EP3011069B1 - Resistor alloy, component produced therefrom and production method therefor - Google Patents
Resistor alloy, component produced therefrom and production method therefor Download PDFInfo
- Publication number
- EP3011069B1 EP3011069B1 EP14734392.5A EP14734392A EP3011069B1 EP 3011069 B1 EP3011069 B1 EP 3011069B1 EP 14734392 A EP14734392 A EP 14734392A EP 3011069 B1 EP3011069 B1 EP 3011069B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resistance
- component
- temperature
- resistance alloy
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/05—Alloys based on copper with manganese as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the invention relates to a resistance alloy for an electrical resistance, in particular for a low-impedance current measuring resistor. Furthermore, the invention comprises a component manufactured therefrom and a corresponding production method.
- Copper-manganese-nickel alloys have long been used as materials for precision resistors, in particular for low-resistance current measuring resistors ("shunts").
- An example of such a copper-manganese-nickel alloy is the resistance alloy marketed by the applicant under the trade name Manganin® (eg Cu 84 Ni 4 Mn 12 ) with a copper content of 82-84%, a nickel content of 2% by mass. 4% and a mass fraction of manganese of 12-15%.
- the known copper-manganese-nickel alloys meet all the requirements that are placed on resistance alloys for precision resistors, such as a low temperature coefficient of electrical resistivity, a low thermal power to copper and a high temporal constancy of electrical resistance.
- the known copper-manganese-nickel alloys have good technological properties, in particular a good processing capability, which makes it possible to process these copper-manganese-nickel alloys into wires, tapes, films and resistance components.
- a disadvantage of the known copper-manganese-nickel alloys is the limitation to relatively low electrical resistivities of at most 0.5 ( ⁇ ⁇ mm 2 ) / m.
- nickel-chromium alloys For larger specific electrical resistances, for example, nickel-chromium alloys are known, which however also have various disadvantages. For one thing, nickel-chromium alloys are usually much more expensive than copper-manganese-nickel alloys. On the other hand, nickel-chromium alloys are difficult to handle in many respects in terms of production technology. For example, the hot workability of nickel-chromium alloys is relatively poor, and elaborate heat treatment processes are necessary for setting certain electrical-physical material properties. In addition, the working temperatures in the smelting process in the nickel-chromium alloys are 500K higher than in the copper-manganese-nickel alloys, which leads to higher energy costs and material wear of the work equipment. In addition, the otherwise desirable good acid resistance of nickel-chromium alloys poses major problems in the etch-making of resistor structures and makes the removal of heat-related oxides by pickling a costly and non-hazardous manufacturing step.
- the copper-manganese-nickel-aluminum-magnesium alloy 29-5-1 which has a resistivity of 1 ( ⁇ ⁇ mm 2 ) / m and thereby meets the demand for a low temperature coefficient of resistivity .
- this resistance alloy has a high thermo-power against copper at 20 ° C of +3 ⁇ V / K, resulting in high fault currents, which make this alloy unsuitable for precise metrological applications.
- the prior art also includes Pashkov KE ET AL: "Special features of brazing often copper-manganese-nickel system with a powder brazing alloy", WELDING INTERNATIONAL, TAYLOR & FRANCIS, ABINGDON, GB, Vol. 24, No. 5, May 1, 2010 (2010 -05-01), pages 385-389, XP001554242, ISSN: 0950-7116, DOI: 10.1080 / 09507110903399273 Table 1, US 3 451 808 A . JP 2006-270078 A . JP 2009-242895 A , "Research on Precision Resistance Materials” Author: Hiroyuki HIRAYAMA, JP H04-48041 . JP S62-202038 . KR 1999-0048844 and U.S. 3,712,837 ,
- a current measuring resistor having a resistive element made of a resistance alloy is known.
- the resistance alloy here consists of a copper-manganese-nickel alloy, in particular with a copper content of 50-85 wt .-%, a manganese content of 12-30 wt .-% and a nickel content of 2-16% by weight.
- a low temperature dependence of the resistance value of the resistance alloy should be achieved.
- the invention is therefore based on the object, a correspondingly improved resistance alloy based on copper-manganese-nickel to provide, which has the highest possible specific electrical resistance, a low thermal power to copper, a low temperature coefficient of electrical resistance and a high temporal constancy of electrical resistivity and these properties with the initially described good technological properties (eg processability) of the known copper Manganese nickel alloys combined.
- the mass fractions of the various alloying constituents are matched to one another in such a way that the resistance alloy according to the invention has a low thermopower with respect to copper, which is less than ⁇ 1 ⁇ V / K, ⁇ 0.5 ⁇ V / K or even ⁇ 0 at 20 ° C. 3 ⁇ V / K.
- a preferred embodiment of a resistance alloy according to the invention is Cu 65 Ni 10 Mn 25 with a mass fraction of copper of 65%, a mass fraction of nickel of 10% and a mass fraction of manganese of 25%.
- Another embodiment of a resistance alloy according to the invention is Cu 64 Ni 10 Mn 25 Sn 1 with a mass fraction of copper of 64%, a mass fraction of nickel of 10%, a mass fraction of manganese of 25% and a mass fraction of tin of 1%.
- Another embodiment of a resistance alloy according to the invention is Cu 62 Ni 11 Mn 27 with a mass fraction of copper of 62%, a mass fraction of nickel of 11% and a mass fraction of manganese of 27%.
- Another embodiment of a resistance alloy according to the invention is Cu 61 Ni 11 Mn 27 Sn 1 with a mass fraction of copper of 61%, a mass fraction of manganese of 27%, a mass fraction of nickel of 11% and a mass fraction of tin of 1%.
- the specific electrical resistance is preferably in the range of 0.5 ( ⁇ ⁇ mm 2 ) / m to 2 ( ⁇ ⁇ mm 2 ) / m.
- the specific electrical resistance of the resistance alloy according to the invention preferably has a high temporal constancy with a relative change of less than ⁇ 0.5% or ⁇ 0.25%, in particular within a period of 3000 hours and a temperature of at least + 140 ° C. , where the higher temperature of at least + 140 ° C accelerates the aging process.
- the resistance alloy according to the invention preferably has a low thermal power to copper, which at 20 ° C is preferably less than ⁇ 0.5 ⁇ V / K or even none as ⁇ 0.3 ⁇ V / K.
- the resistivity is relatively constant in temperature with a low temperature coefficient of preferably less than ⁇ 50 ⁇ 10 -6 K -1 , ⁇ 35 ⁇ 10 -6 K -1 , ⁇ 30 ⁇ 10 -6 K -1 or ⁇ 20 ⁇ 10 -6 K -1 , especially in a temperature range from + 20 ° C to + 60 ° C.
- the resistance alloy has a resistance-temperature curve representing the relative resistance change as a function of the temperature, wherein the resistance-temperature curve has a second zero crossing, preferably at a temperature of more than + 20 ° C, + 30 ° C or + 40 ° C and / or at a temperature of less than + 110 ° C, + 100 ° C or + 90 ° C.
- the mechanical properties of the resistance alloy according to the invention include a mechanical tensile strength of at least 500 MPa, 550 MPa or 580 MPa. Moreover, the resistance alloy according to the invention preferably has a yield strength of at least 150 MPa, 200 MPa or 260 MPa, while the elongation at break is preferably greater than 30%, 35%, 40% or even 45%.
- the resistance alloy is preferably soft solderable and / or brazeable.
- the resistance alloy according to the invention can be produced in various forms of delivery, for example as a wire (for example round wire, flat wire), as a band, as a sheet, as a rod, as a tube or as a foil.
- the invention is not limited in terms of forms of delivery to the above-mentioned forms of delivery.
- the invention also includes an electrical or electronic component with a resistance element of the resistance alloy according to the invention.
- a resistance element of the resistance alloy according to the invention may be a resistor, in particular a low-impedance current measuring resistor, as it itself, for example EP 0 605 800 A1 is known.
- the invention also includes a corresponding manufacturing method according to the independent claim 7 as it is already known from the above Description of the resistance alloy according to the invention results.
- the resistance alloy can be subjected to an artificial thermal aging process, wherein the resistance alloy is heated from an initial temperature to an aging temperature. This process can be repeated several times as part of the aging process, wherein the resistance alloy is repeatedly heated periodically to the aging temperature and cooled back to the starting temperature.
- the aging temperature may be, for example, in the range of + 80 ° C to + 300 ° C, while the starting temperature is preferably less than + 30 ° C or + 20 ° C.
- FIG. 1 shows a phase diagram of a copper-manganese-nickel alloy, wherein the mass fraction of copper is indicated on the axis top left, while the mass fraction of nickel is reproduced on the axis top right. The mass fraction of manganese, however, is found on the lower axis.
- phase diagram shows in hatched form a region 1 in which the resistance alloy tends to harden.
- the resistance alloy has a specific electrical resistance in this line, which is independent of the temperature.
- phase diagram also shows a region 3, which characterizes the resistance alloy according to the invention, wherein the mass fraction of manganese in the region 3 is between 23% and 28%, while the mass fraction of nickel in the region 3 is between 9% and 13%.
- FIG. 2 shows a simplified perspective view of a current sense resistor 4 according to the invention, as it itself already out EP 0 605 800 A1 is known, so that reference is made to avoid repetition of this patent application, the content of which is attributable to the present description in its entirety.
- the current measuring resistor 4 essentially consists of two plate-shaped connection parts 5, 6 made of copper and a resistance element 7 arranged therebetween of the resistance alloy according to the invention, which may be, for example, Cu 65 Ni 10 Mn 25 .
- FIG. 3 shows the temperature-dependent course of the relative resistance change DR / R20 as a function of the temperature.
- FIG. 4 shows the long-term stability of the resistance alloy according to the invention. It can be seen that the relative change in resistance dR over a period of 3000 hours is substantially less than 0.25%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Non-Adjustable Resistors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Electromagnetism (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
Description
Die Erfindung betrifft eine Widerstandslegierung für einen elektrischen Widerstand, insbesondere für einen niederohmigen Strommesswiderstand. Weiterhin umfasst die Erfindung ein daraus hergestelltes Bauelement und ein entsprechendes Herstellungsverfahren.The invention relates to a resistance alloy for an electrical resistance, in particular for a low-impedance current measuring resistor. Furthermore, the invention comprises a component manufactured therefrom and a corresponding production method.
Kupfer-Mangan-Nickel-Legierungen finden schon seit langem Anwendung als Materialien für Präzisionswiderstände, insbesondere für niederohmige Strommesswiderstände ("shunts"). Ein Beispiel einer solchen Kupfer-Mangan-Nickel-Legierung ist die von der Anmelderin unter dem Markennamen Manganin® vertriebene Widerstandslegierung (z.B. Cu84Ni4Mn12) mit einem Massenanteil von Kupfer von 82-84%, einem Massenanteil von Nickel von 2-4% und einem Massenanteil von Mangan von 12-15%. Die bekannten Kupfer-Mangan-Nickel-Legierungen erfüllen alle Anforderungen, die an Widerstandslegierungen für Präzisionswiderstände gestellt werden, wie beispielsweise ein niedriger Temperaturkoeffizient des spezifischen elektrischen Widerstands, eine geringe Thermokraft gegen Kupfer und eine hohe zeitliche Konstanz des elektrischen Widerstands. Darüber hinaus besitzen die bekannten Kupfer-Mangan-Nickel-Legierungen gute technologische Eigenschaften, insbesondere eine gute Verarbeitungsfähigkeit, die es ermöglicht, diese Kupfer-Mangan-Nickel-Legierungen zu Drähten, Bändern, Folien und Widerstandsbauteilen zu verarbeiten. Ein Nachteil der bekannten Kupfer-Mangan-Nickel-Legierungen ist jedoch die Begrenzung auf relativ geringe spezifische elektrische Widerstände von höchstens 0,5 (Ω·mm2)/m.Copper-manganese-nickel alloys have long been used as materials for precision resistors, in particular for low-resistance current measuring resistors ("shunts"). An example of such a copper-manganese-nickel alloy is the resistance alloy marketed by the applicant under the trade name Manganin® (eg Cu 84 Ni 4 Mn 12 ) with a copper content of 82-84%, a nickel content of 2% by mass. 4% and a mass fraction of manganese of 12-15%. The known copper-manganese-nickel alloys meet all the requirements that are placed on resistance alloys for precision resistors, such as a low temperature coefficient of electrical resistivity, a low thermal power to copper and a high temporal constancy of electrical resistance. In addition, the known copper-manganese-nickel alloys have good technological properties, in particular a good processing capability, which makes it possible to process these copper-manganese-nickel alloys into wires, tapes, films and resistance components. However, a disadvantage of the known copper-manganese-nickel alloys is the limitation to relatively low electrical resistivities of at most 0.5 (Ω · mm 2 ) / m.
Für größere spezifische elektrische Widerstände sind beispielsweise Nickel-Chrom-Legierungen bekannt, die jedoch ebenfalls verschiedene Nachteile aufweisen. Zum einen sind Nickel-Chrom-Legierungen meist wesentlich teurer als Kupfer-Mangan-Nickel-Legierungen. Zum anderen sind Nickel-Chrom-Legierungen fertigungstechnisch in vielerlei Hinsicht schwerer zu handhaben. Beispielsweise ist die Warmumformbarkeit von Nickel-Chrom-Legierungen relativ schlecht und zum Einstellen bestimmter elektrisch-physikalischer Werkstoffeigenschaften sind aufwändige Wärmebehandlungsprozesse notwendig. Außerdem sind die Arbeitstemperaturen im Schmelzprozess bei den Nickel-Chrom-Legierungen um 500K höher als bei den Kupfer-Mangan-Nickel-Legierungen, was zu höheren Energiekosten und Materialverschleiß der Arbeitsmittel führt. Darüber hinaus bereitet die ansonsten wünschenswerte gute Säurebeständigkeit von Nickel-Chrom-Legierungen große Probleme bei der ätztechnischen Herstellung von Widerstandsstrukturen und macht das Entfernen von wärmebehandlungsbedingten Oxiden durch Beizen zu einem aufwändigen und nicht gefährlichen Fertigungsschritt.For larger specific electrical resistances, for example, nickel-chromium alloys are known, which however also have various disadvantages. For one thing, nickel-chromium alloys are usually much more expensive than copper-manganese-nickel alloys. On the other hand, nickel-chromium alloys are difficult to handle in many respects in terms of production technology. For example, the hot workability of nickel-chromium alloys is relatively poor, and elaborate heat treatment processes are necessary for setting certain electrical-physical material properties. In addition, the working temperatures in the smelting process in the nickel-chromium alloys are 500K higher than in the copper-manganese-nickel alloys, which leads to higher energy costs and material wear of the work equipment. In addition, the otherwise desirable good acid resistance of nickel-chromium alloys poses major problems in the etch-making of resistor structures and makes the removal of heat-related oxides by pickling a costly and non-hazardous manufacturing step.
Ferner ist die Kupfer-Mangan-Nickel-Aluminium-Magnesium-Legierung 29-5-1 bekannt, die einen spezifischen elektrischen Widerstand von 1 (Ω·mm2)/m aufweist und dabei die Forderung nach einem niedrigen Temperaturkoeffizienten des spezifischen elektrischen Widerstandes erfüllt. Allerdings weist diese Widerstandslegierung eine hohe Thermokraft gegen Kupfer bei 20°C von +3 µV/K auf, woraus hohe Fehlerströme resultieren, welche diese Legierung für präzise messtechnische Anwendungen ungeeignet machen.Further, the copper-manganese-nickel-aluminum-magnesium alloy 29-5-1 is known which has a resistivity of 1 (Ω · mm 2 ) / m and thereby meets the demand for a low temperature coefficient of resistivity , However, this resistance alloy has a high thermo-power against copper at 20 ° C of +3 μV / K, resulting in high fault currents, which make this alloy unsuitable for precise metrological applications.
Ferner ist zum Stand der Technik hinzuweisen auf
Schließlich offenbart
Ferner umfasst der Stand der Technik auch
Aus
Keine dieser Druckschriften offenbart jedoch eine gattungsgemäße Legierung mit einer niedrigen Thermokraft.However, none of these documents discloses a generic alloy with a low thermoelectric force.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine entsprechend verbesserte Widerstandslegierung auf Kupfer-Mangan-Nickel-Basis zu schaffen, die einen möglichst hohen spezifischen elektrischen Widerstand, eine niedrige Thermokraft gegen Kupfer, einen niedrigen Temperaturkoeffizienten des elektrischen Widerstands und eine hohe zeitliche Konstanz des spezifischen elektrischen Widerstands aufweist und diese Eigenschaften mit den eingangs beschriebenen guten technologischen Eigenschaften (z.B. Verarbeitbarkeit) der bekannten Kupfer-Mangan-Nickel-Legierungen kombiniert.The invention is therefore based on the object, a correspondingly improved resistance alloy based on copper-manganese-nickel to provide, which has the highest possible specific electrical resistance, a low thermal power to copper, a low temperature coefficient of electrical resistance and a high temporal constancy of electrical resistivity and these properties with the initially described good technological properties (eg processability) of the known copper Manganese nickel alloys combined.
Diese Aufgabe wird durch eine erfindungsgemäße Widerstandslegierung gemäß dem Unabhängigen Anspruch 1 gelöst.This object is achieved by a resistance alloy according to the invention according to the
Die Massenanteile der verschiedenen Legierungsbestandteile sind hierbei so aufeinander abgestimmt, dass die erfindungsgemäße Widerstandslegierung eine niedrige Thermokraft gegenüber Kupfer aufweist, die bei 20°C kleiner ist als ±1 µV/K, ±0,5 µV/K oder sogar keiner als ±0,3 µV/K.The mass fractions of the various alloying constituents are matched to one another in such a way that the resistance alloy according to the invention has a low thermopower with respect to copper, which is less than ± 1 μV / K, ± 0.5 μV / K or even ± 0 at 20 ° C. 3 μV / K.
Ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Widerstandslegierung ist Cu65Ni10Mn25 mit einem Massenanteil von Kupfer von 65%, einem Massenanteil von Nickel von 10% und einem Massenanteil von Mangan von 25%.A preferred embodiment of a resistance alloy according to the invention is Cu 65 Ni 10 Mn 25 with a mass fraction of copper of 65%, a mass fraction of nickel of 10% and a mass fraction of manganese of 25%.
Ein anderes Ausführungsbeispiel einer erfindungsgemäßen Widerstandslegierung ist Cu64Ni10Mn25Sn1 mit einem Massenanteil von Kupfer von 64%, einem Massenanteil von Nickel von 10%, einem Massenanteil von Mangan von 25% und einem Massenanteil von Zinn von 1%.Another embodiment of a resistance alloy according to the invention is Cu 64 Ni 10 Mn 25 Sn 1 with a mass fraction of copper of 64%, a mass fraction of nickel of 10%, a mass fraction of manganese of 25% and a mass fraction of tin of 1%.
Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Widerstandslegierung ist Cu62Ni11Mn27 mit einem Massenanteil von Kupfer von 62%, einem Massenanteil von Nickel von 11% und einem Massenanteil von Mangan von 27%.Another embodiment of a resistance alloy according to the invention is Cu 62 Ni 11 Mn 27 with a mass fraction of copper of 62%, a mass fraction of nickel of 11% and a mass fraction of manganese of 27%.
Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Widerstandslegierung ist Cu61Ni11Mn27Sn1 mit einem Massenanteil von Kupfer von 61%, einem Massenanteil von Mangan von 27%, einem Massenanteil von Nickel von 11% und einem Massenanteil von Zinn von 1%.Another embodiment of a resistance alloy according to the invention is Cu 61 Ni 11 Mn 27 Sn 1 with a mass fraction of copper of 61%, a mass fraction of manganese of 27%, a mass fraction of nickel of 11% and a mass fraction of tin of 1%.
Bei der erfindungsgemäßen Widerstandslegierung liegt der spezifische elektrische Widerstand vorzugsweise im Bereich von 0,5 (Ω·mm2) /m bis 2 (Ω·mm2)/m.In the resistance alloy of the present invention, the specific electrical resistance is preferably in the range of 0.5 (Ω · mm 2 ) / m to 2 (Ω · mm 2 ) / m.
Weiterhin weist der spezifische elektrische Widerstand der erfindungsgemäßen Widerstandslegierung vorzugsweise eine hohe zeitliche Konstanz mit einer relativen Änderung von weniger als ±0,5% oder ±0,25% auf, insbesondere innerhalb eines Zeitraums von 3000 Stunden und einer Temperatur von mindestens +140°C, wobei die höhere Temperatur von mindestens +140°C den Alterungsprozess beschleunigt.Furthermore, the specific electrical resistance of the resistance alloy according to the invention preferably has a high temporal constancy with a relative change of less than ± 0.5% or ± 0.25%, in particular within a period of 3000 hours and a temperature of at least + 140 ° C. , where the higher temperature of at least + 140 ° C accelerates the aging process.
Darüber hinaus ist zu erwähnen, dass die erfindungsgemäße Widerstandslegierung vorzugsweise eine niedrige Thermokraft gegenüber Kupfer aufweist, die bei 20°C vorzugsweise kleiner ist als ±0,5 µV/K oder sogar keiner als ±0,3 µV/K. Weiterhin ist der spezifische elektrische Widerstand relativ temperaturkonstant mit einem niedrigen Temperaturkoeffizienten von vorzugsweise weniger als ±50·10-6 K-1, ±35·10-6 K-1, ±30·10-6 K-1 oder ±20·10-6 K-1, insbesondere in einem Temperaturbereich von +20°C bis +60°C.In addition, it should be mentioned that the resistance alloy according to the invention preferably has a low thermal power to copper, which at 20 ° C is preferably less than ± 0.5 μV / K or even none as ± 0.3 μV / K. Furthermore, the resistivity is relatively constant in temperature with a low temperature coefficient of preferably less than ± 50 · 10 -6 K -1 , ± 35 · 10 -6 K -1 , ± 30 · 10 -6 K -1 or ± 20 · 10 -6 K -1 , especially in a temperature range from + 20 ° C to + 60 ° C.
Zu den elektrischen Eigenschaften der erfindungsgemäßen Widerstandslegierung ist ferner zu erwähnen, dass die Widerstandslegierung eine Widerstands-Temperaturkurve aufweist, welche die relative Widerstandsänderung in Abhängigkeit von der Temperatur wiedergibt, wobei die Widerstands-Temperaturkurve einen zweiten Nulldurchgang aufweist, der vorzugsweise bei einer Temperatur von mehr als +20°C, +30°C oder +40°C und/oder bei einer Temperatur von weniger als +110°C, +100°C oder +90°C erfolgt.To the electrical properties of the resistance alloy according to the invention is also to be mentioned that the resistance alloy has a resistance-temperature curve representing the relative resistance change as a function of the temperature, wherein the resistance-temperature curve has a second zero crossing, preferably at a temperature of more than + 20 ° C, + 30 ° C or + 40 ° C and / or at a temperature of less than + 110 ° C, + 100 ° C or + 90 ° C.
Zu den mechanischen Eigenschaften der erfindungsgemäßen Widerstandslegierung ist eine mechanische Zugfestigkeit von mindestens 500 MPa, 550 MPa oder 580 MPa zu erwähnen. Darüber hinaus weist die erfindungsgemäße Widerstandslegierung vorzugsweise eine Streckgrenze von mindestens 150 MPa, 200 MPa oder 260 MPa auf, während die Bruchdehnung vorzugsweise größer ist als 30%, 35%, 40% oder sogar 45%.The mechanical properties of the resistance alloy according to the invention include a mechanical tensile strength of at least 500 MPa, 550 MPa or 580 MPa. Moreover, the resistance alloy according to the invention preferably has a yield strength of at least 150 MPa, 200 MPa or 260 MPa, while the elongation at break is preferably greater than 30%, 35%, 40% or even 45%.
Zu den technologischen Eigenschaften der erfindungsgemäßen Widerstandslegierung ist zu erwähnen, dass die Widerstandslegierung vorzugsweise weichlötfähig und/oder hartlötfähig ist. Darüber hinaus ist die erfindungsgemäße Widerstandslegierung vorzugsweise sehr gut umformbar, was sich beim Drahtziehen in einem logarithmischen Umformgrad von mindestens ϕ=-4,6 zeigt. Die erfindungsgemäße Widerstandslegierung kann in verschiedenen Lieferformen hergestellt werden, wie beispielsweise als Draht (z.B. Runddraht, Flachdraht), als Band, als Blech, als Stab, als Rohr oder als Folie. Die Erfindung ist jedoch hinsichtlich der Lieferformen nicht auf die vorstehend genannten Lieferformen beschränkt.It should be mentioned with regard to the technological properties of the resistance alloy according to the invention that the resistance alloy is preferably soft solderable and / or brazeable. In addition, the resistance alloy according to the invention is preferably very good formability, which shows in the wire drawing in a logarithmic degree of deformation of at least φ = -4.6. The resistance alloy according to the invention can be produced in various forms of delivery, for example as a wire (for example round wire, flat wire), as a band, as a sheet, as a rod, as a tube or as a foil. However, the invention is not limited in terms of forms of delivery to the above-mentioned forms of delivery.
Darüber hinaus umfasst die Erfindung auch ein elektrisches bzw. elektronisches Bauelement mit einem Widerstandselement aus der erfindungsgemäßen Widerstandslegierung. Beispielsweise kann es sich hierbei um einen Widerstand handeln, insbesondere um einen niederohmigen Strommesswiderstand, wie er an sich beispielsweise aus
Im Rahmen des erfindungsgemäßen Herstellungsverfahrens kann die Widerstandslegierung einem künstlichen thermischen Alterungsprozess unterworfen werden, wobei die Widerstandslegierung von einer Ausgangstemperatur auf eine Alterungstemperatur erwärmt wird. Dieser Prozess kann im Rahmen des Alterungsprozesses mehrfach wiederholt werden, wobei die Widerstandslegierung mehrfach periodisch auf die Alterungstemperatur erwärmt und wieder auf die Ausgangstemperatur abgekühlt wird. Die Alterungstemperatur kann beispielsweise im Bereich von +80°C bis +300°C liegen, während die Ausgangstemperatur vorzugsweise kleiner ist als +30°C oder +20°C.In the context of the manufacturing method according to the invention, the resistance alloy can be subjected to an artificial thermal aging process, wherein the resistance alloy is heated from an initial temperature to an aging temperature. This process can be repeated several times as part of the aging process, wherein the resistance alloy is repeatedly heated periodically to the aging temperature and cooled back to the starting temperature. The aging temperature may be, for example, in the range of + 80 ° C to + 300 ° C, while the starting temperature is preferably less than + 30 ° C or + 20 ° C.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:
- Figur 1:
- ein Phasendiagramm für eine Kupfer-Mangan-Nickel-Legierung, wobei der erfindungsgemäße Bereich in dem Phasendiagramm eingetragen ist,
- Figur 2:
- eine exemplarische Bauform eines erfindungsgemäßen Strommesswiderstands mit einem Widerstandselement aus der erfindungsgemäßen Widerstandslegierung,
- Figur 3:
- ein Diagramm zur Verdeutlichung der Temperaturabhängigkeit des spezifischen elektrischen Widerstands bei verschiedenen Ausführungsbeispielen der erfindungsgemäßen Widerstandslegierung sowie
- Figur 4:
- ein Diagramm zur Verdeutlichung der Langzeitstabilität der erfindungsgemäßen Widerstandslegierung.
- FIG. 1:
- a phase diagram for a copper-manganese-nickel alloy, wherein the area according to the invention is registered in the phase diagram,
- FIG. 2:
- an exemplary design of a current measuring resistor according to the invention with a resistor element of the resistance alloy according to the invention,
- FIG. 3:
- a diagram illustrating the temperature dependence of the resistivity in various embodiments of the resistance alloy according to the invention and
- FIG. 4:
- a diagram illustrating the long-term stability of the resistance alloy according to the invention.
Zum einen zeigt das Phasendiagramm in schraffierter Form ein Gebiet 1, in dem die Widerstandslegierung zu Aushärtungen neigt.On the one hand the phase diagram shows in hatched form a
Zum anderen zeigt das Phasendiagramm eine Linie 2, die mit α=0 bezeichnet ist, wobei der Temperaturkoeffizient der Widerstandslegierung auf dieser Linie gleich Null ist, d.h. die Widerstandslegierung weist auf dieser Linie einen spezifischen elektrischen Widerstand auf, der unabhängig von der Temperatur ist.On the other hand, the phase diagram shows a
Schließlich zeigt das Phasendiagramm noch einen Bereich 3, der die erfindungsgemäße Widerstandslegierung kennzeichnet, wobei der Massenanteil von Mangan in dem Bereich 3 zwischen 23% und 28% liegt, während der Massenanteil von Nickel im Bereich 3 zwischen 9% und 13% liegt.Finally, the phase diagram also shows a
Der Strommesswiderstand 4 besteht im Wesentlichen aus zwei plattenförmigen Anschlussteilen 5, 6 aus Kupfer und einem dazwischen angeordneten Widerstandselement 7 aus der erfindungsgemäßen Widerstandslegierung, wobei es sich beispielsweise um Cu65Ni10Mn25 handeln kann.The
Schließlich zeigt
- 11
- Gebiet der AushärtungArea of curing
- 22
- Linie mit α=0 (Temperaturkonstanz)Line with α = 0 (temperature constancy)
- 33
- Erfindungsgemäßer LegierungsbereichInventive alloy range
- 44
- StrommesswiderstandCurrent sense resistor
- 55
- Anschlussteilconnector
- 66
- Anschlussteilconnector
- 77
- Widerstandselementresistive element
- 88th
- Zweiter NulldurchgangSecond zero crossing
- 99
- Zweiter NulldurchgangSecond zero crossing
- 1010
- Zweiter NulldurchgangSecond zero crossing
Claims (7)
- Resistance alloy (3) having a low thermo-electrive force with regard to copper at 20°C of less than ±1 µV/K, for a low-resistance current sense resistor (4), with the following mass proportions of the constituents:a) copper component: 65%, nickel component: 10% and manganese component: 25%; orb) nickel component: 10%, manganese component: 25%, tin component: 1%, copper component: remainder, orc) copper component: 62%, nickel component: 11%, manganese component: 27%, ord) nickel component: 11%, manganese component: 27%, tin component: up to 1%, copper component: remainder.
- Resistance alloy (3) according to claim 1,
characterized bya) a resistivity greater than 0.5 (Ω·mm2) /m, 0.6 (Ω·mm2) /m, 0.7 (Ω·mm2) /m or 0.8 (Ω·mm2) /m and/or less than 2.0 (Ω·mm2) /m, 1.5 (Ω·mm2) /m, 1.2 (Ω·mm2) /m or 1 (Ω·mm2) /m; and/orb) a resistivity with a high temporal constancy with a relative change of less than ±0,5% or ±0,25%; and/orc) a low thermo-electric force at 20°C of less than ±0,5µV/K or ±0,3µV/K relative to copper; and/ord) a resistivity with a low temperature coefficient of less than ±50·10-6 K-1, ±35·10-6 K-1, ±30·10-6 K-1 or ±20·10-6 K-1; and/ore) a resistance-temperature curve representing the relative resistance change (DR/R20) as a function of temperature, said resistance-temperature curve having a second zero crossing (8, 9, 10) occurring at a temperature greater than +20°C, +30°C or +40°C and/or less than +110°C, +100°C or +90°C. - Resistance alloy (3) according to one of the preceding claims, characterized bya) a mechanical tensile strength of at least 500 MPa, 550 MPa or 580 MPa; and/orb) a yield strength of at least 150 MPa, 200 MPa or 260 MPa; and/orc) an elongation at break of at least 30%, 35%, 40% or 45%.
- Resistance alloy (3) according to one of the preceding claims, characterized in thata) the resistance alloy (3) is solderable and/or brazeable, and/orb) in that the resistance alloy (3) can be deformed so well that it achieves a logarithmic degree of deformation of at least ϕ=-4.6 during wire drawing.
- Resistance alloy (3) according to one of the preceding claims, characterized by one of the following delivery forms:a) as wire,b) as a band,c) as sheet metal,d) as a bar,e) as a tube; orf) as film.
- Low-resistance current sense resistor (4) with a resistor element made of a resistance alloy (3) according to one of the preceding claims.
- Manufacturing method for manufacturing a resistor according to one of the preceding claims, whereina) the resistance alloy (3) is subjected to an artificial thermal ageing process, the resistance alloy (3) being heated from an initial temperature to an ageing temperature, and/orb) the resistance alloy (3) is periodically heated to the ageing temperature several times during the ageing process and cooled down again to the initial temperature, and/orc) the ageing temperature is greater than +80°C, +100°C, +120°C, and/or less than +300°C, +200°C or +150°C; and/ord) the initial temperature is less than +30°C or +20°C.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102013010301.0A DE102013010301A1 (en) | 2013-06-19 | 2013-06-19 | Resistance alloy, component manufactured therefrom and manufacturing method therefor |
| PCT/EP2014/001669 WO2014202221A1 (en) | 2013-06-19 | 2014-06-18 | Resistor alloy, component produced therefrom and production method therefor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP3011069A1 EP3011069A1 (en) | 2016-04-27 |
| EP3011069B1 true EP3011069B1 (en) | 2019-04-03 |
Family
ID=51059406
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP14734392.5A Active EP3011069B1 (en) | 2013-06-19 | 2014-06-18 | Resistor alloy, component produced therefrom and production method therefor |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US20160115570A1 (en) |
| EP (1) | EP3011069B1 (en) |
| JP (1) | JP6467408B2 (en) |
| KR (1) | KR102194267B1 (en) |
| CN (1) | CN105308204B (en) |
| DE (1) | DE102013010301A1 (en) |
| ES (1) | ES2733024T3 (en) |
| WO (1) | WO2014202221A1 (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10116286B2 (en) * | 2014-09-08 | 2018-10-30 | Agency For Science, Technology And Research | Reference clock signal generators and methods for generating a reference clock signal |
| TW201702393A (en) * | 2015-03-18 | 2017-01-16 | 麥提利恩公司 | Copper-nickel-tin alloy with manganese |
| JP2017053015A (en) * | 2015-09-11 | 2017-03-16 | 日立金属株式会社 | Resistive material |
| CN105603252B (en) * | 2016-01-14 | 2017-12-08 | 厦门大学 | It is a kind of based on the corronil of spinodal decomposition as strengthen constant resistivity alloy application |
| CN105648267A (en) * | 2016-03-30 | 2016-06-08 | 广东合科泰实业有限公司 | Low-temperature-coefficient resistor body, preparation method of low-temperature-coefficient resistor body and low-temperature-coefficient resistor with low-temperature-coefficient resistor body |
| KR102463644B1 (en) * | 2017-01-10 | 2022-11-07 | 후루카와 덴키 고교 가부시키가이샤 | Copper alloy material for resistance material, manufacturing method thereof, and resistor |
| KR102356802B1 (en) | 2017-11-28 | 2022-01-28 | 삼성전기주식회사 | Paste for forming resist layer of chip resistor and chip resistor |
| CN108346496B (en) * | 2018-05-18 | 2019-11-12 | 常熟市夸克电阻合金有限公司 | PTC thermistor alloy wire |
| JP7194145B2 (en) | 2020-04-01 | 2022-12-21 | Koa株式会社 | Alloys for resistors and use of alloys for resistors in resistors |
| JP7430121B2 (en) * | 2020-08-07 | 2024-02-09 | Koa株式会社 | Resistance alloys used in shunt resistors, use of resistance alloys in shunt resistors, and shunt resistors using resistance alloys |
| WO2023276905A1 (en) | 2021-06-28 | 2023-01-05 | 古河電気工業株式会社 | Copper alloy material, resistive material for resistors using same, and resistor |
| CN117157418A (en) | 2021-06-28 | 2023-12-01 | 古河电气工业株式会社 | Copper alloy material, resistor material for resistor using same, and resistor |
| JP7167385B1 (en) | 2021-06-28 | 2022-11-08 | 古河電気工業株式会社 | Copper alloy material, resistance material for resistor using the same, and resistor |
| DE112023000992T5 (en) | 2022-02-18 | 2024-11-28 | Furukawa Electric Co., Ltd. | Copper alloy material and resistance material for a resistor using the copper alloy material and resistor |
| FR3147294B1 (en) | 2023-03-29 | 2025-07-25 | Lebronze Alloys | Precision resistive alloy based on copper, manganese, nickel and tin |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011249475A (en) * | 2010-05-25 | 2011-12-08 | Denso Corp | Power semiconductor device |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1858415A (en) * | 1924-09-23 | 1932-05-17 | Westinghouse Electric & Mfg Co | Alloy |
| DE1092218B (en) * | 1952-12-20 | 1960-11-03 | Isabellen Huette Heusler Kom G | Process for the production of hardened objects from copper-nickel-manganese-zinc alloys |
| DE1033423B (en) * | 1953-12-29 | 1958-07-03 | Isabellen Huette Heusler Kom G | Use of wires or bands made of copper-manganese-nickel alloys as electrical resistance material |
| US3451808A (en) * | 1966-12-06 | 1969-06-24 | Isabellen Hutte Heusler Kg | Copper-manganese alloys and articles made therefrom |
| US3985589A (en) * | 1974-11-01 | 1976-10-12 | Olin Corporation | Processing copper base alloys |
| JPS60255425A (en) * | 1984-05-31 | 1985-12-17 | ヤマハ株式会社 | Decorative material |
| JPH0768597B2 (en) * | 1986-02-28 | 1995-07-26 | 株式会社東芝 | Non-magnetic spring material and manufacturing method thereof |
| JP2989390B2 (en) * | 1992-09-28 | 1999-12-13 | 三洋電機株式会社 | Hybrid integrated circuit device |
| JPH06112614A (en) * | 1992-09-28 | 1994-04-22 | Sanyo Electric Co Ltd | Hybrid integrated circuit device |
| DE4243349A1 (en) | 1992-12-21 | 1994-06-30 | Heusler Isabellenhuette | Manufacture of resistors from composite material |
| EP1264906B1 (en) * | 2001-04-19 | 2005-06-15 | Wieland-Werke AG | Use of spray compacted copper-nickel-manganese alloy |
| JP2004136299A (en) * | 2002-10-16 | 2004-05-13 | Sumitomo Special Metals Co Ltd | Brazing filler metal, clad material and brazed structural body |
| JP4974544B2 (en) * | 2005-02-25 | 2012-07-11 | コーア株式会社 | Alloy material for resistance, resistor and method for manufacturing resistor |
| JP2007119874A (en) * | 2005-10-31 | 2007-05-17 | Bridgestone Corp | Copper-based alloy and method for producing copper-based alloy |
| JP2009242895A (en) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | High strength copper alloy with excellent bending workability |
| TWI348716B (en) * | 2008-08-13 | 2011-09-11 | Cyntec Co Ltd | Resistive component and making method thereof |
-
2013
- 2013-06-19 DE DE102013010301.0A patent/DE102013010301A1/en not_active Withdrawn
-
2014
- 2014-06-18 ES ES14734392T patent/ES2733024T3/en active Active
- 2014-06-18 US US14/891,133 patent/US20160115570A1/en not_active Abandoned
- 2014-06-18 JP JP2016520313A patent/JP6467408B2/en active Active
- 2014-06-18 KR KR1020167000636A patent/KR102194267B1/en active Active
- 2014-06-18 EP EP14734392.5A patent/EP3011069B1/en active Active
- 2014-06-18 CN CN201480034310.3A patent/CN105308204B/en active Active
- 2014-06-18 WO PCT/EP2014/001669 patent/WO2014202221A1/en not_active Ceased
-
2020
- 2020-03-30 US US16/834,935 patent/US20200224293A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011249475A (en) * | 2010-05-25 | 2011-12-08 | Denso Corp | Power semiconductor device |
Also Published As
| Publication number | Publication date |
|---|---|
| ES2733024T3 (en) | 2019-11-27 |
| US20160115570A1 (en) | 2016-04-28 |
| EP3011069A1 (en) | 2016-04-27 |
| WO2014202221A1 (en) | 2014-12-24 |
| CN105308204B (en) | 2018-12-04 |
| KR20160021195A (en) | 2016-02-24 |
| JP6467408B2 (en) | 2019-02-13 |
| KR102194267B1 (en) | 2020-12-22 |
| US20200224293A1 (en) | 2020-07-16 |
| JP2016528376A (en) | 2016-09-15 |
| DE102013010301A1 (en) | 2014-12-24 |
| CN105308204A (en) | 2016-02-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3011069B1 (en) | Resistor alloy, component produced therefrom and production method therefor | |
| EP3210214B1 (en) | Electric component, method for producing the electric component, and composite material strip for producing the component | |
| EP2956562B1 (en) | Nickel-cobalt alloy | |
| DE10147968B4 (en) | Copper alloy of high mechanical strength | |
| DE3520407C2 (en) | Process for the thermomechanical treatment of copper-beryllium alloys containing cobalt | |
| EP3529389B1 (en) | Copper-zinc alloy | |
| DE112011100481T5 (en) | Soft copper alloy brazing material, soft copper alloy braided wire, soft copper alloy braided foil, soft copper alloy braided wire, and a cable using same, coaxial cable and mixed wire | |
| DE19904765A1 (en) | Lead-free tin-bismuth solder alloy for soldering metal parts of electronic components or equipment | |
| DE112021002136T5 (en) | Alloy for a resistor and use of a resistor alloy in a resistor | |
| DE112017005596T5 (en) | Sheathed power cable, terminated power cable, copper alloy wire, and copper alloy strand | |
| EP2527479B1 (en) | Highly conductive aluminium alloy for electrically conductive products | |
| EP2989224B1 (en) | Cast copper alloy for asynchronous machines | |
| DE112021004216T5 (en) | Resistor alloy for use in a shunt resistor, Use of a resistor alloy in a shunt resistor, and Shunt resistor with a resistor alloy | |
| DE2932275A1 (en) | MATERIAL FOR ELECTRICAL CONTACTS MADE OF INNER OXIDIZED AG-SN-BI ALLOY | |
| DE3522118A1 (en) | METHOD FOR PRODUCING COPPER BERYLLIUM ALLOY MATERIAL AND PARTS PRODUCED THEREOF | |
| DE102020004695A1 (en) | ELECTRICAL CONTACT MATERIAL, CONNECTOR FITTING, CONNECTOR AND WIRING HARNESS | |
| DE112019004187T5 (en) | Covered electric wire, terminated electric wire, copper alloy wire, copper alloy braid, and method of making a copper alloy wire | |
| WO2001098018A1 (en) | Method for connecting shape-memory material and steel or copper material | |
| DE112017005602T5 (en) | Covered electrical wire, electrical wire with a clamp, copper alloy wire and copper alloy strand | |
| EP3147382B1 (en) | Use of a metallic element made from a copper-zinc- manganese alloy as electric heating element | |
| EP4411009B1 (en) | Copper alloy, semi-finished product and electrical connection element made of copper alloy | |
| EP1936388A1 (en) | Electric conductive material with measuring resistance | |
| DE102017220681A1 (en) | Lead-free solder composition | |
| DE102010046955A1 (en) | Electric cable for current transmission in automobile industry, has single wires made of copper and copper-tin alloy and extended in longitudinal direction of cable, where percentage of tin in alloy is defined by preset equation | |
| EP0367978A1 (en) | Alloy, in particular for use in the production of spectacle frames |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20151023 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| 17Q | First examination report despatched |
Effective date: 20160426 |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20181030 |
|
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| INTC | Intention to grant announced (deleted) | ||
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| INTG | Intention to grant announced |
Effective date: 20190222 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1115824 Country of ref document: AT Kind code of ref document: T Effective date: 20190415 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014011319 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190403 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190803 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2733024 Country of ref document: ES Kind code of ref document: T3 Effective date: 20191127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190704 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190803 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014011319 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
| 26N | No opposition filed |
Effective date: 20200106 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190618 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190618 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1115824 Country of ref document: AT Kind code of ref document: T Effective date: 20190618 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190618 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140618 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230426 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250626 Year of fee payment: 12 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20250620 Year of fee payment: 12 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20250627 Year of fee payment: 12 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20250718 Year of fee payment: 12 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20250630 Year of fee payment: 12 |