EP2450463B1 - Aluminium alloy - Google Patents

Aluminium alloy Download PDF

Info

Publication number
EP2450463B1
EP2450463B1 EP20110165256 EP11165256A EP2450463B1 EP 2450463 B1 EP2450463 B1 EP 2450463B1 EP 20110165256 EP20110165256 EP 20110165256 EP 11165256 A EP11165256 A EP 11165256A EP 2450463 B1 EP2450463 B1 EP 2450463B1
Authority
EP
European Patent Office
Prior art keywords
alloy
aluminium alloy
alloy according
alloys
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110165256
Other languages
German (de)
French (fr)
Other versions
EP2450463A2 (en
EP2450463A3 (en
Inventor
Georg Dambauer
Peter Schumacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voecklabrucker Metallgiesserei Dambauer GmbH
Original Assignee
Vocklabrucker Metallgiesserei Dambauer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vocklabrucker Metallgiesserei Dambauer GmbH filed Critical Vocklabrucker Metallgiesserei Dambauer GmbH
Publication of EP2450463A2 publication Critical patent/EP2450463A2/en
Publication of EP2450463A3 publication Critical patent/EP2450463A3/en
Application granted granted Critical
Publication of EP2450463B1 publication Critical patent/EP2450463B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • steels or cast iron have the advantage of very high strength and are also cheap base materials.
  • a disadvantage of steels or cast iron, however, is that a casting process is usually expensive, corrosion resistance can be low and, in principle, a higher production cost is given in comparison with aluminum alloys.
  • steels and cast iron also have a higher density, which adversely affects a weight of a vehicle component and is often undesirable in view of a comparatively higher fuel consumption.
  • alloys of the aluminum-silicon-magnesium alloy system are easy to cast, are relatively easy to machine mechanically and are generally resistant to corrosion, but often have low strength. Alloys of the aluminum-copper-titanium alloy system can achieve a high theoretical strength, but are often not resistant to corrosion and, as a rule, poorly cast.
  • EP 1 215 295 A1 discloses an aluminum casting alloy with 5 to 10% silicon.
  • EP 1136 581 discloses an aluminum alloy with 1.5-2.2 Fe.
  • alloys containing 7 to 17% by weight and up to 0.7% by weight of magnesium or wrought alloys containing less than 1% by weight of silicon and less than 1% by weight of magnesium are frequently used, depending on the component and component geometry.
  • alloys with the designations AlSi7Mg0.6 or AC72 or AlSi0.5Mg or AC04 are used for the production of vehicle components.
  • the AlSi7Mg0.6 casting alloy which consists essentially of about 7% silicon by weight, about 0.6% magnesium by weight, balance aluminum, has high strength, but an elongation at break is too low for some applications. In addition, points this alloy has only low heat resistance.
  • the wrought AlSi0.5Mg alloy which is sometimes used as a casting alloy and consists essentially of about 0.5 weight percent silicon, about 0.5 weight percent magnesium, balance aluminum, on the other hand, has a high elongation at break, but at the expense of strength , which is low and therefore unsatisfactory for many purposes.
  • the object of the invention is to provide an aluminum alloy, which has a high strength with high elongation at break and good heat resistance, without a corrosion resistance is insufficient.
  • an aluminum alloy containing (by weight) 0.3 to 1.5% cobalt 1.0 up to 2.5% nickel more than 0 up to 1.5% magnesium more than 0 up to 1.5% silicon optionally more than 0 up to 1.0% silver optionally more than 0 up to 0.20% titanium and / or boron optionally more than 0 up to 0.003% beryllium Remaining aluminum and production-related impurities, with a maximum iron content of up to 0.5%.
  • an aluminum alloy according to the invention has a high strength combined with a high elongation at break, a high heat resistance of the alloy and, moreover, that the alloy is extremely resistant to corrosion.
  • cobalt dissolves iron present in the aluminum in formed intermetallic cobalt-aluminum phases. This leads to a good ductility of the aluminum alloy because no or only small amounts of acicular aluminum-iron phases are present.
  • cobalt contributes to the increase in strength.
  • Cobalt is mandatory, in concentrations of 0.3 up to 1.5%. It is preferably provided that a cobalt content is 0.30 to 0.80%, particularly preferably 0.40 to 0.60%, in particular 0.45 to 0.55%.
  • the aluminum alloy according to the invention further contains nickel as a mandatory constituent, with a nickel content basically being 1.0 to 2.5%, but preferably being in a range of 1.0 to 2.0%.
  • Nickel contributes to increasing the strength of the aluminum alloy at both room temperature and high temperature, that is at more than 200 ° C, by forming an intermetallic aluminum-nickel phase.
  • a nickel content is 1.2 to 1.6%, in particular 1.4 to 1.5%.
  • Magnesium is mandatory in an aluminum alloy according to the invention with a content of more than 0 up to 1.5%.
  • Magnesium, in conjunction with the silicon also provided, serves to increase the strength in the heat-treated state, wherein a content of magnesium is oriented to a maximum solubility at an annealing temperature which is generally in the range of about 570 ° C. It is favorable if a magnesium content is 0.8 to 1.2%, in particular 1.0 to 1.1%.
  • Silicon is provided at levels of greater than 0 to 1.5%.
  • a content of silicon is to be considered in connection with a content of magnesium, so that the desired strength increase is achieved in the heat-treated state.
  • a silicon content is therefore tuned to a magnesium content, however, with respect to magnesium, an excess of silicon is used.
  • an excess of silicon is provided in the amount of about one-fourth of the iron content of the alloy in order to fully exploit the precipitation potential by the excess silicon or to prevent activity reduction by the existing iron, which is usually up to 0.2%, in particular 0.1 to 0.2%, and is introduced as an impurity of the aluminum used in the alloy.
  • a content of iron can be up to 0.5%. It is expedient if the aluminum alloy contains 0.20 to 0.80%, in particular 0.55 to 0.70%, silicon, in each case based on the preferred magnesium contents given above.
  • Another component which may be provided in an aluminum alloy according to the invention is silver, in a content of more than 0 up to 1.0%.
  • silver in comparison with copper as an alloying element, silver proves to be better in terms of corrosion resistance. It is favorable if a silver content is 0.05 to 0.70%, in particular 0.10 to 0.55%.
  • an aluminum alloy according to the invention may optionally also contain titanium and / or boron and also beryllium.
  • a titanium and / or boron content may be up to 0.20% in total, but is preferably in the range of 0.001 to 0.15%, more preferably in the range of 0.001 to less than 0.02%.
  • Titanium and boron act as grain refining elements and can be added in the production of the aluminum alloy, for example by a master alloy of the type AlTi5B1, which master alloy 5 weight percent titanium, 1 weight percent boron, balance aluminum.
  • Beryllium serves to suppress as far as possible the evaporation of magnesium during the production of an aluminum alloy.
  • a beryllium content can be up to 0.003%.
  • the alloy according to the invention is advantageously substantially copper-free and has a copper content of less than 0.005%, since copper can lead to disadvantageous, low-melting phases.
  • the reference alloys AlSi7Mg0,6 or AC72 and AlSi0.5Mg or AC04 were assumed, which have a high strength and a high elongation at break.
  • target criteria no or only small proportions of below the eutectic melting temperature melting phases, high eutectic temperatures and taking advantage of a full Mg 2 Si precipitation hardening were specified.
  • the starting point for the comparative investigations was the binary Al-Mg 2 Si cut in the ternary phase system aluminum-silicon-magnesium, since the eutectic temperature has a maximum in this range.
  • Four experimental alloys were defined in the hypoeutectic region.
  • trial alloys were defined which additionally contained cobalt or both cobalt and nickel.
  • the chemical compositions of the trial alloys are shown in Table 1 below.
  • Table 1 - chemical compositions of trial alloys attempt Composition (in weight percent) T6 heat treatment mg Si Co Ni al A1 1.1 0.65 0 0 rest No A2 1.1 0.65 0 0 rest Yes A3 1.1 0.65 0.45 0 rest No A4 1.1 0.65 0.45 0 rest Yes A5 1.1 0.65 0.45 1.45 rest No A6 1.1 0.65 0.45 1.45 rest Yes B1 3.7 2.1 0 0 rest No B2 3.7 2.1 0 0 rest Yes B3 3.7 2.1 0.45 0 rest No B4 3.7 2.1 0.45 0 rest Yes B5 3.7 2.1 0.45 1.45 rest No B6 3.7 2.1 0.45 1.45 rest Yes C1 6.2 3.6 0 0 rest No C2 6.2 3.6 0 0 rest Yes C3 6.2 3.6 0.45 0 rest No C4 6.2 3.6 0.45 0 rest Yes C5 6.2 3.6 0.45 1.45 rest No C6 6.2 3.6 0.45 1.45 rest Yes D1 8.8 5.1 0 0
  • Fig. 1 to 4 are mechanical property values of alloys, optionally after the T6 heat treatment as described above, for the alloys shown in Table 1, wherein Fig. 1 the tensile strengths R m shows, Fig. 2 the yield strengths R p0,2 , Fig. 3 the Brinell hardnesses and Fig. 4 finally, the elongations at break A 5 .
  • the lines 1 to 6 in Fig. 1 to 4 connect in each case those values which were obtained for the experiments A1, B1, C1, D1 to A6, B6, C6, D6, ie the numerically identically marked alloys.
  • Fig. 6 is a microsection of an alloy shown in Experiment A2. As can be seen, one recognizes a pure mixed crystal structure and occasionally iron-rich needles.
  • Fig. 7 is a microsection of an alloy shown in experiment A6. It is compared with Fig. 6 recognizable that changes the structure by adding cobalt and nickel. Cobalt- and / or nickel-rich phases form at the grain boundaries and therefore give the microstructure a little more stability, which can also be understood on the basis of the mechanical properties already discussed. Iron-rich precipitates in the form of oblong needles are unlike Fig. 6 no longer present, since iron dissolves in the cobalt-rich phase. This could be verified by scanning electron microscopy.
  • a major advantage of the alloys according to experiments A5 and A6, respectively, is that higher annealing temperatures of up to about 570 ° C can be used instead of the usual annealing temperatures of about 535 ° C for standard alloys such as AC72. Due to the higher annealing temperatures more precipitation-relevant elements can be solved in mixed crystal, which leads to an increase in the achievable maximum strength. This is in Fig. 8 illustrated.
  • Fig. 9 are corrosion measurements on an alloy A6Ag according to test A6, which additionally contained 0.45% silver, compared with a reference alloy AlSi7Mg0,6 or AC72 shown.
  • sample bodies were introduced into a test solution (0.6 g / l NaCl, diluted 1:10 in borate buffer at a pH of about 6.4) and subjected to a voltage.
  • As counter electrode was a Platinum electrode used.
  • the corrosion behavior is comparable, but the alloy A6Ag has advantages in the passivation range. That is, this alloy has lower corrosion rates for an existing surface defect than an AlSi7Mg0.6 reference alloy.
  • An alloy according to the invention has, as in Fig. 10 is apparent, a globulitic structure on. Such a globulitic structure is favorable in terms of dynamic properties of an alloy.
  • a main field of application of an alloy according to experiment A5 or A6 is in particular an application for an engine component, for example as a material for a cylinder head.
  • the alloy was tested A5 compared to a common cylinder head alloy, namely AlSi7Mg0.3Cu, containing about 7 weight percent silicon, about 0.3 weight percent magnesium, about 0.5 weight percent copper, balance aluminum, as reference alloy. It was found that an alloy according to experiment A5, which was subjected to a T6 heat treatment (outsourced to hardness maximum) or a T7 heat treatment (outsourced for 500 hours at 225 ° C), less in strength at elevated temperature, which was Fig. 11 to 13 for the T7 heat treatment. An alloy A5Ag according to experiment A5, but additionally with 0.45% silver, gave even better values in terms of heat resistance.
  • an alloy according to Experiment A6 which additionally contained 0.45% silver, exhibits better properties at higher temperatures compared to a conventional AlSi7Mg0.3Cu cylinder head alloy, and thus also lends more suitability for use purposes because the time-stability line has a larger slope, as shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Conductive Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

Viele Komponenten von Kraftfahrzeugen werden aus einem Stahl oder Gusseisen gefertigt. Stähle oder Gusseisen weisen den Vorteil einer sehr hohen Festigkeit auf und sind zudem billige Grundwerkstoffe. Nachteilig bei Stählen oder auch Gusseisen ist allerdings, dass ein Gussprozess in der Regel aufwendig ist, eine Korrosionsbeständigkeit gering sein kann und grundsätzlich im Vergleich mit Aluminiumlegierungen ein höherer Herstellungsaufwand gegeben ist. Daneben weisen Stähle und Gusseisen auch eine höhere Dichte auf, was sich nachteilig auf ein Gewicht einer Fahrzeugkomponente auswirkt und oftmals im Hinblick auf einen vergleichsweise höheren Kraftstoffverbrauch nicht gewünscht ist.Many components of motor vehicles are made of a steel or cast iron. Steels or cast iron have the advantage of very high strength and are also cheap base materials. A disadvantage of steels or cast iron, however, is that a casting process is usually expensive, corrosion resistance can be low and, in principle, a higher production cost is given in comparison with aluminum alloys. In addition, steels and cast iron also have a higher density, which adversely affects a weight of a vehicle component and is often undesirable in view of a comparatively higher fuel consumption.

Man ist daher bestrebt, Fahrzeugkomponenten aus Leichtmetalllegierungen, insbesondere Aluminiumlegierungen, herzustellen. Diesbezüglich stehen verschiedene Legierungssysteme zur Verfügung, die jeweils spezifische Vorteile aufweisen, aber auch mit Nachteilen behaftet sind. So sind Legierungen des Legierungssystems Aluminium-Silicium-Magnesium leicht zu gießen, relativ einfach mechanisch zu bearbeiten und in der Regel korrosionsbeständig, weisen allerdings oftmals eine geringe Festigkeit auf. Legierungen des Legierungssystems Aluminium-Kupfer-Titan können eine hohe theoretische Festigkeit erreichen, sind allerdings oftmals nicht korrosionsbeständig und in der Regel auch schlecht zu gießen.It is therefore desirable to produce vehicle components made of light metal alloys, in particular aluminum alloys. In this regard, various alloy systems are available, each having specific advantages, but also having disadvantages. For example, alloys of the aluminum-silicon-magnesium alloy system are easy to cast, are relatively easy to machine mechanically and are generally resistant to corrosion, but often have low strength. Alloys of the aluminum-copper-titanium alloy system can achieve a high theoretical strength, but are often not resistant to corrosion and, as a rule, poorly cast.

EP 1 215 295 A1 offenbart eine Aluminium-Gusslegierung mit 5 bis 10 % Silicium. EP 1 215 295 A1 discloses an aluminum casting alloy with 5 to 10% silicon.

EP 1136 581 offenbart eine Aluminium-Legierung mit 1.5-2.2 Fe. EP 1136 581 discloses an aluminum alloy with 1.5-2.2 Fe.

Im Legierungssystem Aluminium-Silicium-Magnesium werden je nach Bauteil und Bauteilgeometrie häufig Gusslegierungen mit 7 bis 17 Gewichtsprozent und bis zu 0,7 Gewichtsprozent Magnesium oder Knetlegierungen mit weniger als 1 Gewichtsprozent Silicium und weniger als 1 Gewichtsprozent Magnesium eingesetzt. Beispielsweise werden Legierungen mit den Bezeichnungen AlSi7Mg0,6 bzw. AC72 oder AlSi0,5Mg bzw. AC04 zur Herstellung von Fahrzeugkomponenten verwendet. Die Gusslegierung mit der Bezeichnung AlSi7Mg0,6, die im Wesentlichen aus etwa 7 Gewichtprozent Silicium, etwa 0,6 Gewichtsprozent Magnesium, Rest Aluminium besteht, weist eine hohe Festigkeit auf, allerdings ist eine Bruchdehnung für einige Anwendungen zu gering. Darüber hinaus weist diese Legierung eine lediglich geringe Warmfestigkeit auf. Die Knetlegierung mit der Bezeichnung AlSi0,5Mg, die gelegentlich auch als Gusslegierung eingesetzt wird und im Wesentlichen aus etwa 0,5 Gewichtsprozent Silicium, etwa 0,5 Gewichtsprozent Magnesium, Rest Aluminium besteht, weist hingegen eine hohe Bruchdehnung auf, allerdings auf Kosten einer Festigkeit, die lediglich gering und daher für viele Zwecke nicht zufriedenstellend ist.In the aluminum-silicon-magnesium alloy system, casting alloys containing 7 to 17% by weight and up to 0.7% by weight of magnesium or wrought alloys containing less than 1% by weight of silicon and less than 1% by weight of magnesium are frequently used, depending on the component and component geometry. For example, alloys with the designations AlSi7Mg0.6 or AC72 or AlSi0.5Mg or AC04 are used for the production of vehicle components. The AlSi7Mg0.6 casting alloy, which consists essentially of about 7% silicon by weight, about 0.6% magnesium by weight, balance aluminum, has high strength, but an elongation at break is too low for some applications. In addition, points this alloy has only low heat resistance. The wrought AlSi0.5Mg alloy, which is sometimes used as a casting alloy and consists essentially of about 0.5 weight percent silicon, about 0.5 weight percent magnesium, balance aluminum, on the other hand, has a high elongation at break, but at the expense of strength , which is low and therefore unsatisfactory for many purposes.

Hier setzt die Erfindung an. Aufgabe der Erfindung ist es, eine Aluminiumlegierung anzugeben, die eine hohe Festigkeit bei gleichzeitig hoher Bruchdehnung und guter Warmfestigkeit aufweist, ohne dass eine Korrosionsbeständigkeit unzureichend ist.This is where the invention starts. The object of the invention is to provide an aluminum alloy, which has a high strength with high elongation at break and good heat resistance, without a corrosion resistance is insufficient.

Diese Aufgabe wird gelöst durch eine Aluminiumlegierung, enthaltend (in Gewichtsprozent)
0,3 bis zu 1,5 % Cobalt
1,0 bis zu 2,5 % Nickel
mehr als 0 bis zu 1,5 % Magnesium
mehr als 0 bis zu 1,5 % Silicium
optional mehr als 0 bis zu 1,0 % Silber
optional mehr als 0 bis zu 0,20 % Titan und/oder Bor
optional mehr als 0 bis zu 0,003 % Beryllium
Rest Aluminium und herstellungsbedingte Verunreinigungen, wobei ein Eisengehalt maximal bis zu 0,5 % beträgt.
This object is achieved by an aluminum alloy containing (by weight)
0.3 to 1.5% cobalt
1.0 up to 2.5% nickel
more than 0 up to 1.5% magnesium
more than 0 up to 1.5% silicon
optionally more than 0 up to 1.0% silver
optionally more than 0 up to 0.20% titanium and / or boron
optionally more than 0 up to 0.003% beryllium
Remaining aluminum and production-related impurities, with a maximum iron content of up to 0.5%.

Die mit einer erfindungsgemäßen Aluminiumlegierung erzielten Vorteile sind insbesondere darin zu sehen, dass die Legierung eine hohe Festigkeit bei gleichzeitig hoher Bruchdehnung aufweist, eine hohe Warmfestigkeit der Legierung gegeben ist und darüber hinaus die Legierung äußerst korrosionsbeständig ist.The advantages achieved with an aluminum alloy according to the invention can be seen in particular in the fact that the alloy has a high strength combined with a high elongation at break, a high heat resistance of the alloy and, moreover, that the alloy is extremely resistant to corrosion.

In der erfindungsgemäßen Legierung löst Cobalt Eisen, das im Aluminium vorhanden ist, in gebildeten intermetallischen Cobalt-Aluminium-Phasen. Dies führt zu einer guten Duktilität der Aluminiumlegierung, weil keine oder lediglich geringe Anteile von nadelförmigen Aluminium-Eisen-Phasen vorhanden sind. Darüber hinaus trägt Cobalt zur Festigkeitssteigerung bei. Cobalt ist zwingend vorgesehen, und zwar in Gehalten von 0,3 bis zu 1,5 %. Bevorzugt ist vorgesehen, dass ein Cobaltgehalt 0,30 bis 0,80 %, besonders bevorzugt 0,40 bis 0,60 %, insbesondere 0,45 bis 0,55 %, beträgt.In the alloy according to the invention, cobalt dissolves iron present in the aluminum in formed intermetallic cobalt-aluminum phases. This leads to a good ductility of the aluminum alloy because no or only small amounts of acicular aluminum-iron phases are present. In addition, cobalt contributes to the increase in strength. Cobalt is mandatory, in concentrations of 0.3 up to 1.5%. It is preferably provided that a cobalt content is 0.30 to 0.80%, particularly preferably 0.40 to 0.60%, in particular 0.45 to 0.55%.

Die erfindungsgemäße Aluminiumlegierung enthält als zwingenden Bestandteil weiter Nickel, wobei ein Nickelgehalt grundsätzlich 1,0 bis zu 2,5 % beträgt, bevorzugt jedoch in einem Bereich von 1,0 bis 2,0 % liegt. Nickel trägt zur Erhöhung der Festigkeit der Aluminiumlegierung sowohl bei Raumtemperatur als auch Hochtemperatur, das ist bei mehr als 200 °C, durch Bildung einer intermetallischen Aluminium-Nickel-Phase bei. Diesbezüglich kann es günstig sein, dass ein Nickelgehalt 1,2 bis 1,6 %, insbesondere 1,4 bis 1,5 %, beträgt.The aluminum alloy according to the invention further contains nickel as a mandatory constituent, with a nickel content basically being 1.0 to 2.5%, but preferably being in a range of 1.0 to 2.0%. Nickel contributes to increasing the strength of the aluminum alloy at both room temperature and high temperature, that is at more than 200 ° C, by forming an intermetallic aluminum-nickel phase. In this regard, it may be favorable that a nickel content is 1.2 to 1.6%, in particular 1.4 to 1.5%.

Magnesium ist bei einer erfindungsgemäßen Aluminiumlegierung mit einem Gehalt von mehr als 0 bis zu 1,5 % zwingend vorgesehen. Magnesium dient in Verbindung mit dem ebenfalls vorgesehenen Silicium einer Festigkeitssteigerung im wärmebehandelten Zustand, wobei ein Gehalt an Magnesium an einer maximalen Löslichkeit bei einer Glühtemperatur orientiert ist, die grundsätzlich im Bereich von etwa 570 °C liegt. Günstig ist es, wenn ein Magnesiumgehalt 0,8 bis 1,2 %, insbesondere 1,0 bis 1,1 %, beträgt.Magnesium is mandatory in an aluminum alloy according to the invention with a content of more than 0 up to 1.5%. Magnesium, in conjunction with the silicon also provided, serves to increase the strength in the heat-treated state, wherein a content of magnesium is oriented to a maximum solubility at an annealing temperature which is generally in the range of about 570 ° C. It is favorable if a magnesium content is 0.8 to 1.2%, in particular 1.0 to 1.1%.

Silicium ist in Gehalten von mehr als 0 bis zu 1,5 % vorgesehen. Wie bereits erwähnt, ist ein Gehalt an Silicium im Zusammenhang mit einem Gehalt an Magnesium zu sehen, damit die gewünschte Festigkeitssteigerung im wärmebehandelten Zustand erreicht wird. Ein Siliciumgehalt ist daher auf einen Magnesiumgehalt abgestimmt, wobei jedoch in Bezug auf Magnesium ein Überschuss an Silicium verwendet wird. In der Regel wird ein Überschuss von Silicium im Ausmaß etwa eines Viertels des Eisengehaltes der Legierung vorgesehen, um durch das überschüssige Silicium das Ausscheidungspotenzial voll ausnutzen zu können bzw. eine Aktivitätsverringerung durch das vorhandene Eisen hintanzuhalten, das in der Regel mit einem Gehalt von bis zu 0,2 %, insbesondere 0,1 bis 0,2 % vorliegt, und als Verunreinigung des eingesetzten Aluminiums in die Legierung eingebracht wird. Ein Gehalt von Eisen kann bis zu 0,5 % betragen. Zweckmäßig ist es, wenn die Aluminiumlegierung 0,20 bis 0,80 %, insbesondere 0,55 bis 0,70 %, Silicium enthält, jeweils bezogen auf die vorstehend angegebenen bevorzugten Magnesiumgehalte.Silicon is provided at levels of greater than 0 to 1.5%. As already mentioned, a content of silicon is to be considered in connection with a content of magnesium, so that the desired strength increase is achieved in the heat-treated state. A silicon content is therefore tuned to a magnesium content, however, with respect to magnesium, an excess of silicon is used. In general, an excess of silicon is provided in the amount of about one-fourth of the iron content of the alloy in order to fully exploit the precipitation potential by the excess silicon or to prevent activity reduction by the existing iron, which is usually up to 0.2%, in particular 0.1 to 0.2%, and is introduced as an impurity of the aluminum used in the alloy. A content of iron can be up to 0.5%. It is expedient if the aluminum alloy contains 0.20 to 0.80%, in particular 0.55 to 0.70%, silicon, in each case based on the preferred magnesium contents given above.

Ein weiterer Bestandteil, der bei einer erfindungsgemäßen Aluminiumlegierung vorgesehen sein kann, ist Silber, und zwar in einem Gehalt von mehr als 0 bis zu 1,0 %. Silber sorgt ähnlich wie Magnesium und Silicium für eine hohe Festigkeit im wärmebehandelten Zustand, ist jedoch nicht so temperaturempfindlich wie Mg2Si-Phasen.Another component which may be provided in an aluminum alloy according to the invention is silver, in a content of more than 0 up to 1.0%. Silver, like magnesium and silicon, provides high heat-treated strength but is not as temperature-sensitive as Mg 2 Si phases.

Im Vergleich mit Kupfer als Legierungselement erweist sich Silber darüber hinaus als besser in Bezug auf eine Korrosionsbeständigkeit. Günstig ist es, wenn ein Silbergehalt 0,05 bis 0,70 %, insbesondere 0,10 bis 0,55 %, beträgt.Moreover, in comparison with copper as an alloying element, silver proves to be better in terms of corrosion resistance. It is favorable if a silver content is 0.05 to 0.70%, in particular 0.10 to 0.55%.

Eine erfindungsgemäße Aluminiumlegierung kann darüber hinaus optional auch Titan und/oder Bor sowie Beryllium aufweisen. Ein Titan- und/oder Borgehalt kann in Summe bis zu 0,20 % betragen, liegt jedoch bevorzugt im Bereich von 0,001 bis 0,15 %, besonders bevorzugt im Bereich von 0,001 bis weniger als 0,02 %. Titan und Bor wirken als Kornfeinungselemente und können bei der Herstellung der Aluminiumlegierung beispielsweise durch eine Vorlegierung des Typs AlTi5B1 zugesetzt werden, welche Vorlegierung 5 Gewichtsprozent Titan, 1 Gewichtsprozent Bor, Rest Aluminium aufweist. Beryllium dient dazu, ein Abdampfen von Magnesium während der Herstellung einer Aluminiumlegierung möglichst hintanzuhalten. Ein Berylliumgehalt kann bis zu 0,003 % betragen.In addition, an aluminum alloy according to the invention may optionally also contain titanium and / or boron and also beryllium. A titanium and / or boron content may be up to 0.20% in total, but is preferably in the range of 0.001 to 0.15%, more preferably in the range of 0.001 to less than 0.02%. Titanium and boron act as grain refining elements and can be added in the production of the aluminum alloy, for example by a master alloy of the type AlTi5B1, which master alloy 5 weight percent titanium, 1 weight percent boron, balance aluminum. Beryllium serves to suppress as far as possible the evaporation of magnesium during the production of an aluminum alloy. A beryllium content can be up to 0.003%.

Die erfindungsgemäße Legierung ist mit Vorteil im Wesentlichen kupferfrei und weist einen Kupfergehalt von weniger als 0,005 % auf, da Kupfer zu nachteiligen, niedrig schmelzenden Phasen führen kann.The alloy according to the invention is advantageously substantially copper-free and has a copper content of less than 0.005%, since copper can lead to disadvantageous, low-melting phases.

Weitere Merkmale, Vorteile und Wirkungen der Erfindung ergeben sich aus den nachfolgend dargestellten Ausführungsbeispielen. In den Zeichnungen zeigen:

  • Fig. 1 Zugfestigkeiten bzw. Rm-Werte von Legierungen;
  • Fig. 2 Dehngrenzen bzw. Rp0,2-Werte von Legierungen;
  • Fig. 3 Härtewerte von Legierungen;
  • Fig. 4 Bruchdehnungen bzw. A5-Werte von Legierungen;
  • Fig. 5 eine vergleichende Darstellung mechanischer Eigenschaftswerte verschiedener Legierungen;
  • Fig. 6 ein Schliffbild einer Aluminiumlegierung, die weder Cobalt noch Nickel enthält;
  • Fig. 7 ein Schliffbild einer Aluminiumlegierung, die Cobalt und Nickel enthält;
  • Fig. 8 mechanische Eigenschaften untersuchter Legierungen, die nicht oder bei unterschiedlichen Temperaturen geglüht wurden;
  • Fig. 9 Korrosionskurven für eine untersuchte Legierung sowie eine Referenzlegierung;
  • Fig. 10 einen metallografischen Schliff einer erfindungsgemäßen Aluminiumlegierung;
  • Fig. 11 Zugfestigkeiten bzw. Rm-Werte von Legierungen bei erhöhten Temperaturen;
  • Fig. 12 Dehngrenzen bzw. Rp0,2-Werte von Legierungen bei erhöhten Temperaturen;
  • Fig. 13 Bruchdehnungen bzw. A5-Werte von Legierungen bei erhöhten Temperaturen.
Further features, advantages and effects of the invention will become apparent from the embodiments illustrated below. In the drawings show:
  • Fig. 1 Tensile strengths or R m values of alloys;
  • Fig. 2 Elongation limits or R p0.2 values of alloys;
  • Fig. 3 Hardness values of alloys;
  • Fig. 4 Elongation at break or A 5 values of alloys;
  • Fig. 5 a comparative representation of mechanical property values of different alloys;
  • Fig. 6 a microsection of an aluminum alloy containing neither cobalt nor nickel;
  • Fig. 7 a micrograph of an aluminum alloy containing cobalt and nickel;
  • Fig. 8 mechanical properties of tested alloys that have not been annealed or at different temperatures;
  • Fig. 9 Corrosion curves for a tested alloy and a reference alloy;
  • Fig. 10 a metallographic cut of an aluminum alloy according to the invention;
  • Fig. 11 Tensile strengths or R m values of alloys at elevated temperatures;
  • Fig. 12 Elongation limits or R p0.2 values of alloys at elevated temperatures;
  • Fig. 13 Elongation at break or A 5 values of alloys at elevated temperatures.

Für vergleichende Untersuchungen wurde von den Referenzlegierungen AlSi7Mg0,6 bzw. AC72 und AlSi0,5Mg bzw. AC04 ausgegangen, die eine hohe Festigkeit bzw. eine hohe Bruchdehnung aufweisen. Als Zielkriterien wurden keine oder nur geringe Anteile von unterhalb der eutektischen schmelzenden Temperatur schmelzenden Phasen, hohe eutektische Temperaturen und ein Ausnützen einer vollen Mg2Si-Ausscheidungshärtung vorgegeben.For comparative studies, the reference alloys AlSi7Mg0,6 or AC72 and AlSi0.5Mg or AC04 were assumed, which have a high strength and a high elongation at break. As target criteria, no or only small proportions of below the eutectic melting temperature melting phases, high eutectic temperatures and taking advantage of a full Mg 2 Si precipitation hardening were specified.

Ausgangspunkt für die vergleichenden Untersuchungen war der binäre Al-Mg2Si-Schnitt im ternären Phasensystem Aluminium-Silicium-Magnesium, da in diesem Bereich die eutektische Temperatur ein Maximum aufweist. Dabei wurden im untereutektischen Bereich vier Versuchslegierungen definiert. Darüber hinaus wurden Versuchslegierungen definiert, die zusätzlich Cobalt oder sowohl Cobalt als auch Nickel enthielten. Die chemischen Zusammensetzungen der Versuchslegierungen sind in der nachfolgenden Tabelle 1 wiedergegeben. Soweit eine T6-Wärmebehandlung durchgeführt wurde, erfolgte diese durch zweistündiges Aufheizen auf Glühtemperatur (540 °C für AlSi7Mg0,6 bzw. 570 °C für AlSi0,5Mg oder 565 °C bis 570 °C für die Versuchslegierungen), anschließendes Abschrecken im Wasserbad auf eine Temperatur von ca. 25 °C, anschließend eine Stunde Aufheizen auf eine Warmauslagerungstemperatur von 190 °C und schließlich drei Stunden Halten bei Warmauslagerungstemperatur sowie nachfolgende Luftabkühlung der Versuchslegierungen auf Raumtemperatur, also etwa 25 °C. Durch die relativ kurze Auslagerungszeit wurden die Versuchslegierungen nicht bis zur maximalen Härte ausgelagert, sondern auf Härtewerte, die etwa 10 bis 15 % unter den maximal erreichbaren Werten lagen. Tabelle 1 - chemische Zusammensetzungen von Versuchslegierungen Versuch Zusammensetzung (in Gewichtsprozent) T6-Wärmebehandlung Mg Si Co Ni Al A1 1,1 0,65 0 0 Rest nein A2 1,1 0,65 0 0 Rest ja A3 1,1 0,65 0,45 0 Rest nein A4 1,1 0,65 0,45 0 Rest ja A5 1,1 0,65 0,45 1,45 Rest nein A6 1,1 0,65 0,45 1,45 Rest ja B1 3,7 2,1 0 0 Rest nein B2 3,7 2,1 0 0 Rest ja B3 3,7 2,1 0,45 0 Rest nein B4 3,7 2,1 0,45 0 Rest ja B5 3,7 2,1 0,45 1,45 Rest nein B6 3,7 2,1 0,45 1,45 Rest ja C1 6,2 3,6 0 0 Rest nein C2 6,2 3,6 0 0 Rest ja C3 6,2 3,6 0,45 0 Rest nein C4 6,2 3,6 0,45 0 Rest ja C5 6,2 3,6 0,45 1,45 Rest nein C6 6,2 3,6 0,45 1,45 Rest ja D1 8,8 5,1 0 0 Rest nein D2 8,8 5,1 0 0 Rest ja D3 8,8 5,1 0,45 0 Rest nein D4 8,8 5,1 0,45 0 Rest ja D5 8,8 5,1 10,45 1,45 Rest nein D6 8,8 5,1 0,45 1,45 Rest ja The starting point for the comparative investigations was the binary Al-Mg 2 Si cut in the ternary phase system aluminum-silicon-magnesium, since the eutectic temperature has a maximum in this range. Four experimental alloys were defined in the hypoeutectic region. In addition, trial alloys were defined which additionally contained cobalt or both cobalt and nickel. The chemical compositions of the trial alloys are shown in Table 1 below. As far as a T6 heat treatment was performed, this was done by heating to annealing temperature (540 ° C for AlSi7Mg0.6 or 570 ° C for AlSi0.5Mg or 565 ° C to 570 ° C for the trial alloys) for two hours, followed by quenching in a water bath a temperature of about 25 ° C, followed by heating for one hour to a hot aging temperature of 190 ° C and finally three hours holding at Ausauslagerungstemperatur and subsequent air cooling of the experimental alloys to room temperature, ie about 25 ° C. Due to the relatively short removal time, the experimental alloys were not outsourced to the maximum hardness, but to hardness values that were about 10 to 15% below the maximum achievable values. Table 1 - chemical compositions of trial alloys attempt Composition (in weight percent) T6 heat treatment mg Si Co Ni al A1 1.1 0.65 0 0 rest No A2 1.1 0.65 0 0 rest Yes A3 1.1 0.65 0.45 0 rest No A4 1.1 0.65 0.45 0 rest Yes A5 1.1 0.65 0.45 1.45 rest No A6 1.1 0.65 0.45 1.45 rest Yes B1 3.7 2.1 0 0 rest No B2 3.7 2.1 0 0 rest Yes B3 3.7 2.1 0.45 0 rest No B4 3.7 2.1 0.45 0 rest Yes B5 3.7 2.1 0.45 1.45 rest No B6 3.7 2.1 0.45 1.45 rest Yes C1 6.2 3.6 0 0 rest No C2 6.2 3.6 0 0 rest Yes C3 6.2 3.6 0.45 0 rest No C4 6.2 3.6 0.45 0 rest Yes C5 6.2 3.6 0.45 1.45 rest No C6 6.2 3.6 0.45 1.45 rest Yes D1 8.8 5.1 0 0 rest No D2 8.8 5.1 0 0 rest Yes D3 8.8 5.1 0.45 0 rest No D4 8.8 5.1 0.45 0 rest Yes D5 8.8 5.1 10.45 1.45 rest No D6 8.8 5.1 0.45 1.45 rest Yes

In Fig. 1 bis 4 sind mechanische Eigenschaftswerte von Legierungen, gegebenenfalls nach erfolgter T6-Wärmebehandlung wie vorstehend beschrieben, für die in Tabelle 1 angegebenen Legierungen dargestellt, wobei Fig. 1 die Zugfestigkeiten Rm zeigt, Fig. 2 die Dehngrenzen Rp0,2, Fig. 3 die Brinell-Härten und Fig. 4 schließlich die Bruchdehnungen A5. Die Linien 1 bis 6 in Fig. 1 bis 4 verbinden jeweils jene Werte, die für die Versuche A1, B1, C1, D1 bis A6, B6, C6, D6 erhalten wurden, also die zahlenmäßig gleich gekennzeichneten Legierungen.In Fig. 1 to 4 are mechanical property values of alloys, optionally after the T6 heat treatment as described above, for the alloys shown in Table 1, wherein Fig. 1 the tensile strengths R m shows, Fig. 2 the yield strengths R p0,2 , Fig. 3 the Brinell hardnesses and Fig. 4 finally, the elongations at break A 5 . The lines 1 to 6 in Fig. 1 to 4 connect in each case those values which were obtained for the experiments A1, B1, C1, D1 to A6, B6, C6, D6, ie the numerically identically marked alloys.

Wie sich aus einer Zusammenschau von Fig. 1 bis 4 ergibt, weisen die Legierungen gemäß den Versuchen A5 und A6 im Vergleich das ausgewogenste und somit gewünschte Eigenschaftsprofil auf. Im Vergleich mit den gewählten Referenzlegierungen weist eine Legierung gemäß Versuch A6 ebenfalls ein ausgewogeneres Eigenschaftsprofil auf, was in Fig. 5 ersichtlich ist.As can be seen from a synopsis of Fig. 1 to 4 results, the alloys according to the experiments A5 and A6 by comparison the most balanced and thus desired property profile. In comparison with the selected reference alloys, an alloy according to experiment A6 also has a more balanced property profile, which is reflected in Fig. 5 is apparent.

Um eine Legierung gemäß Versuch A5 bzw. A6 weiter zu verbessern, wurde in weiteren Versuchen Silber in Gehalten von 0,25 % bzw. 0,50 % zugesetzt, wobei eine weitere Steigerung der Festigkeit bei annähernd gleichbleibender Bruchdehnung bewirkt werden konnte. Eine Festigkeitssteigerung betrug im Vergleich mit dem unter anderem in Fig. 5 für die Legierung gemäß Versuch A6 dargestellten Wert nochmals etwa 20 %.In order to further improve an alloy according to experiment A5 or A6, silver was added in further experiments in amounts of 0.25% and 0.50%, respectively, whereby a further increase in strength could be effected at approximately constant elongation at break. An increase in strength was compared with that among others in Fig. 5 again about 20% for the alloy according to experiment A6.

In Fig. 6 ist ein Schliffbild einer Legierung gemäß Versuch A2 dargestellt. Wie ersichtlich ist, erkennt man eine reine Mischkristall-Struktur und vereinzelt eisenreiche Nadeln. In Fig. 7 ist ein Schliffbild einer Legierung gemäß Versuch A6 dargestellt. Es ist im Vergleich mit Fig. 6 erkennbar, dass sich durch Zugabe von Cobalt und Nickel das Gefüge verändert. Cobalt- und/oder nickelreiche Phasen bilden sich an den Korngrenzen und geben daher dem Gefüge etwas mehr Stabilität, was auch anhand der bereits diskutierten mechanischen Eigenschaften nachvollziehbar ist. Eisenreiche Ausscheidungen in Form länglicher Nadeln sind im Unterschied zu Fig. 6 nicht mehr vorhanden, da sich Eisen in der cobaltreichen Phase auflöst. Dies konnte durch Rasterelektronenmikroskopie verifiziert werden. Anhand örtlicher chemischer Analysen konnte festgestellt werden, dass punktuell ein Cobaltgehalt wie auch ein Eisengehalt weit über den entsprechenden Gehalten in der Matrix lag. Diese Ergebnisse bestätigen die Annahme, dass eine Cobalt-Aluminium-Phase ein hohes Lösungsvermögen für Eisen hat. Dadurch sind also nachteilige Eisen-Aluminium-Ausscheidungen mit ungünstiger nadelförmiger Struktur vermieden, wenn Cobalt vorgesehen ist.In Fig. 6 is a microsection of an alloy shown in Experiment A2. As can be seen, one recognizes a pure mixed crystal structure and occasionally iron-rich needles. In Fig. 7 is a microsection of an alloy shown in experiment A6. It is compared with Fig. 6 recognizable that changes the structure by adding cobalt and nickel. Cobalt- and / or nickel-rich phases form at the grain boundaries and therefore give the microstructure a little more stability, which can also be understood on the basis of the mechanical properties already discussed. Iron-rich precipitates in the form of oblong needles are unlike Fig. 6 no longer present, since iron dissolves in the cobalt-rich phase. This could be verified by scanning electron microscopy. On the basis of local chemical analyzes it could be determined that selectively a cobalt content as well as an iron content far exceeded the corresponding contents in the matrix. These results confirm the assumption that a cobalt-aluminum phase has high solubility for iron. As a result, so disadvantageous iron-aluminum precipitates are avoided with unfavorable needle-shaped structure, if cobalt is provided.

Ein großer Vorteil der Legierungen gemäß den Versuchen A5 bzw. A6 liegt darin, dass höhere Glühtemperaturen von bis zu etwa 570 °C anstelle der für Standardlegierungen wie AC72 üblichen Glühtemperaturen von etwa 535 °C angewendet werden können. Durch die höheren Glühtemperaturen können mehr ausscheidungsrelevante Elemente in Mischkristall gelöst werden, was zu einer Erhöhung der erreichbaren maximalen Festigkeit führt. Dies ist in Fig. 8 veranschaulicht.A major advantage of the alloys according to experiments A5 and A6, respectively, is that higher annealing temperatures of up to about 570 ° C can be used instead of the usual annealing temperatures of about 535 ° C for standard alloys such as AC72. Due to the higher annealing temperatures more precipitation-relevant elements can be solved in mixed crystal, which leads to an increase in the achievable maximum strength. This is in Fig. 8 illustrated.

In Fig. 9 sind Korrosionsmessungen an einer Legierung A6Ag gemäß Versuch A6, die zusätzlich 0,45 % Silber enthielt, im Vergleich mit einer Referenzlegierung AlSi7Mg0,6 bzw. AC72 dargestellt. Zur Durchführung der Messungen wurden Probenkörper in eine Prüflösung (0,6 g/l NaCl, 1:10 verdünnt in Boratpuffer bei einem pH-Wert von rund 6,4) eingebracht und mit einer Spannung beaufschlagt. Als Gegenelektrode wurde eine Platinelektrode verwendet. Wie aus den dargestellten Korrosionskurven in Fig. 9 ersichtlich ist, ist das Korrosionsverhalten vergleichbar, wobei jedoch die Legierung A6Ag im Passivierungsbereich Vorteile aufweist. Das heißt, dass diese Legierung bei einem vorhandenen Oberflächendefekt geringere Korrosionsraten aufweist als eine AlSi7Mg0,6-Referenzlegierung.In Fig. 9 are corrosion measurements on an alloy A6Ag according to test A6, which additionally contained 0.45% silver, compared with a reference alloy AlSi7Mg0,6 or AC72 shown. To carry out the measurements, sample bodies were introduced into a test solution (0.6 g / l NaCl, diluted 1:10 in borate buffer at a pH of about 6.4) and subjected to a voltage. As counter electrode was a Platinum electrode used. As from the illustrated corrosion curves in Fig. 9 As can be seen, the corrosion behavior is comparable, but the alloy A6Ag has advantages in the passivation range. That is, this alloy has lower corrosion rates for an existing surface defect than an AlSi7Mg0.6 reference alloy.

Eine erfindungsgemäße Legierung weist, wie in Fig. 10 ersichtlich ist, eine globulitische Struktur auf. Ein derartiges globulitisches Gefüge ist günstig in Bezug auf dynamische Eigenschaften einer Legierung.An alloy according to the invention has, as in Fig. 10 is apparent, a globulitic structure on. Such a globulitic structure is favorable in terms of dynamic properties of an alloy.

In weiteren Versuchen wurden die gießtechnologischen Eigenschaften einer Legierung gemäß Versuch A5 untersucht. Dabei wurde im sogenannten Taturkokillenversuch ein Lunkerverhalten und in einem Fließlängenkokillenversuch ein Fließverhalten bestimmt. Schließlich wurde in einem Warmrissprobenkokillenversuch eine Anfälligkeit der Legierung auf Warmrisse beim Gießen untersucht. Es zeigte sich, dass die Legierung im Taturkokillenversuch einen großen Makrolunker ausbildete, was günstiger ist als eine alternative Ausbildung von Mikrolunkern. Im Fließlängenkokillenversuch zeigte sich, dass die Legierung ein Fließverhalten ähnlich einer AlSi7Mg0,6-Referenzlegierung aufwies, der ein gutes Fließverhalten zugeordnet wird. Lediglich in Bezug auf den Warmrissprobenkokillenversuch zeigte sich, dass die Legierung eine höhere Warmrisszahl aufwies als eine AlSi7Mg0,6-Referenzlegierung, was allerdings in der Praxis durch eine geeignete Wahl des Gießsystems ausgeglichen oder verringert werden kann.In further experiments, the casting properties of an alloy were tested according to experiment A5. In the so-called Taturkokillenversuch a Lunkerverhalten and in a Fließlängenkokillenversuch a flow behavior was determined. Finally, a susceptibility of the alloy to hot cracks during casting was investigated in a hot-crack test specimen test. It was found that the alloy formed a large macro-shrink in the Tobby mold trial, which is more favorable than an alternative design of micro-shrinkers. The flow-length mold test showed that the alloy had a flow behavior similar to that of a AlSi7Mg0.6 reference alloy, which was assigned a good flow behavior. Only with respect to the hot tear test mold experiment, it was found that the alloy had a higher hot crack index than an AlSi7Mg0.6 reference alloy, but this can be compensated or reduced in practice by a suitable choice of the casting system.

Weiterführende Untersuchungen zeigten, dass eine Wärmekapazität der Legierung gemäß Versuch A5 vergleichbar ist mit einer AlSi7Mg0,6-Referenzlegierung, was günstig ist. Eine thermische Ausdehnung ist vergleichsweise etwas höher. Günstig ist des Weiteren, dass eine Temperaturleitfähigkeit besser ist als bei einer AlSi7Mg0,6-Referenzlegierung, was insbesondere beim Einsatz beispielsweise als Zylinderkopfwerkstoff vorteilhaft sein kann.Further investigations showed that a heat capacity of the alloy according to experiment A5 is comparable to an AlSi7Mg0.6 reference alloy, which is favorable. A thermal expansion is comparatively slightly higher. It is also favorable that a thermal diffusivity is better than with an AlSi7Mg0.6 reference alloy, which may be advantageous in particular when used as a cylinder head material, for example.

Ein Hauptanwendungsgebiet einer Legierung gemäß Versuch A5 bzw. A6 ist insbesondere eine Anwendung für eine Motorkomponente, beispielsweise als Werkstoff für einen Zylinderkopf. In weiteren Versuchen wurde daher die Legierung gemäß Versuch A5 mit einer gängigen Zylinderkopflegierung, nämlich AlSi7Mg0,3Cu, die etwa 7 Gewichtsprozent Silicium, etwa 0,3 Gewichtsprozent Magnesium, etwa 0,5 Gewichtsprozent Kupfer, Rest Aluminium enthält, als Referenzlegierung verglichen. Dabei zeigte sich, dass eine Legierung gemäß Versuch A5, die einer T6-Wärmebehandlung (ausgelagert auf Härtemaximum) bzw. einer T7-Wärmebehandlung (ausgelagert für 500 Stunden bei 225 °C) unterworfen wurde, weniger an Festigkeit bei erhöhter Temperatur einbüßte, was aus Fig. 11 bis 13 für die T7-Wärmebehandlung ersichtlich ist. Eine Legierung A5Ag gemäß Versuch A5, jedoch zusätzlich mit 0,45 % Silber, erbrachte noch bessere Werte in Bezug auf eine Warmfestigkeit.A main field of application of an alloy according to experiment A5 or A6 is in particular an application for an engine component, for example as a material for a cylinder head. In further experiments, therefore, the alloy was tested A5 compared to a common cylinder head alloy, namely AlSi7Mg0.3Cu, containing about 7 weight percent silicon, about 0.3 weight percent magnesium, about 0.5 weight percent copper, balance aluminum, as reference alloy. It was found that an alloy according to experiment A5, which was subjected to a T6 heat treatment (outsourced to hardness maximum) or a T7 heat treatment (outsourced for 500 hours at 225 ° C), less in strength at elevated temperature, which was Fig. 11 to 13 for the T7 heat treatment. An alloy A5Ag according to experiment A5, but additionally with 0.45% silver, gave even better values in terms of heat resistance.

In Bezug auf dynamische Eigenschaften, insbesondere eine thermomechanische Ermüdung, zeigt eine Legierung gemäß Versuch A6, die zusätzlich 0,45 % Silber enthielt, im Vergleich mit einer herkömmlichen Zylinderkopflegierung des Typs AlSi7Mg0,3Cu bessere Eigenschaften bei höheren Temperaturen und lässt daher auch eine bessere Eignung für Einsatzzwecke erwarten, da die Zeitfestigkeitsgerade einen größeren Anstieg aufweist, was aus Tabelle 2 hervorgeht. Tabelle 2 - Kenndaten der Wöhlerlinie Prüftemperatur (°C) Legierung Kenndaten Wöhlerlinie Steigung k der Zeitfestigkeitsgeraden Ecklastspielzahl NE σDubw (N/mm2) 25 A6Ag -6,21 6325571 97,90 AlSi7Mg0,3Cu -5,29 4872011 105,27 200 A6Ag -4,11 6123914 68,64 AlSi7Mg0,3Cu -5,39 6503183 78,43 In terms of dynamic properties, particularly thermo-mechanical fatigue, an alloy according to Experiment A6, which additionally contained 0.45% silver, exhibits better properties at higher temperatures compared to a conventional AlSi7Mg0.3Cu cylinder head alloy, and thus also lends more suitability for use purposes because the time-stability line has a larger slope, as shown in Table 2. Table 2 - Characteristics of the Wöhler Line Test temperature (° C) alloy Characteristics Wöhlerlinie Slope k of the time stability line Corner load number N E σ dubw (N / mm 2 ) 25 A6Ag -6.21 6325571 97.90 AlSi7Mg0,3Cu -5.29 4872011 105.27 200 A6Ag -4.11 6123914 68.64 AlSi7Mg0,3Cu -5.39 6503183 78.43

Claims (16)

  1. An aluminium alloy containing (as a percentage by weight)
    0.3 to up to 1.5 % cobalt
    1.0 to up to 2.5 % nickel
    more than 0 to up to 1.5 % magnesium
    more than 0 to up to 1.5 % silicon
    optionally more than 0 to up to 1.0 % silver
    optionally more than 0 to up to 0.20 % titanium and/or boron
    optionally more than 0 to up to 0.003 % beryllium
    remainder aluminium and production-related impurities, wherein an iron content is up to a maximum of 0.5 %.
  2. The aluminium alloy according to claim 1, containing 0.30 to 0.80 % cobalt.
  3. The aluminium alloy according to claim 1, containing 0.40 to 0.60 % cobalt.
  4. The aluminium alloy according to claim 1, containing 0.45 to 0.55 % cobalt.
  5. The aluminium alloy according to claim 1, containing 1.0 to 2.0 % nickel.
  6. The aluminium alloy according to claim 1, containing 1.2 to 1.6 % nickel.
  7. The aluminium alloy according to claim 1, containing 1.4 to 1.5 % nickel.
  8. The aluminium alloy according to claim 1, containing 0.80 to 1.20 % magnesium.
  9. The aluminium alloy according to claim 1, containing 1.0 to 1.1 % magnesium.
  10. The aluminium alloy according to claim 1, containing 0.20 to 0.80 % silicon.
  11. The aluminium alloy according to claim 1, containing 0.55 to 0.70 % silicon.
  12. The aluminium alloy according to claim 1, containing 0.05 to 0.70 % silver.
  13. The aluminium alloy according to claim 1, containing 0.10 to 0.55 % silver.
  14. The aluminium alloy according to claim 1, containing 0.001 to 0.15 % titanium and/or boron.
  15. The aluminium alloy according to claim 1, containing 0.001 to less than 0.02 % titanium and/or boron.
  16. The aluminium alloy according to claim 1, which is substantially free of copper.
EP20110165256 2010-07-02 2011-05-09 Aluminium alloy Active EP2450463B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT11222010A AT509343B1 (en) 2010-07-02 2010-07-02 ALUMINUM ALLOY

Publications (3)

Publication Number Publication Date
EP2450463A2 EP2450463A2 (en) 2012-05-09
EP2450463A3 EP2450463A3 (en) 2013-05-29
EP2450463B1 true EP2450463B1 (en) 2014-08-27

Family

ID=44352398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110165256 Active EP2450463B1 (en) 2010-07-02 2011-05-09 Aluminium alloy

Country Status (2)

Country Link
EP (1) EP2450463B1 (en)
AT (1) AT509343B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118064771B (en) * 2024-04-24 2024-07-09 湖南卓创精材科技股份有限公司 Aluminum magnesium alloy material for improving reflectivity, preparation method and application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2286886A1 (en) * 1974-10-04 1976-04-30 Pechiney Aluminium ELECTRICAL CONDUCTORS IN ALUMINUM ALLOYS AND METHODS OF OBTAINING
EP0801139B1 (en) * 1996-04-10 1999-12-29 Alusuisse Technology & Management AG Component
EP1136581B1 (en) * 2000-03-23 2005-11-02 Furukawa-Sky Aluminum Corp. Method for manufacturing a fin material for brazing
JP3504917B2 (en) * 2000-10-11 2004-03-08 日本碍子株式会社 Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members
DE10062547A1 (en) * 2000-12-15 2002-06-20 Daimler Chrysler Ag Hardenable cast aluminum alloy and component
AT412726B (en) * 2003-11-10 2005-06-27 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh ALUMINUM ALLOY, COMPONENT FROM THIS AND METHOD FOR PRODUCING THE COMPONENT
DE102005037738B4 (en) * 2005-08-10 2009-03-05 Daimler Ag Aluminum casting alloy with high dynamic strength and thermal conductivity
CN101121255A (en) * 2006-09-07 2008-02-13 广东科信达科技有限公司 Aluminium based metal binding agent diamond tool and its preparation method

Also Published As

Publication number Publication date
EP2450463A2 (en) 2012-05-09
EP2450463A3 (en) 2013-05-29
AT509343A4 (en) 2011-08-15
AT509343B1 (en) 2011-08-15

Similar Documents

Publication Publication Date Title
DE102016118729B4 (en) Aluminium alloy, suitable for high pressure casting
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
EP2653579B1 (en) Aluminium alloy
DE60123065T2 (en) TITANIUM ALLOY AND HEAT TREATMENT METHOD FOR LARGE DIMENSIONAL, SEMI-FINISHED MATERIALS FROM THIS ALLOY
EP2735621B1 (en) Aluminium die casting alloy
DE69325804T2 (en) HIGH-STRENGTH AL-LI ALLOY WITH LOW DENSITY AND HIGH TENSITY AT HIGH TEMPERATURES
DE112008000587T5 (en) Forgings made of an aluminum alloy and process for their production
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE102016219711B4 (en) Aluminum alloy for die casting and process for its heat treatment
DE112016005830B4 (en) Metal gasket and process for its manufacture
EP2013371A2 (en) Copper-nickel-tin alloy and its use
EP3024958B1 (en) High temperature strength aluminium casting alloy and casting for combustion engines cast from said alloy
WO2005045080A1 (en) Aluminium alloy
EP1589122B1 (en) Coating containing NiAl beta Phases
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
EP2703508B1 (en) Aluminium alloy resistant to intercrystalline corrosion
DE10231437A1 (en) Forged aluminum-magnesium alloy product
EP2450463B1 (en) Aluminium alloy
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
DE102006027844B4 (en) Copper alloy based on copper and tin
EP1229141A1 (en) Cast aluminium alloy
EP3670691B1 (en) Magnesium alloy and its process of manufacture
EP3781719B1 (en) Copper-zinc-nickel-manganese alloy
EP3992319A1 (en) Alloy product made of a lead-free copper-zinc alloy and method for producing the same
DE1292412B (en) Process for the heat treatment of titanium alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOECKLABRUCKER METALLGIESSEREI DAMBAUER GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 21/08 20060101ALI20130419BHEP

Ipc: C22C 21/02 20060101AFI20130419BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20130924

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20131104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUMACHER, PETER

Inventor name: DAMBAUER, GEORG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 684592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004170

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141128

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004170

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150509

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110509

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 684592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160509

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: VOECKLABRUCKER METALLGIESSEREI DAMBAUER GMBH, AT

Free format text: FORMER OWNER: VOECKLABRUCKER METALLGIESSEREI DAMBAUER GMBH, AT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230519

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 13

Ref country code: DE

Payment date: 20230519

Year of fee payment: 13

Ref country code: CH

Payment date: 20230605

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230519

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 13