えて含有すると、熱伝導性が低下するとともに、力えって半融黄銅の流動性が低 下するようになるので好ましくな!/、。  In addition to the above effects, A1 has the effect of improving the fluidity of the molten metal, reducing the loss of Zr, and further improving the erosion corrosion resistance of the corrosion resistance. If the amount is less than 0.05% by mass, the desired effect cannot be obtained. On the other hand, if it exceeds 3.5% by mass, the thermal conductivity decreases and the fluidity of the half-melted brass decreases. It is preferable because it becomes! /.
したがって、この発明の半融合金铸造用原料黄銅合金に含まれる Siは 2〜5質量 0/0、 Snは 0. 05〜6質量0 /0、 A1は 0. 05〜3. 5質量0 /0にそれぞれ定めた。これら Siゝ Sn、 A1の成分の内でも Siが最も有効であり、 Siを必ず含むことが最も好ましい。 その他の成分: Therefore, Si is 2 to 5 mass contained in the semi-fusible alloy铸造raw material for the brass alloy of the present invention 0/0, Sn is 0.05 to 6 mass 0/0, A1 is 0.05 to 3.5 mass 0 / Set to 0 respectively. Of these Si 有効 Sn and A1 components, Si is the most effective, and it is most preferable to always contain Si. Other ingredients:
この発明の半融合金铸造用原料黄銅合金には、さらに、 PbBiSe、 Teなどの内 の 1種又は 2種以上が必要に応じて含まれていてもよいが、これらの成分が黄銅合金 に含まれる場合に ίま、質量0 /0で、 Pb : 0. 005〜0. 45%, Bi: 0. 005〜0. 45%, Se : 0. 03〜0. 45%、Te : 0. 01〜0. 45%の範囲で含まれること力 子まし!/、。 The raw brass alloy for producing semi-fused gold according to the present invention may further contain one or more of Pb , Bi , Se , Te, etc., if necessary. ί if included in the brass alloy or, in the mass 0/0, Pb:. 0. 005~0 45%, Bi:. 0. 005~0 45%, Se:. 0. 03~0 45%, Te : It is included in the range of 0.01 to 0.45%.
本発明の半融合金铸造用原料黄銅合金は、上記のような成分組成としたことにより The material brass alloy for semi-fused gold fabrication of the present invention has the above component composition.
、この半融合金铸造用原料黄銅合金を溶解して固液混合スラリー状態の半融黄銅 合金を作製し、この半融黄銅合金を通常の方法で铸造すると、半融黄銅合金の液相 中に微細な粒状 α初相が晶出しあるいは α固相が共存しているため、攪拌処理手 段を設けることなく半融黄銅合金の流動性が損なわれることなく铸造することができ、 さらに得られた半融黄銅合金を铸造して得られた黄銅合金铸物は結晶粒が一層微 細化されて機械的強度が一段と向上するという優れた効果を奏するものである。 実施例 1 The semi-fused brass in the solid-liquid mixed slurry state by melting this raw material brass alloy for semi-fused gold fabrication When an alloy is prepared and this half-melted brass alloy is produced by a usual method, a fine granular α primary phase is crystallized in the liquid phase of the half-melted brass alloy or the α solid phase coexists. It is possible to forge without damaging the fluidity of the half-melted brass alloy without providing a step, and the brass alloy product obtained by forging the obtained half-melted brass alloy has finer crystal grains. As a result, the mechanical strength is further improved. Example 1
[0012] (実施例 1) [0012] (Example 1)
原料として通常の電気銅を用意し、この電気銅を電気炉に装入し、 Arガス雰囲気 中にて溶解し、溶銅温度が 1200°Cになった時点で Znおよび Pを添加し、さらに必要 に応じて Si、 Sn、 Al、 Pb、 Bi、 Se、 Teなどを添カ卩し、最後に Zrを添カ卩することにより 成分調整した黄銅合金溶湯を作製し、得られた黄銅合金溶湯を铸造し凝固させて下 記表 1〜8に示される成分組成を有する本発明の実施例の半融合金铸造用原料黄 銅合金 (以下、本発明の実施例の原料黄銅合金という) 1〜105および比較例の半 融合金铸造用原料黄銅合金 (以下、比較例の原料黄銅合金という) 1〜8からなるィ ンゴットを作製した。さらに、市販の銅: 70質量0 /0、亜鉛 : 30質量0 /0からなる 7— 3黄 銅および銅: 60質量%、亜鉛: 40質量%からなる 6— 4黄銅を Arガス雰囲気中にて 溶解し、温度: 1200°Cの黄銅合金溶湯を作製し、得られた黄銅合金溶湯を铸造し凝 固させて下記表 7に示される成分組成を有する従来の半融合金铸造用原料黄銅合 金 (以下、従来の原料黄銅合金という) 1〜2からなるインゴットを作製した。 Prepare normal electrolytic copper as a raw material, charge this electrolytic copper into an electric furnace, melt it in an Ar gas atmosphere, add Zn and P when the molten copper temperature reaches 1200 ° C, If necessary, add brass, molten Si, Sn, Al, Pb, Bi, Se, Te, etc., and finally add Zr. The material brass alloy for semi-fused gold fabrication of the examples of the present invention having the component composition shown in Tables 1 to 8 below (hereinafter referred to as the material brass alloy of the examples of the present invention) 1 to Ingots consisting of 1 to 8 and 105 and a comparative brass alloy raw material brass alloy (hereinafter referred to as comparative raw material brass alloy) were produced. Further, a commercially available copper: 70 mass 0/0, Zinc: of 30 mass 0/0 7 3 brass and copper: 60 wt%, zinc: 40 consists wt% 6-4 brass in an Ar gas atmosphere A molten brass alloy with a temperature of 1200 ° C was prepared, and the resulting brass alloy melt was forged and solidified to have a conventional brass alloy for raw material for semi-fused metal fabrication having the composition shown in Table 7 below. An ingot made of gold (hereinafter referred to as a conventional raw material brass alloy) 1 to 2 was produced.
[0013] 実施例 1で得られた本発明の実施例の原料黄銅合金 1〜105、比較例の原料黄銅 合金 1〜8および従来の原料黄銅合金 1〜2からなるインゴットの一部をそれぞれ切り 取り、切り取ったインゴットを固相線温度を越えかつ液相線温度未満の範囲内の所 定の温度に加熱することにより、再溶解して半融黄銅合金溶湯を作製し、この半融黄 銅合金溶湯を超急冷することにより急冷試験片を作製した。この急冷試験片の組織 を光学顕微鏡で観察することにより、半融黄銅合金溶湯において液相と共存する OC 固相の形状を推定し、さらにその平均粒径を求め、その結果を下記表 1〜8に示した [0013] A part of the ingot made of the raw material brass alloy 1 to 105 of the example of the present invention obtained in Example 1, the raw material brass alloy 1 to 8 of the comparative example, and the conventional raw material brass alloy 1 to 2 was cut. The ingot thus cut and cut is heated to a predetermined temperature in the range exceeding the solidus temperature and less than the liquidus temperature, thereby remelting to produce a molten metal alloy. A quench specimen was prepared by ultra-quenching the molten alloy. By observing the microstructure of this rapidly cooled specimen with an optical microscope, the shape of the OC solid phase coexisting with the liquid phase in the molten metal alloy is estimated, and the average particle size is obtained. Shown in 8
[0014] なお、 a固相の平均粒径の測定は、急冷試験片の切断面を硝酸でエッチングした のち光学顕微鏡で観察し測定:した, [0014] It should be noted that a measurement of the average particle size of the solid phase was performed by etching the cut surface of the quenched specimen with nitric acid. Later observed and measured with an optical microscope:
[表 1]
Figure imgf000009_0002
Figure imgf000009_0003
[table 1]
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000009_0004
Figure imgf000009_0004
Figure imgf000009_0001
〔〕^
Figure imgf000009_0001
[] ^
Figure imgf000010_0001
Figure imgf000010_0001
〔〕^ 〔〕 [] ^ []
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0002
〔s002 [S002
Figure imgf000013_0001
Figure imgf000013_0001
〔〕0021 [] 0021
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000015_0001
〔〕0022[] 0022
Figure imgf000015_0002
Figure imgf000015_0002
Figure imgf000016_0001
Figure imgf000016_0001
表 1 8に示される結果から、本発明の実施例の原料黄銅合金 1 105は、急冷試 験片の α固相がいずれも微細な粒状を呈しているところから、半融状態において粒 状の微細な α固相が液相と共存していると推定される。一方、従来の原料黄銅合金 1〜2は、急冷試験片の oc固相がいずれも樹枝状を呈しているところから、従来の原 料黄銅合金 1〜2は半融状態においてデンドライトが生成していることが推定される。 したがって、本発明の実施例の原料黄銅合金 1〜105で作製した半融黄銅合金は 、従来の原料黄銅合金 1〜2で作製した半融黄銅合金に比べて流動性が優れて ヽる こと、本発明の実施例の原料黄銅合金 1〜105を溶解して得られた半融黄銅合金は 液相中に微細な粒状の OC固相が生成しているので半融黄銅合金を撹拌することなく 铸造しても微細な結晶粒を有する铸物が得られることがわかる。本発明の条件 (本発 明の成分組成の範囲)から外れて Zn、 Zrおよび Ρを含む比較例の原料黄銅合金 1〜 6は、半融状態ではデンドライトが発生したり、結晶粒の微細化が不足したり脆くなつ たりするので好ましくな ヽこと、さらに Zr : 0. 0005〜0. 04%、 P : 0. 01〜0. 25%力 S 共存して含有して 、な 、比較例の黄銅合金 7〜8は、デンドライトが発生することなど がわカゝる。 From the results shown in Table 18, the raw material brass alloy 1 105 according to the example of the present invention shows that in the semi-molten state, the α solid phase of the quenching specimen exhibits fine particles. It is presumed that a fine α-solid phase coexists with the liquid phase. On the other hand, in the conventional raw material brass alloys 1-2, since the oc solid phase of the rapid cooling test piece is dendritic, the conventional raw material brass alloys 1-2 do not generate dendrites in the semi-molten state. It is estimated that Therefore, the half-melted brass alloy produced with the raw material brass alloy 1 to 105 of the embodiment of the present invention has excellent fluidity compared to the conventional half-melted brass alloy produced with the raw material brass alloy 1-2. The half-melted brass alloy obtained by melting the raw material brass alloys 1 to 105 in the examples of the present invention has a fine granular OC solid phase formed in the liquid phase, so that the half-melted brass alloy is not stirred. It can be seen that a forged product having fine crystal grains can be obtained even by forging. The comparative raw material brass alloys 1 to 6 containing Zn, Zr, and soot are out of the conditions of the present invention (range of the composition of the present invention). In the semi-molten state, dendrite is generated or crystal grains are refined. This is preferable because it becomes insufficient or brittle, and Zr: 0.0005 to 0.04%, P: 0.01 to 0.25% force S is contained in the coexistence of the comparative example. Brass alloys 7-8 are not free of dendrites.
(実施例 2) (Example 2)
実施例 1で作製した前記本発明の実施例の原料黄銅合金 1〜105、比較例の原料 黄銅合金 1〜8および従来の原料黄銅合金 1〜2からなるインゴットの一部をそれぞ れ切り取り、切り取ったインゴットを完全溶解して全てが液相の黄銅合金溶湯を作製 し、その後冷却して固相線温度を越えかつ液相線温度未満の範囲内の所定の温度 に保持された半融黄銅合金溶湯を作製し、この半融黄銅合金溶湯を超急冷すること により急冷試験片を作製した。この急冷試験片の組織を光学顕微鏡で観察すること により半融黄銅合金溶湯に晶出ている α初晶形状を推定し、さらにその平均粒径を 求めた結果、実施例 1とほぼ同じ結果が得られた。  A part of the ingot made of the raw material brass alloys 1 to 105 of the above-described example of the present invention prepared in Example 1 and the raw material brass alloys 1 to 8 of the comparative example and the conventional raw material brass alloys 1 to 2 were cut out, respectively. The cut ingot is completely melted to produce a completely molten brass alloy melt, which is then cooled and maintained at a predetermined temperature within the range above the solidus temperature and below the liquidus temperature. A molten alloy was prepared, and a quenched specimen was prepared by ultra-quenching the molten metal alloy. By observing the microstructure of this rapidly cooled specimen with an optical microscope, the α primary crystal shape crystallized in the melt of the half-melted brass alloy was estimated, and the average particle size was obtained. As a result, almost the same result as in Example 1 was obtained. Obtained.
産業上の利用可能性 Industrial applicability
この発明の半融合金铸造用原料黄銅合金を溶解して固液混合スラリー状態の半 融黄銅合金を作製し、この半融黄銅合金を通常の方法で铸造すると、半融黄銅合金 の液相中に微細な粒状 α初相が晶出しあるいは a固相が共存しているため、攪拌 手段を設けることなく半融黄銅合金の流動性が損なわれることなく铸造することがで き、さらに得られた半融黄銅合金を铸造して得られた黄銅合金铸物は結晶粒が一層 微細化されて機械的強度が一段と向上するという優れた効果を奏する。従って、本 発明は産業上極めて有用である。 When the raw brass alloy for producing the semi-fused gold alloy of this invention is dissolved to produce a solid-mixed slurry half-melted brass alloy, and this half-fused brass alloy is forged by the usual method, the liquid phase of the half-fused brass alloy In addition, since the fine α initial phase was crystallized or a solid phase coexisted, it was possible to forge without impairing the fluidity of the half-melted brass alloy without providing a stirring means. The brass alloy product obtained by forging a half-melted brass alloy has one crystal grain There is an excellent effect that the mechanical strength is further improved by miniaturization. Therefore, the present invention is extremely useful industrially.

Claims

請求の範囲 The scope of the claims
[1] 質量0 /0で、 Zn:8~40%, Zr:0.0005〜0.04%, P:0.01〜0.25%を含有し、 残りが Cuおよび不可避不純物からなる成分組成を有する半融合金铸造用原料黄銅 合金。 [1] in a weight 0/0, Zn: 8 ~ 40%, Zr: 0.0005~0.04%, P: contains from 0.01 to 0.25%, for the semi-fusible alloy铸造having a component composition balance being Cu and inevitable impurities Raw material brass alloy.
[2] 質量0 /0で、 Zn:8〜40%、 Zr:0.0005〜0.04%, P:0.01〜0.25%を含有し、 さらに、 Si:2〜5%、 Sn:0.05〜6質量0 /0および A1:0.05〜3.5質量0 /0の内の 1種 又は 2種以上を含有し、残りが Cuおよび不可避不純物からなる成分組成を有する半 融合金铸造用原料黄銅合金。 [2] Mass 0/0, Zn: 8~40% , Zr: 0.0005~0.04%, P: contains 0.01 to 0.25%, further, Si: 2~5%, Sn: 0.05~6 mass 0 / 0 and A1: 0.05 to 3.5 mass 0 / contain one or two or more of the 0, semi-fusible alloy铸造raw material for the brass alloy having a component composition balance being Cu and inevitable impurities.
[3] さらに、質量0 /0で、 Pb:0.005〜0.45%、 Bi:0.005〜0.45%、 Se:0.03〜0. [3] In addition, the mass 0/0, Pb: 0.005~0.45% , Bi: 0.005~0.45%, Se: 0.03~0.
45%、Te:0.01〜0.45%の内の 1種または 2種以上含有する成分組成を有する 請求項 1または 2記載の半融合金铸造用原料黄銅合金。  The raw brass alloy for producing semi-fused gold according to claim 1 or 2, which has a component composition containing 45% or one or more of Te: 0.01 to 0.45%.
PCT/JP2007/052412 2006-02-10 2007-02-09 Raw material brass alloy for casting of semi-molten alloy WO2007091690A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/278,688 US20090016927A1 (en) 2006-02-10 2007-02-09 Brass alloy as raw materials for semi solid metal casting
US12/537,381 US20090294087A1 (en) 2006-02-10 2009-08-07 Brass alloy as raw materials for semi solid metal casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006034126A JP5116976B2 (en) 2006-02-10 2006-02-10 Raw brass alloy for semi-fusion gold casting
JP2006-034126 2006-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/537,381 Division US20090294087A1 (en) 2006-02-10 2009-08-07 Brass alloy as raw materials for semi solid metal casting

Publications (1)

Publication Number Publication Date
WO2007091690A1 true WO2007091690A1 (en) 2007-08-16

Family

ID=38345282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052412 WO2007091690A1 (en) 2006-02-10 2007-02-09 Raw material brass alloy for casting of semi-molten alloy

Country Status (4)

Country Link
US (2) US20090016927A1 (en)
JP (1) JP5116976B2 (en)
CN (1) CN101379205A (en)
WO (1) WO2007091690A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160140821A (en) 2014-03-31 2016-12-07 가부시키가이샤 구리모토 뎃코쇼 Low-lead brass alloy for plumbing member
WO2021225165A1 (en) * 2020-05-08 2021-11-11 三菱マテリアル株式会社 Wire rod of cu-zn-si alloy obtained by up-drawing continuous casting

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
US20100303667A1 (en) * 2009-03-09 2010-12-02 Lazarus Norman M Novel lead-free brass alloy
CN101876012B (en) * 2009-12-09 2015-01-21 路达(厦门)工业有限公司 Brass alloy with excellent stress corrosion resistance and manufacture method thereof
CN101787461B (en) * 2010-03-02 2014-11-19 路达(厦门)工业有限公司 Environment-friendly manganese brass alloy and manufacturing method thereof
EP2759612B1 (en) * 2011-09-20 2017-04-26 Mitsubishi Shindoh Co., Ltd. Copper alloy sheet and method for producing copper alloy sheet
WO2013145964A1 (en) * 2012-03-30 2013-10-03 株式会社栗本鐵工所 Brass alloy for tap water supply member
RU2486270C1 (en) * 2012-05-22 2013-06-27 Юлия Алексеевна Щепочкина Copper-based alloy
CN103667776A (en) * 2012-08-31 2014-03-26 摩登岛股份有限公司 Low-shrink corrosion-resistant brass alloy
US8991787B2 (en) 2012-10-02 2015-03-31 Nibco Inc. Lead-free high temperature/pressure piping components and methods of use
JP6061833B2 (en) * 2013-10-17 2017-01-18 有限会社ティミス Metal lump for casting
CN104032176B (en) * 2014-06-23 2015-03-11 江西鸥迪铜业有限公司 Low-lead brass alloy
EP3279347B1 (en) * 2015-03-31 2021-02-17 Kurimoto, Ltd. Copper alloy for use in a member for water works
CN104726739A (en) * 2015-04-03 2015-06-24 井冈山市玉捷消防科技有限公司 Method for producing fire-fighting sprinkler head frame through semi-solid forming of brasses
DE202019101597U1 (en) * 2019-03-20 2019-04-23 Otto Fuchs - Kommanditgesellschaft - Cu-Zn alloy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326320A (en) * 1986-07-18 1988-02-03 Nippon Mining Co Ltd High power conductive copper alloy
JPS63195253A (en) * 1987-02-10 1988-08-12 Takatsugu Kusakawa Manufacture of phosphor bronze sheet metal
JPS63235455A (en) * 1987-03-20 1988-09-30 Mitsubishi Electric Corp Manufacture of high-strength copper alloy
JPH06184676A (en) * 1992-12-23 1994-07-05 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JPH06192771A (en) * 1992-12-25 1994-07-12 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JP2000087158A (en) * 1998-09-11 2000-03-28 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead frame
JP2000355746A (en) * 1996-09-09 2000-12-26 Toto Ltd Production of brass and producing equipment therefor
JP2002518598A (en) * 1998-06-23 2002-06-25 オリン コーポレイション Tin brass modified by iron

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330712A (en) * 1993-04-22 1994-07-19 Federalloy, Inc. Copper-bismuth alloys
DK1777305T3 (en) * 2004-08-10 2011-01-03 Mitsubishi Shindo Kk Copper base alloy casting with refined crystal grains
JP4951517B2 (en) * 2005-09-30 2012-06-13 三菱伸銅株式会社 Melt-solidified product, copper alloy material for melt-solidification, and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326320A (en) * 1986-07-18 1988-02-03 Nippon Mining Co Ltd High power conductive copper alloy
JPS63195253A (en) * 1987-02-10 1988-08-12 Takatsugu Kusakawa Manufacture of phosphor bronze sheet metal
JPS63235455A (en) * 1987-03-20 1988-09-30 Mitsubishi Electric Corp Manufacture of high-strength copper alloy
JPH06184676A (en) * 1992-12-23 1994-07-05 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JPH06192771A (en) * 1992-12-25 1994-07-12 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JP2000355746A (en) * 1996-09-09 2000-12-26 Toto Ltd Production of brass and producing equipment therefor
JP2002518598A (en) * 1998-06-23 2002-06-25 オリン コーポレイション Tin brass modified by iron
JP2000087158A (en) * 1998-09-11 2000-03-28 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead frame

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160140821A (en) 2014-03-31 2016-12-07 가부시키가이샤 구리모토 뎃코쇼 Low-lead brass alloy for plumbing member
WO2021225165A1 (en) * 2020-05-08 2021-11-11 三菱マテリアル株式会社 Wire rod of cu-zn-si alloy obtained by up-drawing continuous casting
JP2021176983A (en) * 2020-05-08 2021-11-11 三菱マテリアル株式会社 WIRE ROD OF Cu-Zn-Si ALLOY OBTAINED BY UP-DRAWING CONTINUOUS CASTING
JP7347321B2 (en) 2020-05-08 2023-09-20 三菱マテリアル株式会社 Upward continuous casting wire rod of Cu-Zn-Si alloy

Also Published As

Publication number Publication date
CN101379205A (en) 2009-03-04
JP2007211310A (en) 2007-08-23
US20090294087A1 (en) 2009-12-03
US20090016927A1 (en) 2009-01-15
JP5116976B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5116976B2 (en) Raw brass alloy for semi-fusion gold casting
JP5879244B2 (en) Aluminum alloy
JP5427815B2 (en) Magnesium alloy and manufacturing method thereof
JP5582982B2 (en) Aluminum alloy and method for producing the same
WO2006016614A1 (en) Master alloy for use in modifying copper alloy and casting method using the same
TWI500775B (en) Aluminum alloy and manufacturing method thereof
JP2013155407A (en) Copper alloy and cast product
JP2014517770A (en) Metal alloy refinement method
US20200215604A1 (en) Casting mold material and copper alloy material
WO2007094265A1 (en) Raw material phosphor bronze alloy for casting of semi-molten alloy
JP5785836B2 (en) Copper alloys and castings
KR101591629B1 (en) Method for manufacturing Al-Mg alloy under the melting point of magnesium
US9657376B2 (en) Aluminum alloy and production method thereof
JP5607459B2 (en) Copper alloy ingot, method for producing the same, and copper alloy sheet obtained therefrom
WO2007094300A1 (en) Aluminum bronze alloy as raw material for semi-molten alloy casting
JP7401080B1 (en) Manufacturing method of Al alloy for casting
JP5742621B2 (en) Copper alloys and castings
CN109072359B (en) Aging heat treatment type high-strength magnesium alloy and preparation method thereof
KR20110108768A (en) Magnesium alloy for high temperature and manufacturing method thereof
JP2009007676A (en) Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
CN115261687A (en) High-alloying Al-Zn-Mg-Cu alloy and method for eliminating high-temperature-resistant residual phase
NO20220521A1 (en) AlSiMgX MASTER ALLOY AND USE OF THE MASTER ALLOY IN THE PRODUCTION OF AN ALUMINIUM FOUNDRY ALLOY
CN117107123A (en) High-strength high-plastic metal mold casting aluminum alloy and preparation method thereof
CN118685667A (en) Aluminum-iron-copper series high-heat-conductivity aluminum alloy material, preparation method thereof and die casting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780004644.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12278688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714024

Country of ref document: EP

Kind code of ref document: A1