EP3581667B1 - Moulded parts made from a corrosion resistant and machinable alloy - Google Patents

Moulded parts made from a corrosion resistant and machinable alloy Download PDF

Info

Publication number
EP3581667B1
EP3581667B1 EP19179717.4A EP19179717A EP3581667B1 EP 3581667 B1 EP3581667 B1 EP 3581667B1 EP 19179717 A EP19179717 A EP 19179717A EP 3581667 B1 EP3581667 B1 EP 3581667B1
Authority
EP
European Patent Office
Prior art keywords
alloy
weight
hot forming
copper
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19179717.4A
Other languages
German (de)
French (fr)
Other versions
EP3581667A3 (en
EP3581667A2 (en
Inventor
Andreas Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebr Kemper GmbH and Co KG
Original Assignee
Gebr Kemper GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebr Kemper GmbH and Co KG filed Critical Gebr Kemper GmbH and Co KG
Publication of EP3581667A2 publication Critical patent/EP3581667A2/en
Publication of EP3581667A3 publication Critical patent/EP3581667A3/en
Application granted granted Critical
Publication of EP3581667B1 publication Critical patent/EP3581667B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the present invention relates to the use of a copper alloy for the production of molded parts and a method for the production of molded parts.
  • Water is a valuable raw material and indispensable for daily use.
  • the drinking water must therefore be microbiologically constituted when it is taken from the supply system in such a way that subsequent consumption does not lead to any illness in humans.
  • high demands are placed on materials that come into direct contact with drinking water.
  • Copper is the noblest commodity and is considered an indispensable material for water-bearing systems in industry and technology. Because copper has bacteriostatic properties and also offers excellent corrosion resistance. Copper also shows positive properties in terms of shape. Copper casting alloys are easy to cast, and the material is particularly valued for plasto-mechanical shaping due to its high strength and toughness.
  • Gunmetal is one of the cast copper alloys and is characterized by the combination of good castability with optimal machinability and high strength. Due to its good corrosion resistance, gunmetal is particularly suitable for water-bearing systems such as fittings and sanitary technology. Common gunmetal alloys contain tin to increase strength and corrosion resistance. Zinc is added as an inexpensive substitute for copper. In order to be able to process the products made of gunmetal economically at all, the heavy metal lead is added, which acts as a chip breaker in the alloy and enables machining on CNC machines and conventional lathes.
  • the ideal gunmetal would be free of lead and other questionable substances, with the same or better economy in production and without impairing the corrosion resistance, the high mechanical strength and the good workability.
  • the EP 2290114 A1 describes a lead-free gunmetal alloy containing 4 to 6% by weight tin, 4 to 6% by weight zinc and less than 0.25% by weight lead. With this alloy, lead-free components can be manufactured using casting processes. Subsequent mechanical processing to create the functional surfaces of these components is not taken into account. Without lead, the specified composition shows a homogeneous ⁇ -MK structure, which tends to form long chips and cannot be machined economically. Due to the process, the assumed casting process also requires more material to produce the molded part than alternative forming processes.
  • the US 2012/0082588 A1 , the EP 2 241 643 A1 , the EP 3 225 707 A1 and the US 9,181,606 B2 disclose copper alloys.
  • a method is described for preconditioning a gunmetal alloy with 2 to 8% by weight tin, 2.5 to 13% by weight zinc and less than 0.25% by weight lead, which is suitable for hot pressing and at the end of the hot pressing process shows a homogeneous structure.
  • Hot forming enables the economical production of molded parts with little use of material. Although the process sequence up to the shaping of the blank is explained, the subsequent machining process required to carve out the functional surfaces of the components is not taken into account here either. Due to the chemical composition and the subsequent hot forming, a homogeneous structure is formed and here too, due to the lack of a chip breaker, long chips can be expected during machining, which makes economical processing of the components more difficult.
  • the EP 1 801 250 A1 describes low-migration components made from a copper alloy that has a relatively high proportion of Si, in addition to lower but significant proportions of Mn, Al and Zr. Similar copper alloys are also in the WO 2007/068470 A1 disclosed.
  • the JP 2013-199699 A discloses a copper alloy containing 0.5 to 11.0% by mass of Sn, 0.03 to 0.70% by mass of P and 0.02 to 1.0% by mass of S, the balance being Cu and unavoidable impurities .
  • a sulfide is dispersed in the copper alloy, the mean diameter of the sulfide being 0.1 to 10 ⁇ m and the area ratio of the sulfide being 0.1 to 10%.
  • the present invention makes it possible to produce molded parts with high mechanical strength, high dimensional accuracy and high corrosion resistance from a gunmetal alloy, which has a chip breaker in its structure, via hot forming with little use of material, which can then also be economically machined after the hot pressing process can be subjected to.
  • the hot-workable gunmetal alloy does not require any elements such as Al, Si, Pb, Sb, Te, Se, C and Bi in the structure to form a chip breaker and is therefore easily reusable.
  • the present invention therefore provides the use of a copper alloy which is particularly suitable for the production of molded parts from at least one hot forming process with subsequent machining, which has the following composition in % by weight: Sn: 2 to 4 % Zn: 0.1 to less than 1.5% S: 0.05 to 0.45% pb: less than 0.25% Ni: less than 0.6% Sb: less than 0.2%, optionally further containing phosphorus up to a maximum of 0.06% by weight, B up to a maximum of 0.03% by weight, Zr up to a maximum of 0.03% by weight and unavoidable impurities, and the remainder being Cu.
  • the alloy used according to the invention contains in particular no elements from the group Al, Si, Sb, Te, Se, C and Bi and in preferred embodiments also no Pb.
  • the copper content in the alloy is preferably 88% by weight or more, more preferably 90% by weight or more.
  • the molded parts obtained in this way can also be further processed in an economical manner, since in particular the undesirable formation of long chips does not occur. It is thus evident that, despite the processes taking place during hot forming, chip-breaking components are still present in the microstructure of the alloy, although the alloy used according to the invention does not have typical chip-breaking components such as Pb or Si.
  • the present invention provides the use of a copper alloy that has an excellent balance of desired properties. Molded parts can therefore be produced from this alloy, in particular by hot forming, possibly combined with further processing steps as described here, without fearing that the other desired properties of the copper alloy and its suitability for use in hot forming will be compromised.
  • the alloy used according to the invention can therefore be used advantageously for the production of molded parts, with these production processes including hot forming, possibly combined with other processing processes, for example subsequent machining.
  • these production processes including hot forming, possibly combined with other processing processes, for example subsequent machining.
  • the individual alloying components alone but also in their interaction, enable good and reproducible control of the alloy properties.
  • Tin acts as a solid solution strengthener in the alloy and thus increases the tensile strength, yield point and hardness, but reduces the elongation at break. Furthermore, tin increases the corrosion resistance, with the corrosion resistance increasing with increasing tin contents.
  • tin causes strong segregations in the structure, which lead to the formation of zone crystals during solidification. At the beginning of the solidification, copper crystals with a lower tin content are precipitated and the residual melt is enriched with a tin content that is above the average content of the alloy.
  • Sulfur is almost insoluble in solid copper and the original properties of the material, such as corrosion resistance, are not affected by the addition of sulphur. Due to its insolubility in solid copper, sulfur leads to a constitution behavior that influences the solidification process of copper-tin alloys in a similar way to lead. Unlike lead, however, sulfur is not present in the structure as an element at the end of solidification, but in the form of an intermetallic metal-sulphur compound that is evenly distributed in the structure. It could be recognized that this phase is incoherent and brittle in the microstructure and thus creates a chip-breaking mechanism.
  • the properties of the sulfides influence the mechanical, plastic behavior of the gunmetal material.
  • the influence is determined via the proportions of the sulfide phases in the material. From a sulfur content of more than 0.6% by weight, the stress-transmitting ⁇ -Cu matrix is so severely impaired by the sulfides that a hot pressing process is made very difficult.
  • the sulfur content of 0.05% by weight to 0.45% by weight, particularly preferably 0.1% by weight to 0.45% by weight, ensures that there are sufficient sulfide inclusions in the structure for a chip-breaking To generate mechanism and to ensure a hot forming process.
  • Zinc is added to the alloy as an economical substitute for copper. It was recognized that there is a close connection between the zinc content and the sulfur content via the point in time and the type of distribution of the sulfide formation. The higher the zinc content, the earlier the sulfide inclusions form in the structure during the solidification of the casting. If the zinc content is more than 5% by weight, the sulphide formation is shifted to temperatures in the range of the solidification temperature of the gunmetal alloy. In this temperature range, there are still high levels of molten material in the cast structure, which are connected to one another in places.
  • a high zinc content then leads to an early formation of sulfides. These sulphides are inhomogeneous and concentrated in places in the structure and thus make the hot pressing process more difficult due to a local weakening of the ⁇ -MK matrix. If the zinc content is low, the formation is shifted to lower temperatures and the sulphides are in former residual melt areas separately and homogeneously distributed.
  • the zinc content of 0.1 to less than 1.5% by weight ensures that sulfide formation at higher temperatures is avoided.
  • the copper alloy used according to the invention has a particular suitability for use in a manufacturing process for molded parts due to its specific composition, this process comprising at least one hot forming step. Due to the special composition of the alloy, further processing steps can also be carried out without any problems after hot forming, for example subsequent machining.
  • Hot forming according to the invention can be a hot pressing process, for example. According to the invention, however, other hot forming processes are also possible, which are known to those skilled in the art. Before hot forming, for example a hot pressing process, the blank is heated to 600°C to 950°C. Above 600 °C, the yield point is sufficiently low to plastically deform the gunmetal material using a hot forming process. According to the invention, hot working can be carried out at any suitable temperature within the above temperature window, for example at 700 to 900°C. The respective temperature is selected by a person skilled in the art as a function of the type of molding, the desired speed of forming, etc.
  • the sulphides are again distributed in the structure and are brittle, which means that they act as chip breakers. It could be determined that even in the case of hot-formed molded parts with a low sulfur content of 0.05% by weight, stick-slipping of the tool occurs during mechanical processing due to changes in the friction conditions between the chip and the tool over time. These changed friction conditions are due to the inhomogeneous microstructure, which consists of a copper-containing ⁇ -MK matrix with embedded sulfides after the hot pressing process. Due to the stick-slip shearing bands are created in the chip, which lead to lamellar chips and shearing chips and in the further course of processing when discharged via a Break the chip breaker in the tool. This prevents long chips and enables economical machining.
  • the average grain size present in the cast state should not be more than 2 mm.
  • the necessary measures to ensure such an average grain size are known to the person skilled in the art.
  • Grain refinement is possible, for example, by using chemical additives such as zirconium and boron up to levels of 0.005 to 0.03% by weight or other alternative methods for grain refinement such as electromagnetic stirring, ultrasonic excitation, vibration, blowing in gas or by means of strong supercooling of the Melt during casting.
  • the copper alloy described above is particularly suitable for use in the production of molded parts, with the production comprising at least one hot forming operation. It is also possible to use it to produce molded parts, in which further processing steps take place after the at least one hot forming, for example subsequent machining.
  • the corresponding manufacturing process is particularly suitable for the manufacture of components, such as media, e.g. gas or water-carrying lines and components to be connected, such as fittings, etc. Molded parts that are particularly in focus are components of domestic plumbing pipe systems, including pipes, fittings, end caps and connectors .
  • the basic process steps for producing such moldings are known to the person skilled in the art and are therefore not described in detail here.
  • a molded part for the drinking water installation was produced from lead-free gunmetal in a grain-refined state by means of hot forming with subsequent machining. It turned out that chip breakers were present in the structure of the alloy after the hot pressing process, so that economical, fully automated mechanical processing was possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Domestic Plumbing Installations (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

Die vorliegende Erfindung betrifft die Verwendung einer Kupferlegierung zur Herstellung von Formteilen und ein Verfahren zur Herstellung von Formteilen.The present invention relates to the use of a copper alloy for the production of molded parts and a method for the production of molded parts.

Stand der TechnikState of the art

Wasser ist ein wertvoller Rohstoff und für den täglichen Gebrauch unentbehrlich. Daher muss das Trinkwasser bei der Entnahme aus dem Versorgungssystem mikrobiologisch so beschaffen sein, dass der spätere Genuss zu keiner Erkrankung des Menschen führt. Um dies zu erreichen werden hohe Anforderungen an Werkstoffe, die in den unmittelbaren Kontakt mit dem Trinkwasser kommen, gestellt. Kupfer ist das edelste Gebrauchsmaterial und gilt in der Industrie und Technik für wasserführende Systeme als ein unverzichtbarer Werkstoff. Denn Kupfer besitzt bakteriostatische Eigenschaften und bietet außerdem eine ausgezeichnete Korrosionsbeständigkeit. Kupfer zeigt auch in der Formgebung positive Eigenschaften auf. So lassen sich Kupfergusslegierungen gut vergießen und durch die hohe Festigkeit und Zähigkeit wird der Werkstoff auch bei der plastomechanischen Formgebung besonders geschätzt.Water is a valuable raw material and indispensable for daily use. The drinking water must therefore be microbiologically constituted when it is taken from the supply system in such a way that subsequent consumption does not lead to any illness in humans. In order to achieve this, high demands are placed on materials that come into direct contact with drinking water. Copper is the noblest commodity and is considered an indispensable material for water-bearing systems in industry and technology. Because copper has bacteriostatic properties and also offers excellent corrosion resistance. Copper also shows positive properties in terms of shape. Copper casting alloys are easy to cast, and the material is particularly valued for plasto-mechanical shaping due to its high strength and toughness.

Jedoch bereitet gerade diese plastische Verformbarkeit bei der spanabhebenden mechanischen Bearbeitung Probleme. Hier neigen homogene Kupferwerkstoffe zu einer Langspanbildung. Diese Spanart hemmt den Arbeitsablauf beim vollautomatisierten Drehen, bzw. Bohren, und führt zu einem starken Verschleiß an den Werkzeugschneiden. Oftmals ist die Spanbildung des Kupfers die limitierende Größe bei der mechanischen Bearbeitung und nimmt daher direkten Einfluss auf die Wirtschaftlichkeit der Werkstücke.However, it is precisely this plastic deformability that causes problems in machining. Here, homogeneous copper materials tend to form long chips. This type of chip impedes the work process during fully automated turning or drilling and leads to heavy wear on the cutting edges of the tool. The chip formation of the copper is often the limiting factor in mechanical processing and therefore has a direct influence on the cost-effectiveness of the workpieces.

Rotguss gehört zu den Kupfergusslegierungen und zeichnet sich durch die Kombination einer guten Gießbarkeit mit optimaler Spanbarkeit und hoher Festigkeit aus. Durch die gute Korrosionsbeständigkeit ist Rotguss besonders für wasserführende Systeme wie die Armaturen- und Sanitärtechnik geeignet. Übliche Rotgusslegierungen enthalten Zinn um die Festigkeit und Korrosionsbeständigkeit zu steigern. Zink wird als kostengünstiges Substitutionsmittel für Kupfer hinzugefügt. Um die erzeugten Produkte aus Rotguss überhaupt wirtschaftlich bearbeiten zu können, wird das Schwermetall Blei hinzugegeben, welches in der Legierung als Spanbrecher wirkt und eine spanabhebende Bearbeitung auf CNC-Automaten und herkömmlichen Drehautomaten möglich macht.Gunmetal is one of the cast copper alloys and is characterized by the combination of good castability with optimal machinability and high strength. Due to its good corrosion resistance, gunmetal is particularly suitable for water-bearing systems such as fittings and sanitary technology. Common gunmetal alloys contain tin to increase strength and corrosion resistance. Zinc is added as an inexpensive substitute for copper. In order to be able to process the products made of gunmetal economically at all, the heavy metal lead is added, which acts as a chip breaker in the alloy and enables machining on CNC machines and conventional lathes.

Stagniert das Trinkwasser über längere Zeit in handelsüblichen bleihaltigen Armaturen, besteht die Möglichkeit, dass Blei durch eine Metallionenmigration an das Leitungswasser abgegeben wird. Hohe Bleikonzentrationen gelten als gesundheitsschädlich. Daher werden weltweit immer strengere Auflagen an die Bleigehalte der Werkstoffe, die in Kontakt mit Trinkwasser kommen, gestellt. Auch innerhalb von Deutschland wurde über die gesetzliche Trinkwasserverordnung seit dem 01.12.2013 der Bleigehalt auf 10 µg Blei/l gesenkt. Der Druck, Bleigehalte im Trinkwasser weiter zu reduzieren, ist weltweit angestiegen und wird weiter wachsen. So verlangen gesetzliche Vorgaben aus den USA, dass Bleigehalte in Kupferlegierungen einen durchschnittlichen Bleigehalt von 0,25 % nicht überschreiten dürfen, unabhängig von der eigentlichen Bleikonzentration im Trinkwasser.If the drinking water stagnates for a long time in commercially available lead-containing fittings, there is a possibility that lead will be released into the tap water through metal ion migration. High concentrations of lead are considered harmful to health. For this reason, ever more stringent requirements are being imposed worldwide on the lead content of materials that come into contact with drinking water. In Germany, too, the lead content has been reduced to 10 µg lead/l since December 1st, 2013 via the statutory drinking water ordinance. The pressure to further reduce lead levels in drinking water has increased worldwide and will continue to do so. Legal requirements from the USA require that lead levels in Copper alloys must not exceed an average lead content of 0.25%, regardless of the actual lead concentration in drinking water.

Der ideale Rotguss wäre frei von Blei und anderen bedenklichen Substanzen, bei gleichbleibender oder besserer Wirtschaftlichkeit in der Fertigung und ohne die Korrosionsbeständigkeit, die hohen mechanischen Festigkeiten und die gute Verarbeitbarkeit zu beeinträchtigen.The ideal gunmetal would be free of lead and other questionable substances, with the same or better economy in production and without impairing the corrosion resistance, the high mechanical strength and the good workability.

Die EP 2290114 A1 beschreibt eine bleifreie Rotgusslegierung mit 4 bis 6 Gew.-% Zinn, 4 bis 6 Gew.-% Zink und weniger als 0,25 Gew.-% Blei. Mit dieser Legierung können bleifreie Bauteile mittels Gießverfahren hergestellt werden. Die nachträgliche mechanische Bearbeitung zur Erzeugung der Funktionsflächen dieser Bauteile bleibt aber unberücksichtigt. Ohne Blei zeigt die angegebene Zusammensetzung ein homogenes α-MK Gefüge auf, welches zur Langspanbildung neigt und sich nicht wirtschaftlich spanabhebend bearbeiten lässt. Auch das vorausgesetzte Gießverfahren benötigt prozessbedingt einen höheren Materialeinsatz zur Erzeugung des Formteils als alternative Umformungsprozesse. Die US 2012/0082588 A1 , die EP 2 241 643 A1 , die EP 3 225 707 A1 und die US 9,181,606 B2 offenbaren Kupferlegierungen.The EP 2290114 A1 describes a lead-free gunmetal alloy containing 4 to 6% by weight tin, 4 to 6% by weight zinc and less than 0.25% by weight lead. With this alloy, lead-free components can be manufactured using casting processes. Subsequent mechanical processing to create the functional surfaces of these components is not taken into account. Without lead, the specified composition shows a homogeneous α-MK structure, which tends to form long chips and cannot be machined economically. Due to the process, the assumed casting process also requires more material to produce the molded part than alternative forming processes. The US 2012/0082588 A1 , the EP 2 241 643 A1 , the EP 3 225 707 A1 and the US 9,181,606 B2 disclose copper alloys.

Einen Umformprozess einer bleifreien Rotguss-Legierung beschreibt die EP 2 872 660 B1 . Beschrieben wird ein Verfahren zur Vorkonditionierung einer Rotgusslegierung mit 2 bis 8 Gew.- % Zinn, 2,5 bis 13 Gew.-% Zink und weniger als 0,25 Gew.-% Blei die zum Warmpressen geeignet ist und am Ende des Warmpressvorgangs ein homogenes Gefüge vorweist. Die Warmumformung ermöglicht eine wirtschaftliche Herstellung von Formteilen mit geringem Materialeinsatz. Zwar wird der Verfahrensablauf bis zur Formgebung des Rohlings erläutert, unberücksichtigt bleibt aber auch hier der anschließende notwendige Zerspanvorgang zur Herausarbeitung von Funktionsflächen der Bauteile. Durch die chemische Zusammensetzung und das anschließende warmumformen entsteht eine homogene Gefügeausbildung und auch hier ist durch das Fehlen eines Spanbrechers eine Langspanbildung bei der spanabhebenden Bearbeitung zu erwarten, die eine wirtschaftliche Bearbeitung der Bauteile erschwert.The describes a forming process of a lead-free gunmetal alloy EP 2 872 660 B1 . A method is described for preconditioning a gunmetal alloy with 2 to 8% by weight tin, 2.5 to 13% by weight zinc and less than 0.25% by weight lead, which is suitable for hot pressing and at the end of the hot pressing process shows a homogeneous structure. Hot forming enables the economical production of molded parts with little use of material. Although the process sequence up to the shaping of the blank is explained, the subsequent machining process required to carve out the functional surfaces of the components is not taken into account here either. Due to the chemical composition and the subsequent hot forming, a homogeneous structure is formed and here too, due to the lack of a chip breaker, long chips can be expected during machining, which makes economical processing of the components more difficult.

Die EP 1 801 250 A1 beschreibt migrationsarme Bauteile aus einer Kupferlegierung, die einen relativ hohen Anteil an Si aufweist, zusätzlich zu geringeren aber wesentlichen Anteilen an Mn, Al und Zr. Ähnliche Kupferlegierungen sind auch in der WO 2007/068470 A1 offenbart.The EP 1 801 250 A1 describes low-migration components made from a copper alloy that has a relatively high proportion of Si, in addition to lower but significant proportions of Mn, Al and Zr. Similar copper alloys are also in the WO 2007/068470 A1 disclosed.

Die JP 2013-199699 A offenbart eine Kupferlegierung, enthaltend 0,5 bis 11,0 Masse-% Sn, 0,03 bis 0,70 Masse-% P und 0,02 bis 1,0 Masse-% S, wobei der Rest aus Cu sowie unvermeidlichen Verunreinigungen besteht. In der Kupferlegierung ist ein Sulfid dispergiert, wobei der mittlere Durchmesser des Sulfids 0,1 bis 10 µm und das Flächenverhältnis des Sulfids 0,1 bis 10% beträgt.The JP 2013-199699 A discloses a copper alloy containing 0.5 to 11.0% by mass of Sn, 0.03 to 0.70% by mass of P and 0.02 to 1.0% by mass of S, the balance being Cu and unavoidable impurities . A sulfide is dispersed in the copper alloy, the mean diameter of the sulfide being 0.1 to 10 µm and the area ratio of the sulfide being 0.1 to 10%.

Trotz der vielen inzwischen bekannten Kupferlegierungen im Stand der Technik besteht immer noch eine Herausforderung darin, Rotguss Kupferlegierungen anzugeben, die einerseits ohne den Einsatz der aus Umwelt- und Gesundheitssichtpunkten problematischen Komponente Blei (Pb) auskommen, andererseits Umformungsprozesse ermöglichen, ohne dass die mechanischen Kennwerte und die Korrosionsbeständigkeit leiden. Als besonders anspruchsvoll hat sich hier die Bereitstellung von Kupferlegierungen herausgestellt, die eine gute Warmumformbarkeit zeigen (also ohne wesentlichen Abfall mechanischer Kennwerte) und vorzugsweise ebenfalls gut spanabhebend zu bearbeiten sind.Despite the many copper alloys that are now known in the state of the art, there is still a challenge in specifying red brass copper alloys that, on the one hand, do not require the use of lead (Pb), a component that is problematic from an environmental and health point of view, and, on the other hand, enable forming processes without affecting the mechanical characteristics and corrosion resistance suffer. The provision of copper alloys that show good hot workability (ie without a significant drop in mechanical parameters) and are preferably also easy to machine has turned out to be particularly challenging here.

Aufgabe der vorliegenden ErfindungObject of the present invention

Aufgrund der vorstehend geschilderten Nachteile im Stand der Technik, ist es die Aufgabe der vorliegenden Erfindung, die Verwendung einer Kupferlegierung zur Herstellung von Formteilen und ein Verfahren zur Herstellung von Formteilen zur Verfügung zu stellen, die diese Nachteile überwindet. Wünschenswert wäre dabei insbesondere die Verwendung einer Kupferlegierung, die möglichst wenig Komponenten umfasst, bleifrei oder im wesentlichen bleifrei ist und darüber hinaus auf teure Metallkomponenten und/oder schwierig einzumischende Metallkomponenten verzichten kann.Due to the disadvantages of the prior art described above, it is the object of the present invention to provide the use of a copper alloy for the production of molded parts and a method for the production of molded parts which overcomes these disadvantages. In this context, it would be particularly desirable to use a copper alloy which comprises as few components as possible, is lead-free or essentially lead-free and, moreover, can do without expensive metal components and/or metal components which are difficult to mix.

Kurze Beschreibung der ErfindungBrief description of the invention

Diese Aufgabe wird durch die Verwendung einer Kupferlegierung nach Anspruch 1, sowie das Verfahren zur Herstellung von Formteilen nach Anspruch 2 gelöst. Bevorzugte Ausführungsformen sind in den Unteransprüchen sowie der nachfolgenden Beschreibung angegeben.This object is achieved by using a copper alloy according to claim 1 and the method for producing molded parts according to claim 2. Preferred embodiments are specified in the subclaims and the following description.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Die vorliegende Erfindung wird im Folgenden zunächst im Hinblick auf die Verwendung der erfindungsgemäßen Legierung beschrieben. Es ist dem Fachmann allerdings klar, dass die in diesem Zusammenhang beschriebenen bevorzugten Ausführungsformen sich auch auf das beschriebene Herstellungsverfahren übertragen lassen und auch für diese Aspekte der Erfindung als bevorzugte Ausführungsformen anzusehen sind.The present invention is described below initially with regard to the use of the alloy according to the invention. However, it is clear to the person skilled in the art that the preferred embodiments described in this context can also be applied to the production method described and are also to be regarded as preferred embodiments for these aspects of the invention.

Die vorliegende Erfindung ermöglicht es, aus einer Rotguss-Legierung, die im Gefüge einen Spanbrecher aufweist, über eine Warmumformung mit geringem Materialeinsatz Formteile mit hohen mechanischen Festigkeiten, mit hoher Maßhaltigkeit und mit hoher Korrosionsbeständigkeit erzeugen, die anschließend nach dem Warmpressvorgang auch noch einer wirtschaftlichen Zerspanung unterzogen werden können. Die warmumformbare Rotguss-Legierung benötigt für die Ausbildung eines Spanbrechers im Gefüge keine Elemente wie Al, Si, Pb, Sb, Te, Se, C und Bi und ist daher gut wiederverwendbar.The present invention makes it possible to produce molded parts with high mechanical strength, high dimensional accuracy and high corrosion resistance from a gunmetal alloy, which has a chip breaker in its structure, via hot forming with little use of material, which can then also be economically machined after the hot pressing process can be subjected to. The hot-workable gunmetal alloy does not require any elements such as Al, Si, Pb, Sb, Te, Se, C and Bi in the structure to form a chip breaker and is therefore easily reusable.

Die vorliegende Erfindung stellt also die Verwendung einer Kupferlegierung zur Verfügung, die insbesondere zur Herstellung von Formteilen aus mindestens einem Warmumformungsvorgang mit anschließender spanabhebender Bearbeitung geeignet ist, die folgende Zusammensetzung in Gewichts-% aufweist: Sn: 2 bis 4 % Zn: 0, 1 bis weniger als 1,5 % S: 0,05 bis 0,45 % Pb: weniger als 0,25 % Ni: weniger als 0,6 % Sb: weniger als 0,2 %, optional weiter enthaltend Phosphor bis maximal 0,06 Gew.-%, B bis maximal 0,03 Gew.-%, Zr bis maximal 0,03 Gew.-% sowie unvermeidbare Verunreinigungen, und wobei der Rest Cu ist.The present invention therefore provides the use of a copper alloy which is particularly suitable for the production of molded parts from at least one hot forming process with subsequent machining, which has the following composition in % by weight: Sn: 2 to 4 % Zn: 0.1 to less than 1.5% S: 0.05 to 0.45% pb: less than 0.25% Ni: less than 0.6% Sb: less than 0.2%, optionally further containing phosphorus up to a maximum of 0.06% by weight, B up to a maximum of 0.03% by weight, Zr up to a maximum of 0.03% by weight and unavoidable impurities, and the remainder being Cu.

Wie bereits vorstehend ausgeführt, enthält die erfindungsgemäß verwendete Legierung insbesondere keine Elemente der Gruppe Al, Si, Sb, Te, Se, C und Bi und in bevorzugten Ausführungsformen ebenfalls kein Pb.As already explained above, the alloy used according to the invention contains in particular no elements from the group Al, Si, Sb, Te, Se, C and Bi and in preferred embodiments also no Pb.

Bevorzugte Gehalte an erfindungsgemäß einzusetzenden Legierungskomponenten sind wie folgt, wobei diese jeweils einzeln als auch in jeder Kombination erfindungsgemäß offenbart und beansprucht werden (jeweils erneut in Gew.-%):

  • Sn: 2 bis 4 %, in Ausführungsformen 2 bis weniger als 3,5 %, wie 2 bis 3,25%
  • Zn: 0,1 bis weniger als 1,5 %
  • S: 0, bis 0,45 % und in Ausführungsformen 0,1 bis weniger als 0,25 %, wie 0,1 bis 0,2%
  • Ni: weniger als 0,5%, wie von 0 bis 0,4%, von 0 bis 0,25%
Preferred contents of alloy components to be used according to the invention are as follows, these being disclosed and claimed according to the invention individually and in every combination (again in each case in % by weight):
  • Sn: 2 to 4%, in embodiments 2 to less than 3.5%, such as 2 to 3.25%
  • Zn: 0.1 to less than 1.5%
  • S: 0.0 to 0.45% and in embodiments 0.1 to less than 0.25%, such as 0.1 to 0.2%
  • Ni: less than 0.5%, such as from 0 to 0.4%, from 0 to 0.25%

Der Kupferanteil in der Legierung ist bevorzugt 88 Gew.-% oder mehr, stärker bevorzugt 90 Gew.-% oder mehr.The copper content in the alloy is preferably 88% by weight or more, more preferably 90% by weight or more.

Es hat sich unerwartet gezeigt, dass mit den hier offenbarten Kupferlegierungen die bekannten Nachteile aus dem Stand der Technik überwunden werden können. Insbesondere können aus der Kupferlegierung hergestellte Halbzeuge/Zwischenprodukte sehr gut einer Warmumformung unterworfen werden. Trotz des bei einer Warmumformung (typischer Weise bei Temperaturen von etwa 600 bis 950°C) häufig auftretenden Abbaus von Kaltverfestigungen, ermöglicht die erfindungsgemäße Verwendung der Legierung die Herstellung von Formteilen (die ggf. dann noch weiterbearbeitet werden, z.B. durch spanabhebende Bearbeitung), die immer noch ausgezeichnete mechanische Kennwerte aufweisen und auch keinen Abbau der Korrosionsbeständigkeit zeigen.It has unexpectedly turned out that the known disadvantages of the prior art can be overcome with the copper alloys disclosed here. In particular, semi-finished products/intermediate products made from the copper alloy can very well be subjected to hot forming. Despite the reduction of strain hardening that frequently occurs during hot forming (typically at temperatures of around 600 to 950°C), the use of the alloy according to the invention makes it possible to produce molded parts (which may then be further processed, for example by machining), which still have excellent mechanical properties and also show no deterioration in corrosion resistance.

Weiterhin hat sich gezeigt, dass die so erhaltenen Formteile (also nach Warmumformung) auch in wirtschaftlicher Art weiterbearbeitet werden können, da insbesondere die unerwünschte Langspanbildung unterbleibt. Es zeigt sich also, dass trotz der bei einer Warmumformung ablaufenden Prozesse in der Gefügestruktur der Legierung immer noch spanbrechende Komponenten vorliegen, obwohl die erfindungsgemäß verwendete Legierung auf typische spanbrechende Komponenten, wie Pb oder Si verzichtet. Also stellt die vorliegende Erfindung die Verwendung einer Kupferlegierung zur Verfügung, die eine ausgezeichnete Balance an gewünschten Eigenschaften aufweist. Es können also aus dieser Legierung Formteile hergestellt werden, insbesondere durch Warmumformung, ggf. verbunden mit weiteren Bearbeitungsschritten wie hier beschrieben, ohne dass Abstriche an die weiteren, erwünschten Eigenschaften der Kupferlegierung und deren Eignung zum Einsatz in der Warmumformung zu befürchten sind.Furthermore, it has been shown that the molded parts obtained in this way (that is, after hot forming) can also be further processed in an economical manner, since in particular the undesirable formation of long chips does not occur. It is thus evident that, despite the processes taking place during hot forming, chip-breaking components are still present in the microstructure of the alloy, although the alloy used according to the invention does not have typical chip-breaking components such as Pb or Si. Thus, the present invention provides the use of a copper alloy that has an excellent balance of desired properties. Molded parts can therefore be produced from this alloy, in particular by hot forming, possibly combined with further processing steps as described here, without fearing that the other desired properties of the copper alloy and its suitability for use in hot forming will be compromised.

Die erfindungsgemäß verwendete Legierung kann also vorteilhaft zur Herstellung von Formteilen eingesetzt werden, wobei diese Herstellungsverfahren eine Warmumformung umfassen, ggf. kombiniert mit weiteren Bearbeitungsverfahren, beispielsweise eine anschließende spanabhebende Bearbeitung.
Im Hinblick auf den Erhalt der erwünschten Eigenschaften der hier beschriebenen Kupferlegierung ermöglichen die einzelnen Legierungsbestandteile jeweils allein, aber auch in ihrem Zusammenwirken, eine gute und reproduzierbare Steuerung der Legierungseigenschaften.
The alloy used according to the invention can therefore be used advantageously for the production of molded parts, with these production processes including hot forming, possibly combined with other processing processes, for example subsequent machining.
With a view to maintaining the desired properties of the copper alloy described here, the individual alloying components, alone but also in their interaction, enable good and reproducible control of the alloy properties.

Zinn wirkt in der Legierung als Mischkristallverfestiger und erhöht damit die Zugfestigkeit, Dehngrenze und Härte, vermindert aber die Bruchdehnung. Des Weiteren erhöht Zinn die Korrosionsbeständigkeit, wobei die Korrosionsbeständigkeit mit steigenden Zinngehalten zunimmt. Bei der Herstellung der Rohlinge zur Warmumformung konnte erkannt werden, dass durch Zinn im Gefüge starke Segregierungen auftreten, die bei der Erstarrung zur Bildung von Zonenkristallen führen. Am Anfang der Erstarrung werden zinnärmere Kupferkristalle ausgeschieden und die Restschmelze reichert sich mit einem Zinngehalt an, der über den Durchschnittsgehalt der Legierung liegt. Abweichend vom stabilen Zustandsdiagramm Kupfer-Zinn kann bei Gehalten von über 7 Gew.-% Zinn im Gefüge bei Raumtemperatur ein (α + δ) - Eutektoid vorliegen, das unter Gleichgewichtsbedingungen erst bei max. 15,8 Gew.-% Zinn entsteht. Die mögliche δ Phase kristallisiert im kfz Gitter und müsste somit an sich gut verformbar sein, die Phase besitzt aufgrund ihrer voluminösen Elementarzelle von 416 Atomen aber ein sprödes Verhalten. Dies erschwert den späteren Warmumformprozess. Durch eine Wärmebehandlung bei hohen Temperaturen mit ausreichender Zeit lässt sich das (α + δ) - Eutektoid zwar beseitigen, eine Wärmebehandlung ist aber mit hohem Energieaufwand verbunden.Tin acts as a solid solution strengthener in the alloy and thus increases the tensile strength, yield point and hardness, but reduces the elongation at break. Furthermore, tin increases the corrosion resistance, with the corrosion resistance increasing with increasing tin contents. During the production of the blanks for hot forming, it was found that tin causes strong segregations in the structure, which lead to the formation of zone crystals during solidification. At the beginning of the solidification, copper crystals with a lower tin content are precipitated and the residual melt is enriched with a tin content that is above the average content of the alloy. Deviating from the stable copper-tin phase diagram, a (α + δ) - eutectoid can be present at room temperature if the tin content exceeds 7% by weight in the structure, which under equilibrium conditions only occurs at a maximum of 15.8% by weight tin. The possible δ phase crystallizes in the fcc lattice and should therefore be easily deformable, but the phase has a brittle behavior due to its voluminous unit cell of 416 atoms. This complicates the later hot forming process. By a Heat treatment at high temperatures with sufficient time can eliminate the (α + δ) - eutectoid, but heat treatment is associated with high energy consumption.

Des Weiteren besteht die Gefahr einer Kornvergrößerung des Gefüges während der Behandlung. Dies würde zu einer Reduzierung der Dehnung führen womit der spätere Warmumformprozess erschwert wird. Mit einem Gehalt von 2 bis 4 Gew.-% Zinn wird eine hohe mechanische Festigkeit mit hoher Dehnung gewährleistet und eine Ausbildung des (α + δ) - Eutektoids im Gusszustand vermieden.Furthermore, there is a risk of grain enlargement of the structure during the treatment. This would lead to a reduction in elongation, making the later hot forming process more difficult. With a tin content of 2 to 4% by weight, high mechanical strength with high elongation is guaranteed and the formation of (α + δ) - eutectoids in the cast state is avoided.

Schwefel ist nahezu unlöslich im festen Kupfer und die ursprünglichen Eigenschaften des Werkstoffs, wie etwa die Korrosionsbeständigkeit, werden durch die Zugabe von Schwefel nicht beeinflusst. Durch die Unlöslichkeit im festen Kupfer führt Schwefel zu einem Konstitionsverhalten, dass den Erstarrungsverlauf von Kupfer-Zinn Legierung ähnlich wie Blei beeinflusst. Anders als Blei liegt Schwefel am Ende der Erstarrung aber nicht elementar im Gefüge vor, sondern in Form einer intermetallischen Metall-Schwefel Verbindung die gleichmäßig im Gefüge verteilt ist. Es konnte erkannt werden, dass diese Phase inkohärent und spröde im Gefüge vorliegt und somit einen spanbrechenden Mechanismus erzeugt.Sulfur is almost insoluble in solid copper and the original properties of the material, such as corrosion resistance, are not affected by the addition of sulphur. Due to its insolubility in solid copper, sulfur leads to a constitution behavior that influences the solidification process of copper-tin alloys in a similar way to lead. Unlike lead, however, sulfur is not present in the structure as an element at the end of solidification, but in the form of an intermetallic metal-sulphur compound that is evenly distributed in the structure. It could be recognized that this phase is incoherent and brittle in the microstructure and thus creates a chip-breaking mechanism.

Die Eigenschaften der Sulfide beeinflussen das mechanische, plastische Verhalten des Rotguss-Werkstoffs. Der Einfluss wird über die Mengenanteile der Sulfidphasen im Werkstoff bestimmt. Ab Schwefelgehalten von über 0,6 Gew-.% wird die spannungsübertragende α-Cu Matrix durch die Sulfide so stark beeinträchtigt, dass ein Warmpressvorgang stark erschwert ist. Der Schwefelgehalt von 0,05 Gew.-% bis 0,45 Gew.-%, besonders bevorzugt 0,1 Gew.-% bis 0,45 Gew.-%, stellt sicher, dass ausreichend Sulfideinschlüssen im Gefüge vorhanden sind um einen spanbrechenden Mechanismus zu erzeugen und ein Warmumformungsvorgang zu gewährleisten.The properties of the sulfides influence the mechanical, plastic behavior of the gunmetal material. The influence is determined via the proportions of the sulfide phases in the material. From a sulfur content of more than 0.6% by weight, the stress-transmitting α-Cu matrix is so severely impaired by the sulfides that a hot pressing process is made very difficult. The sulfur content of 0.05% by weight to 0.45% by weight, particularly preferably 0.1% by weight to 0.45% by weight, ensures that there are sufficient sulfide inclusions in the structure for a chip-breaking To generate mechanism and to ensure a hot forming process.

Zink wird der Legierung als wirtschaftliches Substitionsmittel gegenüber Kupfer hinzugefügt. Es wurde erkannt, dass zwischen dem Zinkgehalt und dem Schwefelgehalt ein enger Zusammenhang über den Zeitpunkt und über die Art der Verteilung der Sulfidausbildung besteht. Je höher der Zinkgehalt vorliegt, umso früher bilden sich die Sulfideeinschlüsse während der Gussteilerstarrung im Gefüge aus. Liegt der Zinkgehalt über 5 Gew.-%, wird die Sulfidausbildung zu Temperaturen im Bereich der Erstarrungstemperatur der Rotgusslegierung verschoben. In diesem Temperaturbereich liegen noch hohe schmelzflüssige Anteile im Gussgefüge vor, die stellenweise miteinander verbunden sind.Zinc is added to the alloy as an economical substitute for copper. It was recognized that there is a close connection between the zinc content and the sulfur content via the point in time and the type of distribution of the sulfide formation. The higher the zinc content, the earlier the sulfide inclusions form in the structure during the solidification of the casting. If the zinc content is more than 5% by weight, the sulphide formation is shifted to temperatures in the range of the solidification temperature of the gunmetal alloy. In this temperature range, there are still high levels of molten material in the cast structure, which are connected to one another in places.

Durch einen hohen Zinkgehalt kommt es dann zu einer frühzeitigen Ausbildung der Sulfide. Diese Sulfide liegen inhomogen und stellenweise konzentriert im Gefüge vor und erschweren somit den Warmpressvorgang durch eine lokale Schwächung der α-MK Matrix. Ist der Zinkgehalt niedrig, wird die Ausbildung zu niedrigeren Temperaturen verschoben und die Sulfide liegen in ehemaligen Restschmelzebereichen getrennt voneinander und homogen verteilt vor. Der Zinkgehalt von 0,1 bis weniger als 1,5 Gew.-% sichert, dass eine Sulfidausbildung bei höheren Temperaturen vermieden wird.A high zinc content then leads to an early formation of sulfides. These sulphides are inhomogeneous and concentrated in places in the structure and thus make the hot pressing process more difficult due to a local weakening of the α-MK matrix. If the zinc content is low, the formation is shifted to lower temperatures and the sulphides are in former residual melt areas separately and homogeneously distributed. The zinc content of 0.1 to less than 1.5% by weight ensures that sulfide formation at higher temperatures is avoided.

Untersuchungen haben gezeigt, dass die erfindungsgemäß verwendete Kupferlegierung durch die spezifische Zusammensetzung eine besondere Eignung zum Einsatz in einem Herstellungsverfahren für Formteile aufweist, wobei dieses Verfahren mindestens eine Warmumformung umfasst. Durch die besondere Zusammensetzung der Legierung können nach der Warmumformung auch problemlos weitere Bearbeitungsschritte erfolgen, beispielsweise eine anschließende spanabhebende Bearbeitung.Investigations have shown that the copper alloy used according to the invention has a particular suitability for use in a manufacturing process for molded parts due to its specific composition, this process comprising at least one hot forming step. Due to the special composition of the alloy, further processing steps can also be carried out without any problems after hot forming, for example subsequent machining.

Eine erfindungsgemäße Warmumformung kann beispielsweise ein Warmpressvorgang sein. Erfindungsgemäß sind aber auch andere Warmumformungen möglich, die dem Fachmann bekannt sind. Vor einer Warmumformung, beispielsweise einem Warmpressvorgang wird der Rohling auf 600 °C bis 950 °C erhitzt. Ab 600 °C ist die Dehngrenze ausreichend tief um den Rotgusswerkstoff über einen Warmumformungsvorgang plastisch zu verformen. Erfindungsgemäß kann eine Warmumformung bei irgend einer geeigneten Temperatur in dem vorstehend genannten Temperaturfenster durchgeführt werden, beispielsweise bei 700 bis 900°C. Die jeweilige Temperatur wird in Abhängigkeit von der Art des Formteils, der gewünschten Schnelligkeit der Umformung etc. vom Fachmann ausgewählt.Hot forming according to the invention can be a hot pressing process, for example. According to the invention, however, other hot forming processes are also possible, which are known to those skilled in the art. Before hot forming, for example a hot pressing process, the blank is heated to 600°C to 950°C. Above 600 °C, the yield point is sufficiently low to plastically deform the gunmetal material using a hot forming process. According to the invention, hot working can be carried out at any suitable temperature within the above temperature window, for example at 700 to 900°C. The respective temperature is selected by a person skilled in the art as a function of the type of molding, the desired speed of forming, etc.

Es wurde erkannt, dass in dem angegebenen Temperaturbereich auch die Atombindungen der Sulfide schwächer werden, so dass Versetzungsbewegungen in diesen Überstrukturen erleichtert werden. Die Phasen verlieren in diesem Temperaturbereich ihre Sprödigkeit und werden verformbar und hemmen somit den Warmumformungsprozess nicht. Unmittelbar nach der Umformung findet dann eine dynamische Rekristallisation der α-MK Matrix statt, die den vorher im Gusszustand bestehenden Zonenmischkristall mit unterschiedlicher Zinnkonzentration beseitigt und über den Querschnitt eine homogene Konzentration und damit gleichbleibender mechanische Kennwerte und Korrosionseigenschaften gewährleistet.It was recognized that the atomic bonds of the sulfides also become weaker in the specified temperature range, so that dislocation movements in these superstructures are facilitated. In this temperature range, the phases lose their brittleness and become malleable and thus do not inhibit the hot forming process. Dynamic recrystallization of the α-MK matrix then takes place immediately after forming, which eliminates the zone solid solution with different tin concentrations that previously existed in the cast state and ensures a homogeneous concentration over the cross-section and thus constant mechanical parameters and corrosion properties.

Die Sulfide liegen aber nach dem Verformungsprozess bei Raumtemperatur im Gefüge wieder verteilt und spröde vor, womit sie als Spanbrecher fungieren. Es konnte ermittelt werden, dass auch bei warmverformten Formteilen mit niedrigen Schwefelgehalten ab 0,05 Gew.-% es zu einem Ruckgleiten des Werkzeugs bei der mechanischen Bearbeitung durch zeitlich veränderte Reibungsverhältnisse zwischen Span und Werkzeug kommt. Diese veränderten Reibungsverhältnisse sind auf den inhomogenen Gefügeaufbau zurückzuführen, der nach dem Warmpressvorgang aus einer kupferhaltigen α-MK Matrix mit darin eingebetteten Sulfiden besteht. Durch das Ruckgleiten entstehen Scherbänder im Span die zu Lamellenspänen und Scherspänen führen und im weiteren Verlauf der Bearbeitung bei Abführung über eine Spanleitstufe im Werkzeug brechen. Dadurch werden lange Späne verhindert und eine wirtschaftliche spanabhebende Bearbeitung ermöglicht.However, after the deformation process at room temperature, the sulphides are again distributed in the structure and are brittle, which means that they act as chip breakers. It could be determined that even in the case of hot-formed molded parts with a low sulfur content of 0.05% by weight, stick-slipping of the tool occurs during mechanical processing due to changes in the friction conditions between the chip and the tool over time. These changed friction conditions are due to the inhomogeneous microstructure, which consists of a copper-containing α-MK matrix with embedded sulfides after the hot pressing process. Due to the stick-slip shearing bands are created in the chip, which lead to lamellar chips and shearing chips and in the further course of processing when discharged via a Break the chip breaker in the tool. This prevents long chips and enables economical machining.

Um den erfindungsgemäß vorgesehenen Warmpressvorgang zu ermöglichen, sollte die im Gusszustand vorliegende mittlere Korngröße nicht mehr als 2 mm betragen. Die notwendigen Maßnahmen zur Sicherstellung einer derartigen mittleren Korngröße sind dem Fachmann bekannt. Eine Kornfeinung ist beispielsweise möglich über den Einsatz chemische Zusätze wie Zirkon und Bor bis zu Gehalten von 0,005 bis 0,03 Gew.-% oder andere alternative Verfahren zur Kornfeinung wie elektromagnetisches Rühren, Ultraschallanregung, Vibration, Einblasen von Gas oder mittels einer starken Unterkühlung der Schmelze während des Gießens.In order to enable the hot pressing process provided according to the invention, the average grain size present in the cast state should not be more than 2 mm. The necessary measures to ensure such an average grain size are known to the person skilled in the art. Grain refinement is possible, for example, by using chemical additives such as zirconium and boron up to levels of 0.005 to 0.03% by weight or other alternative methods for grain refinement such as electromagnetic stirring, ultrasonic excitation, vibration, blowing in gas or by means of strong supercooling of the Melt during casting.

Die vorstehend beschriebene Kupferlegierung eignet sich insbesondere zur Verwendung zur Herstellung von Formteilen, wobei die Herstellung mindestens eine Warmumformung umfasst. Möglich ist auch die Verwendung zur Herstellung von Formteilen, bei der nach der mindestens einen Warmumformung weitere Bearbeitungsschritte erfolgen, beispielsweise eine anschließende spanabhebende Bearbeitung. Das damit korrespondierende Herstellungsverfahren eignet sich insbesondere zur Herstellung von Bauteilen, beispielsweise Medien-, z.B. Gas oder Wasser führenden Leitungen und damit zu verbindenden Bauteilen, wie Fittings etc. Besonders im Fokus stehende Formteile sind Bestandteile von Hausinstallationsrohrsystemen, einschließlich Rohre, Fittings, Endkappen und Verbindungsstücke. Die prinzipiellen Verfahrensschritte zur Herstellung derartiger Formteile sind dem Fachmann bekannt und werden daher hier nicht detailliert beschreiben.The copper alloy described above is particularly suitable for use in the production of molded parts, with the production comprising at least one hot forming operation. It is also possible to use it to produce molded parts, in which further processing steps take place after the at least one hot forming, for example subsequent machining. The corresponding manufacturing process is particularly suitable for the manufacture of components, such as media, e.g. gas or water-carrying lines and components to be connected, such as fittings, etc. Molded parts that are particularly in focus are components of domestic plumbing pipe systems, including pipes, fittings, end caps and connectors . The basic process steps for producing such moldings are known to the person skilled in the art and are therefore not described in detail here.

Erfindungswesentlich ist in diesem Zusammenhang, dass durch die vorstehend beschriebene spezifische Zusammensetzung der einzusetzenden Kupferlegierung ein Abfall mechanischer Kennwerte und der Korrosionsbeständigkeit auch nach einer Warmumformung ausbleibt. Zusätzlich hat sich gezeigt, dass sowohl vor als auch nach einer Warmumformung die erhaltenen Formteile ohne Probleme anderen Bearbeitungen unterworfen werden können. Insbesondere ist eine spanabhebende Bearbeitung möglich, da die problematische und unerwünschte Langspanbildung unterbleibt. So kann ein Formteil in einer wirtschaftlichen Weise hergestellt werden (da insbesondere die anderen, wünschenswerten Eigenschaften der Kupferlegierung, wie gute Warmumformbarkeit, Inertheit gegenüber den mit den Werkstücken in Kontakt kommenden Stoffen, insbesondere Trinkwasser, und Korrosionsbeständigkeit, nicht beeinträchtigt werden). Besonders hervorzuheben ist in diesem Zusammenhang, dass die hier beschriebenen Vorteile der vorliegenden Erfindung erreicht werden, obwohl auf den Einsatz der ansonsten im Stand der Technik vielfach als notwendig erachteten Komponenten Pb, Si etc. verzichtet wird.In this context, it is essential to the invention that due to the above-described specific composition of the copper alloy to be used, there is no drop in mechanical parameters and corrosion resistance even after hot forming. In addition, it has been shown that both before and after hot forming, the molded parts obtained can be subjected to other processing without any problems. In particular, machining is possible since the problematic and undesirable formation of long chips does not occur. In this way, a molded part can be produced in an economical manner (since in particular the other desirable properties of the copper alloy, such as good hot workability, inertness to the materials in contact with the workpieces, in particular drinking water, and corrosion resistance, are not impaired). In this context, it should be particularly emphasized that the advantages of the present invention described here are achieved, although the use of the components Pb, Si, etc., which are otherwise often considered necessary in the prior art, is dispensed with.

Dieser unerwartete Vorteil der hier beschriebenen Kupferlegierung ermöglicht deren wirtschaftliche Verwendung zur Herstellung der vorstehend beschriebenen Formteile.This unexpected advantage of the copper alloy described herein enables it to be used economically to produce the shaped parts described above.

BeispielExample

Aus einem bleifreien Rotguss wurde im korngefeinten Zustand mittels einer Warmumformung mit anschließender spanabhebender Bearbeitung ein Formteil für die Trinkwasserinstallation hergestellt. Dabei zeigte sich, dass nach dem Warmpressvorgang Spanbrecher im Gefüge der Legierung vorlagen, so dass eine wirtschaftliche vollautomatisierte mechanische Bearbeitung möglich wurde.A molded part for the drinking water installation was produced from lead-free gunmetal in a grain-refined state by means of hot forming with subsequent machining. It turned out that chip breakers were present in the structure of the alloy after the hot pressing process, so that economical, fully automated mechanical processing was possible.

Claims (5)

  1. The use of a copper alloy for the manufacture of moulded parts by means of a method with at least one hot forming process, wherein the alloy has the following composition in terms of percent by weight: Sn: 2 to 4% Zn: 0.1 to less than 1.5% S: 0.05 to 0.45% Pb: less than 0.25% Ni: less than 0.6% Sb: less than 0.2%
    and optionally phosphorus to a maximum of 0.06% by weight, B to a maximum 0.03% by weight, Zr to a maximum of 0.03% by weight, as well as unavoidable impurities, and with the remainder being Cu.
  2. Method for the manufacture of moulded parts from a copper alloy, wherein the alloy has the following composition in terms of percent by weight: Sn: 2 to 4% Zn: 0.1 to less than 1.5% S: 0.05 to 0.45% Pb: less than 0.25% Ni: less than 0.6% Sb: less than 0.2%
    and optionally phosphorus to a maximum of 0.06% by weight, B to a maximum 0.03% by weight, Zr to a maximum of 0.03% by weight, as well as unavoidable impurities, and with the remainder being Cu; wherein the method has the following steps:
    at least one hot forming process of the copper alloy for the manufacture of a moulded part.
  3. Use or method according to one of the preceding claims, characterised in that the sulphur content is 0.1 to 0.2% by weight.
  4. Use or method according to one of the preceding claims, wherein the alloy does not contain any elements from the group of Al, Si, Sb, Te, Se, C and Bi, and/or wherein the alloy contains no Pb.
  5. Use or method according to one of the preceding claims, wherein the copper alloy is suitable for the manufacture of moulded parts by means of a method further comprising machining after the at least one hot forming, wherein the method comprises the further step of machining after the at least one hot forming; or wherein the use comprises machining that follows the hot forming.
EP19179717.4A 2018-06-12 2019-06-12 Moulded parts made from a corrosion resistant and machinable alloy Active EP3581667B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018004702.5A DE102018004702A1 (en) 2018-06-12 2018-06-12 Moldings made of a corrosion-resistant and machinable copper alloy

Publications (3)

Publication Number Publication Date
EP3581667A2 EP3581667A2 (en) 2019-12-18
EP3581667A3 EP3581667A3 (en) 2020-06-17
EP3581667B1 true EP3581667B1 (en) 2023-04-12

Family

ID=66826940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19179717.4A Active EP3581667B1 (en) 2018-06-12 2019-06-12 Moulded parts made from a corrosion resistant and machinable alloy

Country Status (8)

Country Link
US (1) US20190376162A1 (en)
EP (1) EP3581667B1 (en)
JP (2) JP2020012193A (en)
CN (1) CN110592422A (en)
CA (1) CA3045574C (en)
DE (1) DE102018004702A1 (en)
DK (1) DK3581667T3 (en)
PL (1) PL3581667T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106131A1 (en) * 2019-03-11 2020-09-17 M.G. Meccanica Srl Process for the production of components for media-carrying gas or water pipes and the component produced thereby
DE102019106136A1 (en) * 2019-03-11 2020-09-17 M.G. Meccanica Srl Process for the production of metallic components as well as the metallic component produced thereby

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239764A (en) * 1999-02-18 2000-09-05 Joetsu Material Kk Corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and corrosion resistant brass alloy for continuous casting or continuous cast product
CN1461815A (en) * 2002-05-29 2003-12-17 三越金属株式会社 Leadless easy cutted brass ally material and its manufacturing method
EP1798298B2 (en) 2005-12-14 2016-05-04 Gebr. Kemper GmbH + Co. KG Metallwerke Use of a low-migration copper alloy and parts made of such alloy
ES2651345T3 (en) 2005-12-22 2018-01-25 Viega Technology Gmbh & Co. Kg Low migration construction components made of a copper alloy for conduits that carry fluids or drinking water
CN100567533C (en) * 2006-01-18 2009-12-09 江西理工大学 Pb-free copper-alloy
JP2009179864A (en) * 2008-01-31 2009-08-13 Kobe Steel Ltd Copper alloy sheet superior in stress relaxation resistance
JP5335558B2 (en) * 2009-05-26 2013-11-06 滋賀バルブ協同組合 Lead-free copper alloy for castings with excellent mechanical properties
EP2290114A1 (en) 2009-08-04 2011-03-02 Gebr. Kemper GmbH + Co. KG Metallwerke Water-guiding component
US9181606B2 (en) * 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
JP5916464B2 (en) * 2012-03-26 2016-05-11 古河電気工業株式会社 Copper alloy wrought material, method for producing copper alloy wrought material, and method for producing copper alloy parts
DE102012013817A1 (en) 2012-07-12 2014-01-16 Wieland-Werke Ag Molded parts made of corrosion-resistant copper alloys
DE202016101661U1 (en) * 2016-03-29 2017-06-30 Geberit International Ag Component for media-carrying gas or water pipes

Also Published As

Publication number Publication date
PL3581667T3 (en) 2023-07-31
DE102018004702A1 (en) 2019-12-12
US20190376162A1 (en) 2019-12-12
CA3045574C (en) 2022-05-24
DK3581667T3 (en) 2023-07-10
EP3581667A3 (en) 2020-06-17
EP3581667A2 (en) 2019-12-18
CA3045574A1 (en) 2019-12-12
JP2022025096A (en) 2022-02-09
JP2020012193A (en) 2020-01-23
CN110592422A (en) 2019-12-20

Similar Documents

Publication Publication Date Title
DE10308778B3 (en) Lead-free brass with superior notch impact resistance, used in widely ranging applications to replace conventional brasses, has specified composition
DE10308779B3 (en) Lead-free copper alloy and its use
DE69838115T2 (en) Lead-free vending copper alloy
DE102016008754B4 (en) Copper-nickel-tin alloy, process for their production and their use
EP3225707A1 (en) Component for media-conducting gas or water lines comprising a copper alloy
EP3485050A1 (en) Copper-nickel-tin alloy, method for the production and use thereof
EP3581667B1 (en) Moulded parts made from a corrosion resistant and machinable alloy
WO2018014993A1 (en) Copper-nickel-tin alloy, method for the production and use thereof
WO2016045770A1 (en) Electrical connection element
EP2872660B1 (en) Moulded piece made from a corrosion resistant copper alloy
EP3485051A1 (en) Copper-nickel-tin alloy, method for the production and use thereof
EP3423604B1 (en) Copper alloy containing tin, method for producing same, and use of same
WO2018014990A1 (en) Copper-nickel-tin-alloy, method for the production and use thereof
WO2014154191A1 (en) Copper alloy
WO2015027977A2 (en) Copper alloy
EP0521319A1 (en) Copper-nickel-tin alloy, process for the treatment of this alloy and application thereof
DE2255824A1 (en) Process for the production of a zinc-based wrought alloy
EP3992317A1 (en) Lead-free cu-zn base alloy
EP2625300B1 (en) Copper alloy
DE102019106131A1 (en) Process for the production of components for media-carrying gas or water pipes and the component produced thereby
DE102022002927B4 (en) Wrought material made of a copper-zinc alloy, semi-finished product made of a wrought material and process for producing such a semi-finished product
EP3041966B1 (en) Copper alloy, which contains iron and phosphor
DE102022002928B4 (en) Wrought material made of a copper-zinc alloy, semi-finished product made of a wrought material and process for producing such a semi-finished product
WO2015027976A2 (en) Copper alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 9/04 20060101ALI20191219BHEP

Ipc: C22F 1/08 20060101ALI20191219BHEP

Ipc: F16K 1/00 20060101ALI20191219BHEP

Ipc: C22C 9/02 20060101AFI20191219BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/08 20060101ALI20200513BHEP

Ipc: F16K 1/00 20060101ALI20200513BHEP

Ipc: C22C 9/02 20060101AFI20200513BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201217

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210419

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HANSEN, ANDREAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007424

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1559826

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230704

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 41767

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 5

Ref country code: CH

Payment date: 20230702

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007424

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240115

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240620

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240625

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240626

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240625

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240625

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240520

Year of fee payment: 6

Ref country code: AT

Payment date: 20240626

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20240520

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240626

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240626

Year of fee payment: 6

Ref country code: BE

Payment date: 20240625

Year of fee payment: 6