JP2007211324A - Raw material phosphor bronze alloy for casting half-melted alloy - Google Patents

Raw material phosphor bronze alloy for casting half-melted alloy Download PDF

Info

Publication number
JP2007211324A
JP2007211324A JP2006035003A JP2006035003A JP2007211324A JP 2007211324 A JP2007211324 A JP 2007211324A JP 2006035003 A JP2006035003 A JP 2006035003A JP 2006035003 A JP2006035003 A JP 2006035003A JP 2007211324 A JP2007211324 A JP 2007211324A
Authority
JP
Japan
Prior art keywords
phosphor bronze
bronze alloy
semi
alloy
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006035003A
Other languages
Japanese (ja)
Inventor
Keiichiro Oishi
恵一郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBO COPPER ALLOY CO Ltd
Mitsubishi Materials Corp
Original Assignee
SANBO COPPER ALLOY CO Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANBO COPPER ALLOY CO Ltd, Mitsubishi Materials Corp filed Critical SANBO COPPER ALLOY CO Ltd
Priority to JP2006035003A priority Critical patent/JP2007211324A/en
Priority to US12/278,921 priority patent/US20100166595A1/en
Priority to CNA2007800050738A priority patent/CN101384386A/en
Priority to PCT/JP2007/052403 priority patent/WO2007094265A1/en
Publication of JP2007211324A publication Critical patent/JP2007211324A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material phosphor bronze alloy for producing a phosphor bronze alloy casting composed of fine crystal grains by a half-melted alloy casting process without performing stirring. <P>SOLUTION: The raw material phosphor bronze alloy has a componential composition comprising, by mass, 4 to 15% Sn, 0.0005 to 0.04% Zr and 0.01 to 0.25% P, if required, further comprising 0.1 to 7.5% Zn, and, if required, further comprising one or more selected from 0.01 to 4.5% Pb, 0.01 to 3.0% Bi, 0.03 to 1.0% Se and 0.01 to 1.0% Te. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、溶湯を撹拌処理することなく半融合金鋳造することにより結晶粒が微細なりん青銅合金鋳物を製造することができる半融合金鋳造用原料りん青銅合金に関するものである。   The present invention relates to a raw phosphor bronze alloy for casting semi-fused gold, which can produce a phosphor bronze alloy casting with fine crystal grains by casting the molten metal without stirring.

銅と錫を主成分とし、Pを微量に含むCu−Sn系銅合金はりん青銅合金として知られている。展伸用はSn:3.5〜9.0質量%、燐0.03〜0.35%を含有し、残部がCuおよび不可避不純物からなる成分組成を有すること、並びに鋳造用としてSn:9.0〜15.0質量%、燐0.05〜0.5%を含有し、残部がCuおよび不可避不純物からなる成分組成を有することなどがJIS規格で定められている。   A Cu-Sn based copper alloy containing copper and tin as main components and containing a small amount of P is known as a phosphor bronze alloy. For extension, Sn: 3.5 to 9.0% by mass, phosphorus: 0.03 to 0.35%, with the balance being composed of Cu and inevitable impurities, and for casting, Sn: 9 The JIS standard stipulates that the composition contains 0.0 to 15.0 mass%, phosphorus 0.05 to 0.5%, and the balance is composed of Cu and inevitable impurities.

これらりん青銅合金を通常の方法で溶解し鋳造すると、りん青銅合金溶湯中に樹脂状α初晶が晶出するので湯流れ性が悪く、したがって、低温度での鋳造性が悪い。これを改善すべくりん青銅合金溶湯を液相線温度と固相線温度の間の温度域で強く撹拌してスラリー状の半融りん青銅合金を作製し、この半融りん青銅合金を鋳造すると、前記撹拌により固液混合スラリー中に生成したデンドライトは分断され、固液混合スラリー中のα初晶固体は球状となり、そのために高い固相率まで流動性を保持することができ、それによって結晶粒が微細でかつ粒状晶を有する組織のりん青銅合金鋳物を製造する方法が提案されており、この方法は半融合金鋳造法と呼ばれている(特許文献1参照)。
特開平6−234049号公報
When these phosphor bronze alloys are melted and cast by a normal method, the resin-like α primary crystal is crystallized in the molten phosphor bronze alloy, so that the hot metal flowability is poor, and therefore the castability at low temperatures is poor. To improve this, the phosphor bronze alloy melt is vigorously stirred in the temperature range between the liquidus temperature and the solidus temperature to produce a slurry-like semi-molten phosphor bronze alloy. The dendrites produced in the solid-liquid mixed slurry by the stirring are divided, and the α primary crystal solid in the solid-liquid mixed slurry becomes spherical, and therefore, the fluidity can be maintained up to a high solid phase ratio, whereby the crystal A method of manufacturing a phosphor bronze alloy casting having a fine grain structure and granular crystals has been proposed, and this method is called a semi-fusion gold casting method (see Patent Document 1).
JP-A-6-234049

しかし、溶湯を攪拌する半融合金鋳造法を実施するには、溶湯温度を制御しながら攪拌する必要があることから装置が大型化し、条件によって溶湯中に余分なガスを巻き込む恐れがあった。さらに金型の損耗を考慮した場合には、溶湯温度を下げる必要があるが、上記従来のりん青銅合金は半融状態で攪拌してもデンドライト組織の生成を完全に避けることができず、そのために溶湯の流動性が著しく悪くなり、最終的には鋳造不良につながる恐れもあった。   However, in order to carry out the semi-fused gold casting method in which the molten metal is stirred, it is necessary to perform the stirring while controlling the molten metal temperature, so that the size of the apparatus is increased, and there is a possibility that extra gas is involved in the molten metal depending on the conditions. Furthermore, when considering the wear of the mold, it is necessary to lower the molten metal temperature. However, the conventional phosphor bronze alloy cannot completely prevent the formation of a dendrite structure even if it is stirred in a semi-molten state. In addition, the fluidity of the molten metal was remarkably deteriorated, which could eventually lead to casting failure.

本発明者等は、液相中のデンドライトを分断して粒状化するための攪拌手段を施すことなく、半融りん青銅合金の流動性を向上させ、低温での半融りん青銅合金を鋳造しても鋳造不良がなく結晶粒が微細なりん青銅合金鋳物を製造すべく研究を行った。その結果、
(イ)従来のSn:4〜15質量%、P:0.01〜0.25%を含有しているりん青銅合金に、さらにZr:0.0005〜0.04%を添加したりん青銅合金を原料合金として、これをすべてが液相になるまで完全溶解したのち冷却して得られた半融りん青銅合金または再溶解して得られた半融りん青銅合金はいずれも流動性に優れ、この半融りん青銅合金を鋳造すると、結晶粒が微細なりん青銅合金鋳物を製造することができ、したがって、従来のように半融合金状態で撹拌処理を施す必要がない、

(ロ)質量%で、Zr:0.0005−0.04wt%, P:0.01−0.25wt%を含有する前記(イ)記載のりん青銅合金にさらにZn:0.1〜7.5%含有せしめたりん青銅合金を原料合金として、これをすべてが液相になるまで完全溶解したのち冷却して得られた半融りん青銅合金または再溶解して得られた半融りん青銅合金はいずれも流動性に優れ、この半融りん青銅合金を鋳造すると、結晶粒が微細なりん青銅合金鋳物を製造することができ、したがって、従来のように半融合金状態で撹拌処理を施す必要がない、
(ハ)前記(イ)または(ロ)記載のりん青銅合金に、さらにPb:0.01〜4.5%、Bi:0.01〜3.0%、Se:0.03〜1.0%、Te:0.01〜1.0%の内の1種または2種以上含有する成分組成を有するりん青銅合金についても同様の効果を奏する、
(ニ)前記(イ)〜(ハ)記載のりん青銅合金が半融合金状態で流動性が良い理由は、前記(イ)〜(ハ)記載のりん青銅合金がすべてが液相になるまで完全溶解したのち冷却して凝固する過程においてデンドライトではなく粒状の微細なα初晶が晶出することによるものであり、また、前記(イ)〜(ハ)記載のりん青銅合金を再溶解して得られた半融りん青銅合金は液相中に粒状の微細なα固相が共存していることによるものである、などの研究結果が得られたのである。
The present inventors improved the fluidity of the semi-molten phosphor bronze alloy without casting a stirring means for dividing and granulating the dendrites in the liquid phase, and casting the semi-molten phosphor bronze alloy at a low temperature. However, research was carried out to produce a bronze alloy casting with no casting defects and fine crystal grains. as a result,
(B) A phosphor bronze alloy in which Zr: 0.0005 to 0.04% is further added to a conventional phosphor bronze alloy containing Sn: 4 to 15% by mass and P: 0.01 to 0.25% As a raw material alloy, the semi-molten phosphor bronze alloy obtained by completely melting until it becomes a liquid phase and then cooling or the semi-melt phosphor bronze alloy obtained by re-dissolution are both excellent in fluidity, When this semi-molten phosphor bronze alloy is cast, a crystal bronze bronze alloy casting can be produced. Therefore, it is not necessary to perform a stirring process in a semi-fused gold state as in the prior art.

(B) In addition to the phosphor bronze alloy according to the above (a) containing Zr: 0.0005-0.04 wt% and P: 0.01-0.25 wt% in terms of mass%, Zn: 0.1-7. A phosphor bronze alloy containing 5% is used as a raw material alloy, and this is completely melted until it becomes a liquid phase and then cooled or semi-molten phosphor bronze alloy obtained by remelting or semi-molten phosphor bronze alloy obtained by remelting. Both are excellent in fluidity, and casting this semi-molten phosphor bronze alloy makes it possible to produce a bronze alloy cast with fine crystal grains, and therefore it is necessary to apply a stirring process in the semi-fused gold state as before. There is no
(C) In addition to the phosphor bronze alloy described in (i) or (b) above, Pb: 0.01 to 4.5%, Bi: 0.01 to 3.0%, Se: 0.03 to 1.0 %, Te: Phosphor bronze alloy having a component composition containing one or more of 0.01 to 1.0% has the same effect.
(D) The reason why the phosphor bronze alloys described in (i) to (c) are in a semi-fused gold state and has good fluidity is that the phosphor bronze alloys described in (i) to (c) are all in a liquid phase. This is due to the formation of fine α-primary crystals, not dendrites, in the process of solidification after complete dissolution, and remelting the phosphor bronze alloy described in (a) to (c) above. The semi-molten phosphor bronze alloy obtained in this way was due to the coexistence of a granular fine α-solid phase in the liquid phase.

この発明は、かかる研究結果に基づいてなされたものであって、

(1)質量%で、Sn:4〜15%、Zr:0.0005〜0.04%、P:0.01〜0.25%を含有し、残りがCuおよび不可避不純物からなる成分組成を有する半融合金鋳造用原料りん青銅合金、
(2)質量%で、Sn:4〜15%、Zr:0.0005〜0.04%、P:0.01〜0.25%を含有し、さらに、Zn:0.1〜7.5%を含有し、残りがCuおよび不可避不純物からなる成分組成を有する半融合金鋳造用原料りん青銅合金、
(3)さらに、Pb:0.01〜4.5%、Bi:0.01〜3.0%、Se:0.03〜1.0%、Te:0.01〜1.0%の内の1種または2種以上含有する成分組成を有する前記(1)または(2)記載の半融合金鋳造用原料りん青銅合金、に特徴を有するものである。
The present invention has been made based on the results of such research,

(1) A component composition containing, by mass%, Sn: 4 to 15%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, and the remainder consisting of Cu and inevitable impurities. Raw material phosphor bronze alloy for semi-fusion gold casting,
(2) By mass%, Sn: 4-15%, Zr: 0.0005-0.04%, P: 0.01-0.25%, Zn: 0.1-7.5 A raw material phosphor bronze alloy for semi-fused gold casting having a component composition consisting of Cu and the remainder consisting of Cu and inevitable impurities,
(3) Further, Pb: 0.01 to 4.5%, Bi: 0.01 to 3.0%, Se: 0.03 to 1.0%, Te: 0.01 to 1.0% The raw material phosphor bronze alloy for semi-fused gold casting according to the above (1) or (2) having a component composition containing one or more of the above.

この発明の半融合金鋳造用原料りん青銅合金は、予め成分調整したインゴットを作製して貯蔵しておき、必要量を取り出し再溶解して半融りん青銅合金を作製し、この半融りん青銅合金を鋳造することにより結晶粒が微細な半融りん青銅合金鋳物を製造することができる。   The raw phosphor bronze alloy for casting semi-fused gold according to the present invention is prepared and stored in an ingot whose components are adjusted in advance. By casting the alloy, a semi-molten phosphor bronze alloy casting with fine crystal grains can be produced.

この発明の半融合金鋳造用原料りん青銅合金において、その成分組成を前述の如く限定した理由を説明する。
Sn:
SnはCuに添加することにより合金溶湯の流動性を向上させ、さらに鋳物の耐食性を向上させるとともに機械的強度、耐摩耗性を向上させる作用を有するが、その含有量が4質量%未満では機械的強度が低くさらに溶湯の流動性が低下するので好ましくなく、一方、15%を越えて含有すると鋳造性が低下すると共に得られた鋳物が硬く脆くなって機械的強度が低下するようになるので好ましくない。したがって、この発明の半融合金鋳造用りん青銅合金に含まれるSnは4〜15質量%に定めた。
Zr:
ZrはPと共存することにより半融合金状態において微細な粒状α初相の晶出を促進させ、半融りん青銅合金の流動性を改善させるとともに鋳造したりん青銅合金鋳物の結晶粒を微細化させる作用を有するが、その含有量が0.0005質量%未満では結晶粒の微細化に十分な効果を発揮することが無いので好ましくなく、一方、0.04質量%を越えて含有すると、かえって鋳物の結晶粒が大きくなるので好ましくない。したがって、この発明の半融合金鋳造用原料りん青銅合金に含まれるZrは0.0005〜0.04質量%に定めた。
P:
PはZrと共存することにより半融合金状態において微細な粒状α初相の晶出を促進させ、半融りん青銅合金の流動性を改善させるとともに鋳造したりん青銅合金鋳物の結晶粒を微細化させる作用を有するが、その含有量が0.01質量%未満では結晶粒の微細化効果を十分に発揮することがなく、一方、0.25質量%を越えて含有すると、低融点の金属間化合物が形成され、脆くなるので好ましくない。したがって、この発明の半融合金鋳造用りん青銅合金に含まれるPは0.01〜0.25質量%に定めた。

Zn:

Znは、半融りん青銅合金の流動性を一層改善させ、融点を下げ、さらに耐食性を向上させる作用を有するので必要に応じて添加するが、その含有量は0.1質量%未満では所望の効果が得られず、一方、7.5質量%を超えて含有すると、かえって鋳物の流動性が低下するようになるので好ましくない。したがって、この発明の半融合金鋳造用原料りん青銅合金に含まれるZnは0.1〜7.5質量%に定めた。

その他の成分:
この発明の半融合金鋳造用原料りん青銅合金にはさらにPb、Bi、Se、Teなどが必要に応じて含まれるが、これらの成分がりん青銅合金に含まれる場合にはPb:0.01〜4.5%、Bi:0.01〜3.0%、Se:0.03〜1.0%、Te:0.01〜1.0%の範囲で含まれることが好ましい。
The reason why the component composition of the raw phosphor bronze alloy for semi-fused gold casting according to the present invention is limited as described above will be described.
Sn:
Sn, when added to Cu, improves the fluidity of the molten alloy, further improves the corrosion resistance of the casting and improves the mechanical strength and wear resistance. However, if the content is less than 4% by mass, Since the mechanical strength is low and the fluidity of the molten metal is lowered, it is not preferable. On the other hand, if the content exceeds 15%, the castability is lowered and the obtained casting becomes hard and brittle and the mechanical strength is lowered. It is not preferable. Therefore, Sn contained in the phosphor bronze alloy for semi-fused gold casting of the present invention is set to 4 to 15% by mass.
Zr:
By coexisting with P, Zr promotes the crystallization of fine granular α initial phase in the semi-fused gold state, improves the fluidity of the semi-fused phosphor bronze alloy and refines the crystal grains of the cast phosphor bronze alloy. However, if the content is less than 0.0005% by mass, it is not preferable because it does not exert a sufficient effect on the refinement of crystal grains. On the other hand, if the content exceeds 0.04% by mass, Since the crystal grain of a casting becomes large, it is not preferable. Therefore, Zr contained in the raw phosphor bronze alloy for semi-fused gold casting of the present invention is set to 0.0005 to 0.04 mass%.
P:
By coexisting with Zr, P promotes the crystallization of fine granular α initial phase in the semi-fused gold state, improves the fluidity of the semi-fused phosphor bronze alloy and refines the crystal grains of the cast phosphor bronze alloy. However, if the content is less than 0.01% by mass, the effect of refining the crystal grains is not sufficiently exhibited. On the other hand, if the content exceeds 0.25% by mass, the low melting point between the metals Since a compound is formed and becomes brittle, it is not preferable. Therefore, P contained in the phosphor bronze alloy for casting semi-fused gold according to the present invention is set to 0.01 to 0.25% by mass.

Zn:

Zn has the effects of further improving the fluidity of the semi-fused phosphor bronze alloy, lowering the melting point, and further improving the corrosion resistance. Therefore, Zn is added as necessary, but if its content is less than 0.1% by mass, it is desirable. On the other hand, if the content exceeds 7.5% by mass, the fluidity of the casting is lowered, which is not preferable. Therefore, Zn contained in the raw phosphor bronze alloy for semi-fused gold casting of the present invention is set to 0.1 to 7.5% by mass.

Other ingredients:
The raw phosphor bronze alloy for semi-fused gold casting according to the present invention further contains Pb, Bi, Se, Te and the like as required. When these components are contained in the phosphor bronze alloy, Pb: 0.01 -4.5%, Bi: 0.01-3.0%, Se: 0.03-1.0%, Te: It is preferable to contain in 0.01-1.0% of range.

この発明の半融合金鋳造用原料りん青銅合金を溶解して固液混合スラリー状態の半融りん青銅合金を作製し、この半融りん青銅合金を通常の方法で鋳造すると、半融りん青銅合金の液相中に微細な粒状α初相が晶出しあるいはα固相が共存しているため、攪拌処理装置を用いて撹拌を行わなくても半融りん青銅合金の流動性が損なわれることなく鋳造することができ、さらに得られた半融りん青銅合金を鋳造して得られたりん青銅合金鋳物は結晶粒が一層微細化されて機械的強度が一段と向上するという優れた効果を奏するものである。 A semi-molten phosphor bronze alloy in a solid-liquid mixed slurry state is prepared by melting the raw phosphor bronze alloy for semi-fused gold casting according to the present invention. In the liquid phase, a fine granular α initial phase is crystallized or an α solid phase coexists, so that the fluidity of the semi-molten phosphor bronze alloy is not impaired even if stirring is not performed using a stirring treatment device. Further, the phosphor bronze alloy casting obtained by casting the obtained semi-melted phosphor bronze alloy has an excellent effect that the crystal grains are further refined and the mechanical strength is further improved. is there.

実施例1
原料として通常の電気銅を用意し、この電気銅を電気炉に装入し、Arガス雰囲気中にて溶解し、溶銅温度が1200℃になった時点でSnおよびPを添加し、さらに必要に応じてZn、Pb、Bi、Se、Teなどを添加し、最後にZrを添加することによりりん青銅合金溶湯を作製し、得られたりん青銅合金溶湯を鋳造して表1〜6に示される成分組成を有する本発明半融合金鋳造用原料りん青銅合金(以下、本発明原料りん青銅合金という)1〜75および比較半融合金鋳造用原料りん青銅合金(以下、比較原料りん青銅合金という)1〜6からなるインゴットを作製した。
さらに市販のSn:9質量%、P:0.35質量%を含有し、残部がCuおよび不可避不純物からなるりん青銅合金、並びにSn:6質量%、P:0.1質量%を含有し、残部がCuおよび不可避不純物からなるりん青銅合金をそれぞれArガス雰囲気中にて溶解し、温度:1200℃のりん青銅合金溶湯を作製し、得られたりん青銅合金溶湯を鋳造して表6に示される成分組成を有する従来半融合金鋳造用原料りん青銅合金(以下、従来原料りん青銅合金という)1〜2からなるインゴットを作製した。

得られた本発明原料りん青銅合金1〜75、比較原料りん青銅合金1〜6および従来原料りん青銅合金1〜2からなるインゴットの一部をそれぞれ切り取り、切り取ったインゴットを再溶解して固相線温度を越えかつ液相線温度未満の範囲内の所定の温度に加熱することにより再溶解して半融りん青銅合金溶湯を作製し、この半融状態のりん青銅合金溶湯を超急冷することにより急冷試験片を作製した。この急冷試験片の組織を光学顕微鏡で観察することにより半融状態のりん青銅合金溶湯において液相とともに共存しているα固相の形状を推定し、さらにその平均粒径を求め、その結果を表1〜6に示した。

なお、α固相の平均粒径の測定は急冷試験片の切断面を硝酸でエッチングしたのち光学顕微鏡で観察し測定した。
Example 1
Prepare normal electrolytic copper as a raw material, insert this electrolytic copper into an electric furnace, melt it in an Ar gas atmosphere, add Sn and P when the molten copper temperature reaches 1200 ° C, and more According to the above, Zn, Pb, Bi, Se, Te, etc. are added, and finally Zr is added to prepare a phosphor bronze alloy melt, and the obtained phosphor bronze alloy melt is cast and shown in Tables 1-6. Raw material phosphor bronze alloys (hereinafter referred to as the present invention raw material phosphor bronze alloy) 1 to 75 and comparative semi fused gold casting material phosphor bronze alloys (hereinafter referred to as comparative raw material phosphor bronze alloys) having the composition described above. ) 1 to 6 ingots were produced.
Furthermore, it contains commercially available Sn: 9% by mass, P: 0.35% by mass, the balance containing phosphor bronze alloy consisting of Cu and inevitable impurities, and Sn: 6% by mass, P: containing 0.1% by mass, Phosphor bronze alloys with the balance being Cu and inevitable impurities were respectively melted in an Ar gas atmosphere to prepare a phosphor bronze alloy melt at a temperature of 1200 ° C. The obtained phosphor bronze alloy melt was cast and shown in Table 6. The ingot which consists of the raw material phosphor bronze alloy (henceforth the conventional raw material phosphor bronze alloy) 1-2 for the conventional semi-fusion gold casting which has the component composition which is described was produced.

Part of the obtained ingots made of the raw material phosphor bronze alloys 1 to 75, comparative raw material phosphor bronze alloys 1 to 6 and conventional raw material phosphor bronze alloys 1 to 2 were respectively cut, and the cut ingots were redissolved to obtain a solid phase. A semi-molten phosphor bronze alloy melt is prepared by re-melting by heating to a predetermined temperature within the range above the liquidus temperature and below the liquidus temperature, and this semi-molten phosphor bronze alloy melt is super-quenched. A quenched specimen was prepared by By observing the structure of this rapidly cooled specimen with an optical microscope, the shape of the α solid phase coexisting with the liquid phase in the semi-molten phosphor bronze alloy molten metal was estimated, and the average particle diameter was further determined. It showed in Tables 1-6.

The average particle size of the α solid phase was measured by observing with an optical microscope after etching the cut surface of the quenched specimen with nitric acid.

Figure 2007211324
Figure 2007211324

Figure 2007211324
Figure 2007211324

Figure 2007211324
Figure 2007211324

Figure 2007211324
Figure 2007211324

Figure 2007211324
Figure 2007211324

Figure 2007211324
Figure 2007211324

表1〜6に示される結果から、本発明原料りん青銅合金1〜75は急冷試験片のα固相がいずれも微細な粒状を呈しているところから半融状態において粒状の微細なα固相が液相と共存していると推定され、一方、従来原料りん青銅合金1〜2の急冷試験片のα固相がいずれも樹枝状を呈しているところから 従来原料りん青銅合金1〜2は半融状態においてデンドライトが生成していることが推定され、したがって本発明原料りん青銅合金1〜75で作製した半融りん青銅合金は従来原料りん青銅合金1〜2で作製した半融りん青銅合金に比べて流動性が優れていること、本発明原料りん青銅合金1〜75を溶解して得られた半融りん青銅合金は液相中に微細な粒状のα固相が生成しているので半融りん青銅合金を撹拌することなく鋳造しても微細な結晶粒を有する鋳物が得られること、この発明の条件から外れてSn、ZrおよびPを含む比較原料りん青銅合金1〜6は半融状態ではデンドライトが発生したり、結晶粒の微細化が不足したり脆くなったりするので好ましくないことがわかる。
From the results shown in Tables 1 to 6, the raw material phosphor bronze alloys 1 to 75 of the present invention have a granular fine α solid phase in a semi-molten state since the α solid phase of the rapidly cooled test piece exhibits fine granular shapes. On the other hand, from the fact that the α solid phase of the quenching specimens of the conventional raw material phosphor bronze alloys 1 and 2 are both dendritic, the conventional raw material phosphor bronze alloys 1 and 2 are It is presumed that dendrites are formed in the semi-molten state, and therefore the semi-molten phosphor bronze alloy produced from the raw material phosphor bronze alloys 1 to 75 of the present invention is the semi-molten phosphor bronze alloy produced from the conventional raw material phosphor bronze alloys 1-2 The semi-fused phosphor bronze alloy obtained by melting the raw material phosphor bronze alloys 1 to 75 has a fine granular α solid phase in the liquid phase. Even if a semi-molten phosphor bronze alloy is cast without stirring A casting having fine crystal grains can be obtained, and the comparative raw material phosphor bronze alloys 1 to 6 containing Sn, Zr and P deviate from the conditions of the present invention, and dendrite is generated or the crystal grains are refined in the semi-molten state. It is understood that this is not preferable because it becomes insufficient or brittle.

実施例2
実施例1で作製した前記本発明原料りん青銅合金1〜75、比較原料りん青銅合金1〜6および従来原料りん青銅合金1〜2からなるインゴットの一部をそれぞれ切り取り、切り取ったインゴットを完全溶解して全てが液相のりん青銅合金溶湯を作製し、その後冷却して固相線温度を越えかつ液相線温度未満の範囲内の所定の温度に保持された半融りん青銅合金溶湯を作製し、この半融りん青銅合金溶湯を超急冷することにより急冷試験片を作製した。この急冷試験片の組織を光学顕微鏡で観察することにより半融りん青銅合金溶湯に晶出ているα初晶形状を推定し、さらにその平均粒径を求めた結果、実施例1とほぼ同じ結果が得られた。

Example 2
A part of the ingot made of the present invention raw material phosphor bronze alloys 1 to 75, comparative raw material phosphor bronze alloys 1 to 6 and conventional raw material phosphor bronze alloys 1 to 2 prepared in Example 1 was cut out and the cut ingots were completely dissolved. The liquid phosphor bronze alloy melt is prepared in a liquid phase and then cooled to produce a semi-molten phosphor bronze alloy melt that is maintained at a predetermined temperature within the range above the solidus temperature and below the liquidus temperature. The semi-molten phosphor bronze alloy melt was super-quenched to prepare a quenching test piece. By observing the structure of the rapidly cooled specimen with an optical microscope, the α primary crystal shape crystallized in the molten metal bronze alloy was estimated, and the average particle size was obtained. As a result, almost the same results as in Example 1 were obtained. was gotten.

Claims (3)

質量%で、Sn:4〜15%、Zr:0.0005〜0.04%、P:0.01〜0.25%を含有し、残りがCuおよび不可避不純物からなる成分組成を有することを特徴とする半融合金鋳造用原料りん青銅合金。 It contains, by mass%, Sn: 4 to 15%, Zr: 0.0005 to 0.04%, P: 0.01 to 0.25%, and the remainder having a component composition consisting of Cu and inevitable impurities. Raw material phosphor bronze alloy for semi-fusion gold casting. 質量%で、Sn:4〜15%、Zr:0.0005〜0.04%、P:0.01〜0.25%を含有し、さらに、Zn:0.1〜7.5%を含有し、残りがCuおよび不可避不純物からなる成分組成を有することを特徴とする半融合金鋳造用原料りん青銅合金。
In mass%, Sn: 4-15%, Zr: 0.0005-0.04%, P: 0.01-0.25%, Zn: 0.1-7.5% A raw material phosphor bronze alloy for semi-fused gold casting, wherein the remainder has a component composition consisting of Cu and inevitable impurities.
さらに、Pb:0.01〜4.5%、Bi:0.01〜3.0%、Se:0.03〜1.0%、Te:0.01〜1.0%の内の1種または2種以上含有する成分組成を有することを特徴とする請求項1または2記載の半融合金鋳造用原料りん青銅合金。
Further, Pb: 0.01 to 4.5%, Bi: 0.01 to 3.0%, Se: 0.03 to 1.0%, Te: 0.01 to 1.0% 3. The raw phosphor bronze alloy for semi-fused gold casting according to claim 1 or 2, characterized in that it has a component composition containing two or more kinds.
JP2006035003A 2006-02-13 2006-02-13 Raw material phosphor bronze alloy for casting half-melted alloy Pending JP2007211324A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006035003A JP2007211324A (en) 2006-02-13 2006-02-13 Raw material phosphor bronze alloy for casting half-melted alloy
US12/278,921 US20100166595A1 (en) 2006-02-13 2007-02-09 Phosphor-bronze alloy as raw materials for semi solid metal casting
CNA2007800050738A CN101384386A (en) 2006-02-13 2007-02-09 Raw material phosphor bronze alloy for casting half-melted alloy
PCT/JP2007/052403 WO2007094265A1 (en) 2006-02-13 2007-02-09 Raw material phosphor bronze alloy for casting of semi-molten alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035003A JP2007211324A (en) 2006-02-13 2006-02-13 Raw material phosphor bronze alloy for casting half-melted alloy

Publications (1)

Publication Number Publication Date
JP2007211324A true JP2007211324A (en) 2007-08-23

Family

ID=38371451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035003A Pending JP2007211324A (en) 2006-02-13 2006-02-13 Raw material phosphor bronze alloy for casting half-melted alloy

Country Status (4)

Country Link
US (1) US20100166595A1 (en)
JP (1) JP2007211324A (en)
CN (1) CN101384386A (en)
WO (1) WO2007094265A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068357A2 (en) * 2009-12-01 2011-06-09 Cho Ju Hyun Brazing alloy
JP2012144797A (en) * 2011-01-14 2012-08-02 Mitsubishi Materials Corp Phosphorus-containing copper anode for electrolytic copper plating and electrolytic copper plating method using the same
JP5928624B1 (en) * 2015-03-04 2016-06-01 株式会社 大阪合金工業所 Bronze alloy for musical instrument and percussion instrument using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740971B (en) * 2013-11-29 2016-01-06 余姚市宏骏铜业有限公司 A kind of bronze bearing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789449A (en) * 1980-11-21 1982-06-03 Sumitomo Electric Ind Ltd Method of manufacture of copper alloy for conducting electricity
JPH06172896A (en) * 1992-12-04 1994-06-21 Nikko Kinzoku Kk High-strength and high-conductivity copper alloy
JP2002518598A (en) * 1998-06-23 2002-06-25 オリン コーポレイション Tin brass modified by iron
JP2004143541A (en) * 2002-10-25 2004-05-20 Kobe Steel Ltd Phosphor bronze
WO2006016631A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
WO2007043101A1 (en) * 2005-09-30 2007-04-19 Sanbo Shindo Kogyo Kabushiki Kaisha Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113142B2 (en) * 1987-02-10 1995-12-06 三菱電機株式会社 Manufacturing method of phosphor bronze sheet
JPH07113143B2 (en) * 1987-03-20 1995-12-06 三菱電機株式会社 Method for producing high strength copper alloy
JP3303878B2 (en) * 1996-09-09 2002-07-22 東陶機器株式会社 Method and equipment for producing brass
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
DE19756815C2 (en) * 1997-12-19 2003-01-09 Wieland Werke Ag Wrought copper alloy, process for producing a semi-finished product therefrom and its use
US6346215B1 (en) * 1997-12-19 2002-02-12 Wieland-Werke Ag Copper-tin alloys and uses thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789449A (en) * 1980-11-21 1982-06-03 Sumitomo Electric Ind Ltd Method of manufacture of copper alloy for conducting electricity
JPH06172896A (en) * 1992-12-04 1994-06-21 Nikko Kinzoku Kk High-strength and high-conductivity copper alloy
JP2002518598A (en) * 1998-06-23 2002-06-25 オリン コーポレイション Tin brass modified by iron
JP2004143541A (en) * 2002-10-25 2004-05-20 Kobe Steel Ltd Phosphor bronze
WO2006016631A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
WO2006016629A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Cast copper alloy article excellent in machinability, strength, wear resistance and corrosion resistance and method for casting thereof
WO2007043101A1 (en) * 2005-09-30 2007-04-19 Sanbo Shindo Kogyo Kabushiki Kaisha Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068357A2 (en) * 2009-12-01 2011-06-09 Cho Ju Hyun Brazing alloy
WO2011068357A3 (en) * 2009-12-01 2011-11-10 Cho Ju Hyun Brazing alloy
JP2012144797A (en) * 2011-01-14 2012-08-02 Mitsubishi Materials Corp Phosphorus-containing copper anode for electrolytic copper plating and electrolytic copper plating method using the same
JP5928624B1 (en) * 2015-03-04 2016-06-01 株式会社 大阪合金工業所 Bronze alloy for musical instrument and percussion instrument using the same

Also Published As

Publication number Publication date
CN101384386A (en) 2009-03-11
WO2007094265A1 (en) 2007-08-23
US20100166595A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5116976B2 (en) Raw brass alloy for semi-fusion gold casting
JP5582982B2 (en) Aluminum alloy and method for producing the same
WO2006016614A1 (en) Master alloy for use in modifying copper alloy and casting method using the same
US9181606B2 (en) Low lead alloy
US20120121455A1 (en) Low lead ingot
CN107829000B (en) Die-casting aluminum alloy material and preparation method thereof
KR101241426B1 (en) Method of manufacturing aluminium alloy
JP6011998B2 (en) Method for producing aluminum alloy in which Al-Fe-Si compound is refined
JP6359523B2 (en) Antimony-modified low-lead copper alloy
JP2019508584A (en) Lead-free free-cutting brass alloy having excellent castability, its production method and its use
JP2009167450A (en) Copper alloy and producing method therefor
JP2007211324A (en) Raw material phosphor bronze alloy for casting half-melted alloy
JP6736869B2 (en) Copper alloy material
WO2012058628A2 (en) Low lead ingot
CN105483577A (en) Heat treatment technology of eutectic Al-Si-Cu-Mn heat-resistant aluminum alloy
WO2007082459A1 (en) Lead-free solder and its preparation method
JP5785836B2 (en) Copper alloys and castings
KR101591629B1 (en) Method for manufacturing Al-Mg alloy under the melting point of magnesium
JP2007211325A (en) Raw material aluminum bronze alloy for casting half-melted alloy
JP5607459B2 (en) Copper alloy ingot, method for producing the same, and copper alloy sheet obtained therefrom
JP2624302B2 (en) Mg-Sr alloy for A1-Si casting alloy modification
JPH05311272A (en) Method for refining primary crystal si in hyper-eutectic al-si alloy and refining agent
KR19990034664A (en) Casting brass alloy and its manufacturing method
JP2020152996A (en) Method for making alp compounds finer and aluminum alloy casting
CN116752016A (en) Aluminum alloy for casting and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121005