JP2007211310A - Raw material brass alloy for casting half-melted alloy - Google Patents

Raw material brass alloy for casting half-melted alloy Download PDF

Info

Publication number
JP2007211310A
JP2007211310A JP2006034126A JP2006034126A JP2007211310A JP 2007211310 A JP2007211310 A JP 2007211310A JP 2006034126 A JP2006034126 A JP 2006034126A JP 2006034126 A JP2006034126 A JP 2006034126A JP 2007211310 A JP2007211310 A JP 2007211310A
Authority
JP
Japan
Prior art keywords
brass alloy
mass
alloy
brass
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006034126A
Other languages
Japanese (ja)
Other versions
JP5116976B2 (en
Inventor
Keiichiro Oishi
恵一郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBO COPPER ALLOY CO Ltd
Mitsubishi Materials Corp
Original Assignee
SANBO COPPER ALLOY CO Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANBO COPPER ALLOY CO Ltd, Mitsubishi Materials Corp filed Critical SANBO COPPER ALLOY CO Ltd
Priority to JP2006034126A priority Critical patent/JP5116976B2/en
Priority to CNA2007800046446A priority patent/CN101379205A/en
Priority to US12/278,688 priority patent/US20090016927A1/en
Priority to PCT/JP2007/052412 priority patent/WO2007091690A1/en
Publication of JP2007211310A publication Critical patent/JP2007211310A/en
Priority to US12/537,381 priority patent/US20090294087A1/en
Application granted granted Critical
Publication of JP5116976B2 publication Critical patent/JP5116976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material brass alloy for producing a brass alloy casting composed of fine crystal grains by a half-melted alloy casting process without stirring molten metal. <P>SOLUTION: The raw material brass alloy has a componential composition comprising, by mass, 8 to 40% Zn, 0.0005 to 0.04% Zr and 0.01 to 0.25% P, if required, further comprising one or more selected from, by mass 2 to 5% Si, 0.05 to 6% Sn and 0.05 to 3.5% Al, and, if required, further comprising one or more selected from, by mass, 0.005 to 0.45% Pb, 0.005 to 0.45% Bi, 0.03 to 0.45% Se and 0.01 to 0.45% Te, and the balance Cu with inevitable impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、溶湯を撹拌処理することなく半融合金鋳造することにより結晶粒が微細な黄銅合金鋳物を製造することができる半融合金鋳造用原料黄銅合金に関するものである。   The present invention relates to a raw brass alloy for semi-fused gold casting, which can produce a brass alloy casting with fine crystal grains by casting the molten metal without stirring treatment.

工業上使用されている黄銅はZn:8〜50質量%を含有し、その用途によって区別されている。代表的なものとしてZn:8〜20質量%を含有し、残部がCuおよび不可避不純物からなる黄銅合金、Zn:25〜35質量%を含有し、残部がCuおよび不可避不純物からなる黄銅合金、Zn:35〜45質量%を含有し、残部がCuおよび不可避不純物からなる黄銅合金などに分類されている。Zn:8〜20質量%を含有する黄銅合金は黄金色に最も近い色調を呈するところから装飾品の製造に使用されている。さらに、Zn:25〜35質量%を含有する黄銅合金は代表的なものとして、銅:70質量%,亜鉛:30質量%からなり、均一なα固溶体組織を有する7−3黄銅として知られており、さらにZn:35〜45質量%を含有する黄銅合金は代表的なものは銅:60質量%,亜鉛:40質量%からなり、α+β固溶体組織を有する6−4黄銅として知られており、これらの黄銅合金は各種機械部品の製造に広く使用されている。さらに、Siを添加して湯流れ性を改善した特殊黄銅合金、快削性を向上させるためにPb、Bi、Se、Teを単独又は複数添加した特殊黄銅合金、さらに、強度、耐蝕性、耐摩耗性を向上させるためにAl,Fe,Mn,Niなどを単独又は複数添加した特殊黄銅合金なども知られている。   The brass used industrially contains Zn: 8-50 mass%, and is distinguished by the use. As a typical example, a brass alloy containing Zn: 8 to 20% by mass with the balance being Cu and unavoidable impurities, Zn: brass alloy containing 25 to 35% by mass and the balance being Cu and unavoidable impurities, Zn : It contains 35-45 mass%, and the remainder is classified into the brass alloy etc. which consist of Cu and an unavoidable impurity. A brass alloy containing Zn: 8 to 20% by mass is used for manufacturing a decorative article because it exhibits a color tone closest to a golden color. Further, a brass alloy containing Zn: 25 to 35% by mass is representatively known as 7-3 brass having 70% by mass of copper and 30% by mass of zinc and having a uniform α solid solution structure. Further, a brass alloy containing Zn: 35 to 45% by mass is typically composed of copper: 60% by mass and zinc: 40% by mass, and is known as 6-4 brass having an α + β solid solution structure. These brass alloys are widely used for manufacturing various machine parts. Furthermore, a special brass alloy with improved flowability by adding Si, a special brass alloy with one or more Pb, Bi, Se, Te added to improve free-cutting properties, and further, strength, corrosion resistance, A special brass alloy to which Al, Fe, Mn, Ni or the like is added alone or in order to improve the wear is also known.

かかる黄銅合金の溶湯を通常の方法で溶解し鋳造しても、デンドライト組織が生成して微細な結晶粒を有する黄銅合金鋳物は得られない。そこで、結晶粒が微細な黄銅合金鋳物を得るためのいろいろな鋳造法が提案されており、その一例として半融合金鋳造法が提案されている。この方法は、合金の液相線温度未満でかつ固相線温度を越える温度範囲内に保持して固体金属と液体金属とが混合したスラリー状態に保持された合金(このスラリー状態の合金を「半融合金」と呼んでいる)を、機械的撹拌や電磁撹拌などにより撹拌しながら冷却し凝固させ、所定の固相率となったところで撹拌を停止したのち鋳造する方法である。この方法によると撹拌により固液混合スラリー中に生成したデンドライトは分断され、固液混合スラリー中の初晶固体は球状となり、そのために高い固相率まで流動性を保持することが出来るとされている。また、この方法によると、結晶粒が微細な黄銅合金鋳物を得ることができるとされている(非特許文献1参照)。
「金属便覧 改訂5版」日本金属学会編、丸善(平成4年4月20日発行)、P1041〜1042
Even if such a molten brass alloy is melted and cast by a normal method, a brass alloy casting having fine crystal grains due to the formation of a dendrite structure cannot be obtained. Therefore, various casting methods for obtaining brass alloy castings with fine crystal grains have been proposed, and a semi-fusion gold casting method has been proposed as an example. In this method, an alloy held in a slurry state in which a solid metal and a liquid metal are mixed and held in a temperature range below the liquidus temperature of the alloy and above the solidus temperature (the alloy in the slurry state is referred to as “ Is called “semi-fused gold”), which is cooled and solidified while stirring by mechanical stirring, electromagnetic stirring, or the like. According to this method, the dendrite formed in the solid-liquid mixed slurry is divided by stirring, and the primary crystal solid in the solid-liquid mixed slurry becomes spherical, and therefore it is said that the fluidity can be maintained up to a high solid phase ratio. Yes. Moreover, according to this method, it is supposed that the brass alloy casting with a fine crystal grain can be obtained (refer nonpatent literature 1).
"Metal Handbook 5th revised edition" edited by the Japan Institute of Metals, Maruzen (issued April 20, 1992), P1041-1042

しかし、溶湯を攪拌する半融合金鋳造法を実施するには、溶湯温度を制御しながら攪拌する必要があることから装置が大型化し、条件によって溶湯中に余分なガスを巻き込む恐れがあった。さらに金型の損耗を考慮した場合には、溶湯温度を下げる必要があるが、上記従来の黄銅合金は半融状態で攪拌してもデンドライト組織の生成を完全に避けることができず、そのために溶湯の流動性が著しく悪くなり、最終的には鋳造不良につながる恐れもあった。   However, in order to carry out the semi-fused gold casting method in which the molten metal is stirred, it is necessary to perform the stirring while controlling the molten metal temperature, so that the size of the apparatus is increased, and there is a possibility that extra gas is involved in the molten metal depending on the conditions. Furthermore, when considering the wear of the mold, it is necessary to lower the molten metal temperature. However, the conventional brass alloy cannot completely prevent the formation of a dendrite structure even if stirred in a semi-molten state. The fluidity of the molten metal was remarkably deteriorated and could eventually lead to casting failure.

本発明者等は、液相中のデンドライトを分断して粒状化するための攪拌手段を施すことなく、半融黄銅合金の流動性を向上させ、低温での半融黄銅合金を鋳造しても鋳造不良がなく結晶粒が微細な黄銅合金鋳物を製造すべく研究を行った。その結果、
(イ)Zn:8〜40質量%を含む黄銅合金に、さらに、質量%で、Zr:0.0005〜0.04wt%, P:0.01〜0.25wt%を含有せしめた黄銅合金を原料合金として、これを完全溶解したのち冷却して得られた半融黄銅合金または再溶解して得られた半融黄銅合金はいずれも流動性に優れ、この半融黄銅合金を鋳造すると、結晶粒が微細な黄銅合金鋳物を製造することができ、したがって、従来のように半融合金状態で撹拌処理を施す必要がない、
(ロ)質量%で、Zr:0.0005〜0.04wt%, P:0.01〜0.25wt%を含有する前記(イ)記載の黄銅合金に、さらにSi:2〜5%、Sn:0.05〜6質量%およびAl:0.05〜3.5質量%の内の1種または2種以上を含有せしめた黄銅合金を原料合金とし、これを完全溶解したのち冷却して得られた半融黄銅合金または再溶解して得られた半融黄銅合金はいずれも流動性に優れ、この半融黄銅合金を鋳造すると、結晶粒が微細な黄銅合金鋳物を製造することができ、したがって、従来のように半融合金状態で撹拌処理を施す必要がない、
(ハ)前記(イ)または(ロ)記載の黄銅合金に、さらにPb:0.005〜0.45%、Bi:0.005〜0.45%、Se:0.03〜0.45%、Te:0.01〜0.45%の内の1種または2種以上含有する成分組成を有する黄銅合金についても同様の効果を奏する、
(ニ)前記(イ)〜(ハ)記載の黄銅合金が半融合金状態で流動性が良い理由は、前記(イ)〜(ハ)記載の黄銅合金が完全溶解したのち冷却して凝固する過程においてデンドライトではなく粒状の微細なα初晶が晶出することによるものであり、また、前記(イ)〜(ハ)記載の黄銅合金を再溶解して得られた半融黄銅合金は液相中に粒状の微細なα固相が共存していることによるものである、などの研究結果がえられたのである。
The present inventors improve the fluidity of the half-melted brass alloy without casting means for dividing and granulating the dendrites in the liquid phase, and casting the half-melted brass alloy at a low temperature. Research was conducted to produce brass alloy castings with no casting defects and fine crystal grains. as a result,
(B) A brass alloy containing Zn: 8 to 40% by mass and further containing Zr: 0.0005 to 0.04 wt%, P: 0.01 to 0.25 wt% in mass%. As a raw material alloy, a half-melted brass alloy obtained by completely melting and cooling this or a half-melted brass alloy obtained by re-dissolution is excellent in fluidity. It is possible to produce a brass alloy casting with fine grains, and therefore it is not necessary to perform a stirring process in a semi-fused gold state as in the prior art.
(B) In addition to the brass alloy according to the above (a) containing Zr: 0.0005 to 0.04 wt%, P: 0.01 to 0.25 wt% in mass%, Si: 2 to 5%, Sn : A brass alloy containing one or more of 0.05 to 6 mass% and Al: 0.05 to 3.5 mass% is used as a raw material alloy, which is completely melted and then cooled. The obtained half-melted brass alloy or the half-melted brass alloy obtained by remelting is excellent in fluidity, and when this half-melted brass alloy is cast, a brass alloy casting with fine crystal grains can be produced. Therefore, it is not necessary to perform a stirring process in a semi-fused gold state as in the past,
(C) In addition to the brass alloy described in (i) or (b), Pb: 0.005 to 0.45%, Bi: 0.005 to 0.45%, Se: 0.03 to 0.45% , Te: The same effect is also obtained for a brass alloy having a component composition containing one or more of 0.01 to 0.45%.
(D) The reason why the brass alloys described in (i) to (c) are in a semi-fused gold state and has good fluidity is that the brass alloys described in (i) to (c) are completely dissolved and then cooled and solidified. In the process, not a dendrite but a fine granular α primary crystal is crystallized, and the half-melted brass alloy obtained by re-dissolving the brass alloy described in (a) to (c) is a liquid. Research results such as that due to the coexistence of fine particulate α solid phase in the phase were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)質量%で、Zn:8〜40%、Zr:0.0005〜0.04%、P:0.01〜0.25%を含有し、残りがCuおよび不可避不純物からなる成分組成をする半融合金鋳造用原料黄銅合金、
(2)質量%で、Zn:8〜40%、Zr:0.0005〜0.04%、P:0.01〜0.25%を含有し、さらに、Si:2〜5%、Sn:0.05〜6質量%およびAl:0.05〜3.5質量%の内の1種または2種以上を含有し、残りがCuおよび不可避不純物からなる成分組成を有する半融合金鋳造用原料黄銅合金、
(3)さらに、Pb:0.005〜0.45%、Bi:0.005〜0.45%、Se:0.03〜0.45%、Te:0.01〜0.45%の内の1種または2種以上含有する成分組成を有する前記(1)または(2)記載の半融合金鋳造用原料黄銅合金、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) A component composition containing, by mass%, Zn: 8 to 40%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, and the remainder consisting of Cu and inevitable impurities. Raw material brass alloy for semi-fusion gold casting
(2) By mass%, Zn: 8 to 40%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, Si: 2 to 5%, Sn: Raw material for casting semi-fused gold containing one or more of 0.05 to 6% by mass and Al: 0.05 to 3.5% by mass, with the remainder consisting of Cu and inevitable impurities Brass alloy,
(3) Further, Pb: 0.005 to 0.45%, Bi: 0.005 to 0.45%, Se: 0.03 to 0.45%, Te: 0.01 to 0.45% The raw material brass alloy for semi-fused gold casting according to the above (1) or (2) having a component composition containing one or more of the above.

この発明の半融合金鋳造用原料黄銅合金は、予め成分調整したインゴットを作製して貯蔵しておき、必要量を取り出して再溶解することにより半融黄銅合金を作製し、得られた半融黄銅合金を鋳造することにより結晶粒が微細な黄銅合金鋳物を製造することができる。   The raw brass alloy for semi-fused gold casting according to the present invention is prepared and stored in an ingot whose components have been adjusted in advance, a semi-molten brass alloy is produced by taking out a required amount and re-dissolving it. By casting a brass alloy, a brass alloy casting with fine crystal grains can be produced.

この発明の半融合金鋳造用原料黄銅合金の成分組成を前述の如く限定した理由を説明する。
Zn:
ZnはCuに添加することにより融点を低下させるとともに合金溶湯の流動性を向上させ、さらに鋳物の耐食性を向上させるとともに機械的強度を向上させる作用を有するが、その含有量が8質量%未満では溶湯の流動性が低下するので好ましくなく、一方、40%を越えて含有すると硬く脆くなって機械的強度が低下するようになるので好ましくない。したがって、この発明の半融合金鋳造用原料黄銅合金に含まれるZnは8〜40質量%に定めた。
Zr:
ZrはPと共存することにより半融合金状態において微細な粒状α初相の晶出を促進させ、また再溶解することにより半融黄銅合金の液相中にα固相を共存せしめ、それによって半融黄銅合金の流動性を改善させるとともに鋳造して得られた黄銅合金鋳物の結晶粒を微細化させる作用を有するが、その含有量が0.0005質量%未満では鋳造した黄銅合金鋳物の結晶粒の微細化に十分な効果を発揮することがないので好ましくなく、一方、0.04質量%を超えて含有すると、かえって黄銅合金鋳物の結晶粒が大きくなるので好ましくない。したがって、この発明の半融合金鋳造用原料黄銅合金に含まれるZrは0.0005〜0.04質量%に定めた。
P:
PはZrと共存することにより半融合金状態において微細な粒状α初相の晶出を促進させ、また再溶解することにより得られた半融黄銅合金の液相中にα固相を共存せしめ、それによって半融黄銅合金の流動性を改善させるとともに鋳造した黄銅合金鋳物の結晶粒を微細化させる作用を有するが、その含有量が0.01質量%未満では鋳造した黄銅合金鋳物の結晶粒の微細化に十分な効果を発揮することがないので好ましくなく、一方、0.25質量%を超えて含有すると、かえって鋳物の結晶粒が大きくなるので好ましくない。したがって、この発明の半融合金鋳造用原料黄銅合金に含まれるPは0.01〜0.25質量%に定めた。
Si、Sn、Al:
Si、Sn、Alは、それらの1種又は2種以上をZr、P、CuおよびZnと共添させると、機械的強度、耐食性、被削性、耐摩耗性を向上させ、包晶反応に与える組成範囲を広げ、顕著な結晶粒微細化効果を発揮し、さらに半融黄銅合金の流動性を一層改善させるために必要に応じて添加する。

この場合、Siの含有量は2質量%未満では所望の効果が得られず、一方、5質量%を超えて含有すると、熱伝導性が低下するとともに、かえって半融黄銅の流動性が低下するようになるので好ましくない。
また、Snは前記耐食性の内でも特に耐海水性を向上させる効果を有するが、その含有量は0.05質量%未満では所望の効果が得られず、一方、6質量%を超えて含有すると、脆くなり、熱伝導性が低下するとともに、かえって半融黄銅の流動性が低下するようになるので好ましくない。
また、Alは前記効果のほかに溶湯の流動性を向上させ、Zrのロスを減少させ、さらに前記耐食性の内でも特に耐エロージョンコロージョン性を改善する作用を有するが、その含有量は0.05質量%未満では所望の効果が得られず、一方、3.5質量%を超えて含有すると、熱伝導性が低下するとともに、かえって半融黄銅の流動性が低下するようになるので好ましくない。
したがって、この発明の半融合金鋳造用原料黄銅合金に含まれるSiは2〜5質量%、Snは0.05〜6質量%、Alは0.05〜3.5質量%にそれぞれ定めた。これらSi、Sn、Alの成分の内でもSiが最も有効であり、Siを必ず含むことが最も好ましい。
その他の成分:
この発明の半融合金鋳造用原料黄銅合金にはさらにPb、Bi、Se、Teなどが必要に応じて含まれるが、これらの成分が黄銅合金に含まれる場合にはPb:0.005〜0.45%、Bi:0.005〜0.45%、Se:0.03〜0.45%、Te:0.01〜0.45%の範囲で含まれることが好ましい。
The reason why the component composition of the raw brass alloy for semi-fused gold casting according to the present invention is limited as described above will be described.
Zn:
Zn is added to Cu to lower the melting point and improve the fluidity of the molten alloy, further improve the corrosion resistance of the casting and improve the mechanical strength, but if its content is less than 8% by mass Since the fluidity of the molten metal is lowered, it is not preferable. On the other hand, if it exceeds 40%, it is not preferable because it becomes hard and brittle and the mechanical strength decreases. Therefore, Zn contained in the raw brass alloy for semi-fused gold casting of the present invention is set to 8 to 40% by mass.
Zr:
Zr coexists with P to promote the crystallization of fine granular α initial phase in the semi-fused gold state, and by re-dissolving it makes the α solid phase coexist in the liquid phase of the half-melted brass alloy, thereby It has the effect of improving the fluidity of the half-melted brass alloy and refining the crystal grains of the brass alloy casting obtained by casting, but if the content is less than 0.0005% by mass, the cast brass alloy casting crystal It is not preferable because it does not exhibit a sufficient effect for grain refinement. On the other hand, if it exceeds 0.04% by mass, the crystal grains of the brass alloy casting are increased, which is not preferable. Therefore, Zr contained in the raw brass alloy for semi-fused gold casting of this invention is set to 0.0005 to 0.04 mass%.
P:
By coexisting with Zr, P promotes the crystallization of fine granular α initial phase in the semi-fused gold state, and allows the α solid phase to coexist in the liquid phase of the semi-melted brass alloy obtained by remelting. , Thereby improving the fluidity of the half-melted brass alloy and reducing the crystal grains of the cast brass alloy casting, but if the content is less than 0.01% by mass, the cast brass alloy casting crystal grains This is not preferable because it does not exert a sufficient effect on the refinement of the steel. On the other hand, if the content exceeds 0.25% by mass, the crystal grains of the casting are increased, which is not preferable. Therefore, P contained in the raw brass alloy for semi-fused gold casting of the present invention is set to 0.01 to 0.25% by mass.
Si, Sn, Al:
Si, Sn, and Al, when one or more of them are co-added with Zr, P, Cu, and Zn, improve mechanical strength, corrosion resistance, machinability, and wear resistance, and improve peritectic reaction. It is added as necessary in order to expand the composition range to be given, to exhibit a remarkable crystal grain refining effect, and to further improve the fluidity of the half-melted brass alloy.

In this case, if the Si content is less than 2% by mass, the desired effect cannot be obtained. On the other hand, if the Si content exceeds 5% by mass, the thermal conductivity decreases and the fluidity of the half-melted brass decreases. This is not preferable.
In addition, Sn has an effect of improving the seawater resistance especially in the above-mentioned corrosion resistance. However, when the content is less than 0.05% by mass, a desired effect cannot be obtained, and on the other hand, when the content exceeds 6% by mass. This is not preferable because it becomes brittle, the thermal conductivity is lowered, and the fluidity of the half-melted brass is lowered.
In addition to the above-mentioned effects, Al improves the fluidity of the molten metal, reduces the loss of Zr, and further has an effect of improving the erosion corrosion resistance among the corrosion resistance, but its content is 0.05. If the content is less than 5% by mass, the desired effect cannot be obtained. On the other hand, if the content exceeds 3.5% by mass, the thermal conductivity is lowered and the fluidity of the half-melted brass is lowered, which is not preferable.
Therefore, Si contained in the raw brass alloy for semi-fused gold casting of the present invention was determined to be 2 to 5 mass%, Sn was 0.05 to 6 mass%, and Al was 0.05 to 3.5 mass%. Of these Si, Sn, and Al components, Si is the most effective, and it is most preferable that Si is necessarily contained.
Other ingredients:
Pb, Bi, Se, Te, and the like are further included in the raw brass alloy for semi-fused gold casting according to the present invention as required, but when these components are included in the brass alloy, Pb: 0.005 to 0 .45%, Bi: 0.005 to 0.45%, Se: 0.03 to 0.45%, Te: 0.01 to 0.45% are preferably included.

この発明の半融合金鋳造用原料黄銅合金を溶解して固液混合スラリー状態の半融黄銅合金を作製し、この半融黄銅合金を通常の方法で鋳造すると、半融黄銅合金の液相中に微細な粒状α初相が晶出しあるいはα固相が共存しているため、攪拌処理装置を用いて撹拌を行わなくても半融黄銅合金の流動性が損なわれることなく鋳造することができ、さらに得られた半融黄銅合金を鋳造して得られた黄銅合金鋳物は結晶粒が一層微細化されて機械的強度が一段と向上するという優れた効果を奏するものである。   When the raw brass alloy for semi-fused gold casting according to the present invention is dissolved to produce a solid-fluid mixed slurry half-melted brass alloy, and this half-fused brass alloy is cast by a normal method, the liquid phase of the half-fused brass alloy In addition, since the fine granular α initial phase is crystallized or the α solid phase coexists, casting can be performed without impairing the fluidity of the half-melted brass alloy without stirring using a stirrer. Further, the brass alloy casting obtained by casting the obtained half-melted brass alloy has an excellent effect that the crystal grains are further refined and the mechanical strength is further improved.

実施例1
原料として通常の電気銅を用意し、この電気銅を電気炉に装入し、Arガス雰囲気中にて溶解し、溶銅温度が1200℃になった時点でZnおよびPを添加し、さらに必要に応じてSi、Sn、Al、Pb、Bi、Se、Teなどを添加し、最後にZrを添加することにより成分調整した黄銅合金溶湯を作製し、得られた黄銅合金溶湯を鋳造し凝固させて表1〜8に示される成分組成を有する本発明半融合金鋳造用原料黄銅合金(以下、本発明原料黄銅合金という)1〜105および比較半融合金鋳造用原料黄銅合金(以下、比較原料黄銅合金という)1〜8からなるインゴットを作製した。

さらに、市販の銅:70質量%、亜鉛:30質量%からなる7−3黄銅および銅:60質量%、亜鉛:40質量%からなる6−4黄銅をArガス雰囲気中にて溶解し、温度:1200℃の黄銅合金溶湯を作製し、得られた黄銅合金溶湯を鋳造し凝固させて表7に示される成分組成を有する従来半融合金鋳造用原料黄銅合金(以下、従来原料黄銅合金という)1〜2からなるインゴットを作製した。
Example 1
Prepare normal electrolytic copper as a raw material, insert this electrolytic copper into an electric furnace, melt it in an Ar gas atmosphere, add Zn and P when the molten copper temperature reaches 1200 ° C, and more According to the above, Si, Sn, Al, Pb, Bi, Se, Te, etc. are added, and finally the brass alloy molten metal whose components are adjusted by adding Zr is produced, and the resulting brass alloy molten metal is cast and solidified. Raw material brass alloys for casting semi-fused gold according to the present invention (hereinafter referred to as raw material brass alloy according to the present invention) 1 to 105 and raw brass alloys for casting comparative semi-fused gold (hereinafter referred to as comparative raw materials). An ingot consisting of 1 to 8) (referred to as a brass alloy) was produced.

Further, commercially available copper: 70% by mass, zinc: 30-3% brass 7-3 brass and copper: 60% by mass, zinc: 40% by mass 6-4 brass dissolved in Ar gas atmosphere, temperature A brass alloy molten metal of 1200 ° C. is prepared, and the obtained brass alloy molten metal is cast and solidified, and then a raw brass alloy for conventional semi-fused gold casting having the composition shown in Table 7 (hereinafter referred to as a conventional raw brass alloy) An ingot consisting of 1-2 was prepared.

実施例1で得られた本発明原料黄銅合金1〜105、比較原料黄銅合金1〜8および従来原料黄銅合金1〜2からなるインゴットの一部をそれぞれ切り取り、切り取ったインゴットを固相線温度を越えかつ液相線温度未満の範囲内の所定の温度に加熱することにより再溶解して半融黄銅合金溶湯を作製し、この半融黄銅合金溶湯を超急冷することにより急冷試験片を作製した。この急冷試験片の組織を光学顕微鏡で観察することにより半融黄銅合金溶湯において液相と共存するα固相の形状を推定し、さらにその平均粒径を求め、その結果を表1〜8に示した。   A portion of the ingot made of the present invention brass alloy 1-105, the comparative raw brass alloy 1-8 and the conventional raw brass alloy 1-2 obtained in Example 1 was cut off, and the cut ingot was subjected to the solidus temperature. The melt was remelted by heating to a predetermined temperature in the range exceeding the liquidus temperature and less than the liquidus temperature to produce a melted brass alloy melt, and a quenched specimen was fabricated by ultra-quenching the melted brass alloy melt. . By observing the structure of the quenched specimen with an optical microscope, the shape of the α solid phase coexisting with the liquid phase in the molten metal alloy is estimated, and the average particle size is obtained. The results are shown in Tables 1-8. Indicated.

なお、α固相の平均粒径の測定は急冷試験片の切断面を硝酸でエッチングしたのち光学顕微鏡で観察し測定した。   The average particle size of the α solid phase was measured by observing with an optical microscope after etching the cut surface of the quenched specimen with nitric acid.

Figure 2007211310
Figure 2007211310

Figure 2007211310
Figure 2007211310

Figure 2007211310
Figure 2007211310

Figure 2007211310
Figure 2007211310

Figure 2007211310
Figure 2007211310

Figure 2007211310
Figure 2007211310

Figure 2007211310
Figure 2007211310

Figure 2007211310
表1〜8に示される結果から、本発明原料黄銅合金1〜105は急冷試験片のα固相がいずれも微細な粒状を呈しているところから半融状態において粒状の微細なα固相が液相と共存していると推定され、一方、従来原料黄銅合金1〜2の急冷試験片のα固相がいずれも樹枝状を呈しているところから従来原料黄銅合金1〜2は半融状態においてデンドライトが生成していることが推定され、したがって本発明原料黄銅合金1〜105で作製した半融黄銅合金は従来原料黄銅合金1〜2で作製した半融黄銅合金に比べて流動性が優れていること、本発明原料黄銅合金1〜105を溶解して得られた半融黄銅合金は液相中に微細な粒状のα固相が生成しているので半融黄銅合金を撹拌することなく鋳造しても微細な結晶粒を有する鋳物が得られること、この発明の条件から外れてZn、ZrおよびPを含む比較原料黄銅合金1〜6は半融状態ではデンドライトが発生したり、結晶粒の微細化が不足したり脆くなったりするので好ましくないこと、さらにZr:0.0005〜0.04%、P:0.01〜0.25%が共存して含有していない比較黄銅合金7〜8は、デンドライトが発生することなどがわかる。

実施例2
実施例1で作製した前記本発明原料黄銅合金1〜105、比較原料黄銅合金1〜8および従来原料黄銅合金1〜2からなるインゴットの一部をそれぞれ切り取り、切り取ったインゴットを完全溶解して全てが液相の黄銅合金溶湯を作製し、その後冷却して固相線温度を越えかつ液相線温度未満の範囲内の所定の温度に保持された半融黄銅合金溶湯を作製し、この半融黄銅合金溶湯を超急冷することにより急冷試験片を作製した。この急冷試験片の組織を光学顕微鏡で観察することにより半融黄銅合金溶湯に晶出ているα初晶形状を推定し、さらにその平均粒径を求めた結果、実施例1とほぼ同じ結果が得られた。
Figure 2007211310
From the results shown in Tables 1 to 8, the raw material brass alloys 1 to 105 of the present invention have a granular fine α solid phase in the semi-molten state from the fact that the α solid phase of the quenched specimens all exhibit fine granularity. Presumably coexisting with the liquid phase, while the conventional solid brass alloys 1 and 2 are in a semi-molten state because the α solid phase of the quenched specimens of the conventional raw brass alloys 1 and 2 are both dendritic. Thus, it is presumed that dendrites are formed, and thus the half-melted brass alloy produced with the raw material brass alloys 1 to 105 of the present invention has excellent fluidity compared to the half-melted brass alloy produced with the conventional raw material brass alloys 1 and 2 In the semi-fused brass alloy obtained by dissolving the raw material brass alloys 1 to 105 of the present invention, a fine granular α solid phase is generated in the liquid phase, so the semi-fused brass alloy is not stirred. Casting with fine crystal grains can be obtained even after casting. In contrast, the comparative raw material brass alloys 1 to 6 containing Zn, Zr and P are not preferable because they do not generate dendrites in the semi-molten state, and the crystal grains are insufficiently refined or become brittle. In addition, it can be seen that dendrites are generated in the comparative brass alloys 7 to 8 which do not contain Zr: 0.0005 to 0.04% and P: 0.01 to 0.25%.

Example 2
A part of the ingot made of the present invention raw material brass alloys 1 to 105, comparative raw material brass alloys 1 to 8 and conventional raw material brass alloys 1 and 2 produced in Example 1 was cut out, and the cut out ingots were completely dissolved to completely remove them. Produced a liquid phase brass alloy melt, then cooled to produce a half-melted brass alloy melt that was maintained at a predetermined temperature within the range above the solidus temperature and below the liquidus temperature. A quench specimen was prepared by ultra-quenching the brass alloy melt. By observing the structure of the quenched specimen with an optical microscope, the α primary crystal shape crystallized in the melt of the half-melted brass alloy was estimated, and the average particle size was obtained. As a result, almost the same result as in Example 1 was obtained. Obtained.

Claims (3)

質量%で、Zn:8〜40%、Zr:0.0005〜0.04%、P:0.01〜0.25%を含有し、残りがCuおよび不可避不純物からなる成分組成を有することを特徴とする半融合金鋳造用原料黄銅合金。 In mass%, Zn: 8 to 40%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, the remainder having a component composition consisting of Cu and inevitable impurities Raw material brass alloy for semi-fused gold casting. 質量%で、Zn:8〜40%、Zr:0.0005〜0.04%、P:0.01〜0.25%を含有し、さらに、Si:2〜5%、Sn:0.05〜6質量%およびAl:0.05〜3.5質量%の内の1種又は2種以上を含有し、残りがCuおよび不可避不純物からなる成分組成を有することを特徴とする半融合金鋳造用原料黄銅合金。 In mass%, Zn: 8 to 40%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, Si: 2 to 5%, Sn: 0.05 Semi-fused gold casting characterized in that it contains one or more of ˜6 mass% and Al: 0.05-3.5 mass%, and the remainder has a component composition consisting of Cu and inevitable impurities Raw material brass alloy. さらに、Pb:0.005〜0.45%、Bi:0.005〜0.45%、Se:0.03〜0.45%、Te:0.01〜0.45%の内の1種または2種以上含有する成分組成を有することを特徴とする請求項1または2記載の半融合金鋳造用原料黄銅合金。
Further, Pb: 0.005 to 0.45%, Bi: 0.005 to 0.45%, Se: 0.03 to 0.45%, Te: 0.01 to 0.45% 3. The raw brass alloy for semi-fused gold casting according to claim 1, wherein the raw material brass alloy has a component composition containing two or more kinds.
JP2006034126A 2006-02-10 2006-02-10 Raw brass alloy for semi-fusion gold casting Expired - Fee Related JP5116976B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006034126A JP5116976B2 (en) 2006-02-10 2006-02-10 Raw brass alloy for semi-fusion gold casting
CNA2007800046446A CN101379205A (en) 2006-02-10 2007-02-09 Raw material brass alloy for casting of semi-molten alloy
US12/278,688 US20090016927A1 (en) 2006-02-10 2007-02-09 Brass alloy as raw materials for semi solid metal casting
PCT/JP2007/052412 WO2007091690A1 (en) 2006-02-10 2007-02-09 Raw material brass alloy for casting of semi-molten alloy
US12/537,381 US20090294087A1 (en) 2006-02-10 2009-08-07 Brass alloy as raw materials for semi solid metal casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034126A JP5116976B2 (en) 2006-02-10 2006-02-10 Raw brass alloy for semi-fusion gold casting

Publications (2)

Publication Number Publication Date
JP2007211310A true JP2007211310A (en) 2007-08-23
JP5116976B2 JP5116976B2 (en) 2013-01-09

Family

ID=38345282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034126A Expired - Fee Related JP5116976B2 (en) 2006-02-10 2006-02-10 Raw brass alloy for semi-fusion gold casting

Country Status (4)

Country Link
US (2) US20090016927A1 (en)
JP (1) JP5116976B2 (en)
CN (1) CN101379205A (en)
WO (1) WO2007091690A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519781A (en) * 2009-03-09 2012-08-30 ナショナル ブロンズ アンド メタルズ インコーポレイテッド Lead-free brass alloy
WO2013145964A1 (en) * 2012-03-30 2013-10-03 株式会社栗本鐵工所 Brass alloy for tap water supply member
JP2015077613A (en) * 2013-10-17 2015-04-23 有限会社ティミス Casting metal lumpy body
JP2016008354A (en) * 2014-06-23 2016-01-18 ジァンシ アウディ ブラスワーク インコーポレイテッド Low-lead brass alloy
JPWO2016157413A1 (en) * 2015-03-31 2018-02-15 株式会社栗本鐵工所 Copper alloy for water supply components

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100303667A1 (en) * 2009-03-09 2010-12-02 Lazarus Norman M Novel lead-free brass alloy
CN101876012B (en) * 2009-12-09 2015-01-21 路达(厦门)工业有限公司 Brass alloy with excellent stress corrosion resistance and manufacture method thereof
CN101787461B (en) * 2010-03-02 2014-11-19 路达(厦门)工业有限公司 Environment-friendly manganese brass alloy and manufacturing method thereof
KR101476592B1 (en) * 2011-09-20 2014-12-24 미쓰비시 신도 가부시키가이샤 Copper alloy sheet and method for producing copper alloy sheet
RU2486270C1 (en) * 2012-05-22 2013-06-27 Юлия Алексеевна Щепочкина Copper-based alloy
CN103667776A (en) * 2012-08-31 2014-03-26 摩登岛股份有限公司 Low-shrink corrosion-resistant brass alloy
US8991787B2 (en) 2012-10-02 2015-03-31 Nibco Inc. Lead-free high temperature/pressure piping components and methods of use
US20170121791A1 (en) 2014-03-31 2017-05-04 Kurimoto, Ltd. Low-lead brass alloy for use in member for water works
CN104726739A (en) * 2015-04-03 2015-06-24 井冈山市玉捷消防科技有限公司 Method for producing fire-fighting sprinkler head frame through semi-solid forming of brasses
DE202019101597U1 (en) * 2019-03-20 2019-04-23 Otto Fuchs - Kommanditgesellschaft - Cu-Zn alloy
JP7347321B2 (en) * 2020-05-08 2023-09-20 三菱マテリアル株式会社 Upward continuous casting wire rod of Cu-Zn-Si alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326320A (en) * 1986-07-18 1988-02-03 Nippon Mining Co Ltd High power conductive copper alloy
JPH06184676A (en) * 1992-12-23 1994-07-05 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JPH06192771A (en) * 1992-12-25 1994-07-12 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JP2000087158A (en) * 1998-09-11 2000-03-28 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead frame
JP2002518598A (en) * 1998-06-23 2002-06-25 オリン コーポレイション Tin brass modified by iron
WO2006016630A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Cast copper alloy article and method for casting thereof
WO2007043101A1 (en) * 2005-09-30 2007-04-19 Sanbo Shindo Kogyo Kabushiki Kaisha Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113142B2 (en) * 1987-02-10 1995-12-06 三菱電機株式会社 Manufacturing method of phosphor bronze sheet
JPH07113143B2 (en) * 1987-03-20 1995-12-06 三菱電機株式会社 Method for producing high strength copper alloy
US5330712A (en) * 1993-04-22 1994-07-19 Federalloy, Inc. Copper-bismuth alloys
JP3303878B2 (en) * 1996-09-09 2002-07-22 東陶機器株式会社 Method and equipment for producing brass

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326320A (en) * 1986-07-18 1988-02-03 Nippon Mining Co Ltd High power conductive copper alloy
JPH06184676A (en) * 1992-12-23 1994-07-05 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JPH06192771A (en) * 1992-12-25 1994-07-12 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JP2002518598A (en) * 1998-06-23 2002-06-25 オリン コーポレイション Tin brass modified by iron
JP2000087158A (en) * 1998-09-11 2000-03-28 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead frame
WO2006016630A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Cast copper alloy article and method for casting thereof
WO2006016442A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Copper-base alloy casting with refined crystal grains
JP4095666B2 (en) * 2004-08-10 2008-06-04 三宝伸銅工業株式会社 Copper alloy
WO2007043101A1 (en) * 2005-09-30 2007-04-19 Sanbo Shindo Kogyo Kabushiki Kaisha Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519781A (en) * 2009-03-09 2012-08-30 ナショナル ブロンズ アンド メタルズ インコーポレイテッド Lead-free brass alloy
WO2013145964A1 (en) * 2012-03-30 2013-10-03 株式会社栗本鐵工所 Brass alloy for tap water supply member
JP5522582B2 (en) * 2012-03-30 2014-06-18 株式会社栗本鐵工所 Brass alloy for water supply components
JPWO2013145964A1 (en) * 2012-03-30 2015-12-10 株式会社栗本鐵工所 Brass alloy for water supply components
US9982327B2 (en) 2012-03-30 2018-05-29 Kurimoto, Ltd. Brass alloy for tap water supply member
JP2015077613A (en) * 2013-10-17 2015-04-23 有限会社ティミス Casting metal lumpy body
JP2016008354A (en) * 2014-06-23 2016-01-18 ジァンシ アウディ ブラスワーク インコーポレイテッド Low-lead brass alloy
JPWO2016157413A1 (en) * 2015-03-31 2018-02-15 株式会社栗本鐵工所 Copper alloy for water supply components

Also Published As

Publication number Publication date
JP5116976B2 (en) 2013-01-09
WO2007091690A1 (en) 2007-08-16
CN101379205A (en) 2009-03-04
US20090294087A1 (en) 2009-12-03
US20090016927A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5116976B2 (en) Raw brass alloy for semi-fusion gold casting
KR100921311B1 (en) Casting method of modified copper alloy using the master alloy for use in modifying copper alloy
JP5879244B2 (en) Aluminum alloy
JP5427815B2 (en) Magnesium alloy and manufacturing method thereof
JP5582982B2 (en) Aluminum alloy and method for producing the same
TWI500775B (en) Aluminum alloy and manufacturing method thereof
JP2013155407A (en) Copper alloy and cast product
JP2014517770A (en) Metal alloy refinement method
US6395224B1 (en) Magnesium alloy and method of producing the same
JP6736869B2 (en) Copper alloy material
JP2007211324A (en) Raw material phosphor bronze alloy for casting half-melted alloy
JP5785836B2 (en) Copper alloys and castings
JP2006299305A (en) Heat resistant aluminum alloy wire, and method for producing the same
KR101591629B1 (en) Method for manufacturing Al-Mg alloy under the melting point of magnesium
JP2007211325A (en) Raw material aluminum bronze alloy for casting half-melted alloy
JP2730423B2 (en) Hypereutectic Al-Si alloy excellent in workability and manufacturing method
JP5607459B2 (en) Copper alloy ingot, method for producing the same, and copper alloy sheet obtained therefrom
JP5742621B2 (en) Copper alloys and castings
JP3949557B2 (en) Wear-resistant aluminum alloy for casting and cast aluminum alloy
CN115261687A (en) High-alloying Al-Zn-Mg-Cu alloy and method for eliminating high-temperature-resistant residual phase
JP2624302B2 (en) Mg-Sr alloy for A1-Si casting alloy modification
JPH05311281A (en) Cu-fe alloy for adding to copper alloy and its manufacture
JP2011149070A (en) Copper alloy and method for producing the same
JP2003183747A (en) Production method of and purification additive for magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees