EP2924135B1 - Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles - Google Patents

Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles Download PDF

Info

Publication number
EP2924135B1
EP2924135B1 EP14162348.8A EP14162348A EP2924135B1 EP 2924135 B1 EP2924135 B1 EP 2924135B1 EP 14162348 A EP14162348 A EP 14162348A EP 2924135 B1 EP2924135 B1 EP 2924135B1
Authority
EP
European Patent Office
Prior art keywords
weight
aluminium alloy
aluminum alloy
components
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14162348.8A
Other languages
German (de)
French (fr)
Other versions
EP2924135A1 (en
Inventor
Dr. Thomas Hentschel
Dr. Simon Miller-Jupp
Henk-Jan Brinkman
Dr. Olaf Engler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP14162348.8A priority Critical patent/EP2924135B1/en
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to EP17151174.4A priority patent/EP3178952B9/en
Priority to PT141623488T priority patent/PT2924135T/en
Priority to ES14162348.8T priority patent/ES2655434T3/en
Priority to PCT/EP2015/056733 priority patent/WO2015144888A2/en
Priority to CN201580017129.6A priority patent/CN106164311A/en
Priority to KR1020167030120A priority patent/KR101808812B1/en
Priority to CA2944061A priority patent/CA2944061C/en
Priority to KR1020177030782A priority patent/KR20170121336A/en
Priority to JP2016559550A priority patent/JP6279761B2/en
Priority to RU2016142403A priority patent/RU2655510C2/en
Publication of EP2924135A1 publication Critical patent/EP2924135A1/en
Priority to US15/270,601 priority patent/US10047424B2/en
Application granted granted Critical
Publication of EP2924135B1 publication Critical patent/EP2924135B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the invention relates to a method for producing a strip of an aluminum alloy, a corresponding aluminum alloy strip or sheet and a structural part of a motor vehicle consisting of an aluminum alloy sheet.
  • Semi-finished products and components for motor vehicles must meet different requirements depending on their place of use and purpose in the motor vehicle.
  • the forming properties of the aluminum alloy or of the strips and metal sheets produced therefrom are decisive.
  • the strength values but also, in particular, the corrosion properties play a significant role.
  • the mechanical properties are primarily determined by the rigidity, which depends above all on the shape of the inner door parts.
  • the tensile strength has a rather minor influence.
  • the materials used for a door inner part must not be too soft either.
  • good formability is particularly important for the introduction of aluminum alloy materials into the motor vehicle sector, since the components and semi-finished products undergo particularly complex forming processes during their production. This particularly relates to components that are manufactured in a one-piece sheet metal shell construction, such.
  • B. Interior panel door parts with integrated window frame area Such components have by the saving of integrated window frame area.
  • the aluminum alloy to be used should therefore be as resistant to corrosion as possible, in particular in the painted state against intercrystalline corrosion and against filiform corrosion.
  • Filiform corrosion is understood to mean a type of corrosion which occurs in coated components and exhibits a thread-like course. Filiform corrosion occurs at high humidity in the presence of chloride ions.
  • the aluminum alloy AA8006 AlFe1.5Mn 0.5
  • the alloy AA8006 is thus less suitable for coated, in particular painted components such as door inner parts.
  • an aluminum alloy is known as an alternative to the aluminum alloy of the type AA8006, which has the following alloy constituents in% by weight: Fe ā‡ 0 ,8th% . Si ā‡ 0 , 5% . 0.9 % ā‡ Mn ā‡ 1 , 5% . mg ā‡ 0 25% . Cu ā‡ 0 , 20% . Cr ā‡ 0 , 05% . Ti ā‡ 0 , 05% . V ā‡ 0 , 05% . Zr ā‡ 0 , 05% .
  • JP 2006-152358 A is an aluminum alloy for the production of beverage cans is known, which has high formability and strength.
  • the present invention therefore has for its object to provide a method for producing an aluminum alloy strip for the production of semi-finished products or components for motor vehicles, which is highly deformable, medium-strength and very resistant to corrosion.
  • an aluminum strip or sheet, its use and a structural part of a motor vehicle to be proposed.
  • the aluminum alloy for the production of semi-finished products or components of motor vehicles has the following alloy constituents in% by weight: 0.6 % ā‡ Si ā‡ 0 , 9% . 0.6 % ā‡ Fe ā‡ 1 , 0% . Cu ā‡ 0 ,1% . 0.6 % ā‡ Mn ā‡ 0 , 9% . 0.5 % ā‡ mg ā‡ 0 ,8th% . Cr ā‡ 0 , 05% .
  • the present aluminum alloy is based on the recognition that Al-Mg-Si alloys of the alloy type AA6XXX in the as-annealed state have a very good formability. However, they were too soft for the previous applications.
  • the lower limits of the forcibly provided alloying elements of 0.6 wt% for Si, 0.6 wt% for Fe, 0.6 wt% for Mn and 0.5 wt% for Mg ensure that the Aluminum alloy in soft annealed condition can provide sufficient strength.
  • the upper limits of 0.9% by weight for Si, 1.0% by weight for Fe, 0.9% by weight for Mn and 0.8% by weight for Mg prevent the elongation at break from dropping and thus the forming behavior is deteriorated.
  • the alloying elements Cu are limited to a maximum of 0.1% by weight and Cr to a maximum of 0.05% by weight.
  • the combination of the intended alloy components of Si, Fe, Mg and Mn ensures that, on the one hand, the very good forming behavior of the Al-Mg-Si alloys is combined with increased strength, without having too great losses in ductility.
  • the investigations showed that the specified aluminum alloy in annealed condition meets the requirements for formability and in particular for corrosion resistance and is thus suitable for the production of semi-finished products or components in motor vehicles.
  • the aluminum alloy according to the invention falls into the class of the Al-Mg-Si alloys of the alloy type AA6XXX. This allows for improved recyclability of this aluminum alloy when used in the scrap cycle with the in Automotive applications commonly used Al-Mg-Si alloys of alloy type AA6XXX be mixed.
  • the alloying constituents Si, Fe, Mn and Mg have the following proportions in% by weight: 0.7 % ā‡ Si ā‡ 0 , 9% . 0.7 % ā‡ Fe ā‡ 1 , 0% . 0.7 % ā‡ Mn ā‡ 0 , 9% and 0.6 % ā‡ mg ā‡ 0 ,8th% ,
  • a further improvement of the aluminum alloy in terms of maximum elongation at break is achieved in that the alloying constituents Si, Fe, Mn and Mg have the following proportions in% by weight: 0.7 % ā‡ Si ā‡ 0 ,8th% . 0.7 % ā‡ Fe ā‡ 0 ,8th% . 0.7 % ā‡ Mn ā‡ 0 ,8th% and 0.6 % ā‡ mg ā‡ 0 7% ,
  • the resistance to intergranular corrosion can be further improved in that the Si content of the alloy exceeds the Mg content by at most 0.2% by weight, preferably at most 0. 1 wt .-% exceeds.
  • the elongation at break of the aluminum alloy can be further improved by further reducing the Cr content to a maximum value of 0.01% by weight, preferably to a maximum of 0.001% by weight. It has been shown that chromium has a negative effect on the elongation at break even in very low concentrations.
  • a similar effect also has the reduction of the Cu contents to a maximum of 0.05 wt .-%, preferably at most 0.01 wt .-%, at the same time the tendency to filiform corrosion or intergranular corrosion by reducing the Cu contents generally returns.
  • the hot rolling temperatures allow good recrystallization during hot rolling, so that the structure is as fine as possible after hot rolling.
  • this fine-grained structure is merely stretched and recrystallized again in the final soft annealing.
  • the cold rolling produces a particularly high number of dislocations in the microstructure, which produces a very fine-grained, thoroughly recrystallised microstructure in the final soft annealing.
  • the Abwalzgrad to final thickness before the final annealing must have at least 50%, preferably at least 70% to the desired final thickness.
  • a further positive influence on the fine grain of the structure can be achieved that according to a further embodiment of the method according to the invention, the homogenization is carried out in two stages, the ingot is first heated to 550 Ā° C to 600 Ā° C for at least 0.5 h and then the Rolling bar at 450 Ā° C to 550 Ā° for at least 0.5 h, preferably at least 2 h is maintained. Subsequently, the rolling ingot is hot rolled.
  • the corrosion properties can be improved by milling the billet after casting or after homogenization on the top and bottom to exclude impurities from the top and bottom of the rolling billet, which can adversely affect the corrosion resistance.
  • the method according to the invention at least one intermediate annealing after a first cold rolling in a Temperature of 300 Ā° C to 400 Ā° C, preferably at a temperature of 330 Ā° C to 370 Ā° C for at least 0.5 h, wherein before and after the intermediate annealing the Abwalzgrad is at least 50%, preferably at least 70%. Due to the selected degrees of finish before the intermediate annealing or after the intermediate annealing, it is achieved that the microstructure is thoroughly recrystallized during the intermediate annealing.
  • the intermediate annealing time is at least 0.5 h, preferably at least 2 h.
  • the above object is achieved by an aluminum alloy strip or sheet made of an aluminum alloy mentioned above, wherein the strip has a thickness of 0.2 mm to 5 mm and in the soft annealed state, a yield strength R p0.2 of at least 45 MPa and an equi- elongation Ag of at least 23% and an elongation at break A 80mm of not less than 35%.
  • the conditions are given that the aluminum alloy strip or sheet can be used for components in the motor vehicle, which in addition to very good forming properties and a very good Have resistance to intergranular corrosion or filiform corrosion. This is especially true for painted or coated components.
  • the use of the aluminum alloy strip according to the invention for the production of semi-finished products or components of a motor vehicle, in particular structural parts of a motor vehicle solves the above-mentioned Task.
  • structural parts can be produced with very large degrees of deformation and assume very complex shapes without requiring particularly complicated forming operations.
  • these are also particularly resistant to corrosion in lacquered form, in particular against intergranular corrosion and filiform corrosion.
  • the object indicated is achieved by a structural part of a motor vehicle, in particular a door inner part of a motor vehicle comprising at least one formed sheet of an aluminum alloy strip according to the invention.
  • a structural part of a motor vehicle in particular a door inner part of a motor vehicle comprising at least one formed sheet of an aluminum alloy strip according to the invention.
  • the structural part according to the invention is produced from a strip which has been produced by the method according to the invention. It has been shown that with the method according to the invention, the forming properties as well as the strength properties of the structural part can be achieved in a process-reliable manner, so that an economic production of the structural parts which meet the conditions mentioned, is possible.
  • a first embodiment in a schematic flow diagram now shows Fig. 1 ,
  • the rolling ingot is cast, for example in the DC continuous casting process or in the strip casting process.
  • the bar is then heated to a temperature of 500 Ā° C to 600 Ā° C and held for at least 0.5 h, preferably at least 2 h at this temperature for homogenization.
  • the so homogenized ingot is then hot rolled at a temperature of 280 Ā° C to 500 Ā° C, preferably 300 Ā° C to 400 Ā° C to a final thickness of 3 to 12 mm.
  • step 8 a cold rolling to final thickness, followed by a recrystallizing final soft annealing according to step 10 followed.
  • the degree of rolling must be at least 50%, preferably at least 70%, in order to produce a sufficiently fine-grained microstructure in the final soft annealing.
  • the final soft annealing at which the strip recrystallizes again, takes place in the chamber furnace at 300 Ā° C. to 400 Ā° C., preferably at 330 Ā° C. to 370 Ā° C. in step 10.
  • the alloy components according to the invention of Mg, Si, Fe and Mn, the use is a continuous furnace for the production of the aluminum alloy strip according to the invention is not possible because other structures would be provided due to the different heating and cooling rates.
  • milling may also be performed according to step 12 of the top and bottom of the rolling billet to minimize the impact of contaminants at the edges of the billets in the ingot fabrication on the finished product. In particular, this has a positive influence on the corrosion resistance of the components.
  • Fig. 2 now shows another flowchart which shows the step 16 of the homogenization as an alternative to step 4.
  • the homogenization has an influence on the fine grain of the desired end structure of the strip or finished component.
  • the homogenization is carried out in several stages. So instead of step 4 in Fig. 1 in Fig. 2 a Homogenticians Republic 16 performed.
  • the homogenization step 16 initially has a first homogenization phase, step 18, in which the milled or unmilled roll ingot is heated to a temperature of 550 Ā° C. to 600 Ā° C. for at least 0.5 h, preferably at least 2 h.
  • step 20 the so heated ingot is cooled to a temperature of 450 Ā° C to 550 Ā° C and held at this temperature for at least 0.5 h, preferably at least 2 h, which in Fig. 2 is shown in step 22.
  • the ingot may also be cooled to room temperature in a step 24 and heated in a subsequent step 26 to the temperature for the second homogenization. This is necessary, for example, if the rolling ingot has to be stored between the homogenization step.
  • this phase can be used at room temperature to mill the ingot at the top and bottom, step 28.
  • the hot rolling is carried out as in Fig. 1 represented with the parameters specified there. It has been shown that the multi-stage homogenization, in particular the two-stage homogenization leads to a finer structure in the final product.
  • Variants 1 to 4 and 9 and 10 are comparative examples which do not correspond to the aluminum alloy according to the invention.
  • embodiments 5 to 8 correspond to the aluminum alloy compositions claimed according to the invention.
  • both the yield strength R p0 , 2 , the tensile strength R m , the uniform elongation Ag, the elongation at break A were measured 80 mm and the draft SZ 32 obtained in the ironing was measured in millimeters.
  • the values for the yield strength R p0.2 and the tensile strength R m were measured in the tensile test perpendicular to the rolling direction of the sheet according to DIN EN ISO 6892-1: 2009.
  • the uniform elongation Ag and the elongation at break A were measured 80 mm in each case perpendicular to the rolling direction of the sheet with a flat tensile specimen according to DIN EN ISO 6892-1: 2009, Annex B, Form 2.
  • the forming behavior can also be used in a Stretch drawing test SZ 32 can be measured by a cupping test according to Erikson (DIN EN ISO 20482), in which a test piece is pressed against the sheet, so that a cold deformation occurs. During cold working, the force as well as the punch travel of the test specimen are measured until there is a load drop, which causes the formation of a crack.
  • the cupping test was carried out with a punch head diameter of 32 mm and die diameter of 35.4 mm coordinated with the sheet metal blanket with the aid of a Teflon drawing film to reduce friction. The overview of the results is shown in Table 2.
  • V Table 2 variant (V): Comparison (E) invention R p0.2 N / mm 2 R m N / mm 2 A g % A 80mm % SZ 32 mm 1 V 65 145 19.6 26.5 15.8 2 V 52 131 21.9 30.3 16.2 3 V 60 135 22.7 30.3 16.4 4 V 51 122 22.3 33.5 15.6 5 e 48 112 23.1 35.3 16.0 6 e 47 118 23.5 35.0 16.5 7 e 50 120 23.4 36.2 16.1 8th e 47 112 23.8 36.6 15.0 9 V 41 98 23.6 37.9 16.5 10 V 41 102 24.2 38.0 16.3
  • the exemplary embodiments show that excessive reduction of the contents Si, Fe, Mn, Mg with an increase in the contents of Cu and Cr results in the yield limit values above 45 MPa remains, but the elongation at break drops significantly to about 30%. This effect can also be demonstrated if the Mn content alone is 1.0%, for example, which already pushes the breaking elongation A 80 mm below 35%, variant 4.
  • the variants 9 and 10 show the effect of reduced contents of Si, Fe, Mn and Mg. Comparative Examples 9 and 10 show a very good elongation at break A 80mm with more than 35%, however, the yield strength with 41 MPa is below that of the inventive embodiments 5 to 8.
  • the embodiments according to the invention showed a very good forming behavior, especially in the case of strong deformations, which can be deduced from the very good stretch drawing results SZ 32 and the high elongation values both in the uniform expansion Ag and in the elongation at break A 80 mm . From this it can be seen that overall the interaction of the alloy contents Si, Fe, Mn, Mg is important, whereby the components Cr and Cu have to be kept particularly low, preferably the Cu content is ā‡ 0.05 wt.%, Preferably ā‡ 0.01 wt% and the chromium content ā‡ 0.01 wt%, preferably ā‡ 0.001 wt%.
  • Coupled with the very good corrosion resistance of the embodiments can be provided for vehicles semi-finished products and components, in particular structural components such as door inner parts, which not only ensures the specifications of the field of application in terms of mechanical and chemical properties, but can be economically produced by a few forming operations.
  • the aluminum alloy strips according to the invention are therefore ideally suited, for example, structural parts of a motor vehicle, such as in Fig. 3 to provide shown door inner parts 30 and to be used for their preparation.
  • the door inner part is made of a sheet metal of an aluminum alloy according to the invention with a thickness of 1.5 mm, which provides only by forming operations, but without joining operations a window frame.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bandes aus einer Aluminiumlegierung, ein entsprechendes Aluminiumlegierungsband oder -blech sowie ein Strukturteil eines Kraftfahrzeugs bestehend aus einem Aluminiumlegierungsblech.The invention relates to a method for producing a strip of an aluminum alloy, a corresponding aluminum alloy strip or sheet and a structural part of a motor vehicle consisting of an aluminum alloy sheet.

Halbzeuge und Bauteile fĆ¼r Kraftfahrzeuge mĆ¼ssen abhƤngig von Ihrem Einsatzort und Einsatzzweck im Kraftfahrzeug unterschiedliche Anforderungen erfĆ¼llen. WƤhrend der Herstellung der Halbzeuge und Bauteile fĆ¼r Kraftfahrzeuge sind die Umformeigenschaften der Aluminiumlegierung bzw. der daraus hergestellten BƤnder und Bleche entscheidend. Beim spƤteren Einsatz im Kraftfahrzeug spielen die Festigkeitswerte aber auch insbesondere die Korrosionseigenschaften eine erhebliche Rolle.Semi-finished products and components for motor vehicles must meet different requirements depending on their place of use and purpose in the motor vehicle. During the manufacture of the semi-finished products and components for motor vehicles, the forming properties of the aluminum alloy or of the strips and metal sheets produced therefrom are decisive. During later use in motor vehicles, the strength values but also, in particular, the corrosion properties play a significant role.

Beispielsweise werden bei Strukturteilen eines Kraftfahrzeugs, wie beispielsweise TĆ¼rinnenteilen, die mechanischen Eigenschaften vorwiegend durch die Steifigkeit bestimmt, welche vor allem von der Formgebung der TĆ¼rinnenteile abhƤngt. DemgegenĆ¼ber hat beispielsweise die Zugfestigkeit einen eher untergeordneten Einfluss. Allerdings dĆ¼rfen die verwendeten Werkstoffe fĆ¼r ein TĆ¼rinnenteil auch nicht zu weich sein. Eine gute Umformbarkeit ist dagegen fĆ¼r die EinfĆ¼hrung von Aluminiumlegierungswerkstoffen in den Kraftfahrzeugbereich besonders wichtig, da die Bauteile und Halbzeuge bei deren Herstellung besonders komplexe Umformprozesse durchlaufen. Dies betrifft insbesondere Bauteile, die in einer einteiligen Blechschalenbauweise hergestellt werden, wie z. B. BlechinnentĆ¼rteile mit integriertem Fensterrahmenbereich. Solche Bauteile haben durch die Einsparung von integriertem Fensterrahmenbereich. Solche Bauteile haben durch die Einsparung von FĆ¼geoperationen erhebliche Kostenvorteile gegenĆ¼ber einer beispielweise gefĆ¼gten Aluminiumprofillƶsung fĆ¼r den Fensterrahmen. Ziel ist es beispielsweise Halbzeuge oder Bauteile einteilig aus einer Aluminiumlegierung herstellen zu kƶnnen und dabei mƶglichst wenige Umformoperationen anzuwenden. Dies erfordert eine Maximierung des Umformverhaltens der einzusetzenden Aluminiumlegierung. Die fĆ¼r Ƥhnliche Anwendungen gelegentlich eingesetzte Aluminiumlegierung vom Typ AA5005 (AlMg1) erfĆ¼llt diese Voraussetzungen nicht, da diese aufgrund von Verfestigungen beim Umformen kein ausreichendes Umformvermƶgen besitzt.For example, in structural parts of a motor vehicle, such as, for example, door inner parts, the mechanical properties are primarily determined by the rigidity, which depends above all on the shape of the inner door parts. In contrast, for example, the tensile strength has a rather minor influence. However, the materials used for a door inner part must not be too soft either. On the other hand, good formability is particularly important for the introduction of aluminum alloy materials into the motor vehicle sector, since the components and semi-finished products undergo particularly complex forming processes during their production. This particularly relates to components that are manufactured in a one-piece sheet metal shell construction, such. B. Interior panel door parts with integrated window frame area. Such components have by the saving of integrated window frame area. By eliminating joining operations, such components have considerable cost advantages compared to, for example, a fitted aluminum profile solution for the window frame. The aim is, for example, to be able to produce semi-finished products or components in one piece from an aluminum alloy and to use as few forming operations as possible. This requires maximizing the forming behavior of the aluminum alloy to be used. The AA5005 aluminum alloy (AlMg1), which is sometimes used for similar applications, does not meet these requirements since it does not have sufficient forming capacity due to solidification during forming.

Eine weitere wichtige Rolle spielt die KorrosionsbestƤndigkeit, da Bauteile von Kraftfahrzeugen hƤufig Schwitzwasser, Spritzwasser und Kondenswasser ausgesetzt sind. Die zu verwendende Aluminiumlegierung sollte daher mƶglichst korrosionsbestƤndig, insbesondere im lackierten Zustand gegenĆ¼ber interkristalliner Korrosion und gegen Filiform-Korrosion sein. Unter Filiform-Korrosion wird ein Korrosionstyp verstanden, der bei beschichteten Bauteilen auftritt und ein fadenfƶrmigen Verlauf aufzeigt. Die Filiform-Korrosion tritt bei hoher Luftfeuchtigkeit in Gegenwart von Chlorid-Ionen auf. Die Aluminiumlegierung vom Typ AA8006 (AlFe1,5Mn 0,5) weist zwar eine ausreichende Festigkeit und eine sehr hohe Umformbarkeit auf, sie ist aber anfƤllig fĆ¼r Filiform-Korrosion. Die Legierung AA8006 ist damit fĆ¼r beschichtete, insbesondere lackierte Bauteile wie TĆ¼rinnenteile weniger geeignet.Another important factor is corrosion resistance, as motor vehicle components are often exposed to condensation, splash water and condensation. The aluminum alloy to be used should therefore be as resistant to corrosion as possible, in particular in the painted state against intercrystalline corrosion and against filiform corrosion. Filiform corrosion is understood to mean a type of corrosion which occurs in coated components and exhibits a thread-like course. Filiform corrosion occurs at high humidity in the presence of chloride ions. Although the aluminum alloy AA8006 (AlFe1.5Mn 0.5) has sufficient strength and very high formability, it is susceptible to filiform corrosion. The alloy AA8006 is thus less suitable for coated, in particular painted components such as door inner parts.

Aus der bisher noch nicht verƶffentlichten internationalen Patentanmeldung der Anmelderin PCT/EP2014/053323 ist eine Aluminiumlegierung als Alternative zur Aluminiumlegierung vom Typ AA8006 bekannt, welche die folgenden Legierungsbestandteile in Gew.-% aufweist: Fe ā‰¤ 0 ,8% ,

Figure imgb0001
Si ā‰¤ 0 ,5% ,
Figure imgb0002
0,9 % ā‰¤ Mn ā‰¤ 1 ,5% ,
Figure imgb0003
Mg ā‰¤ 0 ,25% ,
Figure imgb0004
Cu ā‰¤ 0 ,20% ,
Figure imgb0005
Cr ā‰¤ 0 ,05% ,
Figure imgb0006
Ti ā‰¤ 0 ,05% ,
Figure imgb0007
V ā‰¤ 0 ,05% ,
Figure imgb0008
Zr ā‰¤ 0 ,05% ,
Figure imgb0009
From the not yet published international patent application of the applicant PCT / EP2014 / 053323 an aluminum alloy is known as an alternative to the aluminum alloy of the type AA8006, which has the following alloy constituents in% by weight: Fe ā‰¤ 0 ,8th% .
Figure imgb0001
Si ā‰¤ 0 , 5% .
Figure imgb0002
0.9 % ā‰¤ Mn ā‰¤ 1 , 5% .
Figure imgb0003
mg ā‰¤ 0 25% .
Figure imgb0004
Cu ā‰¤ 0 , 20% .
Figure imgb0005
Cr ā‰¤ 0 , 05% .
Figure imgb0006
Ti ā‰¤ 0 , 05% .
Figure imgb0007
V ā‰¤ 0 , 05% .
Figure imgb0008
Zr ā‰¤ 0 , 05% .
Figure imgb0009

Rest Aluminium, unvermeidliche Begleitelemente einzeln < 0,05 %, in Summe < 0,15 %, wobei die Summe der Mg und Cu-Gehalte folgende Relation erfĆ¼llt: 0,15 % ā‰¤ Mg + Cu ā‰¤ 0 ,25% .

Figure imgb0010
Remaining aluminum, unavoidable accompanying elements individually <0.05%, in total <0.15%, the sum of the Mg and Cu contents satisfying the following relation: 0.15 % ā‰¤ mg + Cu ā‰¤ 0 25% ,
Figure imgb0010

Es hat sich gezeigt, dass auch diese Aluminiumlegierung insbesondere in Bezug auf deren Umformverhalten noch verbesserungswĆ¼rdig ist. DarĆ¼ber hinaus kann der hohe Mn-Gehalt zu Problemen beim Recycling dieser Aluminiumlegierung fĆ¼hren, wenn sie im Schrottkreislauf mit den in Automobilanwendungen Ć¼blicherweise eingesetzten Al-Mg-Si-Legierungen vom Legierungstyp AA6XXX vermischt werden.It has been found that even this aluminum alloy is in need of improvement, especially with regard to its deformation behavior. In addition, the high Mn content can lead to problems in recycling this aluminum alloy when mixed in the scrap cycle with the AA6XXX alloy Al-Mg-Si alloys commonly used in automotive applications.

Aus der JP 2006-152358 A ist eine Aluminiumlegierung zur Herstellung von GetrƤnkedosen bekannt, welche hohe Umformbarkeit und Festigkeit aufweist.From the JP 2006-152358 A is an aluminum alloy for the production of beverage cans is known, which has high formability and strength.

Von diesem Stand der Technik ausgehend liegt der vorliegenden Erfindung daher die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Bandes aus einer Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen fĆ¼r Kraftfahrzeuge zur VerfĆ¼gung zu stellen, die hoch-umformbar, mittelfest und sehr korrosionsbestƤndig ist. DarĆ¼ber hinaus soll ein Aluminiumband oder -blech, dessen Verwendung und ein Strukturteil eines Kraftfahrzeugs vorgeschlagen werden.Based on this prior art, the present invention therefore has for its object to provide a method for producing an aluminum alloy strip for the production of semi-finished products or components for motor vehicles, which is highly deformable, medium-strength and very resistant to corrosion. In addition, an aluminum strip or sheet, its use and a structural part of a motor vehicle to be proposed.

Die Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen von Kraftfahrzeugen weist die folgenden Legierungsbestandteile in Gew.-% auf: 0,6 % ā‰¤ Si ā‰¤ 0 ,9% ,

Figure imgb0011
0,6 % ā‰¤ Fe ā‰¤ 1 ,0% ,
Figure imgb0012
Cu ā‰¤ 0 ,1% ,
Figure imgb0013
0,6 % ā‰¤ Mn ā‰¤ 0 ,9% ,
Figure imgb0014
0,5 % ā‰¤ Mg ā‰¤ 0 ,8% ,
Figure imgb0015
Cr ā‰¤ 0 ,05% ,
Figure imgb0016
The aluminum alloy for the production of semi-finished products or components of motor vehicles has the following alloy constituents in% by weight: 0.6 % ā‰¤ Si ā‰¤ 0 , 9% .
Figure imgb0011
0.6 % ā‰¤ Fe ā‰¤ 1 , 0% .
Figure imgb0012
Cu ā‰¤ 0 ,1% .
Figure imgb0013
0.6 % ā‰¤ Mn ā‰¤ 0 , 9% .
Figure imgb0014
0.5 % ā‰¤ mg ā‰¤ 0 ,8th% .
Figure imgb0015
Cr ā‰¤ 0 , 05% .
Figure imgb0016

Rest Al und Verunreinigungen, einzeln maximal 0,05 Gew.-%, in Summe maximal 0,15 Gew.-%.Rest Al and impurities, individually not more than 0.05 wt .-%, in total not more than 0.15 wt .-%.

Anders als die bisherigen AnsƤtze geht die vorliegende Aluminiumlegierung von der Erkenntnis aus, dass Al-Mg-Si-Legierungen vom Legierungstyp AA6XXX in weichgeglĆ¼htem Zustand eine sehr gute Umformbarkeit aufweisen. Allerdings waren sie fĆ¼r die bisherigen Anwendungen zu weich. Die Untergrenzen der zwangsweise vorgesehenen Legierungselemente von 0,6 Gew.-% fĆ¼r Si, 0,6 Gew.-% fĆ¼r Fe, 0,6 Gew.-% fĆ¼r Mn und 0,5 Gew.-% fĆ¼r Mg gewƤhrleisten, dass die Aluminiumlegierung in weichgeglĆ¼htem Zustand ausreichende Festigkeiten bereitstellen kann. Die Obergrenzen von 0,9 Gew.-% fĆ¼r Si, 1,0 Gew.-% fĆ¼r Fe, 0,9 Gew.-% fĆ¼r Mn und 0,8 Gew.-% fĆ¼r Mg verhindern, dass die Bruchdehnung sinkt und damit das Umformverhalten verschlechtert wird. Aus dem gleichen Grund werden auch die Legierungselemente Cu auf maximal 0,1 Gew.-% und Cr auf maximal 0,05 Gew.-% begrenzt. Durch die Kombination der vorgesehenen Legierungsbestandteile an Si, Fe, Mg und Mn wird damit sichergestellt, dass einerseits das sehr gute Umformverhalten der Al-Mg-Si-Legierungen mit einer erhƶhten Festigkeit kombiniert wird, ohne zu starke EinbuƟen in der DuktilitƤt zu besitzen. Die Untersuchungen zeigten, dass die angegebene Aluminiumlegierung in weichgeglĆ¼htem Zustand die Anforderungen an die Umformbarkeit und insbesondere an die KorrosionsbestƤndigkeit erfĆ¼llen und damit fĆ¼r die Herstellung von Halbzeugen oder Bauteilen in Kraftfahrzeugen geeignet ist. Mit den genannten Bereichen der zwangsweise vorgesehenen Legierungselemente Si, Fe, Mn und Mg fƤllt die erfindungsgemƤƟe Aluminiumlegierung in die Klasse der Al-Mg-Si-Legierungen vom Legierungstyp AA6XXX. Das ermƶglicht eine verbesserte Rezyklierbarkeit dieser Aluminiumlegierung, wenn sie im Schrottkreislauf mit den in Automobilanwendungen Ć¼blicherweise eingesetzten Al-Mg-Si-Legierungen vom Legierungstyp AA6XXX vermischt werden.Unlike the previous approaches, the present aluminum alloy is based on the recognition that Al-Mg-Si alloys of the alloy type AA6XXX in the as-annealed state have a very good formability. However, they were too soft for the previous applications. The lower limits of the forcibly provided alloying elements of 0.6 wt% for Si, 0.6 wt% for Fe, 0.6 wt% for Mn and 0.5 wt% for Mg ensure that the Aluminum alloy in soft annealed condition can provide sufficient strength. The upper limits of 0.9% by weight for Si, 1.0% by weight for Fe, 0.9% by weight for Mn and 0.8% by weight for Mg prevent the elongation at break from dropping and thus the forming behavior is deteriorated. For the same reason, the alloying elements Cu are limited to a maximum of 0.1% by weight and Cr to a maximum of 0.05% by weight. The combination of the intended alloy components of Si, Fe, Mg and Mn ensures that, on the one hand, the very good forming behavior of the Al-Mg-Si alloys is combined with increased strength, without having too great losses in ductility. The investigations showed that the specified aluminum alloy in annealed condition meets the requirements for formability and in particular for corrosion resistance and is thus suitable for the production of semi-finished products or components in motor vehicles. With the mentioned ranges of the forcibly provided alloying elements Si, Fe, Mn and Mg, the aluminum alloy according to the invention falls into the class of the Al-Mg-Si alloys of the alloy type AA6XXX. This allows for improved recyclability of this aluminum alloy when used in the scrap cycle with the in Automotive applications commonly used Al-Mg-Si alloys of alloy type AA6XXX be mixed.

GemƤƟ einer ersten AusfĆ¼hrungsform der Aluminiumlegierung weisen die Legierungsbestandteile Si, Fe, Mn und Mg die folgenden Anteile in Gew.-% auf: 0,7 % ā‰¤ Si ā‰¤ 0 ,9% ,

Figure imgb0017
0,7 % ā‰¤ Fe ā‰¤ 1 ,0% ,
Figure imgb0018
0,7 % ā‰¤ Mn ā‰¤ 0 ,9%
Figure imgb0019
und 0,6 % ā‰¤ Mg ā‰¤ 0 ,8% .
Figure imgb0020
According to a first embodiment of the aluminum alloy, the alloying constituents Si, Fe, Mn and Mg have the following proportions in% by weight: 0.7 % ā‰¤ Si ā‰¤ 0 , 9% .
Figure imgb0017
0.7 % ā‰¤ Fe ā‰¤ 1 , 0% .
Figure imgb0018
0.7 % ā‰¤ Mn ā‰¤ 0 , 9%
Figure imgb0019
and 0.6 % ā‰¤ mg ā‰¤ 0 ,8th% ,
Figure imgb0020

Durch die Anhebung der unteren Grenzen fĆ¼r Si, Fe, Mn und Mg wird erreicht, dass die Festigkeit der Aluminiumlegierung noch weiter zunimmt, ohne das Umformverhalten bzw. die Bruchdehnung der aus Aluminiumlegierung hergestellten, weichen Bleche oder BƤnder zu verschlechtern.By raising the lower limits for Si, Fe, Mn and Mg, it is achieved that the strength of the aluminum alloy increases even further without deteriorating the deformation behavior or elongation at break of the soft sheets or strips made of aluminum alloy.

Eine weitere Verbesserung der Aluminiumlegierung in Bezug auf eine maximale Bruchdehnung wird dadurch erreicht, dass die Legierungsbestandteile Si, Fe, Mn und Mg die folgenden Anteile in Gew.-% aufweisen: 0,7 % ā‰¤ Si ā‰¤ 0 ,8% ,

Figure imgb0021
0,7 % ā‰¤ Fe ā‰¤ 0 ,8% ,
Figure imgb0022
0,7 % ā‰¤ Mn ā‰¤ 0 ,8%
Figure imgb0023
und 0,6 % ā‰¤ Mg ā‰¤ 0 ,7% .
Figure imgb0024
A further improvement of the aluminum alloy in terms of maximum elongation at break is achieved in that the alloying constituents Si, Fe, Mn and Mg have the following proportions in% by weight: 0.7 % ā‰¤ Si ā‰¤ 0 ,8th% .
Figure imgb0021
0.7 % ā‰¤ Fe ā‰¤ 0 ,8th% .
Figure imgb0022
0.7 % ā‰¤ Mn ā‰¤ 0 ,8th%
Figure imgb0023
and 0.6 % ā‰¤ mg ā‰¤ 0 7% ,
Figure imgb0024

Es hat sich herausgestellt, dass durch diesen engen Korridor an Zwangsgehalten in Bezug auf die Legierungsbestandteile Si, Fe, Mn und Mg ein sehr guter Kompromiss zwischen erzielter Festigkeit und Bruchdehnungseigenschaften, d. h. Umformeigenschaften der Aluminiumlegierung erzielt wird.It has been found that a very good compromise between achieved strength and elongation at break properties, ie forming properties of the aluminum alloy is achieved by this narrow corridor of constraints with respect to the alloying constituents Si, Fe, Mn and Mg.

Zwar hat die Aluminiumlegierung gute Korrosionseigenschaften, allerdings kann gemƤƟ einer weiteren Ausgestaltung der Aluminiumlegierung die BestƤndigkeit gegen interkristalline Korrosion dadurch weiter verbessert werden, dass der Si-Gehalt der Legierung den Mg-Gehalt um maximal 0,2 Gew.-%, vorzugsweise maximal 0,1 Gew.-% Ć¼bersteigt.Although the aluminum alloy has good corrosion properties, according to a further embodiment of the aluminum alloy, the resistance to intergranular corrosion can be further improved in that the Si content of the alloy exceeds the Mg content by at most 0.2% by weight, preferably at most 0. 1 wt .-% exceeds.

GemƤƟ einer weiteren Ausgestaltung der Aluminiumlegierung kann die Bruchdehnung der Aluminiumlegierung dadurch weiter verbessert werden, dass der Cr-Gehalt weiter reduziert wird, auf einen Wert von maximal 0,01 Gew.-%, vorzugsweise auf maximal 0,001 Gew.-%. Es hat sich gezeigt, dass Chrom sich bereits in sehr geringen Konzentrationen negativ auf die Bruchdehnungseigenschaften auswirkt.According to a further embodiment of the aluminum alloy, the elongation at break of the aluminum alloy can be further improved by further reducing the Cr content to a maximum value of 0.01% by weight, preferably to a maximum of 0.001% by weight. It has been shown that chromium has a negative effect on the elongation at break even in very low concentrations.

Einen Ƥhnlichen Effekt hat auch die Reduzierung der Cu-Gehalte auf maximal 0,05 Gew.-%, vorzugsweise maximal 0,01 Gew.-%, wobei gleichzeitig die Neigung zur Filiform-Korrosion bzw. interkristallinen Korrosion durch die Reduzierung der Cu-Gehalte allgemein zurĆ¼ckgeht.A similar effect also has the reduction of the Cu contents to a maximum of 0.05 wt .-%, preferably at most 0.01 wt .-%, at the same time the tendency to filiform corrosion or intergranular corrosion by reducing the Cu contents generally returns.

GemƤƟ einer ersten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein Verfahren zur Herstellung eines Bandes aus einer oben genannten Aluminiumlegierung mit folgenden Verfahrensschritten gelƶst:

  • GieƟen eines Walzbarrens,
  • Homogenisieren bei einer Temp vischen 500Ā°C und 600Ā°C fĆ¼r mindestens 0,5 h
  • Warmwalzen des Walzbarrens bei Temperaturen von 280Ā°C bis 500Ā° C, vorzugsweise bei Temperaturen von 300Ā°C bis 400Ā°C auf eine Dicke von 3 mm bis 12 mm,
  • Kaltwalzen mit oder ohne ZwischenglĆ¼hung mit einem Abwalzgrad von mindestens 50%, bevorzugt mindestens 70% auf eine Enddicke von 0,2 mm bis 5 mm und
  • SchlussweichglĆ¼hung bei 300Ā°C bis 400Ā°C, bevorzugt 330Ā°C bis 370Ā°C fĆ¼r mindestens 0,5 h, vorzugsweise mindestens 2 h in einem Kammerofen.
According to a first teaching of the present invention, the object indicated above is achieved by a method for producing a strip from an aluminum alloy mentioned above with the following method steps:
  • Casting a rolled bar,
  • Homogenize at a temp 500 Ā° C and 600 Ā° C for at least 0.5 h
  • Hot rolling of the rolling ingot at temperatures of 280 Ā° C to 500 Ā° C, preferably at temperatures of 300 Ā° C to 400 Ā° C to a thickness of 3 mm to 12 mm,
  • Cold rolling with or without intermediate annealing with a degree of rolling of at least 50%, preferably at least 70% to a final thickness of 0.2 mm to 5 mm and
  • Final soft annealing at 300 Ā° C to 400 Ā° C, preferably 330 Ā° C to 370 Ā° C for at least 0.5 h, preferably at least 2 h in a chamber furnace.

Nach dem GieƟen sorgt die Homogenisierung bei einer Temperatur von 500Ā°C bis 600Ā°C fĆ¼r mindestens 0,5 h, bevorzugt mindestens 2 h dafĆ¼r, dass ein homogenes GefĆ¼ge fĆ¼r die weitere Verarbeitung des Walzbarrens bereitgestellt wird. Die Warmwalztemperaturen ermƶglichen dabei eine gute Rekristallisation wƤhrend des Warmwalzens, sodass das GefĆ¼ge nach dem Warmwalzen mƶglichst feinkƶrnig ist. Durch das Kaltwalzen wird dieses feinkƶrnige GefĆ¼ge lediglich gestreckt und im SchlussweichglĆ¼hen erneut rekristallisiert. Bei einer Fertigung ohne ZwischenglĆ¼hung wird durch das Kaltwalzen eine besonders hohe Anzahl an Versetzungen in dem GefĆ¼ge erzeugt, welches bei der SchlussweichglĆ¼hung ein sehr feinkƶrniges durchrekristallisiertes GefĆ¼ge erzeugt. Hierzu muss der Abwalzgrad an Enddicke vor der SchlussweichglĆ¼hung mindestens 50%, bevorzugt mindestens 70 % auf die angestrebte Enddicke aufweisen.After casting, homogenization at a temperature of 500 Ā° C. to 600 Ā° C. for at least 0.5 h, preferably at least 2 h, ensures that a homogeneous microstructure is provided for the further processing of the rolling ingot. The hot rolling temperatures allow good recrystallization during hot rolling, so that the structure is as fine as possible after hot rolling. By cold rolling this fine-grained structure is merely stretched and recrystallized again in the final soft annealing. In the case of production without intermediate annealing, the cold rolling produces a particularly high number of dislocations in the microstructure, which produces a very fine-grained, thoroughly recrystallised microstructure in the final soft annealing. For this purpose, the Abwalzgrad to final thickness before the final annealing must have at least 50%, preferably at least 70% to the desired final thickness.

Einen weiterer positiver Einfluss auf die Feinkƶrnigkeit des GefĆ¼ges kann dadurch erreicht werden, dass gemƤƟ einer weiteren Ausgestaltung des erfindungsgemƤƟen Verfahrens die Homogenisierung zweistufig erfolgt, wobei der Walzbarren zunƤchst auf 550Ā°C bis 600Ā°C fĆ¼r mindestens 0,5 h erwƤrmt wird und anschlieƟend der Walzbarren auf 450Ā°C bis 550Ā° fĆ¼r mindestens 0,5 h, bevorzugt mindestens 2 h gehalten wird. AnschlieƟend wird der Walzbarren warmgewalzt.A further positive influence on the fine grain of the structure can be achieved that according to a further embodiment of the method according to the invention, the homogenization is carried out in two stages, the ingot is first heated to 550 Ā° C to 600 Ā° C for at least 0.5 h and then the Rolling bar at 450 Ā° C to 550 Ā° for at least 0.5 h, preferably at least 2 h is maintained. Subsequently, the rolling ingot is hot rolled.

Die Korrosionseigenschaften kƶnnen dadurch verbessert werden, dass der Walzbarren nach dem GieƟen oder nach dem Homogenisieren auf der Ober- und Unterseite gefrƤst wird, um Verunreinigungen von der Ober- und Unterseite des Walzbarrens, welche die KorrosionsbestƤndigkeit negativ beeinflussen kƶnnen, auszuschlieƟen.The corrosion properties can be improved by milling the billet after casting or after homogenization on the top and bottom to exclude impurities from the top and bottom of the rolling billet, which can adversely affect the corrosion resistance.

GemƤƟ einer weiteren Ausgestaltung des erfindungsgemƤƟen Verfahrens wird mindestens eine ZwischenglĆ¼hung nach einem ersten Kaltwalzen bei einer Temperatur von 300Ā°C bis 400Ā°C, vorzugsweise bei einer Temperatur von 330Ā°C bis 370Ā°C fĆ¼r mindestens 0,5 h erfolgt, wobei vor und nach der ZwischenglĆ¼hung der Abwalzgrad mindestens 50 %, bevorzugt mindestens 70 % betrƤgt. Durch die gewƤhlten Abwalzgrade vor der ZwischenglĆ¼hung bzw. nach der ZwischenglĆ¼hung wird erreicht, dass das GefĆ¼ge wƤhrend der ZwischenglĆ¼hung ausreichend durchrekristallisiert. Die ZwischenglĆ¼hungsdauer betrƤgt mindestens 0,5 h, bevorzugt mindestens 2 h.According to a further embodiment of the method according to the invention at least one intermediate annealing after a first cold rolling in a Temperature of 300 Ā° C to 400 Ā° C, preferably at a temperature of 330 Ā° C to 370 Ā° C for at least 0.5 h, wherein before and after the intermediate annealing the Abwalzgrad is at least 50%, preferably at least 70%. Due to the selected degrees of finish before the intermediate annealing or after the intermediate annealing, it is achieved that the microstructure is thoroughly recrystallized during the intermediate annealing. The intermediate annealing time is at least 0.5 h, preferably at least 2 h.

Findet die ZwischenglĆ¼hung bei einer Temperatur bei 330Ā°C bis 370Ā°C statt, wird sichergestellt, dass aufgrund der angehobenen unteren Temperatur von 330Ā°C eine ausreichende Rekristallisation stattfindet und gleichzeitig durch die Verringerung der Obergrenze eine effiziente ZwischenglĆ¼hung durchgefĆ¼hrt wird, welche mƶglichst wenig WƤrmeenergie benƶtigt.If the intermediate annealing at a temperature at 330 Ā° C to 370 Ā° C, it is ensured that due to the raised lower temperature of 330 Ā° C, a sufficient recrystallization takes place and at the same time by reducing the upper limit an efficient intermediate annealing is performed, which is as little heat energy needed.

GemƤƟ einer zweiten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein Aluminiumlegierungsband oder -blech hergestellt aus einer oben genannten Aluminiumlegierung gelƶst, wobei das Band eine Dicke von 0,2 mm bis 5 mm besitzt und im weichgeglĆ¼hten Zustand eine Streckgrenze Rp0.2 von mindestens 45 MPa sowie eine GleichmaƟdehnung Ag von mindestens 23 % und eine Bruchdehnung A80mm von mindestens 35 % aufweist. Insbesondere bei der angegebenen Dicke des Bandes in Verbindung mit der Legierungszusammensetzung und den daraus resultierenden mechanischen Eigenschaften im weichgeglĆ¼hten Zustand sind die Voraussetzungen gegeben, dass das Aluminiumlegierungsband bzw. -blech fĆ¼r Bauteile im Kraftfahrzeug verwendet werden kann, welche neben sehr guten Umformeigenschaften auch eine sehr gute BestƤndigkeit gegen interkristalline Korrosion bzw. Filiform-Korrosion aufweisen. Dies gilt insbesondere auch fĆ¼r lackierte bzw. beschichtete Bauteile.According to a second teaching of the present invention, the above object is achieved by an aluminum alloy strip or sheet made of an aluminum alloy mentioned above, wherein the strip has a thickness of 0.2 mm to 5 mm and in the soft annealed state, a yield strength R p0.2 of at least 45 MPa and an equi- elongation Ag of at least 23% and an elongation at break A 80mm of not less than 35%. In particular, given the specified thickness of the strip in conjunction with the alloy composition and the resulting mechanical properties in the annealed condition, the conditions are given that the aluminum alloy strip or sheet can be used for components in the motor vehicle, which in addition to very good forming properties and a very good Have resistance to intergranular corrosion or filiform corrosion. This is especially true for painted or coated components.

Insofern lƶst auch die Verwendung des erfindungsgemƤƟen Aluminiumlegierungsbandes zur Herstellung von Halbzeugen oder Bauteilen eines Kraftfahrzeugs, insbesondere Strukturteile eines Kraftfahrzeugs, die oben genannte Aufgabe. Insbesondere Strukturteile kƶnnen mit sehr groƟen Umformgraden hergestellt werden und sehr komplexe Formen annehmen ohne besonders komplizierte Umformoperationen zu benƶtigen. Insbesondere sind diese auch in lackierter Form besonders korrosionsbestƤndig, insbesondere gegen interkristalline Korrosion und Filiform-Korrosion.In this respect, the use of the aluminum alloy strip according to the invention for the production of semi-finished products or components of a motor vehicle, in particular structural parts of a motor vehicle, solves the above-mentioned Task. In particular, structural parts can be produced with very large degrees of deformation and assume very complex shapes without requiring particularly complicated forming operations. In particular, these are also particularly resistant to corrosion in lacquered form, in particular against intergranular corrosion and filiform corrosion.

GemƤƟ einer weiteren Lehre der vorliegenden Erfindung wird die aufgezeigte Aufgabe durch ein Strukturteil eines Kraftfahrzeugs, insbesondere ein TĆ¼rinnenteil eines Kraftfahrzeugs aufweisend mindestens ein umgeformtes Blech aus einem erfindungsgemƤƟen Aluminiumlegierungsband gelƶst. Wie bereits zuvor ausgefĆ¼hrt, haben die Untersuchungen gezeigt, dass die oben genannte Aluminiumlegierung nicht nur die erforderlichen Umformeigenschaften in weichgeglĆ¼htem Zustand bereitstellt, sondern auch gleichzeitig die notwendige KorrosionsbestƤndigkeit und Festigkeit der Strukturteile gewƤhrleistet.According to a further teaching of the present invention, the object indicated is achieved by a structural part of a motor vehicle, in particular a door inner part of a motor vehicle comprising at least one formed sheet of an aluminum alloy strip according to the invention. As already stated above, the investigations have shown that the abovementioned aluminum alloy not only provides the required forming properties in the as-annealed state, but at the same time also ensures the necessary corrosion resistance and strength of the structural parts.

Um die optimalen Umformgrade zu erzielen, wird das erfindungsgemƤƟe Strukturteil aus einem Band hergestellt, welches mit dem erfindungsgemƤƟen Verfahren hergestellt worden ist. Es hat sich gezeigt, dass mit dem erfindungsgemƤƟen Verfahren die Umformeigenschaften sowie auch die Festigkeitseigenschaften des Strukturteils auf prozesssichere Weise erreicht werden kƶnnen, sodass eine wirtschaftliche Produktion der Strukturteile, welche die genannten Voraussetzungen erfĆ¼llen, mƶglich ist.In order to achieve the optimum degree of deformation, the structural part according to the invention is produced from a strip which has been produced by the method according to the invention. It has been shown that with the method according to the invention, the forming properties as well as the strength properties of the structural part can be achieved in a process-reliable manner, so that an economic production of the structural parts which meet the conditions mentioned, is possible.

Im Weiteren soll die Erfindung anhand von AusfĆ¼hrungsbeispielen in Verbindung mit der Zeichnung nƤher erlƤutert werden. Die Zeichnung zeigt in

Fig. 1
ein Ablaufdiagramm eines ersten AusfĆ¼hrungsbeispiels des erfindungsgemƤƟen Verfahrens zur Herstellung eines Aluminiumlegierungsbandes,
Fig. 2
ein Ablaufdiagramm fĆ¼r ein weiteres AusfĆ¼hrungsbeispiel des erfindungsgemƤƟen Verfahrens und
Fig. 3
ein schematisch dargestelltes AusfĆ¼hrungsbeispiel eines Strukturteils eines Kraftfahrzeugs.
In addition, the invention will be explained in more detail with reference to embodiments in conjunction with the drawings. The drawing shows in
Fig. 1
a flow chart of a first embodiment of the inventive method for producing an aluminum alloy strip,
Fig. 2
a flowchart for a further embodiment of the inventive method and
Fig. 3
a schematically illustrated embodiment of a structural part of a motor vehicle.

Ein erstes AusfĆ¼hrungsbeispiel in einem schematischen Ablaufdiagramm zeigt nun Fig. 1. In einem ersten Schritt 2 wird der Walzbarren gegossen, beispielsweise im DC-Stranggussverfahren oder im Bandgussverfahren. Im Verfahrensschritt 4 wird der Barren dann auf eine Temperatur von 500Ā°C bis 600Ā°C erwƤrmt und fĆ¼r mindestens 0,5 h, bevorzugt mindestens 2 h auf dieser Temperatur zur Homogenisierung gehalten. Der so homogenisierte Walzbarren wird anschlieƟend bei einer Temperatur von 280Ā°C bis 500Ā°C, bevorzugt 300Ā°C bis 400Ā°C bis auf eine Enddicke von 3 bis 12 mm warmgewalzt. AnschlieƟend erfolgt im Schritt 8 ein Kaltwalzen an Enddicke, an welches sich eine rekristallisierende SchlussweichglĆ¼hung gemƤƟ Schritt 10 anschlieƟt. Beim Kaltwalzen an Enddicke in einem oder mehreren Stichen muss der Abwalzgrad mindestens 50%, bevorzugt mindestens 70 % betragen, um bei der SchlussweichglĆ¼hung ein ausreichend feinkƶrniges GefĆ¼ge zu erzeugen. Die SchlussweichglĆ¼hung, bei welcher das Band erneut rekristallisiert, erfolgt im Kammerofen bei 300Ā°C bis 400Ā°C, bevorzugt bei 330Ā°C bis 370Ā°C im Schritt 10. Trotz der erfindungsgemƤƟen Legierungskomponenten von Mg, Si, Fe und Mn ist der Einsatz eines Durchlaufofens zur Herstellung des erfindungsgemƤƟen Aluminiumlegierungsbandes nicht mƶglich, da aufgrund der unterschiedlichen Aufheiz- und AbkĆ¼hlgeschwindigkeiten andere GefĆ¼ge bereit gestellt wĆ¼rden.A first embodiment in a schematic flow diagram now shows Fig. 1 , In a first step 2, the rolling ingot is cast, for example in the DC continuous casting process or in the strip casting process. In process step 4, the bar is then heated to a temperature of 500 Ā° C to 600 Ā° C and held for at least 0.5 h, preferably at least 2 h at this temperature for homogenization. The so homogenized ingot is then hot rolled at a temperature of 280 Ā° C to 500 Ā° C, preferably 300 Ā° C to 400 Ā° C to a final thickness of 3 to 12 mm. Subsequently, in step 8, a cold rolling to final thickness, followed by a recrystallizing final soft annealing according to step 10 followed. During cold rolling to final thickness in one or more passes, the degree of rolling must be at least 50%, preferably at least 70%, in order to produce a sufficiently fine-grained microstructure in the final soft annealing. The final soft annealing, at which the strip recrystallizes again, takes place in the chamber furnace at 300 Ā° C. to 400 Ā° C., preferably at 330 Ā° C. to 370 Ā° C. in step 10. Despite the alloy components according to the invention of Mg, Si, Fe and Mn, the use is a continuous furnace for the production of the aluminum alloy strip according to the invention is not possible because other structures would be provided due to the different heating and cooling rates.

Alternativ zur Fertigung des Aluminiumlegierungsbandes ohne ZwischenglĆ¼hung kann gemƤƟ Schritt 14 auch eine ZwischenglĆ¼hung in einem Kammerofen bei 300Ā°C bis 400Ā°C, vorzugsweise bei 330Ā°C bis 370Ā°C erfolgen, wobei sowohl vor der ZwischenglĆ¼hung als auch nach der ZwischenglĆ¼hung ein Abwalzgrad von mindestens 50%, bevorzugt mindestens 70% gewƤhrleistet werden sollte, um die Feinkƶrnigkeit des GefĆ¼ges nach der rekristallisierenden SchlussweichglĆ¼hung positiv zu beeinflussen. Optional kann nach dem GieƟen des Walzbarrens in Schritt 2 auch ein FrƤsen gemƤƟ Schritt 12 der Ober- und Unterseite des Walzbarrens erfolgen, um den Einfluss von Verunreinigungen an den RƤndern der Barren bei der Walzbarrenherstellung auf das fertige Produkt zu minimieren. Insbesondere hat dies einen positiven Einfluss auf die KorrosionsbestƤndigkeit der Bauteile.Alternatively to the production of the aluminum alloy strip without intermediate annealing, an intermediate annealing in a chamber furnace at 300 Ā° C to 400 Ā° C, preferably at 330 Ā° C to 370 Ā° C, according to step 14, wherein both before the intermediate annealing and after the intermediate annealing a rolling degree of at least 50%, preferably at least 70%, should be ensured in order to favor the fine graininess of the microstructure after the recrystallizing final soft annealing influence. Optionally, after casting the rolling ingot in step 2, milling may also be performed according to step 12 of the top and bottom of the rolling billet to minimize the impact of contaminants at the edges of the billets in the ingot fabrication on the finished product. In particular, this has a positive influence on the corrosion resistance of the components.

Fig. 2 zeigt nun ein weiteres Ablaufdiagramm, welches alternativ zum Schritt 4 den Schritt 16 der Homogenisierung zeigt. Die Homogenisierung hat einen Einfluss auf die Feinkƶrnigkeit des angestrebten EndgefĆ¼ge des Bandes oder fertigen Bauteils. Um die Feinkƶrnigkeit des GefĆ¼ges weiter zu verbessern, wird das Homogenisieren mehrstufig ausgefĆ¼hrt. So wird anstelle des Schrittes 4 in Fig. 1 in Fig. 2 ein Homogenisierungsschritt 16 durchgefĆ¼hrt. Der Homogenisierungsschritt 16 weist zunƤchst eine erste Homogenisierungsphase, Schritt 18, auf, bei welcher der gefrƤste oder ungefrƤste Walzbarren auf eine Temperatur von 550Ā°C bis 600Ā°C fĆ¼r mindestens 0,5 h, bevorzugt mindestens 2 h erhitzt wird. In einem nƤchsten Schritt 20 wird der so aufgeheizte Walzbarren auf eine Temperatur von 450Ā°C bis 550Ā°C abgekĆ¼hlt und fĆ¼r mindestens 0,5 h, bevorzugt mindestens 2 h auf dieser Temperatur gehalten, was in Fig. 2 im Schritt 22 dargestellt ist. Fig. 2 now shows another flowchart which shows the step 16 of the homogenization as an alternative to step 4. The homogenization has an influence on the fine grain of the desired end structure of the strip or finished component. In order to further improve the fine grain of the structure, the homogenization is carried out in several stages. So instead of step 4 in Fig. 1 in Fig. 2 a Homogenisierungsschritt 16 performed. The homogenization step 16 initially has a first homogenization phase, step 18, in which the milled or unmilled roll ingot is heated to a temperature of 550 Ā° C. to 600 Ā° C. for at least 0.5 h, preferably at least 2 h. In a next step 20, the so heated ingot is cooled to a temperature of 450 Ā° C to 550 Ā° C and held at this temperature for at least 0.5 h, preferably at least 2 h, which in Fig. 2 is shown in step 22.

Alternativ kann der Walzbarren nach dem ersten Homogenisierungsschritt 18 auch in einem Schritt 24 auf Raumtemperatur abgekĆ¼hlt und in einem nachfolgenden Schritt 26 auf die Temperatur fĆ¼r das zweite Homogenisieren angewƤrmt werden. Dies ist beispielsweise notwendig, wenn der Walzbarren zwischen dem Homogenisierungsschritt gelagert werden muss. Optional kann diese Phase bei Raumtemperatur dazu verwendet werden, den Walzbarren an Ober- und Unterseite zu frƤsen, Schritt 28. Nach dem zweiten Homogenisierungsschritt 22 erfolgt das Warmwalzen wie in Fig. 1 dargestellt mit den dort angegebenen Parametern. Es hat sich gezeigt, dass die mehrstufige Homogenisierung, insbesondere die zweistufige Homogenisierung zu einem feineren GefĆ¼ge im Endprodukt fĆ¼hrt.Alternatively, after the first homogenization step 18, the ingot may also be cooled to room temperature in a step 24 and heated in a subsequent step 26 to the temperature for the second homogenization. This is necessary, for example, if the rolling ingot has to be stored between the homogenization step. Optionally, this phase can be used at room temperature to mill the ingot at the top and bottom, step 28. After the second homogenization step 22, the hot rolling is carried out as in Fig. 1 represented with the parameters specified there. It has been shown that the multi-stage homogenization, in particular the two-stage homogenization leads to a finer structure in the final product.

Der erfindungsgemƤƟe Effekt der Bereitstellung einer mittelfesten und sehr hoch umformbaren Aluminiumlegierung bzw. eines Aluminiumlegierungsbandes wurde anhand von 10 AusfĆ¼hrungsbeispielen nachgewiesen.The effect according to the invention of providing a medium-strength and very highly deformable aluminum alloy or an aluminum alloy strip was demonstrated on the basis of 10 exemplary embodiments.

ZunƤchst wurden 10 verschiedene Walzbarren bestehend aus unterschiedlichen Legierungen im DC-Strangguss gegossen. Die Ober- und Unterseiten der Walzbarren wurden nach dem GieƟen entsprechend dem Schritt 12 gefrƤst. AnschlieƟend erfolgte eine zweistufige Homogenisierung, bei welcher zunƤchst die Walzbarren fĆ¼r 3,5 h bei 600Ā°C und anschlieƟend fĆ¼r 2 h bei 500Ā°C gehalten wurden. Unmittelbar nach dem Homogenisieren wurden die Walzbarren direkt bei ca 500Ā°C zu einem Aluminiumlegierungswarmband mit einer Dicke von 8 mm warmgewalzt. Das 8 mm dicke Warmband wurde schlieƟlich ohne ZwischenglĆ¼hung jeweils auf eine Enddicke von 1,5 mm kaltgewalzt, d. h. mit einem Abwalzgrad von mehr als 70%. Die rekristallisierende SchlussweichglĆ¼hung der kaltgewalzten AluminiumlegierungsbƤnder mit einer Dicke von 1,5 mm erfolgte fĆ¼r 1 h bei 350Ā°C in einem Kammerofen. Die verschiedenen, getesteten Aluminiumlegierungen zeigt Tabelle 1. Tabelle 1 (V):Vergleich (E);Erfindung Aluminiumlegierungsbestandteile in Gew.-%, Variante Si Fe Cu Mn Mg Cr 1 V 0,66 0,66 0,26 0,7 0,62 0,14 2 V 0,53 0,46 0,19 0,52 0,44 0,13 3 V 0,67 0,66 0,27 0,69 0,61 0,0005 4 V 0,73 0,68 0,0016 1,0 0,67 0,0002 5 E 0,72 0,69 0,0016 0,74 0,66 0,0006 6 E 0,67 0,65 0,07 0,69 0,61 0,0005 7 E 0,72 1,0 0,0017 0,72 0,66 0,0004 8 E 0,8 0,68 0,0015 0,72 0,63 0,0003 9 V 0,4 0,41 0,004 0,47 0,41 0,001 10 V 0,5 0.27 0,0013 0,66 0,42 0,0008 Initially, 10 different billets consisting of different alloys were cast in DC continuous casting. The tops and bottoms of the ingots were milled after casting according to step 12. This was followed by a two-stage homogenization, in which first the rolling ingots were kept at 600 Ā° C. for 3.5 hours and then at 500 Ā° C. for 2 hours. Immediately after homogenization, the ingots were directly hot rolled at about 500 Ā° C to an aluminum alloy hot strip having a thickness of 8 mm. The 8 mm thick hot strip was finally cold rolled without intermediate annealing to a final thickness of 1.5 mm, ie with a degree of rolling of more than 70%. The recrystallizing final annealing of the cold-rolled aluminum alloy strips having a thickness of 1.5 mm was carried out for 1 h at 350 Ā° C in a box furnace. The various aluminum alloys tested are shown in Table 1. Table 1 (V): comparison (E); invention Aluminum alloy components in% by weight, variant Si Fe Cu M n mg Cr 1 V 0.66 0.66 0.26 0.7 0.62 0.14 2 V 0.53 0.46 0.19 0.52 0.44 0.13 3 V 0.67 0.66 0.27 0.69 0.61 0.0005 4 V 0.73 0.68 0.0016 1.0 0.67 0.0002 5 e 0.72 0.69 0.0016 0.74 0.66 0.0006 6 e 0.67 0.65 0.07 0.69 0.61 0.0005 7 e 0.72 1.0 0.0017 0.72 0.66 0.0004 8th e 0.8 0.68 0.0015 0.72 0.63 0.0003 9 V 0.4 0.41 0,004 0.47 0.41 0.001 10 V 0.5 12:27 0.0013 0.66 0.42 0.0008

Die Varianten 1 bis 4 sowie 9 und 10 sind Vergleichsbeispiele, welche nicht der erfindungsgemƤƟen Aluminiumlegierung entsprechen. Die AusfĆ¼hrungsbeispiele 5 bis 8 entsprechen dagegen der erfindungsgemƤƟ beanspruchten Aluminiumlegierungszusammensetzungen.Variants 1 to 4 and 9 and 10 are comparative examples which do not correspond to the aluminum alloy according to the invention. By contrast, embodiments 5 to 8 correspond to the aluminum alloy compositions claimed according to the invention.

An den so hergestellten, kalt gewalzten AluminiumlegierungsbƤndern wurden sowohl die Streckgrenze Rp0,2, die Zugfestigkeit Rm, die GleichmaƟdehnung Ag, die Bruchdehnung A80mm und die beim Streckziehen erreichte Tiefung SZ 32 in Millimeter gemessen. Die Werte fĆ¼r die Dehngrenze Rp0,2 sowie die Zugfestigkeit Rm wurden im Zugversuch senkrecht zur Walzrichtung des Blechs nach DIN EN ISO 6892-1:2009 gemessen. GemƤƟ derselben Norm wurden die GleichmaƟdehnung Ag sowie die Bruchdehnung A80mm in Prozent gemessen jeweils senkrecht zur Walzrichtung des Blechs mit einer Flachzug-Probe nach DIN EN ISO 6892-1:2009, Anhang B, Form 2. Das Umformverhalten kann darĆ¼ber hinaus beispielsweise in einem Streckziehversuch SZ 32 durch eine TiefungsprĆ¼fung nach Erikson (DIN EN ISO 20482) gemessen werden, bei welcher ein PrĆ¼fkƶrper gegen das Blech gedrĆ¼ckt wird, so dass es zu einer Kaltverformung kommt. WƤhrend der Kaltverformung werden die Kraft sowie der Stempelweg des PrĆ¼fkƶrpers gemessen, bis es zu einem Lastabfall, welcher die Bildung eines Risses als Ursache hat, kommt. In den vorliegenden AusfĆ¼hrungsbeispielen wurde die TiefungsprĆ¼fung mit einem auf die Blechdecke abgestimmten Stempelkopfdurchmesser von 32 mm und Matrizendurchmesser von 35,4 mm unter Zuhilfenahme einer Teflon-Ziehfolie zur Reduzierung der Reibung durchgefĆ¼hrt. Die Ɯbersicht der Ergebnisse ist in Tabelle 2 dargestellt. Tabelle 2 Variante (V):Vergleich (E) Erfindung R p0,2 N/mm2 R m N/mm2 A g % A 80mm % SZ 32 mm 1 V 65 145 19,6 26,5 15,8 2 V 52 131 21,9 30,3 16,2 3 V 60 135 22,7 30,3 16,4 4 V 51 122 22,3 33,5 15,6 5 E 48 112 23,1 35,3 16,0 6 E 47 118 23,5 35,0 16,5 7 E 50 120 23,4 36,2 16,1 8 E 47 112 23,8 36,6 15,0 9 V 41 98 23,6 37,9 16,5 10 V 41 102 24,2 38,0 16,3 On the cold-rolled aluminum alloy strips thus produced, both the yield strength R p0 , 2 , the tensile strength R m , the uniform elongation Ag, the elongation at break A were measured 80 mm and the draft SZ 32 obtained in the ironing was measured in millimeters. The values for the yield strength R p0.2 and the tensile strength R m were measured in the tensile test perpendicular to the rolling direction of the sheet according to DIN EN ISO 6892-1: 2009. According to the same standard, the uniform elongation Ag and the elongation at break A were measured 80 mm in each case perpendicular to the rolling direction of the sheet with a flat tensile specimen according to DIN EN ISO 6892-1: 2009, Annex B, Form 2. The forming behavior can also be used in a Stretch drawing test SZ 32 can be measured by a cupping test according to Erikson (DIN EN ISO 20482), in which a test piece is pressed against the sheet, so that a cold deformation occurs. During cold working, the force as well as the punch travel of the test specimen are measured until there is a load drop, which causes the formation of a crack. In the present exemplary embodiments, the cupping test was carried out with a punch head diameter of 32 mm and die diameter of 35.4 mm coordinated with the sheet metal blanket with the aid of a Teflon drawing film to reduce friction. The overview of the results is shown in Table 2. Table 2 variant (V): Comparison (E) invention R p0.2 N / mm 2 R m N / mm 2 A g % A 80mm % SZ 32 mm 1 V 65 145 19.6 26.5 15.8 2 V 52 131 21.9 30.3 16.2 3 V 60 135 22.7 30.3 16.4 4 V 51 122 22.3 33.5 15.6 5 e 48 112 23.1 35.3 16.0 6 e 47 118 23.5 35.0 16.5 7 e 50 120 23.4 36.2 16.1 8th e 47 112 23.8 36.6 15.0 9 V 41 98 23.6 37.9 16.5 10 V 41 102 24.2 38.0 16.3

Die AusfĆ¼hrungsbeispiele zeigen durch den Vergleich beispielsweise der Variante 2 mit den erfindungsgemƤƟen Varianten 5 bis 8, dass eine zu starke Reduzierung der Gehalte Si, Fe, Mn, Mg mit einer Anhebung der Gehalte fĆ¼r Cu und Cr dazu fĆ¼hrt, dass zwar die Streckgrenzwerte oberhalb von 45 MPa verbleibt, allerdings die Bruchdehnung deutlich zurĆ¼ckgeht auf etwa 30 %. Dieser Effekt lƤsst sich auch nachweisen, wenn allein der Mn-Gehalt beispielsweise 1,0 % betrƤgt, was bereits die Bruchdehnung A80mm auf unter 35 % drĆ¼ckt, Variante 4. Die Varianten 9 und 10 zeigen den Effekt reduzierter Gehalte an Si, Fe, Mn und Mg. Die Vergleichsbeispiele 9 und 10 zeigen zwar eine sehr gute Bruchdehnung A80mm mit mehr als 35 %, allerdings liegt die Streckgrenze mit 41 MPa unterhalb der der erfindungsgemƤƟen AusfĆ¼hrungsbeispiele 5 bis 8.By comparing, for example, variant 2 with variants 5 to 8 according to the invention, the exemplary embodiments show that excessive reduction of the contents Si, Fe, Mn, Mg with an increase in the contents of Cu and Cr results in the yield limit values above 45 MPa remains, but the elongation at break drops significantly to about 30%. This effect can also be demonstrated if the Mn content alone is 1.0%, for example, which already pushes the breaking elongation A 80 mm below 35%, variant 4. The variants 9 and 10 show the effect of reduced contents of Si, Fe, Mn and Mg. Comparative Examples 9 and 10 show a very good elongation at break A 80mm with more than 35%, however, the yield strength with 41 MPa is below that of the inventive embodiments 5 to 8.

Die erfindungsgemƤƟen AusfĆ¼hrungsbeispiele zeigten insbesondere bei starken Umformungen ein sehr gutes Umformverhalten, was an den sehr guten Streckziehergebnissen SZ 32 und den hohen Dehnungswerten sowohl bei der GleichmaƟdehnung Ag als auch bei der Bruchdehnung A80mm abgelesen werden kann. Hieran lƤsst sich erkennen, dass es insgesamt auf das Zusammenspiel der Legierungsgehalte Si, Fe, Mn, Mg ankommt, wobei die Komponenten Cr und Cu besonders niedrig gehalten werden mĆ¼ssen, vorzugsweise ist der Cu-Gehalt ā‰¤0,05 Gew.-%, bevorzugt ā‰¤ 0,01 Gew.-% und der Chromgehalt ā‰¤0,01 Gew.-%, bevorzugt ā‰¤ 0,001 Gew.-%. Gekoppelt mit der sehr guten KorrosionsbestƤndigkeit der AusfĆ¼hrungsbeispiele kƶnnen fĆ¼r Fahrzeuge Halbzeuge und Bauteile, insbesondere Strukturbauteile wie TĆ¼rinnenteile bereitgestellt werden, welche nicht nur die Spezifikationen des Anwendungsgebietes hinsichtlich mechanischer und chemischer Eigenschaften gewƤhrleistet, sondern noch durch wenige Umformoperationen wirtschaftlich hergestellt werden kƶnnen.The embodiments according to the invention showed a very good forming behavior, especially in the case of strong deformations, which can be deduced from the very good stretch drawing results SZ 32 and the high elongation values both in the uniform expansion Ag and in the elongation at break A 80 mm . From this it can be seen that overall the interaction of the alloy contents Si, Fe, Mn, Mg is important, whereby the components Cr and Cu have to be kept particularly low, preferably the Cu content is ā‰¤0.05 wt.%, Preferably ā‰¤ 0.01 wt% and the chromium content ā‰¤ 0.01 wt%, preferably ā‰¤ 0.001 wt%. Coupled with the very good corrosion resistance of the embodiments can be provided for vehicles semi-finished products and components, in particular structural components such as door inner parts, which not only ensures the specifications of the field of application in terms of mechanical and chemical properties, but can be economically produced by a few forming operations.

Die erfindungsgemƤƟen AluminiumlegierungsbƤnder sind daher ideal geeignet, beispielsweise Strukturteile eines Kraftfahrzeugs, wie das in Fig. 3 dargestellte TĆ¼rinnenteile 30 bereitzustellen bzw. fĆ¼r deren Herstellung verwendet zu werden. Das TĆ¼rinnenteil ist aus einem Blech aus einer erfindungsgemƤƟen Aluminiumlegierung mit einer Dicke 1,5 mm gefertigt, welches lediglich durch Umformoperationen, jedoch ohne FĆ¼geoperationen einen Fensterrahmen bereitstellt.The aluminum alloy strips according to the invention are therefore ideally suited, for example, structural parts of a motor vehicle, such as in Fig. 3 to provide shown door inner parts 30 and to be used for their preparation. The door inner part is made of a sheet metal of an aluminum alloy according to the invention with a thickness of 1.5 mm, which provides only by forming operations, but without joining operations a window frame.

Claims (13)

  1. Method for the manufacture of a strip made of an aluminium alloy, which comprises the following alloy components in % by weight: 0.6 % ā‰¤ Si ā‰¤ 0.9 % ,
    Figure imgb0047
    0.6 % ā‰¤ Fe ā‰¤ 1.0 % ,
    Figure imgb0048
    Cu ā‰¤ 0.1 % ,
    Figure imgb0049
    0.6 % ā‰¤ Mn ā‰¤ 0.9 % ,
    Figure imgb0050
    0.5 % ā‰¤ Mg ā‰¤ 0.8 % ,
    Figure imgb0051
    Cr ā‰¤ 0.05 % ,
    Figure imgb0052
    the remainder Al and impurities, individually up to a maximum of 0.05% by weight, in total up to a maximum of 0.15% by weight
    with following method steps:
    - casting (2) of a rolling ingot,
    - homogenisation (4, 16) at a temperature of between 500Ā°C and 600Ā°C for at least 0.5 h,
    - hot rolling (6) of the rolling ingot at temperatures of 280Ā°C to 500Ā°C to a thickness of 3 mm to 12 mm,
    - cold rolling (8) with or without intermediate annealing with a degree of reduction of at least 50%, preferably at least 70% to a final thickness of 0.2 mm to 5 mm and
    - final soft annealing (10) at 300Ā°C to 400Ā°C for at least 0.5h in a chamber furnace.
  2. Method according to claim 1, characterised in that the homogenisation (16) takes place in at least two stages, wherein the rolling ingot is first heated to 550Ā°C to 600Ā°C for at least 0.5 h and then the rolling ingot is cooled to 450Ā°C to 550Ā°C, held at this temperature for at least 0.5 h and then hot-rolled.
  3. Method according to claim 1 or 2, characterised in that the rolling ingot is milled (12) on the upper side and underside after casting (2) or after homogenisation (4, 16).
  4. Method according to one of the claims 1 to 3, characterised in that an intermediate annealing (14) takes place, after a first cold rolling (8), at a temperature of 300Ā°C to 400Ā°C for at least 0.5 h, wherein the degree of reduction amounts to at least 50%, preferably at least 70%, before and after the intermediate annealing.
  5. Method according to claim 4, characterised in that the intermediate annealing (14) is carried out at a temperature of 330Ā°C to 370Ā°C.
  6. Aluminium alloy strip or sheet manufactured of an aluminium alloy, which comprises the following alloy components in % by weight: 0.6 % ā‰¤ Si ā‰¤ 0.9 % ,
    Figure imgb0053
    0.6 % ā‰¤ Fe ā‰¤ 1.0 % ,
    Figure imgb0054
    Cu ā‰¤ 0.1 % ,
    Figure imgb0055
    0.6 % ā‰¤ Mn ā‰¤ 0.9 % ,
    Figure imgb0056
    0.5 % ā‰¤ Mg ā‰¤ 0.8 % ,
    Figure imgb0057
    Cr ā‰¤ 0.05 % ,
    Figure imgb0058
    the remainder Al and impurities, individually up to a maximum of 0.05% by weight, in total up to a maximum of 0.15% by weight,
    characterised in that
    the strip has a thickness of 0.2 mm to 5 mm and in the soft-annealed state has a yield strength Rp0.2 of at least 45 MPa and an elongation at break A80mm of at least 35%.
  7. Aluminium alloy strip according to claim 6, characterised in that the alloy components Si, Fe, Mn and Mg have the following contents in % by weight: 0.7 % ā‰¤ Si ā‰¤ 0.9 % ,
    Figure imgb0059
    0.7 % ā‰¤ Fe ā‰¤ 1.0 % ,
    Figure imgb0060
    0.7 % ā‰¤ Mn ā‰¤ 0.9 %
    Figure imgb0061
    and 0.6 % ā‰¤ Mg ā‰¤ 0.8 % .
    Figure imgb0062
  8. Aluminium alloy strip according to claim 7, characterised in that the alloy components Si, Fe, Mn and Mg have the following contents in % by weight: 0.7 % ā‰¤ Si ā‰¤ 0.8 % ,
    Figure imgb0063
    0.7 % ā‰¤ Fe ā‰¤ 0.8 % ,
    Figure imgb0064
    0.7 % ā‰¤ Mn ā‰¤ 0.8 %
    Figure imgb0065
    and 0.6 % ā‰¤ Mg ā‰¤ 0.7 % .
    Figure imgb0066
  9. Aluminium alloy strip according to one of the claims 6 to 8, characterised in that the aluminium alloy has the following Cr content in % by weight: Cr ā‰¤ 0.01 % .
    Figure imgb0067
  10. Aluminium alloy strip according to one of the claims 6 to 9, characterised in that the aluminium alloy has the following Cu content in % by weight: Cu ā‰¤ 0.05 % .
    Figure imgb0068
  11. Use of an aluminium alloy strip according to claim 6 for the manufacture of semi-finished products or components for motor vehicles, in particular of a structural component of a motor vehicle.
  12. Structural component, in particular interior door part (30) of a motor vehicle comprising at least one formed sheet manufactured from an aluminium alloy strip according to one of the claims 6 to 10.
  13. Structural component according to claim 12, characterised in that the sheet is cut from a strip produced using a method according to one of the claims 1 to 5.
EP14162348.8A 2014-03-28 2014-03-28 Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles Active EP2924135B1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP17151174.4A EP3178952B9 (en) 2014-03-28 2014-03-28 High plasticity moderate strength aluminium alloy for manufacturing semi-finished products or components of motor vehicles
PT141623488T PT2924135T (en) 2014-03-28 2014-03-28 High plasticity moderate strength aluminum alloy for manufacturing semi-finished products or components of motor vehicles
ES14162348.8T ES2655434T3 (en) 2014-03-28 2014-03-28 Procedure for the manufacture of a tape of a highly conformable aluminum alloy and medium strength for semi-finished products or automobile components
EP14162348.8A EP2924135B1 (en) 2014-03-28 2014-03-28 Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles
CN201580017129.6A CN106164311A (en) 2014-03-28 2015-03-27 Manufacture semi-finished product or the high-mouldability of component, the aluminium alloy of middle intensity of automobile
KR1020167030120A KR101808812B1 (en) 2014-03-28 2015-03-27 Highly formable, medium-strength aluminum alloy for producing semi-finished products or components of motor vehicles
PCT/EP2015/056733 WO2015144888A2 (en) 2014-03-28 2015-03-27 Highly formable, medium-strength aluminum alloy for producing semi-finished products or components of motor vehicles
CA2944061A CA2944061C (en) 2014-03-28 2015-03-27 Highly formable, medium-strength aluminium alloy for the manufacture of semi-finished products or components of motor vehicles
KR1020177030782A KR20170121336A (en) 2014-03-28 2015-03-27 Highly formable, medium-strength aluminum alloy for producing semi-finished products or components of motor vehicles
JP2016559550A JP6279761B2 (en) 2014-03-28 2015-03-27 High-formability medium-strength aluminum alloy strip or sheet for the manufacture of automotive semi-finished products or parts
RU2016142403A RU2655510C2 (en) 2014-03-28 2015-03-27 Easy formed, medium-strength aluminum alloy for cars workpieces or parts manufacturing
US15/270,601 US10047424B2 (en) 2014-03-28 2016-09-20 Highly formable, medium-strength aluminium alloy for the manufacture of semi-finished products or components of motor vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14162348.8A EP2924135B1 (en) 2014-03-28 2014-03-28 Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP17151174.4A Division EP3178952B9 (en) 2014-03-28 2014-03-28 High plasticity moderate strength aluminium alloy for manufacturing semi-finished products or components of motor vehicles
EP17151174.4A Division-Into EP3178952B9 (en) 2014-03-28 2014-03-28 High plasticity moderate strength aluminium alloy for manufacturing semi-finished products or components of motor vehicles

Publications (2)

Publication Number Publication Date
EP2924135A1 EP2924135A1 (en) 2015-09-30
EP2924135B1 true EP2924135B1 (en) 2017-12-13

Family

ID=50478703

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17151174.4A Active EP3178952B9 (en) 2014-03-28 2014-03-28 High plasticity moderate strength aluminium alloy for manufacturing semi-finished products or components of motor vehicles
EP14162348.8A Active EP2924135B1 (en) 2014-03-28 2014-03-28 Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17151174.4A Active EP3178952B9 (en) 2014-03-28 2014-03-28 High plasticity moderate strength aluminium alloy for manufacturing semi-finished products or components of motor vehicles

Country Status (10)

Country Link
US (1) US10047424B2 (en)
EP (2) EP3178952B9 (en)
JP (1) JP6279761B2 (en)
KR (2) KR20170121336A (en)
CN (1) CN106164311A (en)
CA (1) CA2944061C (en)
ES (1) ES2655434T3 (en)
PT (1) PT2924135T (en)
RU (1) RU2655510C2 (en)
WO (1) WO2015144888A2 (en)

Families Citing this family (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN116145057A (en) * 2023-03-20 2023-05-23 å±±äøœå—山铝äøšč‚”ä»½ęœ‰é™å…¬åø Homogenization process method of 6-series aluminum alloy plate and application of process method in aluminum alloy plate production

Family Cites Families (15)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252611A (en) * 1994-03-17 1995-10-03 Kobe Steel Ltd Aluminum-manganese-magnesium alloy sheet for forming
JP2002275566A (en) * 2001-03-21 2002-09-25 Kobe Steel Ltd Al-Mn ALLOY SHEET WITH EXCELLENT PRESS FORMABILITY
JP4703033B2 (en) * 2001-05-21 2011-06-15 äø‰č±ęØ¹č„‚ę Ŗ式会ē¤¾ Aluminum alloy material for die casting
DE60203801T2 (en) * 2001-07-09 2006-05-18 Corus Aluminium Walzprodukte Gmbh Weldable high strength Al-Mg-Si alloy
RU2221891C1 (en) * 2002-04-23 2004-01-20 Š ŠµŠ³ŠøŠ¾Š½Š°Š»ŃŒŠ½Ń‹Š¹ Š¾Š±Ń‰ŠµŃŃ‚Š²ŠµŠ½Š½Ń‹Š¹ фŠ¾Š½Š“ сŠ¾Š“ŠµŠ¹ŃŃ‚Š²Šøя Š·Š°Ń‰ŠøтŠµ ŠøŠ½Ń‚ŠµŠ»Š»ŠµŠŗтуŠ°Š»ŃŒŠ½Š¾Š¹ сŠ¾Š±ŃŃ‚Š²ŠµŠ½Š½Š¾ŃŃ‚Šø Aluminum-based alloy, article made from such alloy and method of manufacture of such article
US20060032560A1 (en) * 2003-10-29 2006-02-16 Corus Aluminium Walzprodukte Gmbh Method for producing a high damage tolerant aluminium alloy
JP2006152359A (en) * 2004-11-29 2006-06-15 Furukawa Sky Kk Aluminum alloy sheet for bottle type can and manufacturing method therefor
JP4916333B2 (en) * 2006-03-13 2012-04-11 ä½å‹č»½é‡‘å±žå·„ę„­ę Ŗ式会ē¤¾ Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP2008231475A (en) * 2007-03-19 2008-10-02 Furukawa Sky Kk Aluminum alloy sheet for forming workpiece, and producing method therefor
JP4312819B2 (en) * 2008-01-22 2009-08-12 ę Ŗ式会ē¤¾ē„žęˆøč£½é‹¼ę‰€ Aluminum alloy sheet with excellent ridging marks during molding
DK2527479T3 (en) * 2011-05-27 2014-05-05 Hydro Aluminium Rolled Prod High conductive aluminum alloy for electrically conductive products
JP6227222B2 (en) * 2012-02-16 2017-11-08 ę Ŗ式会ē¤¾ē„žęˆøč£½é‹¼ę‰€ Aluminum alloy sheet with excellent bake hardenability
JP5379883B2 (en) * 2012-05-11 2013-12-25 ę Ŗ式会ē¤¾ē„žęˆøč£½é‹¼ę‰€ Aluminum alloy plate and manufacturing method thereof
PT2770071T (en) 2013-02-21 2017-04-19 Hydro Aluminium Rolled Prod Aluminium alloy for the production of semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from this aluminium alloy and aluminium alloy strip and uses thereof
CN105264102B (en) 2013-06-19 2018-09-18 åŠ›ę‹“åŠ é“å›½é™…ęœ‰é™å…¬åø Aluminum alloy composition with improved high-temperature machinery characteristic

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2924135A1 (en) 2015-09-30
KR20160132119A (en) 2016-11-16
JP2017514014A (en) 2017-06-01
CA2944061C (en) 2019-10-22
KR101808812B1 (en) 2017-12-13
CN106164311A (en) 2016-11-23
RU2655510C2 (en) 2018-05-28
KR20170121336A (en) 2017-11-01
EP3178952A1 (en) 2017-06-14
US10047424B2 (en) 2018-08-14
EP3178952B9 (en) 2021-07-14
JP6279761B2 (en) 2018-02-14
US20170009323A1 (en) 2017-01-12
EP3178952B1 (en) 2020-07-29
WO2015144888A3 (en) 2016-01-07
WO2015144888A2 (en) 2015-10-01
PT2924135T (en) 2018-02-09
ES2655434T3 (en) 2018-02-20
CA2944061A1 (en) 2015-10-01
RU2016142403A (en) 2018-04-28

Similar Documents

Publication Publication Date Title
EP2770071B2 (en) Aluminium alloy for the production of semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from this aluminium alloy and aluminium alloy strip and uses thereof
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
DE69912850T2 (en) METHOD OF PRODUCING AN ALUMINUM-MAGNESIUM-LITHIUM ALLOY PRODUCT
EP2449145B1 (en) AlMgSi-sheet for applications with high shaping requirements
EP2914391B1 (en) Aluminum composite material and forming method
EP2570509B1 (en) Production method for AlMgSi-aluminium strip
EP2888382B1 (en) Aluminium alloy strip which is resistant to intercrystalline corrosion and method for producing same
DE112008003052T5 (en) Product of Al-Mg-Zn wrought alloy and manufacturing method therefor
EP2888383B1 (en) Aluminium alloy strip which is resistant to intercrystalline corrosion and method for producing same
WO2002083967A1 (en) Method for producing almn strips or sheets
DE10163039C1 (en) Hot and cold formable component made of an aluminum alloy and process for its production
EP2703508B1 (en) Aluminium alloy resistant to intercrystalline corrosion
EP0394816A1 (en) Rolled aluminium semi-finished product and process for its production
EP2924135B1 (en) Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
EP3690076A1 (en) Method for producing a metal sheet or strip made from aluminum alloy and a metal sheet, strip or moulded part produced thereby
EP1466992A1 (en) A flat rolled semi-finished product from an aluminium alloy
EP2426228B1 (en) Magnesium sheet semi-finished products with improved cold reforming characteristics
EP3970964A1 (en) Aluminum composite for crash applications
WO2023169657A1 (en) Semi-finished product made of wrought aluminium alloy, the production and use thereof, and a product produced therefrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160329

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17P Request for examination filed (corrected)

Effective date: 20160329

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENTSCHEL, DR. THOMAS

Inventor name: BRINKMAN, HENK-JAN

Inventor name: MILLER-JUPP, DR. SIMON

Inventor name: ENGLER, DR. OLAF

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170504

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRINKMAN, HENK-JAN

Inventor name: ENGLER, DR. OLAF

Inventor name: HENTSCHEL, DR. THOMAS

Inventor name: MILLER-JUPP, DR. SIMON

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20171016

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 954427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006533

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2924135

Country of ref document: PT

Date of ref document: 20180209

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20180105

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2655434

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006533

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20190325

Year of fee payment: 6

Ref country code: ES

Payment date: 20190418

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 954427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014006533

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 11

Ref country code: GB

Payment date: 20240321

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240325

Year of fee payment: 11

Ref country code: FR

Payment date: 20240321

Year of fee payment: 11