JP2006152359A - Aluminum alloy sheet for bottle type can and manufacturing method therefor - Google Patents

Aluminum alloy sheet for bottle type can and manufacturing method therefor Download PDF

Info

Publication number
JP2006152359A
JP2006152359A JP2004343458A JP2004343458A JP2006152359A JP 2006152359 A JP2006152359 A JP 2006152359A JP 2004343458 A JP2004343458 A JP 2004343458A JP 2004343458 A JP2004343458 A JP 2004343458A JP 2006152359 A JP2006152359 A JP 2006152359A
Authority
JP
Japan
Prior art keywords
aluminum alloy
bottle
aluminum
corrosion resistance
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004343458A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuzaki
松崎和彦
Satoru Suzuki
鈴木覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2004343458A priority Critical patent/JP2006152359A/en
Publication of JP2006152359A publication Critical patent/JP2006152359A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a bottle type can having high formability and high corrosion resistance even if an excessive amount of an element other than aluminum is added to an alloy. <P>SOLUTION: This aluminum alloy sheet comprises 0.36-0.8% Si, 0.5-1.2% Fe, 0.8-1.4% Mn, 0.8-1.8% Mg, 0.1-0.3% Cu and the balance composed of Al and unavoidable impurities; and has an intermetallic compound with a diameter of 0.1 to 1 μm dispersed at a rate of 10,000 per square millimeter in an aluminum matrix. It is effective to anneal a hot-rolled aluminum alloy plate before a cold rolling step by heating it to a temperature range between 350 and 500°C at a heating rate of 100°C/minute or higher, keeping it in the temperature range for 0 second to 2 minutes, and cooling it at a cooling rate of 100°C/minute or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はリシール可能な缶底部、胴部、飲み口部が一体成形されているボトル形状の飲料缶用のアルミニウム合金板に係り、特にリサイクル性があり且つ高耐食性、高成形性に優れたボトル缶用のアルミニウム合金板に係わるものである。   TECHNICAL FIELD The present invention relates to an aluminum alloy plate for a bottle-shaped beverage can in which a resealable can bottom, a body, and a mouthpiece are integrally formed, and is particularly recyclable and has a high corrosion resistance and excellent moldability. It relates to aluminum alloy plates for cans.

従来の飲料缶は缶蓋と缶胴よりなるいわゆる2ピース缶が主流であったが、近年リシールが可能なボトル型の飲料缶が開発されている。このボトル缶は通常の2ピース缶胴と同様に素板を円形にブランキングし、これを一次絞りカップとした後、再絞り加工、しごき加工により胴体部と底部を有する形状とする。これをトリミングして缶高さをそろえた後開口部を縮径化し、さらにこの部分にねじ部の加工を施してさらに飲み口部にカール加工をほどこす。     Conventional beverage cans are mainly so-called two-piece cans composed of a can lid and a can body, but recently, bottle-type beverage cans that can be resealed have been developed. This bottle can is shaped like a normal two-piece can body by blanking a base plate into a circular shape, making it a primary squeeze cup, then having a body part and a bottom part by redrawing and ironing. After trimming this and aligning the can height, the diameter of the opening is reduced, and the threaded portion is further processed at this portion to further curl the drinking mouth.

近年、産業界では省資源化の動きが活発であるが、アルミニウム材料についても材料の再利用の動きが促進している傾向にある。特に自動車のラジエータ用途に使用されるブレージング材料は、芯となる材料が、ボトル缶用の材料と組成成分が類似であるという理由から、再利用の比率が高くなっている。しかし、一方で蝋材については、Si含有量が高い材料を使用しているため、ボトル缶用材料用途で、ブレージング材料の再利用化率が高まると、アルミニウム材料中に含有される他成分(特にSi)の濃度が相対的に高まってしまう。特に、SiやFe等の元素は、常法による精錬方法では分離もしくは除去しづらく、分離が可能になったとしてもその製造コストが膨大になってしまい、工業的に不適切である。
もし、アルミニウム以外の不純物が高濃度に含有されているアルミニウム板を用いたボトル缶に、塩化物イオンやアミノ酸・クエン酸の様な有機酸等を含む弱酸性または弱アルカリ性のスポーツドリンク等を装填した場合、アルミニウムが内容物中に溶解する恐れがある。
In recent years, there has been an active movement toward resource saving in the industrial world, but there is also a tendency for aluminum materials to be re-used. Particularly, brazing materials used for automobile radiators have a high reuse ratio because the core material is similar in composition to the material for bottle cans. However, on the other hand, for the wax material, since a material having a high Si content is used, when the reuse rate of the brazing material is increased in the material for bottle cans, other components contained in the aluminum material ( In particular, the concentration of Si) is relatively increased. In particular, elements such as Si and Fe are difficult to separate or remove by a conventional refining method, and even if they can be separated, the production cost becomes enormous and industrially inappropriate.
If an aluminum plate containing a high concentration of impurities other than aluminum is filled with a weakly acidic or weakly alkaline sports drink containing chloride ions, organic acids such as amino acids and citric acid, etc. In such a case, aluminum may be dissolved in the contents.

特開2002−256366号および特開2003−082429号にはネッキング性が優れたボトル缶用アルミニウム板が開示されているが、上記のようなアルミ缶を再利用したような材料では、耐食性を損なう危険を伴うため、製法等により特性を制御する必要がある。また、特開2003−306750号にはネッキングした口頸部の強度が高く、カール加工性に優れたボトル型飲料缶用アルミニウム合金板の製造方法が開示されているが、この場合冷間圧延中に2回の中間焼鈍が必要となりコスト的に不利である。
特開2002−256366号公報 特開2003−082429号公報 特開2003−306750号公報
Japanese Laid-Open Patent Publication Nos. 2002-256366 and 2003-082429 disclose aluminum plates for bottle cans that have excellent necking properties, but such materials that reuse aluminum can impair corrosion resistance. Because of the danger, it is necessary to control the characteristics by the manufacturing method. Japanese Patent Application Laid-Open No. 2003-306750 discloses a method for producing an aluminum alloy plate for a bottle-type beverage can having high necked neck and neck strength and excellent curl workability. In addition, two intermediate annealing steps are required, which is disadvantageous in terms of cost.
JP 2002-256366 A JP 2003-082429 A JP 2003-306750 A

ボトル缶体形状の成形は、一般に深絞り成形、もしくはDI(絞り、しごき)成形により缶胴直線部を加工し、続いて、絞り比30%以上の口絞り成形、キャップとの嵌合のためのねじ切り成形、飲み口部のカール成形を施される。そのため、ボトル缶用途に使用されるアルミニウム材料には、上記の過酷な塑性変形を施されても、破壊もしくは損傷しないような成形性の良い材料が望まれている。概ボトル缶体には、内容物装填後にその形状を損なわないように、一定値以上の缶体強度が必要となる。缶体強度の代表的な値として、耐圧強度がある。耐圧強度は、缶内部に圧力が加わったときに、缶底のドーム形状部がバックリングするときのその内部に加わる圧力値であるが、炭酸飲料等を充填した缶には一定値以上の耐圧強度が必要となる。以上の理由から、ボトル缶用途に使用されるアルミニウム材料には、加工後の缶体強度を満たすような強度が必要となる。   Bottle can body shape is generally processed by deep drawing or DI (drawing, ironing) forming the straight part of the can body, followed by mouth drawing with a drawing ratio of 30% or more, and fitting with a cap. Threading molding and curling of the drinking part. Therefore, an aluminum material used for a bottle can application is desired to have a good moldability so as not to be broken or damaged even when the above severe plastic deformation is applied. In general, the can body strength of a certain value or more is required for the bottle can body so as not to damage the shape after the contents are loaded. A typical value of can strength is pressure strength. The pressure strength is the pressure applied to the inside of the can when the pressure is applied to the inside of the can when the dome-shaped part at the bottom of the can buckles. Strength is required. For the above reasons, the aluminum material used for the bottle can application needs to have a strength that satisfies the strength of the processed can body.

缶の再生化率がある程度高まってきて缶以外の異質なスクラップが混入する可能性が高まったため、特定の元素が缶材としては不適当な程度に過剰に添加されるおそれがある。この場合、特にSiやFeが過剰になると耐食性の低下が懸念される。   Since the regeneration rate of the can has increased to some extent and the possibility that foreign scrap other than the can is mixed in may increase the specific element excessively to an extent inappropriate for the can material. In this case, particularly when Si or Fe is excessive, there is a concern that the corrosion resistance is lowered.

本発明では、アルミニウム以外の元素が過剰に添加されたとしても、高成形性および高耐食性を有するボトル缶用アルミニウム板とその製法を提案する。   In this invention, even if elements other than aluminum are added excessively, the aluminum plate for bottle cans which has high moldability and high corrosion resistance, and its manufacturing method are proposed.

本発明は、請求項1に記載のように、缶の胴体部材と蓋部材がネジ部により嵌合され、リシールが可能となるボトル缶のうち、その胴部に対する口部の絞り比が30%以上であるボトル缶に用いられるアルミニウム板であって、Si0.36〜0.8%、Fe0.5〜1.2%、Mn0.8〜1.4%、Mg0.8〜1.8%、Cu0.1〜0.3%を含み、残部がAl及び不可避不純物からなり、アルミニウムのマトリックス中に径が0.1〜1μmの金属間化合物が1mm2 あたり10000個以下分散していることを特徴とする、リサイクル性があり且つ高耐食性、高成形性を有するボトル缶用アルミニウム合金板である。 In the present invention, the bottle body member and the lid member of the can are fitted by the threaded portion as described in claim 1, and the squeezing ratio of the mouth portion relative to the body portion of the bottle can that can be resealed is 30%. Aluminum plate used for the bottle can which is above, Si 0.36-0.8%, Fe 0.5-1.2%, Mn 0.8-1.4%, Mg 0.8-1.8%, Cu 0.1 to 0.3%, the balance is made of Al and inevitable impurities, and the intermetallic compound having a diameter of 0.1 to 1 μm is dispersed in an aluminum matrix in an amount of 10,000 or less per 1 mm 2. The aluminum alloy plate for bottle cans is recyclable and has high corrosion resistance and high formability.

そして、その製造方法は請求項2記載のように、アルミニウム合金鋳塊に均質化処理、熱間圧延を施し、その後100℃/分以上の加熱速度で350℃〜500℃の温度範囲に昇温し、前記温度範囲に0秒〜2分間保持したのち、100℃/分以上の冷却速度で冷却する焼鈍処理を施し、次いで冷間圧延を施す。   And the manufacturing method performs homogenization treatment and hot rolling on the aluminum alloy ingot as described in claim 2, and then raises the temperature to a temperature range of 350 ° C. to 500 ° C. at a heating rate of 100 ° C./min or more. And after hold | maintaining to the said temperature range for 0 second-2 minutes, the annealing process cooled at the cooling rate of 100 degree-C / min or more is given, and then cold rolling is given.

本発明のボトル缶用アルミニウム合金は、合金組成、焼鈍条件の調整、特定サイズの金属間化合物の分布等を特定範囲に規制したため、リサイクル性があり且つ高耐食性、高成形性に優れたボトル缶用のアルミニウム合金板を得ることができる。   Since the aluminum alloy for bottle cans of the present invention regulates the alloy composition, adjustment of annealing conditions, distribution of intermetallic compounds of a specific size, etc. within a specific range, the bottle can has excellent recyclability and high corrosion resistance and high formability. An aluminum alloy plate can be obtained.

本発明において、アルミニウム合金の成分を限定した理由について述べる。 The reason why the components of the aluminum alloy are limited in the present invention will be described.

Siは、鋳造時に生じたAl−Mn−Fe系の金属間化合物を、均質化処理を施すことにより、硬度の高いAl−Mn−Fe−Si系の晶出物に変態させるのに必要な元素である。このAl−Mn−Fe−Si系の晶出物が適切な大きさで、マトリックス中に適度に分布していると、DI加工時に成形性を向上させることができる。また、適度な大きさの晶出物の分布は、強度を上げる効果も期待できる。Mgはアルミニウム材料中に単独に固溶し、強度上昇に寄与する。Siとの化合物であるMgSiも適度に析出させることにより、強度上昇が期待できる。しかし、MgSiの過剰な析出は、耐食性を劣らせるために避ける必要がある。 Si is an element necessary for transforming an Al—Mn—Fe intermetallic compound produced during casting into a high-hardness Al—Mn—Fe—Si crystallized product by subjecting it to a homogenization treatment. It is. If the Al-Mn-Fe-Si-based crystallized substance has an appropriate size and is appropriately distributed in the matrix, the moldability can be improved during DI processing. In addition, the distribution of crystallized substances having an appropriate size can be expected to increase the strength. Mg is dissolved in the aluminum material alone and contributes to an increase in strength. An increase in strength can be expected by appropriately depositing Mg 2 Si, which is a compound with Si. However, excessive precipitation of Mg 2 Si must be avoided in order to deteriorate the corrosion resistance.

Siを0.36〜0.8%と規定したのは、缶のリサイクル等により再生塊を使用した場合、Siを0.36%未満にするには、製造コストが高くなりすぎてしまうためである。Siが0.8%を超えると、Al−Mn−Fe−Si系の晶出物の大きさが巨大になりすぎて、DI成形時にき裂発生の起点となり成形性を損ねてしまうし、過剰なMgSiの析出により耐食性を劣化させるためである。 The reason why Si is defined as 0.36 to 0.8% is that when recycled lump is used by recycling cans, etc., to make Si less than 0.36%, the manufacturing cost becomes too high. is there. If Si exceeds 0.8%, the size of the Al-Mn-Fe-Si-based crystallized product becomes too large, causing crack generation at the time of DI molding and impairing the moldability. This is because the corrosion resistance is deteriorated by the precipitation of Mg 2 Si.

Mgを0.8〜1.8%と規定したのは、Mgが0.8%未満であると、缶体強度に必要な十分な強度が得られず、Mgが1.8%を超えると、過度の強度上昇による成形性低下、MgSiの過剰析出による耐食性劣化を招くためである。 The reason why Mg is defined as 0.8 to 1.8% is that when Mg is less than 0.8%, sufficient strength necessary for can strength cannot be obtained, and when Mg exceeds 1.8%. This is because the moldability is lowered due to excessive strength increase, and the corrosion resistance is deteriorated due to excessive precipitation of Mg 2 Si.

Feを0.5〜1.2%としたのは、Al−Mn系のアルミニウム合金では、Fe添加によりアルミマトリックス中へのMnの固溶量を減少させるため、鋳造後または均質化処理後に生成されるAl−Mn−Fe−Si系の晶出物の大きさがより大きくなる。前述の通り、このAl−Mn−Fe−Si系の晶出物の存在により、DI成形性を向上できる。0.5%未満では、Al−Mn−Fe−Si系の晶出物の絶対量が少なすぎるため、成形性向上の効果が得られず、1.2%を越えると、Al−Mn−Fe系の巨大な晶出物が発生して、逆に成形性を低下させるためである。   The reason why the Fe content is 0.5 to 1.2% is that after the casting or homogenization treatment in the case of Al-Mn based aluminum alloys, the amount of Mn dissolved in the aluminum matrix is reduced by adding Fe. The size of the Al-Mn-Fe-Si-based crystallized material is increased. As described above, the presence of this Al-Mn-Fe-Si-based crystallized product can improve the DI moldability. If it is less than 0.5%, the amount of Al-Mn-Fe-Si-based crystallized crystals is too small, so that the effect of improving formability cannot be obtained. If it exceeds 1.2%, Al-Mn-Fe This is because a huge crystallized product of the system is generated and conversely, the moldability is lowered.

MnもAl−Mn−Fe−Si系の晶出物により成形性を増すために添加するものであるが、その限定範囲を0.8〜1.4%としたのは、0.8%未満では所望の効果が得られず、1.4%を越えると、Al―Mn系及び又はAl−Mn−Fe系等の巨大な晶出物が形成され、成形性を低下させるためである。   Mn is also added to increase moldability by Al-Mn-Fe-Si-based crystallized matter, but the limited range is 0.8-1.4%, less than 0.8% In this case, the desired effect cannot be obtained, and if it exceeds 1.4%, a large crystallized product such as an Al—Mn system and / or an Al—Mn—Fe system is formed and the moldability is lowered.

Cuは、ボトル缶をDI加工した後のベーキング処理時に、材料軟化を抑制させる特性を有し、ボトル缶体強度に必要な強度を維持させるために添加するものであるが、その限定範囲を0.1〜0.3%としたのは、0.1%未満では所望の効果が得られず、0.3%を越えると、その効果が飽和するとともに成形性を低下させるためである。   Cu has the property of suppressing material softening during baking after DI processing of the bottle can, and is added to maintain the strength necessary for the strength of the bottle can body. When the content is less than 0.1%, the desired effect cannot be obtained. When the content exceeds 0.3%, the effect is saturated and the moldability is lowered.

次に、本発明のアルミニウム合金板の製造方法について説明する。   Next, the manufacturing method of the aluminum alloy plate of this invention is demonstrated.

請求項1に記載の組成を有するアルミニウム合金を、常法に従って、鋳塊を作成し、この鋳塊の表面を面削、均質化処理を施した後、熱間圧延を施し、続いて焼鈍処理を施した後、冷間圧延をして、所望のアルミニウム合金板を作成する。なお前記、熱間圧延と冷間圧延との間の焼鈍処理は省略可能である。
しかし、より耐食性を向上させるには、この焼鈍処理を施し請求項1に記載の金属間化合物のサイズと分散状態を有するアルミニウム合金板となるような製法にするのが好ましい。
The aluminum alloy having the composition according to claim 1 is made into an ingot according to a conventional method, the surface of the ingot is subjected to chamfering and homogenizing treatment, and then hot rolling is performed, followed by annealing treatment. Then, cold rolling is performed to produce a desired aluminum alloy plate. The annealing process between the hot rolling and the cold rolling can be omitted.
However, in order to further improve the corrosion resistance, it is preferable that the annealing process is performed so that the aluminum alloy plate having the intermetallic compound size and dispersion state according to claim 1 is obtained.

次に、アルミニウムのマトリックス中に径が0.1〜1μmの金属間化合物を1mm2 あたり10000個以下となるように分散させる理由を述べる。金属間化合物のサイズを0.1〜1μmと規定したのは、0.1μm以下の金属間化合物は材料中に数多く存在するがこのサイズの金属間化合物の多寡は耐食性に対して影響せず、また1μmを超える金属間化合物も存在するが本願の合金組成範囲では数が少なく耐食性には影響しないからである。分散状態を1mm2 あたり10000個以下としたのは、10000個を越えると、アルミニウム材料の耐食性が著しく損なわれるためである。そして、0.1〜1μmの金属間化合物は少ないほど好ましいので分布密度の下限は定めない。 Next, the reason why an intermetallic compound having a diameter of 0.1 to 1 μm is dispersed in an aluminum matrix so as to be 10,000 or less per 1 mm 2 will be described. The reason why the size of the intermetallic compound is defined as 0.1 to 1 μm is that many intermetallic compounds having a size of 0.1 μm or less exist in the material, but the number of intermetallic compounds of this size does not affect the corrosion resistance, Further, although intermetallic compounds exceeding 1 μm exist, the number is small in the alloy composition range of the present application, and the corrosion resistance is not affected. The reason why the dispersion state is set to 10,000 or less per 1 mm 2 is that the corrosion resistance of the aluminum material is significantly impaired when the number exceeds 10,000. And since it is so preferable that there are few intermetallic compounds of 0.1-1 micrometer, the minimum of distribution density is not defined.

次に本発明のボトル缶用アルミニウム合金板の製造方法について述べる。
アルミニウム合金の鋳造、均質化処理、熱間圧延は常法に従って行う。
Next, the manufacturing method of the aluminum alloy plate for bottle cans of this invention is described.
Aluminum alloy casting, homogenization treatment, and hot rolling are performed according to conventional methods.

熱間圧延後に析出した金属間化合物は、その後の焼鈍処理で一部がAlマトリックス中に再固溶し、この再固溶により0.1〜1μmの大きさのMg2 Siを1mm2 あたり10000個以下に減少せしめる。前記焼鈍処理を、380〜520℃で0秒〜2分間保持し、加熱および冷却速度を100℃/分以上に規定して施す理由は、焼鈍処理温度が380℃未満では金属間化合物の再固溶量が不十分で、径が0.1〜1μmの金属間化合物が10000個/mm2 を超えて分散するためで、焼鈍処理温度が520℃を超えても保持時間が2分を超えても結晶粒が粗大化してしごき成形性などが低下し、また加熱速度または冷却速度のいずれが100℃/分未満では生産性が低下し、特に冷却速度が100℃/分未満では、冷却時に金属間化合物が多数析出するためである。 A part of the intermetallic compound precipitated after hot rolling is re-dissolved in the Al matrix by the subsequent annealing treatment, and Mg 2 Si having a size of 0.1 to 1 μm is 10000 per 1 mm 2 by this re-dissolution. Reduce to less than one. The reason why the annealing treatment is performed at 380 to 520 ° C. for 0 second to 2 minutes and the heating and cooling rates are specified to be 100 ° C./min or more is that when the annealing treatment temperature is less than 380 ° C., the re-solidification of the intermetallic compound is performed. This is because the amount of intermetallic compound with an insoluble amount of 0.1 to 1 μm is dispersed in excess of 10,000 / mm 2, and the holding time exceeds 2 minutes even if the annealing temperature exceeds 520 ° C. However, if the heating rate or the cooling rate is less than 100 ° C./min, the productivity is lowered, and particularly if the cooling rate is less than 100 ° C./min, the metal is cooled during cooling. This is because a large number of intermetallic compounds are precipitated.

焼鈍後の冷間圧延は常法に従って行う。冷延率は50〜95%が好ましい。   Cold rolling after annealing is performed according to a conventional method. The cold rolling rate is preferably 50 to 95%.

また、冷延後に、100〜200℃×0.5〜3時間程度の仕上焼鈍を施してもかまわない。   Further, after the cold rolling, finish annealing of about 100 to 200 ° C. × 0.5 to 3 hours may be performed.

以下に本発明を実施例により詳細に説明する。
表1に示す組成のアルミニウム合金を厚さ500mmの鋳塊に溶解鋳造し、590〜630℃で6時間の均質化処理を施し、常温まで冷却した鋳塊表面を片側5〜8mm面削した。面削後の鋳塊を400〜550℃まで再加熱し、リバース式熱間粗圧延機を用い、1パス当たり圧延率10〜30%で10〜30パスの熱間粗圧延を施し、終了板厚20〜30mmの熱間粗圧延板とした。続いて、4段タンデム式熱間仕上圧延機を用いて、終了板厚2〜4mmかつ終了温度300〜350℃になるように、熱間仕上圧延を行った。熱間圧延終了後、焼鈍処理を付与したアルミニウム板と、省略したアルミニウム板を任意で製造した。焼鈍処理の条件は、100℃/分以上の加熱速度で350℃〜500℃の温度範囲に昇温し、前記温度範囲に0秒〜2分間保持したのち、100℃/分以上の冷却速度で冷却とした。その後、圧延率40〜60%で、総パス数を3パスで冷間圧延を施し、板厚0.4mmまで最終冷間圧延(トータル圧延率80〜90%)を行い、アルミニウム合金板を得た。
Hereinafter, the present invention will be described in detail with reference to examples.
An aluminum alloy having the composition shown in Table 1 was melt-cast into an ingot having a thickness of 500 mm, homogenized at 590 to 630 ° C. for 6 hours, and the ingot surface cooled to room temperature was chamfered on one side by 5 to 8 mm. The ingot after chamfering is reheated to 400 to 550 ° C. and subjected to hot rough rolling of 10 to 30 passes at a rolling rate of 10 to 30% per pass using a reverse hot rough rolling machine, and finished plate A hot rough rolled plate having a thickness of 20 to 30 mm was obtained. Subsequently, hot finish rolling was performed using a four-stage tandem hot finish rolling mill so that the end plate thickness was 2 to 4 mm and the end temperature was 300 to 350 ° C. After completion of hot rolling, an aluminum plate provided with an annealing treatment and an omitted aluminum plate were optionally produced. The annealing treatment was performed at a heating rate of 100 ° C./min or higher at a temperature range of 350 ° C. to 500 ° C., held in the temperature range for 0 second to 2 minutes, and then at a cooling rate of 100 ° C./min or higher. Cooled. Thereafter, cold rolling is performed with a rolling rate of 40 to 60% and a total number of passes of 3 passes, and final cold rolling (total rolling rate of 80 to 90%) is performed to a plate thickness of 0.4 mm to obtain an aluminum alloy plate. It was.

このようにして得られたアルミニウム合金板について、缶の成形性、缶体の強度である耐圧強度、耐食性を調査した。缶の成形性は、しごき成形性と口絞り成形性を評価した。しごき成形性は、内径の異なるダイスを用いて、連続して100缶成形できる缶側壁の総しごき率を調べた。総しごき率が70%を超えて成形可能である材料について「○(良好)」、総しごき率が60%以上かつ70%以下で100缶成形できる材料を「△(やや悪い)」、総しごき率が60%以上かつ70%以下で100缶成形できない材料については「×(不良)」とした。口絞り成形性は、絞り比30%で口絞りした後の缶に、シワや割れ等の外観不良を生じない材料について「○(良好)」とし、外観不良が生じる材料を「×(不良)」とした。耐食性は、缶側壁試験片を50℃の0.1%NaCl+0.3%クエン酸の混合溶液に1週間浸漬し、孔食深さが全て20μm未満のものは「良好(○)」、孔食深さが20μmを超えるものが含まれるものは「不良(×)」と判定した。結果を合金組成と併せて表1に示す。   The aluminum alloy plate thus obtained was examined for can moldability, pressure strength, which is the strength of the can body, and corrosion resistance. As for the moldability of the can, the iron moldability and the mouth draw moldability were evaluated. For the iron moldability, the total ironing ratio of the can side walls that can be continuously formed into 100 cans using dies having different inner diameters was examined. “○ (good)” for materials that can be molded with a total ironing rate exceeding 70%, “△ (slightly bad)” for materials that can be molded into 100 cans with a total ironing rate of 60% or more and 70% or less. A material having a rate of 60% or more and 70% or less and cannot be molded into 100 cans was evaluated as “x (defect)”. The squeeze formability is “good” for materials that do not cause appearance defects such as wrinkles and cracks in the can after squeezing with a squeezing ratio of 30%. " Corrosion resistance is “good (◯)” when the can side wall specimen is immersed in a mixed solution of 0.1% NaCl + 0.3% citric acid at 50 ° C. for 1 week, and the pitting depth is less than 20 μm. Those including a depth exceeding 20 μm were determined to be “defective (×)”. The results are shown in Table 1 together with the alloy composition.

Figure 2006152359
Figure 2006152359

表1からわかるように、本発明に係るボトル缶用アルミニウム板の必要条件を満たす発明例1〜5にあっては、いずれもボトル缶の成形時に要求されるしごき性、口絞り性の加工成形性が良好になっており、耐食性も良好であり、さらに耐圧強度(66.69×10MPa以上)の缶体強度も十分に満足している。それに対して、比較例1〜7においては、添加元素成分の含有量が本発明記載の範囲を逸する、もしくはアルミニウムのマトリックス中に径が0.1〜1μmの金属間化合物が1mm2 あたり10000個を越えた分散状態であったために、ボトル缶体に必要な特性が十分ではないという結果となった。すなわち、比較例1はSi含有量が本発明の上限値を上回るため、耐食性としごき性が「×(不良)」となっている。比較例2はFe含有量が本発明の下限値を下回るため、しごき性が「△(やや不良)」となり、比較例3はFe含有量が本発明の上限値を上回るため、耐食性およびしごき性が「×(不良)」となっている。比較例4はMn含有量が本発明の下限値を下回るため、しごき性が「△(やや不良)」かつ、缶体強度が所望強度に達しておらず、比較例5はMn含有量が本発明の上限値を上回るため、しごき性が「×(不良)」となっている。比較例6はMg含有量が本発明の下限値を下回るため、缶体強度が所望強度に達していない。比較例7はMg含有量が本発明の上限値を上回るため、しごき性が「△(やや不良)」、口絞り性が「×(不良)」となっている。比較例8はCu含有量が本発明の上限値を上回るため、しごき性が「△(やや不良)」、口絞り性が「×(不良)」となっている。
As can be seen from Table 1, in Invention Examples 1 to 5 that satisfy the requirements of the aluminum plate for bottle cans according to the present invention, both ironing and mouth-squeezing work forming required when forming the bottle can The corrosion resistance is also good, and the can body strength of the pressure strength (66.69 × 10 4 MPa or more) is sufficiently satisfied. On the other hand, in Comparative Examples 1 to 7, the content of the additive element component deviates from the range described in the present invention, or an intermetallic compound having a diameter of 0.1 to 1 μm in an aluminum matrix is 10,000 per mm 2. The result was that the properties required for the bottle can body were not sufficient due to the dispersion state exceeding the individual. That is, in Comparative Example 1, since the Si content exceeds the upper limit of the present invention, the corrosion resistance and the ironing property are “x (defect)”. In Comparative Example 2, the iron content is lower than the lower limit of the present invention, so the ironing property is “Δ (slightly poor)”, and in Comparative Example 3, the Fe content is higher than the upper limit of the present invention, so that the corrosion resistance and ironing properties are. Is “× (defect)”. In Comparative Example 4, the Mn content is lower than the lower limit of the present invention, so that the ironing property is “Δ (somewhat poor)” and the strength of the can body does not reach the desired strength. In Comparative Example 5, the Mn content is Since it exceeds the upper limit of the invention, the ironing property is “x (defect)”. In Comparative Example 6, since the Mg content is lower than the lower limit of the present invention, the can strength does not reach the desired strength. In Comparative Example 7, the Mg content exceeds the upper limit of the present invention, so that the ironing property is “Δ (somewhat poor)” and the mouth-squeezing property is “× (bad)”. In Comparative Example 8, since the Cu content exceeds the upper limit of the present invention, the ironing property is “Δ (somewhat poor)” and the mouth-squeezing property is “× (bad)”.

Claims (2)

缶の胴体部材と蓋部材がネジ部により嵌合され、リシールが可能となるボトル缶のうち、その胴部に対する口部の絞り比が30%以上であるボトル缶に用いられるアルミニウム板であって、Si0.36〜0.8%(mass%、以下同じ)、Fe0.5〜1.2%、Mn0.8〜1.4%、Mg0.8〜1.8%、Cu0.1〜0.3%を含み、残部がAl及び不可避不純物からなり、アルミニウムのマトリックス中に径が0.1〜1μmの金属間化合物が1mm2 あたり10000個以下分散していることを特徴とする、リサイクル性があり且つ高耐食性、高成形性を有するボトル缶用アルミニウム合金板。 Among the cans that can be resealed by fitting the body member and the lid member of the can with a screw part, an aluminum plate used for a bottle can having a squeezing ratio of 30% or more with respect to the body part. Si 0.36 to 0.8% (mass%, the same applies hereinafter), Fe 0.5 to 1.2%, Mn 0.8 to 1.4%, Mg 0.8 to 1.8%, Cu 0.1 to 0. The recyclability is characterized by comprising 3%, the balance consisting of Al and inevitable impurities, and 10,000 or less intermetallic compounds having a diameter of 0.1 to 1 μm dispersed in 1 mm 2 in an aluminum matrix. Aluminum alloy plate for bottle cans that has high corrosion resistance and high formability. アルミニウム合金鋳塊に均質化処理、熱間圧延を施し、その後100℃/分以上の加熱速度で350℃〜500℃の温度範囲に昇温し、前記温度範囲に0秒〜2分間保持したのち、100℃/分以上の冷却速度で冷却する焼鈍処理を施し、次いで冷間圧延を施すことを特徴とする、請求項1に記載のリサイクル性があり且つ高耐食性、高成形性を有するボトル缶用アルミニウム合金板の製造方法。
The aluminum alloy ingot is subjected to homogenization treatment and hot rolling, and then heated to a temperature range of 350 ° C. to 500 ° C. at a heating rate of 100 ° C./min or more and held in the temperature range for 0 second to 2 minutes. The bottle can having recyclability, high corrosion resistance, and high formability according to claim 1, wherein the bottle can be annealed by cooling at a cooling rate of 100 ° C./min or more, and then cold-rolled. Method for manufacturing aluminum alloy sheet.
JP2004343458A 2004-11-29 2004-11-29 Aluminum alloy sheet for bottle type can and manufacturing method therefor Pending JP2006152359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004343458A JP2006152359A (en) 2004-11-29 2004-11-29 Aluminum alloy sheet for bottle type can and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004343458A JP2006152359A (en) 2004-11-29 2004-11-29 Aluminum alloy sheet for bottle type can and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006152359A true JP2006152359A (en) 2006-06-15

Family

ID=36630997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004343458A Pending JP2006152359A (en) 2004-11-29 2004-11-29 Aluminum alloy sheet for bottle type can and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006152359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043582A1 (en) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 Cold-rolled aluminum alloy sheet for bottle can
EP2924135A1 (en) * 2014-03-28 2015-09-30 Hydro Aluminium Rolled Products GmbH High plasticity moderate strength aluminum alloy for manufacturing semi-finished products or components of motor vehicles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043582A1 (en) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 Cold-rolled aluminum alloy sheet for bottle can
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
AU2011309067B2 (en) * 2010-09-30 2015-08-20 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled aluminum alloy sheet for bottle can
EP2924135A1 (en) * 2014-03-28 2015-09-30 Hydro Aluminium Rolled Products GmbH High plasticity moderate strength aluminum alloy for manufacturing semi-finished products or components of motor vehicles
WO2015144888A3 (en) * 2014-03-28 2016-01-07 Hydro Aluminium Rolled Products Gmbh Highly formable, medium-strength aluminum alloy for producing semi-finished products or components of motor vehicles
CN106164311A (en) * 2014-03-28 2016-11-23 海德鲁铝业钢材有限公司 Manufacture semi-finished product or the high-mouldability of component, the aluminium alloy of middle intensity of automobile
EP3178952A1 (en) * 2014-03-28 2017-06-14 Hydro Aluminium Rolled Products GmbH High plasticity moderate strength aluminium alloy for manufacturing semi-finished products or components of motor vehicles
KR101808812B1 (en) 2014-03-28 2017-12-13 하이드로 알루미늄 롤드 프로덕츠 게엠베하 Highly formable, medium-strength aluminum alloy for producing semi-finished products or components of motor vehicles
RU2655510C2 (en) * 2014-03-28 2018-05-28 Гидро Алюминиум Ролд Продактс Гмбх Easy formed, medium-strength aluminum alloy for cars workpieces or parts manufacturing
US10047424B2 (en) 2014-03-28 2018-08-14 Hydro Aluminium Rolled Products Gmbh Highly formable, medium-strength aluminium alloy for the manufacture of semi-finished products or components of motor vehicles

Similar Documents

Publication Publication Date Title
RU2687791C2 (en) Aluminum alloys for packaging products of complex shape and methods for production thereof
JP2006265700A (en) Aluminum alloy sheet for bottle-shaped can superior in high-temperature property
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
KR101988146B1 (en) Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof
US20120227870A1 (en) Aluminum-alloy sheet and method for producing the same
JP2006265701A (en) Cold-rolled aluminum alloy sheet superior in high-temperature property for bottle-shaped can
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2018145466A (en) Manufacturing method of aluminum alloy sheet for beverage can excellent in bottom moldability and bottom part strength
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP6718701B2 (en) Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability
JP2002256366A (en) Aluminum sheet for bottle
JP2004244701A (en) Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor
JP2007270281A (en) Aluminum alloy sheet for bottle type beverage can and its production method
JP2008274319A (en) Method for manufacturing aluminum alloy sheet for beverage can body
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP3868839B2 (en) Method for producing aluminum alloy plate for bottle-type beverage can
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP2006152359A (en) Aluminum alloy sheet for bottle type can and manufacturing method therefor
JPH10121177A (en) Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JP2005048288A (en) Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2001073104A (en) Manufacture of aluminum alloy soft sheet for deep drawing
JP2007169744A (en) Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method