EP2703508B1 - Aluminium alloy resistant to intercrystalline corrosion - Google Patents

Aluminium alloy resistant to intercrystalline corrosion Download PDF

Info

Publication number
EP2703508B1
EP2703508B1 EP12182038.5A EP12182038A EP2703508B1 EP 2703508 B1 EP2703508 B1 EP 2703508B1 EP 12182038 A EP12182038 A EP 12182038A EP 2703508 B1 EP2703508 B1 EP 2703508B1
Authority
EP
European Patent Office
Prior art keywords
aluminium alloy
alloy
strip
weight
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12182038.5A
Other languages
German (de)
French (fr)
Other versions
EP2703508A1 (en
Inventor
Olaf Dr. Engler
Henk-Jan Dr. Brinkman
Thomas Dr. Hentschel
Eike Brünger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES12182038.5T priority Critical patent/ES2569664T3/en
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to EP12182038.5A priority patent/EP2703508B1/en
Priority to PCT/EP2013/067481 priority patent/WO2014033048A1/en
Priority to RU2015111238A priority patent/RU2634822C2/en
Priority to CN201380045479.4A priority patent/CN104797727B/en
Priority to CA2882613A priority patent/CA2882613C/en
Priority to KR1020157007982A priority patent/KR101644584B1/en
Priority to JP2015528968A priority patent/JP5908178B2/en
Publication of EP2703508A1 publication Critical patent/EP2703508A1/en
Priority to US14/617,469 priority patent/US10113222B2/en
Application granted granted Critical
Publication of EP2703508B1 publication Critical patent/EP2703508B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the invention relates to an aluminum alloy, the use of an aluminum alloy strip or sheet, and a method for producing an aluminum alloy strip or sheet.
  • Aluminum magnesium (AlMg) alloys of type 5xxx are used in the form of sheets or plates or strips for the construction of welded or joined structures, in shipbuilding, automotive and aircraft construction. They are characterized by a particularly high strength, with increasing the magnesium content, the strength of the AlMg alloys increase.
  • Typical examples of the 5xxx aluminum alloys are, for example, aluminum alloys of the type AA 5049, AA 5454 or AA 5918.
  • the alloys are AlMg 2 Mn (5049) AlMg 3 Mn (5454) or AlMg 3.5 Mn (5918) aluminum alloys ,
  • the constant need for additional weight reduction requires aluminum alloys with higher strengths and thus with correspondingly higher magnesium (Mg-) held to provide the desired strengths.
  • AlMgMn aluminum alloys with Mg contents of more than 2.4% by weight are increasingly prone to intergranular corrosion when exposed to elevated temperatures for longer times. It has been found that in AlMgMn aluminum alloys containing more than 2.4% by weight of magnesium at temperatures of 70 to 200 ° C., ⁇ -Al 5 Mg 3 phases precipitate along the grain boundaries. If the Grain boundaries are consistently occupied with ⁇ -particles, in the presence of a corrosive medium, the dissolution of these ⁇ -phases can lead to a selective corrosion attack along the grain boundaries.
  • the aluminum alloy allows a content of up to 0.25 wt .-% zirconium, which is considered in terms of recycling of the aluminum alloy as critical. From the international patent application WO 99/42627 In addition, a zirconium-containing aluminum alloy is known, which indeed achieved very good results in the ASTM G67 test, but is problematic because of the necessarily present zirconium content in use.
  • the present invention has the object to provide an aluminum alloy is available, which has only a low tendency to intergranular corrosion, ie in the ASTM G67 test a mass loss value ⁇ 15 mg / cm 2 , at the same time high strength and good formability provides and Contains standard alloy components, so that the recycling of the aluminum alloy is simplified.
  • a use of the aluminum alloy and a method for the production of products of the aluminum alloy to be proposed.
  • the above-described object for an aluminum alloy is achieved by comprising alloy components which have the following composition in% by weight: 2.91% ⁇ Mg ⁇ 4.5%, 0.5% ⁇ Mn ⁇ 0.8%, 0.05% ⁇ Cu ⁇ 0.30%, 0.05% ⁇ Cr ⁇ 0.30%, 0, 05% ⁇ Zn ⁇ 0.9%, Fe ⁇ 0.40%, Si ⁇ 0.25%, Ti ⁇ 0.20%,
  • composition of the invention is based on the finding that the alloying components Zn, Cr, Cu and Mn at magnesium contents of at least 2.91 wt .-% suppresses the precipitation of ⁇ -Al 5 Mg 3 particles, by the presence of these alloying elements, the formation of ⁇ phases supported.
  • the alloying component zinc can for example serve to compensate for 2.3 times the amount of magnesium above 2.91% by weight of Mg, so that the resulting aluminum alloy shows only a very slight tendency to intergranular corrosion.
  • the efficiency of suppressing the intercrystalline corrosion or the excretion of ⁇ -phases decreases with the alloying components chromium, copper and manganese.
  • aluminum alloys can be provided in any case, which have relatively high magnesium contents and thus show higher strengths without these tend to intercrystalline corrosion after exposure to temperature. Higher strengths with comparable corrosion resistance is achieved at a Mg content of at least 3.0 wt .-%.
  • the aluminum alloy according to the invention In order to be able to produce the aluminum alloy according to the invention economically and, moreover, to have no negative effects with regard to formability and no or only slight changes in the physical properties of the aluminum alloy, for example during casting and rolling, it is advantageous according to a first embodiment of the aluminum alloy according to the invention, the following applies to the alloy components Zn, Cr, Cu and Mn: (2.3 *% Zn + 1.25 *% Cr + 0.65 *% Cu + 0.05 *% Mn) + 1.4 ⁇ % Mg.
  • an upper limit of the addition of the alloy components Zn, Cr, Cu and Mn is given to one To achieve the most economical production of aluminum alloy. Additions beyond this upper limit show no additional positive effect on the resistance to intergranular corrosion. In addition, unwanted side effects due to high contents of the alloy components in this embodiment of the aluminum alloy according to the invention can be excluded.
  • the alloying component Cu has the following content in% by weight: 0.05% ⁇ Cu ⁇ 0.20%, to make the aluminum alloy generally more corrosion resistant.
  • the formability can be maximized by the alloying component Cr having the following content in% by weight: 0.05% ⁇ Cr ⁇ 0.20%.
  • an aluminum alloy which is further optimized with respect to the addition of alloy components and which is resistant to intercrystalline corrosion is provided in that the alloy components Mg and Zn have the following contents in% by weight: 2.91% ⁇ Mg ⁇ 3.6% 0.05% ⁇ Zn ⁇ 0.75%.
  • the reduction of the upper limit of the magnesium content allows a further reduction of the maximum zinc concentration, so that a cost-optimized aluminum alloy with very high resistance to intergranular corrosion can be provided.
  • the Mg content of this embodiment is preferably 3.0% by weight to 3.6% by weight, in particular 3.4% by weight to 3.6% by weight.
  • the aluminum alloy according to the invention can be further optimized with respect to its strength by virtue of the content of the alloying component Mg being at least 3.6% by weight and not more than 4.5% by weight.
  • the increased magnesium contents cause a significant increase in the strength of the aluminum alloy with good formability. Due to the specific composition of the aluminum alloy according to the invention, this aluminum alloy shows only small mass losses ⁇ 15 mg / cm 2 despite the high Mg contents and is therefore free from intercrystalline corrosion according to ASTM G67.
  • the Mg content is limited to a maximum of 4.0 wt .-% in order to improve the corrosion behavior.
  • the aluminum alloys according to the invention are characterized in that, in addition to very good strength and formability, they also have a very good resistance to intergranular corrosion.
  • Chassis and structural components of vehicles, automobiles or aircraft are frequently exposed to heat sources, for example the exhaust gases of the internal combustion engine or other heat sources, so that aluminum alloys, which tend to undergo intercrystalline corrosion after a heat treatment, can not normally be used here.
  • heat sources for example the exhaust gases of the internal combustion engine or other heat sources
  • aluminum alloys which tend to undergo intercrystalline corrosion after a heat treatment
  • the use of an aluminum alloy strip or sheet according to the invention for the production of chassis and structural components also allows the use of higher-strength aluminum magnesium alloys with magnesium contents of at least 2.91 wt .-% in these applications due to the very good resistance to intergranular corrosion.
  • the higher strength aluminum bands or sheets allow the reduction of wall thickness due to the increased strength. In this respect, they contribute to the further weight reduction of vehicles, ships or even aircraft.
  • an aluminum alloy strip or sheet is used consisting of the aluminum alloy according to the invention for producing a chassis and structural part, which is arranged in the region of the engine, the exhaust system or other heat sources of a motor vehicle.
  • a typical example of this is a spring or wishbone of a motor vehicle. Areas of this component, especially if they are located close to the engine, are permanently exposed to increased heat input.
  • bands and sheets of erfindunmultien aluminum alloy new applications which are characterized by an increased heat input.
  • an aluminum alloy strip or sheet consisting of the aluminum alloy according to the invention when the chassis or structural components have at least one weld.
  • Welds are generally areas in which heat has entered the metal. This heat input can lead to intercrystalline corrosion, if the aluminum alloy tends to.
  • the ⁇ -phase precipitate responsible for the intercrystalline corrosion is largely suppressed, so that the component can be readily welded and yet it does not tend to intergranular corrosion.
  • an aluminum alloy strip or sheet of the aluminum alloy of the invention is particularly advantageous when the wall thickness of the aluminum alloy strip or sheet is 0.5 mm to 8 mm, optionally 1.5 to 5 mm. These wall thicknesses are very well suited to provide the necessary strength for a chassis or structural part.
  • the aluminum alloy according to the invention does not require any specific heat treatment step, for example a solution annealing step at the end of the production process, but the aluminum alloy can be produced highly economically with conventional equipment, for example batch ovens. It is also conceivable to provide a direct casting of the strip in place of the casting of a rolling bar, which is then subsequently hot and / or cold rolled.
  • Table 1 shows the chemical analyzes of the standard alloys ST 5049, ST 5454 and ST 5918 and the aluminum alloys V1, V2, V3 and V4 according to the invention.
  • Mg Compensation the value of the amount of magnesium compensated by the alloy components, which is referred to as "Mg Compensation” and calculated by the following formula, is given. (2.3 *% Zn + 1.25 *% Cr + 0.65 *% Cu + 0.05 *% Mn) + 2.4.
  • the minimum compensation is the value of the "compensated" Mg content, which is compensated at least by the alloy components Zn, Cr, Cu and Mn got to.
  • the value given in Table 1 therefore corresponds to the Mg content of the respective aluminum alloys.
  • the Mg compensation value is only relevant for aluminum alloys with magnesium contents of at least 2.91% by weight, this value is not recorded for the standard alloy ST 5049.
  • the other standard alloys ST 5454 and ST 5918 have a Mg compensation value which is below the magnesium content of the alloy. As is known, these alloys tend to intergranular corrosion under certain conditions. The reason is considered that the Mg content of these aluminum alloys is not sufficiently compensated. The situation is different for the aluminum alloys V1, V2, V3 and V4 according to the invention, whose Mg compensation value is significantly higher than the Mg content of the respective aluminum alloy in% by weight.
  • Rolling ingots were cast from all seven aluminum alloys and the ingots were cast at temperatures of 500 to Homogenized 550 ° C for at least two hours.
  • the billets thus produced were hot rolled to hot strip at hot rolling temperatures of 280 ° C to 500 ° C and then cold rolled to final thickness, with intermediate annealing and final annealing of the cold strip at temperatures between 300 and 400 ° C in a batch oven.
  • the strip thickness was 1.5 mm.
  • Sheets were removed from the strips produced and their mechanical properties were determined in a tensile test according to DIN EN 10002-1 perpendicular to the rolling direction.
  • the measured values are shown in Table 2. They show that the exemplary embodiment V1 according to the invention has, for example, a significantly higher tensile strength and yield strength than the standard alloy ST 5049.
  • the elongation values Ag for the uniform elongation and A 50 mm of the alloy strips according to the invention and the standard alloys do not differ significantly, so that it can be assumed that the aluminum alloys according to the invention have an identical formability as the standard alloys.
  • the alloy variant V2 also provides a higher tensile strength and a higher yield strength compared to the standard alloy ST 5454.
  • the aluminum alloys according to the invention have very good mechanical characteristics and can be processed identically to the comparable standard alloys.
  • test strips 50 mm long and 60 mm wide are cut from the sheet or strip and stored with or without thermal pretreatment in concentrated nitric acid at 30 ° C for 24 hours.
  • Nitric acid preferentially dissolves ⁇ -phases from the grain boundaries and thus causes a significant mass loss during the subsequent weight measurement, provided that ⁇ -phases precipitated in the sample along the grain boundaries are present.
  • the samples were subjected to a pre-treatment in the form of storage at elevated temperatures prior to a mass loss measurement according to ASTM G67.
  • ASTM G67 a mass loss measurement according to ASTM G67.
  • the samples were stored for 17, 100 and 500 hours at 130 ° C and then subjected to the mass loss test.
  • a storage was carried out for 100 hours at 100 ° C in order to achieve the comparability of the aluminum alloys according to the invention with those known from the prior art aluminum alloys.
  • Table 3 shows the respective experimental conditions of aging and the measured mass loss according to a test according to ASTM G67 in mg / cm 2 .
  • ASTM G67 intergranular corrosion-resistant aluminum alloys achieve 1 to 15 mg / cm 2 mass loss, whereas unstable 25 to 75 mg / cm 2 mass loss.
  • the standard alloy ST 5049 which has a relatively low magnesium content of 2.05% by weight, has the highest resistance to intergranular corrosion. Even with storage times of 500 hours at 130 ° C, this aluminum alloy does not change its corrosion behavior in the test. On the other hand, it also has the lowest mechanical strength values.
  • the standard alloy ST 5454 and ST 5918 standard alloy behave The ST 5454 was rated at 500 hours presensitization at 130 ° C a mass loss of 16.2 mg / cm 2. The mass loss of the ST 5918 also shows a very marked increase in the storage of the samples for 100 hours or for 500 hours at 130 ° C Mass loss after storage in concentrated nitric acid to a maximum of 30.9 mg / cm 2 . If one compares the aluminum alloys according to the invention during storage for 500 hours at 130.degree. C., then these are significantly more stable to intercrystalline corrosion in spite of similarly high magnesium contents.
  • the maximum mass loss of the aluminum alloy V4 according to the invention was 8.9 mg / cm 2 at 500 hours at 130 ° C. and thus lower by more than a factor of three than the standard alloy ST 5918. According to ASTM G67, it is considered stable to intercrystalline corrosion because of its Mass loss is less than 15 mg / cm 2 . Despite higher magnesium contents and higher strength values compared to the respective standard alloys ST5454 or ST5918, the aluminum alloy according to the invention is distinguished by excellent resistance to intergranular corrosion.

Description

Die Erfindung betrifft eine Aluminiumlegierung, die Verwendung eines Aluminiumlegierungsbandes oder -blechs sowie ein Verfahren zur Herstellung eines Aluminiumlegierungsbandes oder -blechs.The invention relates to an aluminum alloy, the use of an aluminum alloy strip or sheet, and a method for producing an aluminum alloy strip or sheet.

Aluminiummagnesium(AlMg-)Legierungen vom Typ 5xxx werden in Form von Blechen oder Platten bzw. Bändern für die Konstruktion von geschweißten oder gefügten Strukturen, im Schiffs-, Automobil- und Flugzeugbau verwendet. Sie zeichnen sich durch eine besonders hohe Festigkeit aus, wobei mit zunehmendem Magnesiumgehalt die Festigkeiten der AlMg-Legierungen steigen. Typische Vertreter für die Aluminiumlegierungen vom Typ 5xxx sind beispielsweise die Aluminiumlegierungen vom Typ AA 5049, AA 5454 oder AA 5918. Bei den Legierungen handelt es sich um AlMg2Mn (5049)-AlMg3Mn (5454)- bzw. AlMg3,5Mn (5918)- Aluminiumlegierungen. Das ständige Bedürfnis nach zusätzlicher Gewichtsreduzierung erfordert Aluminiumlegierungen mit höheren Festigkeiten und damit mit entsprechend höheren Magnesium(Mg-)gehalten, um die gewünschten Festigkeiten zur Verfügung zu stellen. Problematisch bei AlMgMn-Aluminiumlegierungen mit Mg-Gehalten von mehr als 2,4 Gew.-% ist, dass diese zunehmend zur interkristallinen Korrosion neigen, wenn sie für längere Zeiten erhöhten Temperaturen ausgesetzt sind. Man hat festgestellt, dass in AlMgMn-Aluminiumlegierungen mit mehr als 2,4 Gew.-% Magnesium bei Temperaturen von 70 bis 200°C β-Al5Mg3-Phasen entlang der Korngrenzen ausscheiden. Wenn die Korngrenzen durchgehend mit β-Partikeln belegt sind, kann bei Anwesenheit eines korrosiven Mediums die Auflösung dieser β-Phasen zu einem selektiven Korrosionsangriff entlang der Korngrenzen führen. Im Ergebnis führt dies dazu, dass Aluminiumlegierungen mit erhöhten Mg-Gehalten entweder nicht in wärmebelasteten Bereichen einsetzbar sind oder aufgrund der Wärmeentwicklung verringerte Mg-Gehalte aufweisen müssen, so dass die Ausscheidung von β-Al5Mg3-Partikeln minimiert wird, und eine durchgehende Korngrenzenbelegung mit β-Al5Mg3-Partikeln ausbleibt. Zu dieser Problematik gibt es im Stand der Technik bereits Lösungsvorschläge. Beispielsweise schlägt die deutsche Offenlegungsschrift DE 102 31 437 A1 vor, durch eine spezifische Aluminiumlegierungszusammensetzung die Anfälligkeit gegenüber interkristalliner Korrosion selbst nach einer Sensibilisierung durch Wärme deutlich zu reduzieren. Sie schlägt hierzu die folgende Aluminiumlegierungszusammensetzung vor:

        3,1 % < Mg < 4,5 %,

        0,4% < Mn < 0,85%,

        0,4 % < Zn < 0,8%,

        0,06 % < Cu < 0,35 %,

        Cr < 0,25 %,

        Fe < 0,35 %,

        Si < 0,2 %,

        Zr < 0,25 %,

        Ti < 0,3 %,

Aluminum magnesium (AlMg) alloys of type 5xxx are used in the form of sheets or plates or strips for the construction of welded or joined structures, in shipbuilding, automotive and aircraft construction. They are characterized by a particularly high strength, with increasing the magnesium content, the strength of the AlMg alloys increase. Typical examples of the 5xxx aluminum alloys are, for example, aluminum alloys of the type AA 5049, AA 5454 or AA 5918. The alloys are AlMg 2 Mn (5049) AlMg 3 Mn (5454) or AlMg 3.5 Mn (5918) aluminum alloys , The constant need for additional weight reduction requires aluminum alloys with higher strengths and thus with correspondingly higher magnesium (Mg-) held to provide the desired strengths. The problem with AlMgMn aluminum alloys with Mg contents of more than 2.4% by weight is that they are increasingly prone to intergranular corrosion when exposed to elevated temperatures for longer times. It has been found that in AlMgMn aluminum alloys containing more than 2.4% by weight of magnesium at temperatures of 70 to 200 ° C., β-Al 5 Mg 3 phases precipitate along the grain boundaries. If the Grain boundaries are consistently occupied with β-particles, in the presence of a corrosive medium, the dissolution of these β-phases can lead to a selective corrosion attack along the grain boundaries. As a result, aluminum alloys with increased Mg contents are either not usable in heat-stressed areas or have to have reduced Mg contents due to heat generation, thus minimizing the precipitation of β-Al 5 Mg 3 particles, and a continuous one Grain boundary occupancy with β-Al 5 Mg 3 particles fails. There are already proposed solutions to this problem in the prior art. For example, the German Offenlegungsschrift proposes DE 102 31 437 A1 to significantly reduce the susceptibility to intergranular corrosion by a specific aluminum alloy composition even after heat sensitization. It proposes the following aluminum alloy composition:

3.1% <Mg <4.5%,

0.4% <Mn <0.85%,

0.4% <Zn <0.8%,

0.06% <Cu <0.35%,

Cr <0.25%,

Fe <0.35%,

Si <0.2%,

Zr <0.25%,

Ti <0.3%,

Verunreinigungen jeweils ≤ 0,05 % und in Summe max. 0,15 %, Rest Al.Impurities ≤ 0.05% and in total max. 0.15%, balance Al.

Die amerikanische Offenlegungsschrift US 2007/187009 A1 zeigt spezifische Aluminiumlegierungsverbindungen und entsprechende Massenverlustmessungen nach ASTM G67. Für die gemessenen Proben C, D, E, F und J (nach 100 Std. bei 100°C) wird ein Massenverlust zwischen 6-22 mg/cm2 aufgezeigt.The American Patent Publication US 2007/187009 A1 shows specific aluminum alloy compounds and corresponding mass loss measurements according to ASTM G67. For the measured samples C, D, E, F and J (after 100 hours at 100 ° C) a mass loss between 6-22 mg / cm 2 is shown.

Es hat sich jedoch gezeigt, dass die Ergebnisse in Bezug auf die Anfälligkeit für interkristalline Korrosion, welche nach dem Standard ASTM G67 gemessen und bewertet wird, verbesserungsfähig sind. Darüber hinaus erlaubt die Aluminiumlegierung einen Gehalt an bis zum 0,25 Gew.-% Zirkonium, welches in Bezug auf das Recycling der Aluminiumlegierung als kritisch angesehen wird. Aus der internationalen Patentanmeldung WO 99/42627 ist darüber hinaus eine zirkoniumhaltige Aluminiumlegierung bekannt, welche zwar im ASTM G67 Test sehr gute Ergebnisse erzielte, allerdings aufgrund des zwingend vorhandenen Zirkoniumgehaltes im Einsatz problematisch ist.However, it has been found that the results with respect to the susceptibility to intergranular corrosion, which is measured and evaluated according to the standard ASTM G67, can be improved. In addition, the aluminum alloy allows a content of up to 0.25 wt .-% zirconium, which is considered in terms of recycling of the aluminum alloy as critical. From the international patent application WO 99/42627 In addition, a zirconium-containing aluminum alloy is known, which indeed achieved very good results in the ASTM G67 test, but is problematic because of the necessarily present zirconium content in use.

Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Aluminiumlegierung zur Verfügung zu stellen, welche nur eine geringe Neigung zur interkristallinen Korrosion aufweist, d.h. im ASTM G67 Test einem Massenverlustwert <15 mg/cm2, gleichzeitig hohe Festigkeiten und eine gute Umformbarkeit bereitstellt und Standardlegierungskomponenten enthält, so dass das Recycling der Aluminiumlegierung vereinfacht ist. Darüber hinaus soll eine Verwendung der Aluminiumlegierung sowie ein Verfahren zur Herstellung von Produkten aus der Aluminiumlegierung vorgeschlagen werden.On this basis, the present invention has the object to provide an aluminum alloy is available, which has only a low tendency to intergranular corrosion, ie in the ASTM G67 test a mass loss value <15 mg / cm 2 , at the same time high strength and good formability provides and Contains standard alloy components, so that the recycling of the aluminum alloy is simplified. In addition, a use of the aluminum alloy and a method for the production of products of the aluminum alloy to be proposed.

Gemäß einer ersten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe für eine Aluminiumlegierung dadurch gelöst, dass diese Legierungskomponenten umfasst, welche die folgende Zusammensetzung in Gew.-% aufweisen:

        2,91 % ≤ Mg ≤ 4,5 %,

        0,5% ≤ Mn ≤ 0,8 %,

        0,05 % ≤ Cu ≤ 0,30 %,

        0,05 % ≤ Cr ≤ 0,30 %,

        0, 05 % ≤ Zn ≤ 0,9 %,

        Fe ≤ 0,40 %,

        Si ≤ 0,25 %,

        Ti ≤ 0,20 %,

According to a first teaching of the present invention, the above-described object for an aluminum alloy is achieved by comprising alloy components which have the following composition in% by weight:

2.91% ≤ Mg ≤ 4.5%,

0.5% ≤ Mn ≤ 0.8%,

0.05% ≤ Cu ≤ 0.30%,

0.05% ≤ Cr ≤ 0.30%,

0, 05% ≤ Zn ≤ 0.9%,

Fe ≤ 0.40%,

Si ≤ 0.25%,

Ti ≤ 0.20%,

Rest Al und Verunreinigungen einzeln kleiner als 0,05 % in Summe max. 0,15 %, und wobei für die Legierungskomponenten Zn, Cr, Cu und Mn gilt:

        (2,3* %Zn + 1,25* %Cr + 0,65* %Cu + 0,05* %Mn) + 2,4 ≥ %Mg.

Residual Al and impurities individually less than 0.05% in total max. 0.15%, and wherein for the alloy components Zn, Cr, Cu and Mn:

(2.3 *% Zn + 1.25 *% Cr + 0.65 *% Cu + 0.05 *% Mn) + 2.4 ≥% Mg.

"%Zn", "%Cr", "%Cu", "%Mn" und "%Mg" entsprechen den Gehalten der Legierungskomponente jeweils in Gewichtsprozent. Die Erfindungsgemäße Zusammensetzung beruht auf der Erkenntnis, dass die Legierungskomponenten Zn, Cr, Cu und Mn bei Magnesiumgehalten von mindestens 2,91 Gew.-% die Ausscheidung von β-Al5Mg3-Partikeln unterdrückt, indem die Anwesenheit dieser Legierungselemente die Bildung von τ-Phasen unterstützt. Diese τ-Phasen vom Typ AlCuMgZn unterdrücken die β-Phasenbildung zu einem erheblichen Teil, so dass auch bei höheren Mg-Gehalten nur eine ganz geringe Neigung zur Ausbildung von β-Phasen bzw. β-Al5Mg3-Partikeln an den Korngrenzen besteht. Darüber hinaus können sich in Gegenwart der Legierungselemente Cr und Mn auch ε-Phasen vom Typ AlCrMgMn bilden, welche ebenfalls die β-Phasenbildung unterdrücken. Im Ergebnis ist die entsprechende Aluminiumlegierung nicht so anfällig für interkristalline Korrosion. Zusätzlich hat man herausgefunden, dass die Kompensierungseffizienz der einzelnen Legierungskomponenten"% Zn", "% Cr", "% Cu", "% Mn" and "% Mg" correspond to the contents of the alloy component in weight percent, respectively. The composition of the invention is based on the finding that the alloying components Zn, Cr, Cu and Mn at magnesium contents of at least 2.91 wt .-% suppresses the precipitation of β-Al 5 Mg 3 particles, by the presence of these alloying elements, the formation of τ phases supported. These τ-phases of the type AlCuMgZn suppress the β-phase formation to a considerable extent, so that even at higher Mg contents there is only a very slight tendency to form β-phase or β-Al 5 Mg 3 particles at the grain boundaries , In addition, in the presence of the alloying elements Cr and Mn, it is also possible to form ε-phases of the type AlCrMgMn, which likewise suppress the β-phase formation. As a result, the corresponding aluminum alloy is not so susceptible to intergranular corrosion. In addition, it has been found that the compensation efficiency of the individual alloy components

Zn, Cr, Cu und Mn unterschiedlich hoch ist. Die Legierungskomponente Zink kann beispielsweise zur Kompensierung der 2,3-fachen Magnesiummenge oberhalb von 2,91 Gew.-% Mg dienen, so dass die resultierende Aluminiumlegierung nur eine sehr geringe Neigung zur interkristallinen Korrosion zeigt. Die Effizienz zur Unterdrückung der interkristallinen Korrosion bzw. der Ausscheidung von β-Phasen sinkt bei den Legierungskomponenten Chrom, Kupfer und Mangan ab. Im Ergebnis können jedenfalls Aluminiumlegierungen zur Verfügung gestellt werden, welche relativ hohe Magnesiumgehalte aufweisen und insofern höhere Festigkeiten zeigen, ohne dass diese nach Temperatureinwirkung zur interkristallinen Korrosion neigen. Höhere Festigkeiten bei vergleichbarer Korrosionsbeständigkeit wird bei einem Mg-Gehalt von mindestens 3,0 Gew.-% erreicht.Zn, Cr, Cu and Mn are different. The alloying component zinc can for example serve to compensate for 2.3 times the amount of magnesium above 2.91% by weight of Mg, so that the resulting aluminum alloy shows only a very slight tendency to intergranular corrosion. The efficiency of suppressing the intercrystalline corrosion or the excretion of β-phases decreases with the alloying components chromium, copper and manganese. As a result, aluminum alloys can be provided in any case, which have relatively high magnesium contents and thus show higher strengths without these tend to intercrystalline corrosion after exposure to temperature. Higher strengths with comparable corrosion resistance is achieved at a Mg content of at least 3.0 wt .-%.

Um die erfindungsgemäße Aluminiumlegierung wirtschaftlich herstellen zu können und darüber hinaus keine negativen Effekte bezüglich der Umformbarkeit sowie keine oder nur geringe Änderungen der physikalischen Eigenschaften der Aluminiumlegierung beispielsweise beim Gießen und Walzen in Kauf nehmen zu müssen, ist es gemäß einer ersten Ausgestaltung der erfindungsgemäßen Aluminiumlegierung vorteilhaft, dass für die Legierungskomponenten Zn, Cr, Cu und Mn folgendes gilt:

        (2,3* %Zn + 1,25* %Cr + 0,65* %Cu + 0,05* %Mn) + 1,4 ≤ %Mg.

In order to be able to produce the aluminum alloy according to the invention economically and, moreover, to have no negative effects with regard to formability and no or only slight changes in the physical properties of the aluminum alloy, for example during casting and rolling, it is advantageous according to a first embodiment of the aluminum alloy according to the invention, the following applies to the alloy components Zn, Cr, Cu and Mn:

(2.3 *% Zn + 1.25 *% Cr + 0.65 *% Cu + 0.05 *% Mn) + 1.4 ≤% Mg.

Hiermit wird für eine Ausgestaltung der vorliegenden Erfindung eine Obergrenze der Zugabe der Legierungskomponenten Zn, Cr, Cu und Mn angegeben, um eine möglichst wirtschaftliche Herstellung der Aluminiumlegierung zu erzielen. Zugaben über diese Obergrenze hinaus zeigen keinen zusätzlichen positiven Effekt auf die Beständigkeit gegenüber interkristalliner Korrosion. Daneben können auch unerwünschte Nebeneffekte aufgrund hoher Gehalte der Legierungskomponenten bei dieser Ausgestaltung der erfindungsgemäßen Aluminiumlegierung ausgeschlossen werden.Hereby, for an embodiment of the present invention, an upper limit of the addition of the alloy components Zn, Cr, Cu and Mn is given to one To achieve the most economical production of aluminum alloy. Additions beyond this upper limit show no additional positive effect on the resistance to intergranular corrosion. In addition, unwanted side effects due to high contents of the alloy components in this embodiment of the aluminum alloy according to the invention can be excluded.

Vorzugsweise weist gemäß einer weiteren Ausführungsform der erfindungsgemäßen Aluminiumlegierung die Legierungskomponente Cu den folgenden Gehalt in Gew.-% auf:

        0,05 % ≤ Cu ≤ 0,20 %,

um die Aluminiumlegierung allgemein korrosionsbeständiger auszugestalten.
Preferably, according to a further embodiment of the aluminum alloy according to the invention, the alloying component Cu has the following content in% by weight:

0.05% ≤ Cu ≤ 0.20%,

to make the aluminum alloy generally more corrosion resistant.

Gemäß einer nächsten Ausgestaltung der erfindungsgemäßen Aluminiumlegierung kann die Umformbarkeit dadurch maximiert werden, dass die Legierungskomponente Cr den folgenden Gehalt in Gew.-% aufweist:

        0,05 % ≤ Cr ≤ 0,20 %.

According to a next embodiment of the aluminum alloy according to the invention, the formability can be maximized by the alloying component Cr having the following content in% by weight:

0.05% ≤ Cr ≤ 0.20%.

Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Aluminiumlegierung wird eine im Hinblick auf die Zugabe von Legierungskomponenten weiter optimierte, gegen interkristalline Korrosion beständige Aluminiumlegierung dadurch bereitgestellt, dass die Legierungskomponenten Mg und Zn folgende Gehalte in Gew.-% aufweisen:

        2,91 % ≤ Mg ≤ 3,6 %

        0,05 % ≤ Zn ≤ 0,75 %.

According to a further embodiment of the aluminum alloy according to the invention, an aluminum alloy which is further optimized with respect to the addition of alloy components and which is resistant to intercrystalline corrosion is provided in that the alloy components Mg and Zn have the following contents in% by weight:

2.91% ≤ Mg ≤ 3.6%

0.05% ≤ Zn ≤ 0.75%.

Die Verringerung der Obergrenze des Magnesiumanteils ermöglicht eine weitere Verringerung der maximalen Zinkkonzentration, so dass eine kostenoptimierte Aluminiumlegierung mit sehr hoher Beständigkeit gegen interkristalline Korrosion zur Verfügung gestellt werden kann. Vorzugsweise beträgt der Mg-Gehalt dieser Ausgestaltung 3,0 Gew.-% bis 3,6 Gew.-%, insbesondere 3,4 Gew.-% bis 3,6 Gew.-%.The reduction of the upper limit of the magnesium content allows a further reduction of the maximum zinc concentration, so that a cost-optimized aluminum alloy with very high resistance to intergranular corrosion can be provided. The Mg content of this embodiment is preferably 3.0% by weight to 3.6% by weight, in particular 3.4% by weight to 3.6% by weight.

In einer weiteren Ausgestaltung kann die erfindungsgemäße Aluminiumlegierung in Bezug auf ihre Festigkeit dadurch weiter optimiert werden, dass der Gehalt der Legierungskomponente Mg mindestens 3,6 Gew.-% und maximal 4,5 Gew.-% beträgt. Die erhöhten Magnesium-Gehalte verursachen eine deutliche Steigerung der Festigkeiten der Aluminiumlegierung bei gleichzeitig guter Umformbarkeit. Aufgrund der spezifischen Zusammensetzung der erfindungsgemäßen Aluminiumlegierung zeigt auch diese Aluminiumlegierung trotz der hohen Mg-Gehalte nur geringe Massenverluste <15mg/cm2 und ist somit nach ASTM G67 frei von interkristalliner Korrosion. Bevorzugt ist der Mg-Gehalt auf maximal 4,0 Gew.-% beschränkt, um das Korrosionsverhalten zu verbessern.In a further refinement, the aluminum alloy according to the invention can be further optimized with respect to its strength by virtue of the content of the alloying component Mg being at least 3.6% by weight and not more than 4.5% by weight. The increased magnesium contents cause a significant increase in the strength of the aluminum alloy with good formability. Due to the specific composition of the aluminum alloy according to the invention, this aluminum alloy shows only small mass losses <15 mg / cm 2 despite the high Mg contents and is therefore free from intercrystalline corrosion according to ASTM G67. Preferably, the Mg content is limited to a maximum of 4.0 wt .-% in order to improve the corrosion behavior.

Wie bereits zuvor ausgeführt, zeichnen sich die erfindungsgemäßen Aluminiumlegierungen dadurch aus, dass sie neben einer sehr guten Festigkeit und Umformbarkeit auch eine sehr gute Beständigkeit gegen interkristalline Korrosion aufweisen. Insofern wird die oben aufgezeigte Aufgabe gemäß einer weiteren Lehre der Erfindung durch die Verwendung eines Aluminiumlegierungsbandes oder -blechs aus einer erfindungsgemäßen Aluminiumlegierung zur Herstellung von Fahrwerk- und Strukturbauteilen im Fahrzeug-, flugzeug- oder Schiffbau gelöst.As already stated above, the aluminum alloys according to the invention are characterized in that, in addition to very good strength and formability, they also have a very good resistance to intergranular corrosion. In this respect, the above-indicated task according to Another teaching of the invention by the use of an aluminum alloy strip or sheet of a aluminum alloy according to the invention for the production of suspension and structural components in vehicle, aircraft or shipbuilding solved.

Fahrwerk- und Strukturbauteile von Fahrzeugen, Kraftfahrzeugen oder Flugzeugen sind häufig Wärmequellen, beispielsweise den Abgasen des Verbrennungsmotors oder anderen Wärmequellen ausgesetzt, so dass Aluminiumlegierungen, welche nach einer Wärmebehandlung zur interkristallinen Korrosion neigen, hier üblicher Weise nicht eingesetzt werden können. Die Verwendung eines erfindungsgemäßen Aluminiumlegierungsbandes oder -blechs zur Herstellung von Fahrwerk- und Strukturbauteilen ermöglicht indes aufgrund der sehr guten Beständigkeit gegen interkristalline Korrosion den Einsatz von höherfesten Aluminiummagnesiumlegierungen mit Magnesiumgehalten von mindestens 2,91 Gew.-% auch in diesen Anwendungsgebieten. Die höherfesten Aluminiumbänder oder -bleche ermöglichen die Reduzierung von Wandstärken aufgrund der erhöhten Festigkeiten. Insofern tragen sie zur weiteren Gewichtsreduzierung von Fahrzeugen, Schiffen oder auch Flugzeugen bei.Chassis and structural components of vehicles, automobiles or aircraft are frequently exposed to heat sources, for example the exhaust gases of the internal combustion engine or other heat sources, so that aluminum alloys, which tend to undergo intercrystalline corrosion after a heat treatment, can not normally be used here. However, the use of an aluminum alloy strip or sheet according to the invention for the production of chassis and structural components also allows the use of higher-strength aluminum magnesium alloys with magnesium contents of at least 2.91 wt .-% in these applications due to the very good resistance to intergranular corrosion. The higher strength aluminum bands or sheets allow the reduction of wall thickness due to the increased strength. In this respect, they contribute to the further weight reduction of vehicles, ships or even aircraft.

Bevorzugt wird ein Aluminiumlegierungsband oder -blech bestehend aus der erfindungsgemäßen Aluminiumlegierung zur Herstellung eines Fahrwerk- und Strukturteils verwendet, welches im Bereich des Motors, der Abgasanlage oder anderer Wärmequellen eines Kraftfahrzeugs angeordnet ist. Ein typisches Beispiel hierfür ist ein Feder- oder Querlenker eines Kraftfahrzeugs. Bereiche dieser Bauteil, insbesondere wenn sie motornah angeordnet sind, sind dauerhaft einem erhöhten Wärmeeintrag ausgesetzt. Gerade im Kraftfahrzeugbau, aber auch im Bau von Zügen, Flugzeugen und Schiffen eröffnen sich durch die Verwendung von Bändern und Blechen aus der erfindungemäßen Aluminiumlegierung neue Anwendungsbereiche, welche durch einen erhöhten Wärmeeintrag gekennzeichnet sind.Preferably, an aluminum alloy strip or sheet is used consisting of the aluminum alloy according to the invention for producing a chassis and structural part, which is arranged in the region of the engine, the exhaust system or other heat sources of a motor vehicle. A typical example of this is a spring or wishbone of a motor vehicle. Areas of this component, especially if they are located close to the engine, are permanently exposed to increased heat input. Especially in the automotive industry, but also in the construction of trains, airplanes and ships open up by the use of bands and sheets of erfindungemäßen aluminum alloy new applications, which are characterized by an increased heat input.

Besonders vorteilhaft ist die Verwendung eines Aluminiumlegierungsbandes oder -blechs bestehend aus der erfindungsgemäßen Aluminiumlegierung, dann wenn die Fahrwerk- oder Strukturbauteile mindestens eine Schweißnaht aufweisen. Schweißnähte sind generell Bereiche, in welchen ein Wärmeeintrag in das Metall erfolgt ist. Dieser Wärmeeintrag kann zu interkristalliner Korrosion führen, sofern die Aluminiumlegierung hierzu neigt. Bei den erfindungsgemäßen Aluminiumlegierungen hingegen, wird die für die interkristalline Korrosion verantwortliche β-Phasenausscheidung weitestgehend unterdrückt, so dass das Bauteil ohne weiteres verschweißt werden kann und es dennoch nicht zur interkristallinen Korrosion neigt.Particularly advantageous is the use of an aluminum alloy strip or sheet consisting of the aluminum alloy according to the invention, when the chassis or structural components have at least one weld. Welds are generally areas in which heat has entered the metal. This heat input can lead to intercrystalline corrosion, if the aluminum alloy tends to. In the case of the aluminum alloys according to the invention, by contrast, the β-phase precipitate responsible for the intercrystalline corrosion is largely suppressed, so that the component can be readily welded and yet it does not tend to intergranular corrosion.

Schließlich ist die Verwendung eines Aluminiumlegierungsbandes oder -blechs aus der erfindungsgemäßen Aliminiumlegierung besonders vorteilhaft, wenn die Wanddicke des Aluminiumlegierungsbandes oder -blechs 0,5 mm bis 8 mm, optional 1,5 bis 5 mm beträgt. Diese Wanddicken sind sehr gut geeignet, um die für ein Fahrwerk- oder Strukturteil notwendigen Festigkeit bereitstellen zu können.Finally, the use of an aluminum alloy strip or sheet of the aluminum alloy of the invention is particularly advantageous when the wall thickness of the aluminum alloy strip or sheet is 0.5 mm to 8 mm, optionally 1.5 to 5 mm. These wall thicknesses are very well suited to provide the necessary strength for a chassis or structural part.

Gemäß einer weiteren Lehre der vorliegenden Erfindung soll nun ein wirtschaftliches Herstellverfahren für ein Aluminiumlegierungsband oder -blech angegeben werden, welches aus der erfindungsgemäßen Aluminiumlegierung besteht. Dieses Verfahren umfasst folgende Schritte:

  • Gießen eines Walzbarrens
  • Homogenisieren des Walzbarrens bei 500 bis 550 °C für mindestens 2 Stunden,
  • Warmwalzen des Walzbarrens zu einem Warmband bei Warmwalztemperaturen von 280 °C bis 500 °C,
  • Kaltwalzen des Warmbandes mit oder ohne Zwischenglühung auf Enddicke und
  • Weichglühen des Kaltbandes bei 300 bis 400 °C in einem Batchofen.
According to another teaching of the present invention, an economical manufacturing method for an aluminum alloy strip or sheet is now given, which consists of the aluminum alloy according to the invention. This procedure comprises the following steps:
  • Pouring a rolled bar
  • Homogenizing the rolling ingot at 500 to 550 ° C for at least 2 hours,
  • Hot rolling the billet to a hot strip at hot rolling temperatures of 280 ° C to 500 ° C,
  • Cold rolling of the hot strip with or without intermediate annealing to final thickness and
  • Soft annealing of the cold strip at 300 to 400 ° C in a batch oven.

Entgegen den bisherigen Erfahrungen bedarf es bei der erfindungsgemäßen Aluminiumlegierung keines spezifischen Wärmebehandlungsschrittes, beispielsweise eines Lösungsglühschrittes am Ende des Herstellungsprozesses, sondern die Aluminiumlegierung kann mit konventionellem Equipment, beispielsweise Batchöfen, hoch wirtschaftlich hergestellt werden. Denkbar ist auch, an Stelle des Gießens eines Walzbarrens ein direktes Gießen des Bandes vorzusehen, welches dann anschließend warm- und/oder kaltgewalzt wird.Contrary to previous experience, the aluminum alloy according to the invention does not require any specific heat treatment step, for example a solution annealing step at the end of the production process, but the aluminum alloy can be produced highly economically with conventional equipment, for example batch ovens. It is also conceivable to provide a direct casting of the strip in place of the casting of a rolling bar, which is then subsequently hot and / or cold rolled.

Die Erfindung soll nun anhand von Ausführungsbeispielen näher erläutert werden. Tabelle 1 Legierung ST5049 ST5454 ST5918 V1 V2 V3 V4 konv. konv. konv. erf. erf. erf. erf. LegierungsKomponenten Mg 2,05 2,90 3,45 2,91 3,42 3,75 3,77 Mn 0,95 0,80 0,55 0,56 0, 6 0, 66 0,66 Si 0,15 0,15 0,15 0,13 0,12 0,12 0,12 Fe 0,4 0,30 0,30 0,24 0,24 0,24 0,25 Cu 0,06 0,03 0,02 0,15 0,2 0,25 0,13 Cr 0,01 0,07 0,16 0,065 0,11 0,16 0,16 Ti 0,01 0,01 0,01 0,013 0,014 0,014 0,016 Zn 0 0,00 0,00 0,4 0,5 0, 6 0,61 minimale Kompensierung 2,9 3,45 2,91 3,42 3,75 3,77 Mg-Kompensierung 2,547 2,6405 3,5155 3,8475 4,1755 4,1205 The invention will now be explained in more detail with reference to embodiments. <b> Table 1 </ b> alloy ST5049 ST5454 ST5918 V1 V2 V3 V4 conv. conv. conv. erf. erf. erf. erf. alloy components mg 2.05 2.90 3.45 2.91 3.42 3.75 3.77 Mn 0.95 0.80 0.55 0.56 0, 6 0, 66 0.66 Si 0.15 0.15 0.15 0.13 0.12 0.12 0.12 Fe 0.4 0.30 0.30 0.24 0.24 0.24 0.25 Cu 0.06 0.03 0.02 0.15 0.2 0.25 0.13 Cr 0.01 0.07 0.16 0,065 0.11 0.16 0.16 Ti 0.01 0.01 0.01 0,013 0,014 0,014 0.016 Zn 0 0.00 0.00 0.4 0.5 0, 6 0.61 minimal compensation 2.9 3.45 2.91 3.42 3.75 3.77 Mg compensation 2,547 2.6405 3.5155 3.8475 4.1755 4.1205

Zunächst zeigt die Tabelle 1 die chemischen Analysen der Standardlegierungen ST 5049, ST 5454 und ST 5918 sowie der erfindungsgemäßen Aluminiumlegierungen V1, V2, V3 und V4. Zusätzlich ist in der Tabelle 1 der Wert für die durch die Legierungskomponenten kompensierte Menge an Magnesium angegeben, welche als "Mg-Kompensierung" bezeichnet ist und über die folgende Formel berechnet wurde:

        (2,3* %Zn + 1,25* %Cr + 0,65* %Cu + 0,05* %Mn) + 2,4.

First, Table 1 shows the chemical analyzes of the standard alloys ST 5049, ST 5454 and ST 5918 and the aluminum alloys V1, V2, V3 and V4 according to the invention. In addition, in Table 1, the value of the amount of magnesium compensated by the alloy components, which is referred to as "Mg Compensation" and calculated by the following formula, is given.

(2.3 *% Zn + 1.25 *% Cr + 0.65 *% Cu + 0.05 *% Mn) + 2.4.

Als minimale Kompensierung ist der Wert des "kompensierten" Mg-Gehaltes angegeben, welcher mindestens durch die Legierungsbestandteile Zn, Cr, Cu und Mn kompensiert werden muss. Der in Tabelle 1 angegebene Wert entspricht daher dem Mg-Gehalt der jeweiligen Aluminiumlegierungen.The minimum compensation is the value of the "compensated" Mg content, which is compensated at least by the alloy components Zn, Cr, Cu and Mn got to. The value given in Table 1 therefore corresponds to the Mg content of the respective aluminum alloys.

Da der Mg-Kompensierungswert lediglich für Aluminiumlegierungen mit Magnesiumgehalten von mindestens als 2,91 Gew.-% relevant ist, ist dieser Wert für die Standardlegierung ST 5049 nicht eingetragen. Die übrigen Standardlegierungen ST 5454 sowie ST 5918 weisen einen Mg-Kompensierungswert auf, welcher unterhalb des Magnesiumgehaltes der Legierung liegt. Wie bekannt ist, neigen diese Legierung unter bestimmten Bedingungen zur interkristallinen Korrosion. Der Grund wird darin gesehen, dass der Mg-Gehalt dieser Aluminiumlegierungen nicht ausreichend kompensiert ist. Anders verhält es sich bei den erfindungsgemäßen Aluminiumlegierungen V1, V2, V3 und V4, deren Mg-Kompensierungswert deutlich über dem Mg-Gehalt der jeweiligen Aluminiumlegierung in Gew.-% liegt. Tabelle 2 Messgröße Rp0,2 Rm Ag A50mm Legierung MPa MPa % % ST5049 konv 99 215 16,4 21,9 ST5454 konv 118 246 17,4 21,8 ST5918 konv 129 264 18,1 19,8 V1 erf 115 246 16,2 20,7 V2 erf 125 271 18,5 21,3 V3 erf 132 288 15,8 20,6 V4 erf 133 289 18,7 22,0 Since the Mg compensation value is only relevant for aluminum alloys with magnesium contents of at least 2.91% by weight, this value is not recorded for the standard alloy ST 5049. The other standard alloys ST 5454 and ST 5918 have a Mg compensation value which is below the magnesium content of the alloy. As is known, these alloys tend to intergranular corrosion under certain conditions. The reason is considered that the Mg content of these aluminum alloys is not sufficiently compensated. The situation is different for the aluminum alloys V1, V2, V3 and V4 according to the invention, whose Mg compensation value is significantly higher than the Mg content of the respective aluminum alloy in% by weight. <b> Table 2 </ b> measurand R p0,2 R m A g A 50mm alloy MPa MPa % % ST5049 conv 99 215 16.4 21.9 ST5454 conv 118 246 17.4 21.8 ST5918 conv 129 264 18.1 19.8 V1 erf 115 246 16.2 20.7 V2 erf 125 271 18.5 21.3 V3 erf 132 288 15.8 20.6 V4 erf 133 289 18.7 22.0

Aus allen sieben Aluminiumlegierungen wurden Walzbarren gegossen und die Walzbarren bei Temperaturen von 500 bis 550 °C für mindestens zwei Stunden homogenisiert. Die so hergestellten Walzbarren wurden zu einem Warmband bei Warmwalztemperaturen von 280 °C bis 500 °C warmgewalzt und anschließend auf Enddicke kaltgewalzt, wobei eine Zwischenglühung stattfand und das abschließende Weichglühen des Kaltbandes bei Temperaturen zwischen 300 und 400 °C in einem Batchofen stattfand. Die Banddicke betrug 1,5 mm.Rolling ingots were cast from all seven aluminum alloys and the ingots were cast at temperatures of 500 to Homogenized 550 ° C for at least two hours. The billets thus produced were hot rolled to hot strip at hot rolling temperatures of 280 ° C to 500 ° C and then cold rolled to final thickness, with intermediate annealing and final annealing of the cold strip at temperatures between 300 and 400 ° C in a batch oven. The strip thickness was 1.5 mm.

Aus den hergestellten Bändern wurden Bleche entnommen und deren mechanische Kennwerte im Zugversuch nach DIN EN 10002-1 senkrecht zur Walzrichtung ermittelt. Die Messwerte sind in Tabelle 2 dargestellt. Sie zeigen, dass das erfindungsgemäße Ausführungsbeispiel V1 beispielsweise über eine deutlich höhere Zugfestigkeit und Streckgrenze als die Standardlegierung ST 5049 verfügt. Die Dehnungswerte Ag für die Gleichmaßdehnung und A50mm der erfindungsgemäßen Legierungsbänder und der Standardlegierungen unterscheiden sich nicht signifikant, so dass davon auszugehen ist, dass die erfindungsgemäßen Aluminiumlegierungen eine identische Umformbarkeit wie die Standardlegierungen aufweisen.Sheets were removed from the strips produced and their mechanical properties were determined in a tensile test according to DIN EN 10002-1 perpendicular to the rolling direction. The measured values are shown in Table 2. They show that the exemplary embodiment V1 according to the invention has, for example, a significantly higher tensile strength and yield strength than the standard alloy ST 5049. The elongation values Ag for the uniform elongation and A 50 mm of the alloy strips according to the invention and the standard alloys do not differ significantly, so that it can be assumed that the aluminum alloys according to the invention have an identical formability as the standard alloys.

Die Legierungsvariante V2 stellt im Vergleich zur Standardlegierung ST 5454 ebenfalls eine höhere Zugfestigkeit und eine höhere Streckgrenze zur Verfügung. Für die Gleichmaßdehnung Ag sowie die Dehnung A50mm ergeben sich auch für die erfindungsgemäße Variante V2 nahezu identische Werte zur Standardlegierung ST 5454. Gleiches gilt auch für die Varianten V3 und V4, welche im Vergleich zur konventionellen Aluminiumlegierungsvariante ST 5918 verbesserte Zugfestigkeitswerte und Streckgrenzen zeigen. Im Ergebnis haben die erfindungsgemäßen Aluminiumlegierungen sehr gute mechanische Kennwerte und können identisch zu den vergleichbaren Standardlegierungen verarbeitet werden.The alloy variant V2 also provides a higher tensile strength and a higher yield strength compared to the standard alloy ST 5454. For the uniform elongation Ag and the elongation A 50mm also arise for the inventive variant V2 almost identical values for standard alloy ST 5454. The same applies to the variants V3 and V4, which, when compared to conventional aluminum alloy variant ST 5918 improved tensile and yield strengths. As a result, the aluminum alloys according to the invention have very good mechanical characteristics and can be processed identically to the comparable standard alloys.

Die erfindungsgemäßen Ausführungsbeispiele sowie die konventionellen Ausführungsbeispiele wurden nun einem Korrosionstest gemäß ASTM G67 unterworfen, mit welchem durch die Messung des Massenverlusts die Anfälligkeit einer Aluminiumlegierung zur interkristallinen Korrosion gemessen werden kann. Bei diesem Test werden Teststreifen, die 50 mm lang und 60 mm breit sind, aus dem Blech oder Band ausgeschnitten und mit oder ohne thermische Vorbehandlung in konzentrierter Salpetersäure bei 30 °C für 24 Stunden gelagert. Salpetersäure löst bevorzugt β-Phasen aus den Korngrenzen heraus und verursacht dadurch bei der späteren Gewichtsmessung einen deutlichen Massenverlust, sofern in der Probe entlang der Korngrenzen ausgeschiedene β-Phasen vorhanden sind.The embodiments according to the invention and the conventional embodiments have now been subjected to a corrosion test according to ASTM G67, with which the susceptibility of an aluminum alloy to intergranular corrosion can be measured by measuring the mass loss. In this test, test strips 50 mm long and 60 mm wide are cut from the sheet or strip and stored with or without thermal pretreatment in concentrated nitric acid at 30 ° C for 24 hours. Nitric acid preferentially dissolves β-phases from the grain boundaries and thus causes a significant mass loss during the subsequent weight measurement, provided that β-phases precipitated in the sample along the grain boundaries are present.

Um die Anfälligkeit gegenüber interkristalliner Korrosion auch in wärmebelasteten Anwendungsbereichen zu ermitteln, wurden die Proben vor einer Massenverlustmessung nach ASTM G67 einer Vorbehandlung in Form einer Lagerung bei erhöhten Temperaturen unterzogen. Hierzu wurden die Proben für 17, 100 und 500 Stunden bei 130 °C gelagert und anschließend dem Massenverlusttest unterzogen. Darüber hinaus wurde aber auch eine Lagerung für 100 Stunden bei 100 °C durchgeführt, um die Vergleichbarkeit der erfindungsgemäßen Aluminiumlegierungen mit denen aus dem Stand der Technik bekannten Aluminiumlegierungen zu erreichen. Tabelle 3 Legierung Auslagerung ST5049 ST5454 ST5918 V1 V2 V3 V4 Ohne 1,1 1,1 1,3 1,3 1,6 2,0 1,8 17h 130°C 1,0 1,4 2,3 1,4 1,8 2,4 1,9 100h 130°C 1,0 5,6 11,3 1,5 2,4 3,5 2,9 500h 130°C 1,1 16,2 30,9 1,9 6,7 8,3 8,9 100h 100°C 1,0 2,1 5,2 1,4 2,1 2,6 2,1 In order to determine the susceptibility to intergranular corrosion also in heat-stressed applications, the samples were subjected to a pre-treatment in the form of storage at elevated temperatures prior to a mass loss measurement according to ASTM G67. For this purpose, the samples were stored for 17, 100 and 500 hours at 130 ° C and then subjected to the mass loss test. In addition, however, a storage was carried out for 100 hours at 100 ° C in order to achieve the comparability of the aluminum alloys according to the invention with those known from the prior art aluminum alloys. <b> Table 3 </ b> alloy outsourcing ST5049 ST5454 ST5918 V1 V2 V3 V4 Without 1.1 1.1 1.3 1.3 1.6 2.0 1.8 17h 130 ° C 1.0 1.4 2.3 1.4 1.8 2.4 1.9 100h 130 ° C 1.0 5.6 11.3 1.5 2.4 3.5 2.9 500h 130 ° C 1.1 16.2 30.9 1.9 6.7 8.3 8.9 100h 100 ° C 1.0 2.1 5.2 1.4 2.1 2.6 2.1

In Tabelle 3 sind die jeweiligen Versuchsbedingungen der Auslagerung und der gemessene Massenverlust nach einem Test gemäß ASTM G67 in mg/cm2 dargestellt. Gemäß ASTM G67 erreichen gegen interkristalline Korrosion beständige Aluminiumlegierungen 1 bis 15 mg/cm2 Massenverlust, wohingegen nicht beständige 25 bis 75 mg/cm2 Massenverlust aufweisen.Table 3 shows the respective experimental conditions of aging and the measured mass loss according to a test according to ASTM G67 in mg / cm 2 . According to ASTM G67, intergranular corrosion-resistant aluminum alloys achieve 1 to 15 mg / cm 2 mass loss, whereas unstable 25 to 75 mg / cm 2 mass loss.

Deutlich zu erkennen ist, dass die Standardlegierung ST 5049, welche einen relativ geringen Magnesiumgehalt von 2,05 Gew.-% aufweist, die höchste Beständigkeit gegen interkristalline Korrosion besitzt. Selbst bei Lagerungen von 500 Stunden bei 130 °C ändert diese Aluminiumlegierung ihr Korrosionsverhalten im Test nicht. Sie besitzt dagegen aber auch die geringsten mechanischen Festigkeitswerte.It can be clearly seen that the standard alloy ST 5049, which has a relatively low magnesium content of 2.05% by weight, has the highest resistance to intergranular corrosion. Even with storage times of 500 hours at 130 ° C, this aluminum alloy does not change its corrosion behavior in the test. On the other hand, it also has the lowest mechanical strength values.

Anders verhalten sich dagegen die Standardlegierung ST 5454 und die Standardlegierung ST 5918. Die ST 5454 hat bei 500 Stunden Vorsensibilisierung bei 130 °C einen Massenverlust von 16,2 mg/cm2. Der Massenverlust der ST 5918 zeigt bei Lagerung der Proben für 100 Stunden oder für 500 Stunden bei 130 °C ebenfalls einen sehr deutlichen Anstieg des Massenverlusts nach einer Lagerung in konzentrierter Salpetersäure auf maximal 30,9 mg/cm2. Vergleicht man hierzu die erfindungsgemäßen Aluminiumlegierungen bei Lagerung für 500 Stunden bei 130 °C, so sind diese deutlicher stabiler gegenüber interkristalliner Korrosion trotz ähnlich hoher Magnesiumgehalte.Unlike the other hand, the standard alloy ST 5454 and ST 5918. standard alloy behave The ST 5454 was rated at 500 hours presensitization at 130 ° C a mass loss of 16.2 mg / cm 2. The mass loss of the ST 5918 also shows a very marked increase in the storage of the samples for 100 hours or for 500 hours at 130 ° C Mass loss after storage in concentrated nitric acid to a maximum of 30.9 mg / cm 2 . If one compares the aluminum alloys according to the invention during storage for 500 hours at 130.degree. C., then these are significantly more stable to intercrystalline corrosion in spite of similarly high magnesium contents.

Der maximale Massenverlust der erfindungemäßen Aluminiumlegierung V4 betrug bei 500 Stunden bei 130 °C 8,9 mg/cm2 und damit um mehr als den Faktor drei niedriger als die Standardlegierung ST 5918. Gemäß ASTM G67 gilt sie als stabil gegenüber interkristalliner Korrosion, denn ihr Massenverlust ist geringer als 15 mg/cm2. Trotz im Vergleich zu den jeweiligen Standardlegierungen ST5454 oder ST5918 höheren Magnesiumgehalten und höheren Festigkeitswerte zeichnet sich die erfindungsgemäße Aluminiumlegierung durch eine hervorragende Beständigkeit gegenüber interkristalliner Korrosion aus.The maximum mass loss of the aluminum alloy V4 according to the invention was 8.9 mg / cm 2 at 500 hours at 130 ° C. and thus lower by more than a factor of three than the standard alloy ST 5918. According to ASTM G67, it is considered stable to intercrystalline corrosion because of its Mass loss is less than 15 mg / cm 2 . Despite higher magnesium contents and higher strength values compared to the respective standard alloys ST5454 or ST5918, the aluminum alloy according to the invention is distinguished by excellent resistance to intergranular corrosion.

Insbesondere zeigen die Vergleiche mit den aus dem Stand der Technik bekannten Ergebnissen für hochmagnesiumhaltige Aluminiumlegierungen, dass in dem ausgewählten Aluminiumlegierungsbereich eine deutliche Steigerung der Beständigkeit der Aluminiumlegierungen gegenüber interkristalliner Korrosion erreichbar ist, ohne Probleme im Hinblick auf Recycling oder hohe Herstellkosten in Kauf nehmen zu müssen.In particular, the comparisons with the prior art results for high magnesium aluminum alloys show that in the selected aluminum alloy range a significant increase in the resistance of the aluminum alloys to intergranular corrosion can be achieved without having to sacrifice recycling or high manufacturing costs.

Schließlich konnte auch gezeigt werden, dass auch die Verwendung von höchst wirtschaftlichen Batchöfen zur Durchführung von Weichglühungen genutzt werden können, um hochmagnesiumhaltige und gegen interkristalline Korrosion beständige Aluminiumlegierungen und Legierungsprodukte zur Verfügung zu stellen. Bisher war man davon ausgegangen, dass ein Lösungsglühen in einer kontinuierlichen Prozesslinie notwendig war, um eine Beständigkeit gegenüber interkristalliner Korrosion zu erreichen.Finally, it was also shown that the use of highly economical batch ovens can be used to carry out soft annealing to high magnesium and intercrystalline corrosion to provide stable aluminum alloys and alloy products. Until now, it had been assumed that solution annealing in a continuous process line was necessary to achieve resistance to intergranular corrosion.

Claims (11)

  1. Aluminium alloy comprising alloy components, which have the following composition in % by weight:

            2.91 % ≤ Mg ≤ 4.5 %,

            0.5% ≤ Mn ≤ 0.8 %,

            0.05 ≤ Cu ≤ 0.30 %,

            0.05 % ≤ Cr ≤ 0.30 %,

            0.05 % ≤ Zn ≤ 0.9 %,

            Fe ≤ 0.40 %,

            Si ≤ 0.25 %,

            Ti ≤ 0.20 %,

    the balance Al and impurities individually less than 0.05 % and in total a maximum of 0.15 % and wherein the following applies to the alloy components Zn, Cr, Cu and Mn:

            (2.3* %Zn + 1.25* %Cr + 0.65* %Cu + 0.05* %Mn) + 2.4 ≥ %Mg.

  2. Aluminium alloy according to Claim 1, characterised in that the following further applies to the alloy components Zn, Cr, Cu and Mn:

            (2.3* %Zn + 1.25* %Cr + 0.65* %Cu + 0.05* %Mn) + 1.4 ≤ %Mg.

  3. Aluminium alloy according to Claim 1 or 2, characterised in that the alloy component Cu has the following content in % by weight:

            0.05 % ≤ Cu ≤ 0.20 %.

  4. Aluminium alloy according to any one of Claims 1 to 3, characterised in that the alloy component Cr has the following content in % by weight:

            0.05 % ≤ Cr ≤ 0.20 %.

  5. Aluminium alloy according to any one of Claims 1 to 4, characterised in that the alloy components Mg and Zn have the following contents in % by weight:

            2.91 % ≤ Mg ≤ 3.6 %,

            0.05 % ≤ Zn ≤ 0.75 %.

  6. Aluminium alloy according to any one of Claims 1 to 5, characterised in that the content of the alloy component Mg is at least 3.6 % by weight and a maximum of 4.5 % by weight.
  7. Use of an aluminium alloy strip or sheet of an aluminium alloy according to any one of Claims 1 to 6 for producing chassis and structural components in vehicle, aircraft or ship construction.
  8. Use according to Claim 7, characterised in that the aluminium alloy strip or sheet is used for producing a chassis or structural component which is arranged in the region of the engine, the exhaust gas system or other heat sources of a motor vehicle.
  9. Use according to Claim 7 or 8, characterised in that the chassis or structural components have at least one weld seam.
  10. Use according to any one of Claims 7 to 9, characterised in that the wall thickness of the aluminium alloy strip or sheet is from 0.5 mm to 8 mm, optionally from 1.5 to 5 mm.
  11. Method for producing an aluminium alloy strip or sheet from an aluminium alloy according to any one of Claims 1 to 6 having the following steps:
    - casting a rolling ingot,
    - homogenising the rolling ingot at from 500 to 550 °C for at least 2 hours,
    - hot-rolling the rolling ingot to form a thermal strip at hot rolling temperatures of from 280 °C to 500 °C,
    - cold-rolling the hot strip with or without intermediate annealing to a final thickness, and
    - soft-annealing the cold strip at from 300 °C to 400 °C in a batch furnace.
EP12182038.5A 2012-08-28 2012-08-28 Aluminium alloy resistant to intercrystalline corrosion Active EP2703508B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP12182038.5A EP2703508B1 (en) 2012-08-28 2012-08-28 Aluminium alloy resistant to intercrystalline corrosion
ES12182038.5T ES2569664T3 (en) 2012-08-28 2012-08-28 Intercrystalline Corrosion Resistant Aluminum Alloy
RU2015111238A RU2634822C2 (en) 2012-08-28 2013-08-22 Aluminium alloy resistant to intercrystalline corrosion
CN201380045479.4A CN104797727B (en) 2012-08-28 2013-08-22 The aluminium alloy of intergranular corrosion resistance
PCT/EP2013/067481 WO2014033048A1 (en) 2012-08-28 2013-08-22 Aluminum alloy resistant to intercrystalline corrosion
CA2882613A CA2882613C (en) 2012-08-28 2013-08-22 Aluminium alloy which is resistant to intercrystalline corrosion
KR1020157007982A KR101644584B1 (en) 2012-08-28 2013-08-22 Aluminum alloy resistant to intercrystalline corrosion
JP2015528968A JP5908178B2 (en) 2012-08-28 2013-08-22 Aluminum alloy resistant to intergranular corrosion
US14/617,469 US10113222B2 (en) 2012-08-28 2015-02-09 Aluminium alloy which is resistant to intercrystalline corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12182038.5A EP2703508B1 (en) 2012-08-28 2012-08-28 Aluminium alloy resistant to intercrystalline corrosion

Publications (2)

Publication Number Publication Date
EP2703508A1 EP2703508A1 (en) 2014-03-05
EP2703508B1 true EP2703508B1 (en) 2016-03-30

Family

ID=46762890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12182038.5A Active EP2703508B1 (en) 2012-08-28 2012-08-28 Aluminium alloy resistant to intercrystalline corrosion

Country Status (9)

Country Link
US (1) US10113222B2 (en)
EP (1) EP2703508B1 (en)
JP (1) JP5908178B2 (en)
KR (1) KR101644584B1 (en)
CN (1) CN104797727B (en)
CA (1) CA2882613C (en)
ES (1) ES2569664T3 (en)
RU (1) RU2634822C2 (en)
WO (1) WO2014033048A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017312853B2 (en) * 2016-08-17 2019-09-19 Novelis Inc. Anodized aluminum with dark gray color
AU2019284797B2 (en) * 2018-06-11 2021-11-04 Novelis Koblenz Gmbh Method of manufacturing an Al-Mg-Mn alloy plate product having an improved corrosion resistance
KR102634398B1 (en) * 2018-12-10 2024-02-06 현대자동차주식회사 Aluminium alloy for a piston and the piston for an engine of a vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH638243A5 (en) * 1978-07-05 1983-09-15 Alusuisse METHOD FOR PRODUCING magnesium and zinc CONTAINING ALUMINUM ALLOY SHEETS.
JPH0463255A (en) * 1990-02-01 1992-02-28 Kobe Steel Ltd Production of al-mg alloy plate having high strength and high corrosion resistance
JP2001509208A (en) * 1996-12-04 2001-07-10 アルキャン・インターナショナル・リミテッド Aluminum alloy and manufacturing method
WO1999042627A1 (en) 1998-02-20 1999-08-26 Corus Aluminium Walzprodukte Gmbh Formable, high strength aluminium-magnesium alloy material for application in welded structures
US20030145912A1 (en) * 1998-02-20 2003-08-07 Haszler Alfred Johann Peter Formable, high strength aluminium-magnesium alloy material for application in welded structures
JP3853103B2 (en) * 1999-03-23 2006-12-06 株式会社神戸製鋼所 Method for producing aluminum alloy sheet with excellent openability
DE60002061T3 (en) * 1999-05-04 2008-11-13 Aleris Aluminum Koblenz Gmbh ALUMINUM MAGNESIUM ALLOY WITH IMPROVED RESISTANCE TO SLASH
JP2001064744A (en) * 1999-08-30 2001-03-13 Nippon Light Metal Co Ltd High strength aluminum alloy sheet suitable for spinning working and its production
DE10231437B4 (en) * 2001-08-10 2019-08-22 Corus Aluminium N.V. Process for producing an aluminum wrought alloy product
RU2230131C1 (en) * 2002-09-20 2004-06-10 Региональный общественный фонд содействия защите интеллектуальной собственности Alloy of the system of aluminum-magnesium-manganese and items made out of the alloy
RU2280705C2 (en) * 2004-09-15 2006-07-27 Открытое акционерное общество "Каменск-Уральский металлургический завод" Aluminum-based alloy and articles made from this alloy
EP1852251A1 (en) * 2006-05-02 2007-11-07 Aleris Aluminum Duffel BVBA Aluminium composite sheet material
CN101880803B (en) * 2010-07-30 2012-10-17 浙江巨科铝业有限公司 Al-Mg aluminum alloy for automobile body panel and method for producing same
CA2882691C (en) 2012-08-22 2017-11-07 Hydro Aluminium Rolled Products Gmbh Intercrystalline corrosion-resistant aluminum alloy strip, and method for the production thereof

Also Published As

Publication number Publication date
JP2015532680A (en) 2015-11-12
CN104797727A (en) 2015-07-22
KR20150070119A (en) 2015-06-24
US10113222B2 (en) 2018-10-30
EP2703508A1 (en) 2014-03-05
ES2569664T3 (en) 2016-05-12
CA2882613A1 (en) 2014-02-06
KR101644584B1 (en) 2016-08-01
US20170152589A9 (en) 2017-06-01
JP5908178B2 (en) 2016-04-26
WO2014033048A1 (en) 2014-03-06
CN104797727B (en) 2018-11-23
CA2882613C (en) 2016-10-11
RU2015111238A (en) 2016-10-27
US20150152537A1 (en) 2015-06-04
RU2634822C2 (en) 2017-11-03

Similar Documents

Publication Publication Date Title
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
EP2770071B2 (en) Aluminium alloy for the production of semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from this aluminium alloy and aluminium alloy strip and uses thereof
EP3390678B1 (en) High strength 6xxx aluminum alloys and methods of making the same
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
AT502294B1 (en) AL-ZN KNET ALLOY AND USE OF SUCH ALLOY
DE10392806B4 (en) Process for producing a high-strength balanced Al-Mg-Si alloy
DE112015000499B4 (en) Method for producing a plastically deformed aluminum alloy product
DE60021619T3 (en) brazing
DE60020890T2 (en) aluminum brazing alloy
EP2888382B1 (en) Aluminium alloy strip which is resistant to intercrystalline corrosion and method for producing same
EP2270249B1 (en) AlMgSi-sheet for applications with high shaping requirements
DE10116636C2 (en) Process for the production of AIMn strips or sheets
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
EP2888383B1 (en) Aluminium alloy strip which is resistant to intercrystalline corrosion and method for producing same
DE112016005830B4 (en) Metal gasket and process for its manufacture
DE112019000856T5 (en) Process for the manufacture of aluminum alloy components
EP2703508B1 (en) Aluminium alloy resistant to intercrystalline corrosion
EP3497256B1 (en) Aluminum alloy and aluminum alloy strip for pedestrian impact protection
DE10231437B4 (en) Process for producing an aluminum wrought alloy product
DE602004005529T2 (en) Wrought aluminum alloy
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
DE10231422A1 (en) Aluminum-magnesium alloy product
DE3225614A1 (en) HIGH-STRENGTH STAINLESS STEEL WITH EXCELLENT GRAIN LIMIT CORROSION crack resistance and machinability
EP2924135B1 (en) Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles
EP2450463B1 (en) Aluminium alloy

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151014

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUENGER, EIKE

Inventor name: DR. ENGLER, OLAF

Inventor name: DR. BRINKMAN, HENK-JAN

Inventor name: DR. HENTSCHEL, THOMAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 785477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006488

Country of ref document: DE

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2569664

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160512

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160701

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160730

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006488

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 785477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190821

Year of fee payment: 8

Ref country code: PT

Payment date: 20190719

Year of fee payment: 8

Ref country code: ES

Payment date: 20190924

Year of fee payment: 8

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200829

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012006488

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200829

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230823

Year of fee payment: 12

Ref country code: GB

Payment date: 20230823

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 12

Ref country code: DE

Payment date: 20230823

Year of fee payment: 12