EP1063310A1 - Use of a tin rich copper-tin-iron alloy - Google Patents
Use of a tin rich copper-tin-iron alloy Download PDFInfo
- Publication number
- EP1063310A1 EP1063310A1 EP00111778A EP00111778A EP1063310A1 EP 1063310 A1 EP1063310 A1 EP 1063310A1 EP 00111778 A EP00111778 A EP 00111778A EP 00111778 A EP00111778 A EP 00111778A EP 1063310 A1 EP1063310 A1 EP 1063310A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tin
- copper alloy
- weight
- iron
- alloy according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
Definitions
- the invention relates to the use of a Cu-Sn-Fe alloy for mechanical stressed components of machine or vehicle construction.
- the Cu-Sn-Fe alloy consists of Sn 12 - 20 wt .-%, Fe 0.2 - 5.0 wt .-%, balance Cu and the usual Impurities.
- the alloy is cooled down sufficiently quickly from the molten state at room temperature in one Get structural state that the preform available for the semi-finished product (Cast strip, cast block, cast bolt) is technically free of coarse, brittle phases and therefore in a special way for the production of semi-finished products Bands, profiles, wires, hollow profiles or pipes - suitable for kneading.
- This Semi-finished products are ideal for the production of various mechanical Functional parts of precision engineering, vehicle or general mechanical engineering. Because of their chemical composition and manufacturing method draws the above Alloy high mechanical strength or high wear resistance with excellent ductility. She also has one good corrosion resistance and thermal conductivity.
- CuSn materials are because of their high mechanical strength, their large Resistance to sliding stress or wear and their corrosion resistance for various mechanical components of the general Mechanical engineering used.
- CuSn wrought alloys with typically 8% by weight Sn are very easy to form and are therefore also suitable for the production of complex ones Functional parts.
- Sn contents are above 10% by weight.
- the cast bronze has the required strength, but it is also bad malleable.
- these phases can also be followed by a thermal aftertreatment cannot be removed without pores or imperfections in the material remain, which in turn affect the deformation.
- the material is said to have the chemical and mechanical properties of the cast bronze combine with the processing properties of the kneading materials, which is why the adjustment of the cold deformability and at the same time securing a high mechanical strength and hardness is necessary.
- the material is a tin-rich CuSn alloy with about 12-20% by weight Sn, the rest Cu.
- the high Sn content ensures the strength of the material.
- Spray compacting is a suitable method for shaping this alloy or tape casting .
- the material cools so quickly from the molten state that the segregation that is customary in castings is suppressed.
- the primary structure of this alloy is therefore free of macroscopic segregation at room temperature .
- the preforms produced with these processes can be shaped hot or cold.
- the material so produced is mainly due to its excellent mechanical Properties versatile in the field of mechanical engineering. Yet some shortcomings can be identified.
- the process of master shaping is difficult for the following reasons: As with conventional, comparatively low tin wrought wrought alloys also in the present case the need to deoxidize the melt. At The conventional alloys are therefore more oxygen-sensitive to the melt Elements such as B. phosphorus added. These additions are usually like this selected that in addition to melt deoxidation also the material properties (e.g. strength) can be influenced favorably. Because of the high affinity for oxygen the added elements tend to burn off when they melt and pour and slagging. As a result, complex process control is required for compliance of defined concentrations necessary, generally affect the oxides The deoxidizer in the melt also sensitive to the melt viscosity and thus the procedural boundary conditions of the primary molding process such as e.g. of spray compacting. Ideally, therefore, a vacuum oven comes for the Melting process used so that oxidation of the additives is largely prevented can be. However, the required process engineering is not always Expedient and economical.
- Oxides from admixtures with an affinity for oxygen can also be used in hot forming of the tin-rich CuSn alloys. They deteriorate the surface quality of the material to be formed and lead to tool contamination and consequently to a shorter tool life. When cutting or These oxides are also undesirable in the material volume because they are due to promote increased tool wear due to their hardness.
- the object thus achieved is achieved by the present invention in such a way solved that for mechanical components of machine or vehicle construction Alloy is used which, in addition to copper, has a tin content of 12 to 20% Sn and contains an iron content of 0.2 to 5% Fe.
- Alloy which, in addition to copper, has a tin content of 12 to 20% Sn and contains an iron content of 0.2 to 5% Fe.
- the alloy particularly achieves Fe and Sn contents good mechanical properties. On the one hand, they are expressed in a high degree of firmness or hardness, in a high creep or softening resistance and in a high wear resistance. On the other hand, one is sufficient for the materials to determine great toughness due to a related shape change Cold forming of more than 20% possible.
- Sn also ensures the corrosion resistance of the material.
- the Sn content should not exceed 20% because then - even with an unconventional casting process - The increased occurrence of brittle phases cannot be prevented.
- iron can be wholly or partly be replaced by cobalt.
- the setting of certain cutting properties is due to additives made of lead or graphite up to 3% by volume.
- these additives ensure improved emergency running properties in components subject to friction or sliding.
- the Levels have to be limited because lead or graphite additives are disadvantageous affect the forming.
- aluminum can contain up to 2% by weight. be added. Higher levels are not useful as they are surface processing or impair the joining of the material.
- phosphorus can be used to deoxidize the melt.
- a significant one Effect occurs from 0.01% P.
- the structure of the phosphorus should be matched to the iron concentration, the Fe content / P content> 2.
- P contents above 0.5% by weight should be avoided because thereby reducing the ductility of the material on the one hand and in Loose layers of heat adhere to the heat, particularly during hot forming to disturb.
- the invention is illustrated by the following example.
- the structure in the sprayed state was uniform and metallographically free from Segregations. After the bolt had been machined, it was hot-worked by extrusion into a rod with a diameter of 20 mm. The temperature the material was 650 ° C. The bar stock was straightened.
- the material was in the soft state after hot forming.
- the bars were pickled for surface leveling.
- the further processing was carried out using cold drawing processes to increase the strength properties.
- the alloy according to the invention clearly achieves by using 0.7% by weight of Fe better mechanical properties than the Fe-free variant and is therefore the known tin arms are also more suitable for mechanically stressed components CuSn wrought alloys.
- the ductility parameters are for both materials similarly, from which it can be concluded that Fe additions are suitable for the formation of To make pores and embrittling oxide lines more difficult during the primary shaping. This was not to be expected because of this effect of iron in a CuSn alloy was not known.
- the strength parameters clearly exceed those of a conventionally shaped tin bronze with 8% by weight of Sn , which was similarly shaped and heat treated. This leads to the conclusion that the tin-rich alloys have significantly better mechanical properties at high temperatures (ie softening resistance, relaxation resistance, creep or creep resistance) than the conventional CuSn wrought alloys.
- the alloy according to the invention is therefore also suitable for use at elevated temperatures.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Sliding-Contact Bearings (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
Die Erfindung betrifft die Verwendung einer Cu-Sn-Fe-Legierung für mechanisch beanspruchte Bauteile des Maschinen- oder Fahrzeugsbaus. Die Cu-Sn-Fe-Legierung besteht aus Sn 12 - 20 Gew.-%, Fe 0,2 - 5,0 Gew.-%, Rest Cu und den üblichen Verunreinigungen. Die Legierung wird durch eine hinreichend schnelle Abkühlung aus dem schmelzflüssigen Zustand bei Raumtemperatur in einem solchen Gefügezustand erhalten, daß die für die Halbzeugherstellung vorliegende Vorform (Gussband, Gussblock, Gussbolzen) technisch frei von groben, spröden Phasen ist und sich daher in besonderer Weise für die Herstellung von Halbzeugen - also von Bändern, Profilen, Drähten, Hohlprofilen oder Rohren - durch Kneten eignet. Diese Halbzeuge eignen sich hervorragend für die Anfertigung verschiedener mechanischer Funktionsteile der Feinmechanik, des Fahrzeug- oder des allgemeinen Maschinenbaus. Aufgrund ihrer chemischen Zusammensetzung und der Herstellungsweise zeichnet die o.g. Legierung eine hohe mechanische Festigkeit bzw. eine hohe Verschleißfestigkeit bei hervorragender Duktilität aus. Zudem weist sie eine gute Korrosionsbeständigkeit und Wärmeleitfähigkeit auf.The invention relates to the use of a Cu-Sn-Fe alloy for mechanical stressed components of machine or vehicle construction. The Cu-Sn-Fe alloy consists of Sn 12 - 20 wt .-%, Fe 0.2 - 5.0 wt .-%, balance Cu and the usual Impurities. The alloy is cooled down sufficiently quickly from the molten state at room temperature in one Get structural state that the preform available for the semi-finished product (Cast strip, cast block, cast bolt) is technically free of coarse, brittle phases and therefore in a special way for the production of semi-finished products Bands, profiles, wires, hollow profiles or pipes - suitable for kneading. This Semi-finished products are ideal for the production of various mechanical Functional parts of precision engineering, vehicle or general mechanical engineering. Because of their chemical composition and manufacturing method draws the above Alloy high mechanical strength or high wear resistance with excellent ductility. She also has one good corrosion resistance and thermal conductivity.
CuSn-Werkstoffe werden wegen ihrer hohen mechanischen Festigkeit, ihres großen Widerstandes gegen Gleitbeanspruchung bzw. Verschleiß und ihrer Korrosionsbeständigkeit für die unterschiedlichsten mechanischen Bauteile des allgemeinen Maschinenbaus verwendet. CuSn-Knetlegierungen mit typischerweise 8 Gew.-% Sn sind sehr gut umformbar und eignen sich deshalb auch für die Herstellung komplexer Funktionsteile. Sie werden beispielsweise z.B. in Gleitlagern und Getrieben, als Federn sowie für meerwasserbeanspruchte Teile wie Ketten, Armaturen usw. eingesetzt. Für Bauteile, die sehr hohen mechanischen Belastungen unterworfen sind, wie beispielsweise für Zahnräder, bevorzugt man dagegen CuSn-Gußlegierungen mit Sn-Gehalten über 10 Gew.-%. Durch den erhöhten Zinn-Gehalt erreichen die Gußbronzen die geforderte Festigkeit, sie sind allerdings damit auch schlecht umformbar. Dafür sind im wesentlichen spröde Phasen im Primärgefüge einer solchen Gußbronze verantwortlich, die bei den gängigen Gießverfahren während der Erstarrung entstehen. Diese Phasen können auch durch eine thermische Nachbehandlung nicht entfernt werden, ohne daß Poren oder Ungänzen im Werkstoff zurückbleiben, welche wiederum die Umformung beeinträchtigen.CuSn materials are because of their high mechanical strength, their large Resistance to sliding stress or wear and their corrosion resistance for various mechanical components of the general Mechanical engineering used. CuSn wrought alloys with typically 8% by weight Sn are very easy to form and are therefore also suitable for the production of complex ones Functional parts. For example, in plain bearings and gears, as springs and for parts exposed to sea water such as chains, fittings, etc. used. For components that are subjected to very high mechanical loads are, for example for gear wheels, CuSn casting alloys are preferred with Sn contents above 10% by weight. Reach through the increased tin content the cast bronze has the required strength, but it is also bad malleable. For this there are essentially brittle phases in the primary structure of such Cast bronze responsible for the common casting process during the Torpor arise. These phases can also be followed by a thermal aftertreatment cannot be removed without pores or imperfections in the material remain, which in turn affect the deformation.
Für mechanisch beanspruchte Bauteile des allgemeinen Maschinen- oder Fahrzeugbaus besteht also der Wunsch nach einem Werkstoff, der den Gegensatz zwischen den CuSn-Knetwerkstoffen und den CuSn-Gußwerkstoffen überwindet: Der Werkstoff soll die chemischen und mechanischen Eigenschaften der Gußbronzen mit den Verarbeitungseigenschaften der Knetwerkstoffe kombinieren, wozu besonders die Einstellung der Kaltverformbarkeit und gleichzeitige Sicherung einer hohen mechanischen Festigkeit und Härte notwendig ist. For mechanically stressed components of general machine or vehicle construction So there is a desire for a material that is the contrast between the CuSn kneading materials and the CuSn casting materials overcome: The The material is said to have the chemical and mechanical properties of the cast bronze combine with the processing properties of the kneading materials, which is why the adjustment of the cold deformability and at the same time securing a high mechanical strength and hardness is necessary.
In jüngster Vergangenheit wurde ein Werkstoff und ein Verfahren zu seiner Herstellung vorgestellt, mit denen die Lösung der Aufgabe prinzipiell möglich sein sollte. Bei dem Werkstoff handelt es sich um eine zinnreiche CuSn-Legierung mit etwa 12 - 20 Gew.-% Sn, Rest Cu. Hierbei sorgt der hohe Sn-Gehalt für die Festigkeit des Werkstoffs.In the recent past, a material and a method for its production have been presented with which the solution of the task should be possible in principle. The material is a tin-rich CuSn alloy with about 12-20% by weight Sn, the rest Cu. The high Sn content ensures the strength of the material.
Geeignete Verfahren zum Urformen dieser Legierung sind das Sprühkompaktieren oder das Bandgießen. Der Werkstoff kühlt dabei so schnell aus dem schmelzflüssigen Zustand ab, daß die bei Gußstücken übliche Seigerung unterdrückt wird. Das Primärgefüge dieser Legierung ist demzufolge bei Raumtemperatur frei von makroskopischen Seigerungen. Die mit diesen Verfahren hergestellten Vorformen können hervorragend warm oder kalt umgeformt werden.Spray compacting is a suitable method for shaping this alloy or tape casting . The material cools so quickly from the molten state that the segregation that is customary in castings is suppressed. The primary structure of this alloy is therefore free of macroscopic segregation at room temperature . The preforms produced with these processes can be shaped hot or cold.
Der so hergestellte Werkstoff ist vor allem aufgrund seiner exzellenten mechanischen Eigenschaften vielseitig im Bereich des Maschinenbaus einsetzbar. Dennoch können einige Mängel festgestellt werden.The material so produced is mainly due to its excellent mechanical Properties versatile in the field of mechanical engineering. Yet some shortcomings can be identified.
Die Prozeßführung beim Urformen ist aus folgenden Gründen schwierig: Wie bei den konventionellen, vergleichsweise zinnarmen CuSn-Knetlegierungen besteht auch im vorliegenden Fall die Notwendigkeit zur Desoxidation der Schmelze. Bei den konventionellen Legierungen werden deshalb der Schmelze sauerstoffaffine Elemente, wie z. B. Phosphor, zugesetzt. Diese Zusätze werden in der Regel so ausgewählt, daß neben der Schmelzedesoxidation auch die Werkstoffeigenschaften (z. B. Festigkeit) günstig beeinflußt werden. Aufgrund der hohen Affinität zu Sauerstoff neigen die zugesetzten Elemente beim Erschmelzen und Gießen zum Abbrennen und Verschlacken. Dadurch ist eine aufwendige Prozeßführung zur Einhaltung von definierten Konzentrationen notwendig, Im allgemeinen beeinflussen die Oxide der Desoxidationsmittel in der Schmelze auch empfindlich die Schmelzeviskosität und damit die verfahrenstechnischen Randbedingungen des Urformprozesses wie z.B. des Sprühkompaktierens. Idealerweise kommt deshalb ein Vakuumofen für den Schmelzprozeß zum Einsatz, so daß ein Oxidieren der Zusätze weitgehend unterbunden werden kann. Nicht immer ist jedoch der erforderliche prozeßtechnische Aufwand zweckmäßig und wirtschaftlich.The process of master shaping is difficult for the following reasons: As with conventional, comparatively low tin wrought wrought alloys also in the present case the need to deoxidize the melt. At The conventional alloys are therefore more oxygen-sensitive to the melt Elements such as B. phosphorus added. These additions are usually like this selected that in addition to melt deoxidation also the material properties (e.g. strength) can be influenced favorably. Because of the high affinity for oxygen the added elements tend to burn off when they melt and pour and slagging. As a result, complex process control is required for compliance of defined concentrations necessary, generally affect the oxides The deoxidizer in the melt also sensitive to the melt viscosity and thus the procedural boundary conditions of the primary molding process such as e.g. of spray compacting. Ideally, therefore, a vacuum oven comes for the Melting process used so that oxidation of the additives is largely prevented can be. However, the required process engineering is not always Expedient and economical.
Oxide von sauerstoffaffinen Beimengungen können zudem auch bei der Warmumformung der zinnreichen CuSn-Legierungen entstehen. Sie verschlechtern die Oberflächenqualität des Umformgutes und führen zu einer Werkzeugverschmutzung und infolgedessen zu einer verkürzten Standzeit der Werkzeuge. Beim Zerteilen oder Spanen sind diese Oxide im Werkstoffvolumen ebenfalls unerwünscht, weil sie aufgrund ihrer Härte einen erhöhten Werkzeugverschleiß fördern.Oxides from admixtures with an affinity for oxygen can also be used in hot forming of the tin-rich CuSn alloys. They deteriorate the surface quality of the material to be formed and lead to tool contamination and consequently to a shorter tool life. When cutting or These oxides are also undesirable in the material volume because they are due to promote increased tool wear due to their hardness.
Es drängt sich also der Wunsch nach Werkstoffen auf, die einerseits hinsichtlich Festigkeit, Umformvermögen und Korrosionsbeständigkeit der oben beschriebenen CuSn-Legierung zumindest gleichkommen, aber andererseits eine vereinfachte Handhabung bei Herstellung und Verarbeitung ermöglichen.So there is an urge for materials, on the one hand, with regard to Strength, formability and corrosion resistance of those described above CuSn alloy at least equal, but on the other hand a simplified one Allow handling during manufacture and processing.
Die dadurch gestellte Aufgabe wird durch die vorliegende Erfindung in der Weise gelöst, daß für mechanische Bauteile des Maschinen- oder Fahrzeugbaus eine Legierung verwendet wird, die neben Kupfer einen Zinngehalt von 12 bis 20 % Sn und einen Eisengehalt von 0,2 bis 5 % Fe enthält. Um eine gute Umformbarkeit zu erreichen, sollte das Urformen der Legierung abermals mit einem Gießverfahren erfolgen, bei dem die Entstehung spröder Phasen durch eine hohe Abkühlrate unterbunden wird. Überraschend ist nun, daß beim Gießen der erfindungsgemäßen Legierung mit einem derartigen Verfahren auf die aufwendige Vakuum- oder Schutzgastechnik weitgehend verzichtet werden kann.The object thus achieved is achieved by the present invention in such a way solved that for mechanical components of machine or vehicle construction Alloy is used which, in addition to copper, has a tin content of 12 to 20% Sn and contains an iron content of 0.2 to 5% Fe. To ensure good formability should achieve the master shaping of the alloy again with a casting process in which the formation of brittle phases is prevented by a high cooling rate becomes. It is surprising that when casting the alloy according to the invention with such a method on the complex vacuum or protective gas technology can largely be dispensed with.
Durch die Einstellung der o.g. Fe- und Sn-Gehalte erreicht die Legierung besonders gute mechanische Eigenschaften. Jene äußern sich zum einen in einer hohen Festigkeit bzw. Härte, in einer hohen Kriech- bzw. Erweichungsbeständigkeit und in einem hohen Verschleißwiderstand. Andererseits ist bei den Werkstoffen eine ausreichend große Zähigkeit festzustellen, die eine bezogene Formänderung durch Kaltumformung von mehr als 20 % ermöglicht.By setting the above The alloy particularly achieves Fe and Sn contents good mechanical properties. On the one hand, they are expressed in a high degree of firmness or hardness, in a high creep or softening resistance and in a high wear resistance. On the other hand, one is sufficient for the materials to determine great toughness due to a related shape change Cold forming of more than 20% possible.
Sn sorgt überdies für die Korrosionsbeständigkeit des Werkstoffs. Der Sn-Gehalt sollte 20 % nicht überschreiten, da dann - auch mit einem unkonventionellen Gießverfahren - das verstärkte Auftreten spröder Phasen nicht verhindert werden kann.Sn also ensures the corrosion resistance of the material. The Sn content should not exceed 20% because then - even with an unconventional casting process - The increased occurrence of brittle phases cannot be prevented.
Bei der Einstellung der o.g. Fe-Gehalte hat sich herausgestellt, daß die für o. g. Verwendung relevanten Werkstoffeigenschaften der erfindungsgemäßen Legierung die der bekannten CuSn-Legierungen übertrifft. Überraschenderweise ist bei den angegebenen Fe-Gehalten eine zusätzliche Schmelzedesoxidation, die in den konventionellen CuSn-Legierungen üblicherweise durch P-Zusätze erfolgt, nicht notwendig. Daneben erschwert Eisen offenbar die Bildung von hartnäckigen Zunderschichten auf den Oberflächen erwärmter oder warm umgeformter Bauteile. Zur Erzielung dieser Effekte sowie zur Ausbildung eines homogenen, gleichmäßigen Gefüges ist ein Mindestgehalt an Fe notwendig. Große Eisenkonzentrationen sollten vermieden werden, da im Gefüge Agglomerationen von Fe-Teilchen entstehen, die das Zerteilen bzw. das Zerspanen des Werkstoffs erschweren.When setting the above Fe contents have been found to be suitable for the above-mentioned. Use relevant material properties of the alloy according to the invention that of the known CuSn alloys. Surprisingly, the Fe contents indicated an additional melt deoxidation, which in the conventional CuSn alloys are usually made using P additives, not necessary. In addition, iron apparently complicates the formation of stubborn layers of scale on the surfaces of heated or hot-formed components. For Achievement of these effects as well as the formation of a homogeneous, even A minimum Fe content is necessary. Large iron concentrations should can be avoided since agglomerations of Fe particles occur in the structure the cutting or machining of the material complicate.
Bevorzugte Ausführungsformen der Erfindung sind Gegenstand der Ansprüche 2 bis 13.Preferred embodiments of the invention are the subject of claims 2 to 13.
Aufgrund ihrer metallkundlichen Verwandtschaft kann Eisen ganz oder teilweise durch Kobalt ersetzt werden.Due to their metal-related relationship, iron can be wholly or partly be replaced by cobalt.
Zusätze von Mangan und/oder Zink bis zu 5 Gew.-% sind möglich, um den Metallwert der Legierung zu reduzieren.Additions of manganese and / or zinc up to 5 wt .-% are possible to the metal value to reduce the alloy.
Die Einstellung bestimmter Zerspanungseigenschaften wird durch Beimengungen von Blei oder Graphit bis zu 3 Vol.-% vollzogen. Daneben sorgen diese Zusätze für verbesserte Notlaufeigenschaften in reib- oder gleitbeanspruchten Bauteilen. Die Gehalte müssen beschränkt werden, da sich Blei- oder Graphitzusätze nachteilig auf die Umformung auswirken.The setting of certain cutting properties is due to additives made of lead or graphite up to 3% by volume. In addition, these additives ensure improved emergency running properties in components subject to friction or sliding. The Levels have to be limited because lead or graphite additives are disadvantageous affect the forming.
Um die Festigkeitskennwerte weiter zu steigern, kann Aluminium bis zu 2 Gew.-% zugesetzt werden. Höhere Gehalte sind nicht sinnvoll, da sie eine Oberflächenbearbeitung oder das Fügen des Werkstoffs beeinträchtigen.In order to further increase the strength values, aluminum can contain up to 2% by weight. be added. Higher levels are not useful as they are surface processing or impair the joining of the material.
Nickel-Zusätze bis zu 5 Gew.-% verbessern die Festigkeitseigenschaften und die Korrosionsbeständigkeit. Höhere Gehalte fördern Aushärtungsmechanismen, wodurch die weitere Verarbeitung der Legierung erschwert wird.Additions of nickel up to 5% by weight improve the strength properties and the Corrosion resistance. Higher levels promote curing mechanisms, which means the further processing of the alloy is difficult.
Je nach der Art bzw. Arbeitsweise der zur Verfügung stehenden Fertigungseinrichtung kann Phosphor zur Desoxidation der Schmelze eingesetzt werden. Ein signifikanter Effekt tritt ab 0,01 % P ein. Zur Vermeidung grober Eisen-Phosphid-Partikel im Gefüge sollte die Phosphor- so auf die Eisen-Konzentration abgestimmt werden, daß Fe-Gehalt/P-Gehalt > 2. P-Gehalte über 0,5 Gew.-% sind zu vermeiden, da dadurch einerseits die Duktilität des Werkstoffs verringert wird und andererseits in der Wärme lose haftende Zunderschichten entstehen, die besonders bei der Warmumformung stören.Depending on the type or mode of operation of the available manufacturing facility phosphorus can be used to deoxidize the melt. A significant one Effect occurs from 0.01% P. To avoid coarse iron phosphide particles the structure of the phosphorus should be matched to the iron concentration, the Fe content / P content> 2. P contents above 0.5% by weight should be avoided because thereby reducing the ductility of the material on the one hand and in Loose layers of heat adhere to the heat, particularly during hot forming to disturb.
Die Erfindung wird an nachfolgendem Beispiel erläutert.The invention is illustrated by the following example.
In Schneckenradgetrieben wie auch bei hochbelasteten Gleitelementen treten Gleitbeanspruchungen zwischen Werkstoffpaarungen unter sehr hohen Flächenpressungen auf. Gefordert sind Werkstoffe sehr hoher Festigkeit und ausreichender tribologischer Eigenschaften. Für diese Anwendungen ist die erfindungsgemäße CuSnFe-Legierung in besonderer Weise geeignet.Sliding stresses occur in worm gear transmissions as well as with highly loaded sliding elements between material pairings under very high surface pressures on. Materials with very high strength and sufficient tribological properties are required Characteristics. The CuSnFe alloy according to the invention is for these applications particularly suitable.
Zur Erzeugung eines für die Schneckenradfertigung geeigneten Halbzeugs wurde ein Bolzen CuSn15Fe0,8 durch Sprühkompaktieren gefertigt. Als Zerstäubergas wurde Stickstoff verwendet. Die für die durch geeignete Zusätze desoxidierten Legierungen typischen Phänomene der Schlackenbildung, des Abbrands und des Viskositätsanstiegs der Schmelze aufgrund von Oxidbildung konnten bei der erfindungsgemäßen Legierung trotz atmosphärischer Schmelzebedingungen vollständig vermieden werden. Festzustellen war ein leichter Fe-Abbrand von 0,85 Gew.% auf 0,75 Gew.% im gesprühten Bolzen, der jedoch für die Fertigung und die Funktion des Bauteils ohne Bedeutung blieb.To produce a semi-finished product suitable for worm gear production a bolt CuSn15Fe0.8 manufactured by spray compacting. As an atomizing gas nitrogen was used. Those for the alloys deoxidized by suitable additives typical phenomena of slag formation, burning and Viscosity increase in the melt due to oxide formation could in the inventive Alloy complete despite atmospheric melting conditions be avoided. A slight Fe erosion of 0.85% by weight was observed 0.75% by weight in the sprayed bolt, but for production and function of the component remained irrelevant.
Das Gefüge im gesprühten Zustand war gleichmäßig und metallographisch frei von Seigerungen. Nach spanender Bearbeitung des Bolzens erfolgte eine Warmumformung durch Strangpressen zu einer Stange mit Durchmesser 20 mm. Die Temperatur des Werkstoffs betrug dabei 650°C. Das Stangenmaterial wurde gerichtet.The structure in the sprayed state was uniform and metallographically free from Segregations. After the bolt had been machined, it was hot-worked by extrusion into a rod with a diameter of 20 mm. The temperature the material was 650 ° C. The bar stock was straightened.
Der Werkstoff lag nach der Warmumformung im weichen Zustand vor. Die mechanischen Eigenschaften wurden mit A10 = 53 %, Rp0.2 = 253 MPa, Rm = 548 MPa, HV = 133 ermittelt.The material was in the soft state after hot forming. The mechanical properties were determined with A 10 = 53%, R p0.2 = 253 MPa, R m = 548 MPa, HV = 133.
Zur Oberflächenegalisierung wurden die Stangen gebeizt. Die weitere Bearbeitung erfolgte durch Kaltziehprozesse, um die Festigkeitseigenschaften zu steigern. Die Umformung wurde in zwei Schritten durchgeführt. Im ersten Umformschritt wurden die Stangen auf einen Durchmesser von 17,9 mm gezogen, entsprechend einer Flächenreduktion von 20 % ( = 0,22). Ohne Zwischenglühung erfolgte der zweite Umformschritt an Durchmesser 15,5 mm. Die Gesamtumformung entsprach somit einer Flächenreduktion von 40 % ( = 0,51). Die Stangen wurden nachfolgend gerichtet.The bars were pickled for surface leveling. The further processing was carried out using cold drawing processes to increase the strength properties. The Forming was carried out in two steps. In the first forming step, the rods were drawn to a diameter of 17.9 mm, corresponding to one Area reduction of 20% ( = 0.22). The second was carried out without intermediate annealing Forming step on diameter 15.5 mm. The total forming thus corresponded an area reduction of 40% ( = 0.51). The bars were subsequently straightened.
Zur Vermeidung eines Werkstückverzugs während der spanenden Bearbeitung wurden innere Spannungen durch eine 4-stündige Glühbehandlung bei 300°C reduziert. Das Stangenmaterial zeigte abschließend folgende Eigenschaften: A10 = 5,8 %, Rp0.2 = 709 MPa, Rm = 865 MPa, HV10 = 265.To avoid workpiece distortion during machining, internal stresses were reduced by a 4-hour annealing treatment at 300 ° C. The rod material finally showed the following properties: A 10 = 5.8%, R p0.2 = 709 MPa , R m = 865 MPa, HV10 = 265.
In der folgenden Tabelle werden die erzielten Eigenschaften mit einer CuSn15,5-Legierung
verglichen, die - abgesehen vom Schmelzen - auf gleiche Weise verarbeitet
wurde. Der Schmelzprozeß erfolgte bei jener Legierung im Vakuum, so daß
auf desoxidierende Zusätze verzichtet werden konnte. Der prozeßtechnische Aufwand
der Fertigung des CuSn15,5-Werkstoffs war somit erheblich höher als der
Fertigungsaufwand von CuSn15,5Fe0,7.
Durch den Einsatz von 0,7 Gew.% Fe erzielt die erfindungsgemäße Legierung deutlich bessere mechanischen Eigenschaften als die Fe-freien Variante und ist damit auch besser für mechanisch beanspruchte Bauteile geeignet die bekannten zinnarmen CuSn-Knetlegierungen. Die Duktilitätskennwerte sind bei beiden Werkstoffen ähnlich, woraus zu folgern ist, daß Fe-Zusätze geeignet sind, die Entstehung von Poren und versprödender Oxidzeilen während des Urformens zu erschweren. Dies war nicht zu erwarten, weil diese Wirkung des Eisens in einer CuSn-Legierung bisher nicht bekannt war.The alloy according to the invention clearly achieves by using 0.7% by weight of Fe better mechanical properties than the Fe-free variant and is therefore the known tin arms are also more suitable for mechanically stressed components CuSn wrought alloys. The ductility parameters are for both materials similarly, from which it can be concluded that Fe additions are suitable for the formation of To make pores and embrittling oxide lines more difficult during the primary shaping. This was not to be expected because of this effect of iron in a CuSn alloy was not known.
Eine Glühbehandlung bei 650°C führt zur Entfestigung der Werkstoffe. Nach 3 h
Glühzeit stellten sich die in unten stehender Tabelle aufgeführten Eigenschaften ein:
Auffallend ist die geringe Entfestigung der erfindungsgemäßen Legierungen: Die Festigkeitskenngrößen übertreffen deutlich die einer konventionell urgeformten Zinnbronze mit 8 Gew.-% Sn, welche vergleichbar umgeformt und wärmebehandelt wurde. Dies führt zu dem Schluß, daß die Zinn-reichen Legierungen wesentlich bessere mechanische Eigenschaften bei hohen Temperaturen (d.h. Erweichungsbeständigkeit, Relaxationsbeständigkeit, Kriech- bzw. Zeitstandfestigkeit) aufweisen als die herkömmlichen CuSn-Knetlegierungen. Damit ist die erfindungsgemäße Legierung auch für den Einsatz unter erhöhter Temperatur geeignet.What is striking is the low softening of the alloys according to the invention: the strength parameters clearly exceed those of a conventionally shaped tin bronze with 8% by weight of Sn , which was similarly shaped and heat treated. This leads to the conclusion that the tin-rich alloys have significantly better mechanical properties at high temperatures (ie softening resistance, relaxation resistance, creep or creep resistance) than the conventional CuSn wrought alloys. The alloy according to the invention is therefore also suitable for use at elevated temperatures.
Im direkten Vergleich der Zinn-reichen, sprühkompaktierten Werkstoffe erreicht die Fe-haltige Legierung nach der Wärmebehandlung die höheren Festigkeitswerte, was Hinweis für eine höhere Temperaturbeständigkeit der mechanischen Eigenschaften ist.In a direct comparison of the tin-rich, spray-compacted materials the Fe-containing alloy after heat treatment the higher strength values, which indicates a higher temperature resistance of the mechanical properties is.
Anhand dieser Ergebnisse kann also gezeigt werden, daß der prozeßtechnische Aufwand zur Herstellung zinnreicher CuSn-Legierungen durch einen erhöhten Fe-Gehalt umgangen und eine Verbesserung der anwendungsrelevanten Werkstoffschaften erzielt werden kann. Die Aufgabe der Erfindung wird demnach gelöst.Based on these results it can be shown that the process engineering Effort to produce tin-rich CuSn alloys due to an increased Fe content bypassed and an improvement of the application-relevant material shafts can be achieved. The object of the invention is therefore achieved.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19928330A DE19928330C2 (en) | 1999-06-21 | 1999-06-21 | Use of a tin-rich copper-tin-iron wrought alloy |
DE19928330 | 1999-06-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1063310A1 true EP1063310A1 (en) | 2000-12-27 |
EP1063310B1 EP1063310B1 (en) | 2004-09-15 |
Family
ID=7911986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00111778A Expired - Lifetime EP1063310B1 (en) | 1999-06-21 | 2000-06-03 | Use of a tin rich copper-tin-iron alloy |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1063310B1 (en) |
JP (1) | JP2001064741A (en) |
AT (1) | ATE276378T1 (en) |
DE (2) | DE19928330C2 (en) |
ES (1) | ES2228344T3 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10107601B4 (en) * | 2001-02-17 | 2006-01-12 | Bühler Motor GmbH | worm component |
DE102006052384A1 (en) * | 2006-11-07 | 2008-05-08 | BÖGRA Technologie GmbH | Bearing shell pair from bronze alloy, useful as big end bearing and main bearing in combustion engines, comprises two semi-cylinder tube pieces, where the bronze alloy contains tin, nickel, zinc and elements of e.g. iron and manganese |
CN103964617B (en) * | 2014-05-09 | 2015-04-08 | 张志雄 | External screw copper alloy sea water desalting device |
DE102015012095A1 (en) | 2015-09-16 | 2017-03-16 | Audi Ag | Method for producing a component, component and motor vehicle with such a component |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1002966A (en) * | 1963-11-15 | 1965-09-02 | Philip Edward Hustwitt | Improvements in or relating to wire cloths |
US3615373A (en) * | 1968-06-14 | 1971-10-26 | Wangner Hermann | Alloy for papermaking wire |
US4732625A (en) * | 1985-07-29 | 1988-03-22 | Pfizer Inc. | Copper-nickel-tin-cobalt spinodal alloy |
JPS63235455A (en) * | 1987-03-20 | 1988-09-30 | Mitsubishi Electric Corp | Manufacture of high-strength copper alloy |
JPH0417635A (en) * | 1990-05-10 | 1992-01-22 | Hitachi Powdered Metals Co Ltd | Wear-resistant copper sintered alloy |
JPH0688156A (en) * | 1992-09-08 | 1994-03-29 | Honda Motor Co Ltd | Wear resistant cu series sintered alloy |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1928747A (en) * | 1928-10-11 | 1933-10-03 | Int Nickel Co | Nonferrous alloy |
DE659207C (en) * | 1935-12-10 | 1938-04-28 | Aeg | Process to increase the electrical conductivity of tin bronzes |
US2128954A (en) * | 1936-10-31 | 1938-09-06 | American Brass Co | Hot workable bronze |
US2128955A (en) * | 1937-11-26 | 1938-09-06 | American Brass Co | Hot workable phosphor bronze |
US2210670A (en) * | 1939-02-18 | 1940-08-06 | Westinghouse Electric & Mfg Co | Copper alloy |
CA980223A (en) * | 1972-10-10 | 1975-12-23 | John T. Plewes | Method for treating copper-nickel-tin alloy compositions and products produced therefrom |
US4016010A (en) * | 1976-02-06 | 1977-04-05 | Olin Corporation | Preparation of high strength copper base alloy |
-
1999
- 1999-06-21 DE DE19928330A patent/DE19928330C2/en not_active Expired - Fee Related
-
2000
- 2000-06-03 DE DE50007736T patent/DE50007736D1/en not_active Expired - Lifetime
- 2000-06-03 EP EP00111778A patent/EP1063310B1/en not_active Expired - Lifetime
- 2000-06-03 AT AT00111778T patent/ATE276378T1/en not_active IP Right Cessation
- 2000-06-03 ES ES00111778T patent/ES2228344T3/en not_active Expired - Lifetime
- 2000-06-19 JP JP2000182608A patent/JP2001064741A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1002966A (en) * | 1963-11-15 | 1965-09-02 | Philip Edward Hustwitt | Improvements in or relating to wire cloths |
US3615373A (en) * | 1968-06-14 | 1971-10-26 | Wangner Hermann | Alloy for papermaking wire |
US4732625A (en) * | 1985-07-29 | 1988-03-22 | Pfizer Inc. | Copper-nickel-tin-cobalt spinodal alloy |
JPS63235455A (en) * | 1987-03-20 | 1988-09-30 | Mitsubishi Electric Corp | Manufacture of high-strength copper alloy |
JPH0417635A (en) * | 1990-05-10 | 1992-01-22 | Hitachi Powdered Metals Co Ltd | Wear-resistant copper sintered alloy |
JPH0688156A (en) * | 1992-09-08 | 1994-03-29 | Honda Motor Co Ltd | Wear resistant cu series sintered alloy |
Non-Patent Citations (3)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 013, no. 039 (C - 563) 27 January 1989 (1989-01-27) * |
PATENT ABSTRACTS OF JAPAN vol. 016, no. 172 (C - 0933) 24 April 1992 (1992-04-24) * |
PATENT ABSTRACTS OF JAPAN vol. 018, no. 351 (C - 1220) 4 July 1994 (1994-07-04) * |
Also Published As
Publication number | Publication date |
---|---|
JP2001064741A (en) | 2001-03-13 |
DE50007736D1 (en) | 2004-10-21 |
EP1063310B1 (en) | 2004-09-15 |
DE19928330C2 (en) | 2003-01-16 |
ES2228344T3 (en) | 2005-04-16 |
ATE276378T1 (en) | 2004-10-15 |
DE19928330A1 (en) | 2001-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3143170B1 (en) | High-tensile brass alloy and alloy product | |
DE102013012259B3 (en) | Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material | |
DE3541781C2 (en) | Process for producing a component from a heat-resistant, high-strength, sintered aluminum alloy and a heat-resistant, high-strength aluminum alloy | |
EP3485049B1 (en) | Copper-nickel-tin alloy, method for the production and use thereof | |
EP3485050B1 (en) | Copper-nickel-tin alloy, method for the production and use thereof | |
EP3485047B1 (en) | Copper-nickel-tin alloy, method for the production and use thereof | |
DE102013002632B4 (en) | Aluminum-silicon diecasting alloy and method of making a die cast component | |
DE2900334A1 (en) | WEAR RESISTANT AND CORROSION RESISTANT STEEL WITH SUPERIOR ROLLING CONTACT ENERGY RESISTANCE AND A LOW CONTENT OF RETAINED AUSTENITE | |
EP3485051A1 (en) | Copper-nickel-tin alloy, method for the production and use thereof | |
EP2465956B1 (en) | Copper-tin multi-alloy bronze containing hard phases, method for producing same and use of same | |
EP3485048B1 (en) | Copper-nickel-tin-alloy, method for the production and use thereof | |
EP3423604B1 (en) | Copper alloy containing tin, method for producing same, and use of same | |
DE2116549C3 (en) | Process for the production of copper alloys, which have a high content of iron, cobalt and phosphorus, with high electrical conductivity and at the same time high strength | |
DE102011016318A1 (en) | Hard phase copper-tin multicomponent bronze, method of manufacture and use | |
DE19756815C2 (en) | Wrought copper alloy, process for producing a semi-finished product therefrom and its use | |
EP1063310B1 (en) | Use of a tin rich copper-tin-iron alloy | |
DE2255824A1 (en) | Process for the production of a zinc-based wrought alloy | |
EP3992317A1 (en) | Lead-free cu-zn base alloy | |
WO2017148569A1 (en) | Copper alloy containing tin, method for producing same, and use of same | |
DE910309C (en) | Iron and steel alloys with good machinability by cutting tools | |
EP0517087B1 (en) | Method for manufacturing copper alloys | |
DE19927646C5 (en) | Use of a tin-rich copper-tin-iron alloy | |
DE10306819A1 (en) | Copper alloy and use of such an alloy for casting molds | |
WO2016174020A1 (en) | Method of producing a hot or cold strip from a steel having increased copper content | |
DE1483228C (en) | Aluminum alloy with high creep strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000603 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20010315 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040915 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040915 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50007736 Country of ref document: DE Date of ref document: 20041021 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041215 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041215 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050124 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2228344 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050603 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050603 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20050616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: WIELAND-WERKE AG Free format text: WIELAND-WERKE AG# #89070 ULM (DE) -TRANSFER TO- WIELAND-WERKE AG# #89070 ULM (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20100610 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100615 Year of fee payment: 11 Ref country code: ES Payment date: 20100713 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100609 Year of fee payment: 11 |
|
BERE | Be: lapsed |
Owner name: *WIELAND-WERKE A.G. Effective date: 20110630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110603 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110604 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20130822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110604 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: HOLBEINSTRASSE 36-38, 4051 BASEL (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160601 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160516 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160621 Year of fee payment: 17 Ref country code: DE Payment date: 20160630 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20170613 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50007736 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170603 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170603 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |