JP2007119874A - Copper based alloy and method for producing copper based alloy - Google Patents

Copper based alloy and method for producing copper based alloy Download PDF

Info

Publication number
JP2007119874A
JP2007119874A JP2005315645A JP2005315645A JP2007119874A JP 2007119874 A JP2007119874 A JP 2007119874A JP 2005315645 A JP2005315645 A JP 2005315645A JP 2005315645 A JP2005315645 A JP 2005315645A JP 2007119874 A JP2007119874 A JP 2007119874A
Authority
JP
Japan
Prior art keywords
copper
based alloy
alloy
phase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005315645A
Other languages
Japanese (ja)
Inventor
Yukio Aoike
由紀夫 青池
Kiyohito Ishida
清仁 石田
Ryosuke Kainuma
亮介 貝沼
Yuji Sudo
祐司 須藤
Toshihiro Omori
俊洋 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Bridgestone Corp
Original Assignee
Tohoku University NUC
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Bridgestone Corp filed Critical Tohoku University NUC
Priority to JP2005315645A priority Critical patent/JP2007119874A/en
Publication of JP2007119874A publication Critical patent/JP2007119874A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a copper based alloy having excellent fatigue properties without applying a load to the environment. <P>SOLUTION: Regarding the copper based alloy, its phase is made into a β single phase or into β+α2 phases at high temperature, and the β phase is made into a β' martensite phase at low temperature. The volume fraction of the α phase is 5 to 80%, and the alloy has a composition at least comprising Al and Mn. The alloy preferably has a composition comprising, by weight, 3 to 10% Al, 5 to 20% Mn and ≤10% Ni or Co, and the balance copper (Cu) with inevitable impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、環境に負荷を与えないものの疲労特性の優れた銅系合金及びその製造方法に関し、特に、高歪、低周波における耐疲労特性が要求される例えば制振装置や免震装置などを構成する部材に有用な銅系合金及びその製造方法に関するものである。   The present invention relates to a copper-based alloy that does not give a load to the environment but has excellent fatigue characteristics and a method for manufacturing the same, and in particular, for example, a vibration damping device or a seismic isolation device that requires fatigue resistance at high strain and low frequency. The present invention relates to a copper-based alloy useful for a member to be formed and a manufacturing method thereof.

従来より、地震の揺れを低減する為に、建築物とこの建築物を支持する地盤との間に配置される制振装置や免震装置が知られている。そして、これら制振装置や免震装置には、弾性体とされるゴム体だけでなく、揺れに伴う振動を抑える為の制振合金が内蔵されていて、これらの部材の複合的な作用で地震の揺れを低減し、建築物側に地震の揺れを伝達し難くしていた。   Conventionally, in order to reduce the shaking of an earthquake, a vibration control device and a seismic isolation device are known which are arranged between a building and the ground supporting the building. These vibration damping devices and seismic isolation devices incorporate not only a rubber body, which is an elastic body, but also a vibration damping alloy for suppressing vibrations caused by shaking. It reduced the shaking of the earthquake and made it difficult to transmit the shaking of the earthquake to the building side.

しかし、従来の制振装置や免震装置の制振合金として、制振特性の面から一般に鉛材が使用されていたが、環境面への配慮が近年重要視されるのに伴い、他の材料に置き換えることが検討されるようになった。尚、鉛の降伏点は5MPa程度と低く柔らかく、単純な曲げ変形で挫屈してしまう虞がある為、制振合金として鉛材を使用する場合には、その周囲を拘束し剪断変形した形とする必要があった。   However, lead materials are generally used as damping alloys for conventional damping devices and seismic isolation devices from the standpoint of damping characteristics. Substitution with materials began to be considered. In addition, since the yield point of lead is as low as about 5 MPa and soft and may be bent by simple bending deformation, when using lead material as a damping alloy, the surroundings are restrained and shear deformed. There was a need to do.

他方、鉛以外の他の一般的な金属材料、例えばステンレス鋼、鉄、黄銅などを制振合金として用いることが考えられるが、これらの金属材料では、塑性変形域に入るような高歪で繰り返して変形させた場合、数十回程度のサイクルで破壊に至る為、制振装置や免震装置などに用いられる制振合金として、これらの一般的な金属材料は不適当であった。
特開2001−20026号公報
On the other hand, other general metallic materials other than lead, such as stainless steel, iron, brass, etc., may be used as damping alloys. However, these metallic materials are repeatedly used with high strain that falls within the plastic deformation range. Therefore, these general metal materials are unsuitable as damping alloys for use in damping devices or seismic isolation devices.
Japanese Patent Laid-Open No. 2001-20026

以上より、制振装置や免震装置に採用される制振合金として、環境に負荷を与えずに従来の制振合金と同等以上の制振特性を有する金属材料を開発する必要が生じていた。但し、この制振合金として、上記のように塑性変形域に入るような高歪で繰り返して変形させた場合でも、容易に破壊に至らないような優れた疲労特性が求められていた。
本発明は上記事実を考慮し、環境に負荷を与えないものの疲労特性の優れた銅系合金及び、このような特性を有する銅系合金の製造方法を提供することが目的である。
From the above, it has become necessary to develop a metal material having damping characteristics equal to or better than those of conventional damping alloys without giving a load to the environment as a damping alloy used in damping devices and seismic isolation devices. . However, this damping alloy has been required to have excellent fatigue properties that do not easily break even when it is repeatedly deformed at a high strain that falls within the plastic deformation range as described above.
In view of the above facts, an object of the present invention is to provide a copper-based alloy having excellent fatigue characteristics, which does not give a load to the environment, and a method for producing a copper-based alloy having such characteristics.

請求項1に係る銅系合金は、β’マルテンサイト相中にα相が析出している銅系合金において、α相の体積分率が5〜80%であることを特徴とする。ただし、β’マルテンサイト相中とは、β相中に熱や応力などにより誘起される全てのマルテンサイトを含む。   The copper-based alloy according to claim 1 is characterized in that, in a copper-based alloy in which an α phase is precipitated in a β ′ martensite phase, the volume fraction of the α phase is 5 to 80%. However, in the β ′ martensite phase includes all martensites induced by heat, stress, etc. in the β phase.

請求項1に係る銅系合金の作用を以下に説明する。
本請求項によれば、β’マルテンサイト相中にα相が析出している銅系合金において、α相の体積分率を5〜80%としたことにより、銅系合金の疲労特性が改善されて、特に高歪、低周波での耐疲労特性に優れた銅系合金となる。
The operation of the copper-based alloy according to claim 1 will be described below.
According to the present claim, the fatigue characteristics of the copper-based alloy are improved by setting the volume fraction of the α-phase to 5 to 80% in the copper-based alloy in which the α-phase is precipitated in the β ′ martensite phase. Thus, a copper alloy having excellent fatigue resistance at high strain and low frequency is obtained.

従って、本請求項の銅系合金は、塑性変形域に入るような高歪で繰り返して変形させた場合でも、容易に破壊に至らないような優れた疲労特性を有するので、制振装置や免震装置に採用される制振合金として、最適なものとなる。これに伴い、鉛材を用いないで上記のような疲労特性が得られる為、本請求項の銅系合金は環境に負荷を与えることのない優れた制振合金となり得る。そして、鉛材ではないので、周囲を拘束して剪断変形した形で使用する必要もなくなり、制振合金として使用する際の自由度も高くなる。   Therefore, the copper-based alloy of the present invention has excellent fatigue characteristics that do not easily break even when repeatedly deformed at a high strain that falls within the plastic deformation range. It will be the most suitable damping alloy used in seismic devices. Accordingly, since the fatigue characteristics as described above can be obtained without using a lead material, the copper-based alloy of this claim can be an excellent vibration-damping alloy that does not give a load to the environment. And since it is not a lead material, it is not necessary to use it in the form of shear deformation by restraining the surroundings, and the degree of freedom when used as a damping alloy is also increased.

請求項2に係る銅系合金の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、3〜10重量%のAl、5〜20重量%のMn、10重量%以下のNiまたはCo及び、残部をCuとした組成を有するという構成を有している。
The operation of the copper alloy according to claim 2 will be described below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further 3 to 10% by weight of Al, 5 to 20% by weight of Mn, 10% by weight or less of Ni or Co, and the balance It has the composition that it has the composition which made Cu into.

つまり、Al元素の含有量が3重量%未満の銅系合金では、β単相領域を形成できず、またAl元素の含有量が10重量%を超えると、銅系合金は極めて脆くなる。そして、Mn元素を含有することにより、β相が存在し得る組成範囲が低Al側へ広がり、銅系合金の冷間加工性は著しく向上する。但し、Mn元素の添加量が5重量%未満では満足な冷間加工性が得られず、かつβ単相領域を形成することができない。一方、Mn元素の添加量が20重量%を超えると、十分な耐疲労特性が得られないようになる。   That is, a copper-based alloy having an Al element content of less than 3% by weight cannot form a β single phase region, and if the Al element content exceeds 10% by weight, the copper-based alloy becomes extremely brittle. By containing the Mn element, the composition range in which the β phase can exist is expanded to the low Al side, and the cold workability of the copper-based alloy is remarkably improved. However, if the amount of Mn element added is less than 5% by weight, satisfactory cold workability cannot be obtained, and a β single phase region cannot be formed. On the other hand, if the amount of Mn element added exceeds 20% by weight, sufficient fatigue resistance cannot be obtained.

さらに、Ni元素又はCo元素は、冷間加工性を維持したまま固溶強化して、銅系合金の強度を向上させる効果を発揮する。但し、これらの元素の添加量が10重量%を超えた場合には、満足な効果が得られない。以上より、本請求項では上記の各範囲の重量%が銅系合金として、最適な範囲となる。   Furthermore, the Ni element or the Co element exerts an effect of improving the strength of the copper alloy by solid solution strengthening while maintaining cold workability. However, when the added amount of these elements exceeds 10% by weight, a satisfactory effect cannot be obtained. From the above, in the present claims, the weight percentage of each of the above ranges is the optimum range for the copper-based alloy.

請求項3に係る銅系合金の作用を以下に説明する。
本請求項では請求項1及び請求項2と同様の構成を有して同様に作用するが、さらに、合金全体を100重量%としたとき、Ni、Co、Fe、Ti、V、Cr、Si、Ge、Nb、Mo、W、Sn、Sb、Mg、P、Be、Zr、Zn、B、C、Ag及びミッシュメタルからなる群から選ばれた少なくとも一種の元素を合計で、0.001〜10重量%含有するという構成を有している。
The operation of the copper-based alloy according to claim 3 will be described below.
In this claim, it has the same structure as that of claim 1 and claim 2 and operates in the same manner. Furthermore, when the total alloy is 100% by weight, Ni, Co, Fe, Ti, V, Cr, Si , Ge, Nb, Mo, W, Sn, Sb, Mg, P, Be, Zr, Zn, B, C, Ag and at least one element selected from the group consisting of misch metal in total, 0.001 to It has a configuration of containing 10% by weight.

つまり、本請求項の銅系合金は、Ni、Co、Fe、Ti、V、Cr、Si、Ge、Nb、Mo、W、Sn、Sb、Mg、P、Be、Zr、Zn、B、C、Ag及びミッシュメタルからなる群から選ばれた1種又は2種以上をさらに含有することになる。但し、これらの添加元素の合計含有量が10重量%を超えると、マルテンサイト変態温度が低下し、β’マルテンサイト相が不安定になる。また、0.001重量%未満ではこれらの添加元素による効果が乏しくなる。従って、これらの添加元素の含有量は、上記のように合計で0.001〜10重量%の範囲が好ましい。   That is, the copper-based alloy of this claim is Ni, Co, Fe, Ti, V, Cr, Si, Ge, Nb, Mo, W, Sn, Sb, Mg, P, Be, Zr, Zn, B, C In addition, one or more selected from the group consisting of Ag and Misch metal are further contained. However, if the total content of these additive elements exceeds 10% by weight, the martensite transformation temperature decreases and the β ′ martensite phase becomes unstable. On the other hand, if it is less than 0.001% by weight, the effect of these additive elements becomes poor. Accordingly, the total content of these additive elements is preferably in the range of 0.001 to 10% by weight as described above.

請求項4に係る銅系合金の作用を以下に説明する。
本請求項では請求項1から請求項3と同様の構成を有して同様に作用するが、さらに、螺旋状のコイルスプリングとされたという構成を有している。つまり、銅系合金を螺旋状のコイルスプリングとしたことで、より確実に変形するようになるので、この銅系合金に引張力や剪断力が加わった際に、バネ定数が低くなると共に減衰係数が高くなって、より大きな制振特性を有するようになる。
The operation of the copper alloy according to claim 4 will be described below.
The present invention has the same configuration as that of the first to third aspects and operates in the same manner, but further has a configuration in which a spiral coil spring is provided. In other words, since the copper alloy is made into a helical coil spring, it will be more reliably deformed, so when a tensile force or shear force is applied to this copper alloy, the spring constant will be lowered and the damping coefficient will be reduced. Becomes higher and has a greater damping characteristic.

請求項5に係る銅系合金の製造方法の作用を以下に説明する。
請求項1から請求項4の何れかに記載の銅系合金を製造する際に、銅系合金に焼鈍及び冷間加工をした後、β+αの2相温度域でこの銅系合金を熱処理するという構成を有する。
The effect | action of the manufacturing method of the copper type alloy which concerns on Claim 5 is demonstrated below.
When manufacturing the copper-based alloy according to any one of claims 1 to 4, after annealing and cold working the copper-based alloy, the copper-based alloy is heat-treated in a β + α two-phase temperature range. It has a configuration.

つまり、銅系合金の製造に際して、この手順を経ることにより、β’マルテンサイト相マトリックス中にα相が析出したβ’+αの2相組織が得られるが、銅系合金をこのβ’+αの2相組織としたときに、高い耐疲労特性が得られるようになる。尚、熱処理温度が高い900℃とすると共に水冷で冷却した場合には、金属組織がβ単相で結晶粒が大きく、耐疲労特性が低下する。また、熱処理温度が低い600℃とした場合には、金属組織がα相になり、同様に耐疲労特性が低下する。   That is, when producing a copper-based alloy, a β ′ + α two-phase structure in which an α phase is precipitated in a β ′ martensite phase matrix is obtained through this procedure. When a two-phase structure is used, high fatigue resistance can be obtained. When the heat treatment temperature is set to 900 ° C. and cooled by water cooling, the metal structure is β single phase and the crystal grains are large, and the fatigue resistance is deteriorated. In addition, when the heat treatment temperature is set to 600 ° C., the metal structure becomes an α phase, and the fatigue resistance is similarly reduced.

以上説明したように本発明の上記構成によれば、環境に負荷を与えないものの疲労特性の優れた銅系合金及び、このような特性を有する銅系合金の製造方法を提供できるという優れた効果を有する。   As described above, according to the above-described configuration of the present invention, an excellent effect of providing a copper-based alloy having no fatigue load but excellent fatigue characteristics and a method for producing a copper-based alloy having such characteristics can be provided. Have

本発明に係る銅系合金及びその製造方法の一実施の形態を、図1から図6に基づき説明する。
本実施の形態に係る銅系双晶合金である銅系合金は、高温でβ(体心立方)単相あるいはβ+α(面心立方)の2相組織になり、低温でβ相がβ’マルテンサイト相になる合金であって、α相の体積分率が5〜80%とされ、少なくともAl及びMnを含有した組成を有している。また、本実施の形態の銅系合金の好ましい組成として、3〜10重量%のAl、5〜20重量%のMn及び、10重量%以下のNiまたはCoを含有し、残部の60〜92%程度を銅(Cu)及び不可避的不純物としたものが例えば挙げられる。
An embodiment of a copper alloy and a method for producing the same according to the present invention will be described with reference to FIGS.
The copper-based alloy which is a copper-based twin alloy according to the present embodiment has a β (body centered cubic) single phase or a β + α (face centered cubic) two-phase structure at a high temperature, and the β phase is β ′ martense at a low temperature. It is an alloy which becomes a site phase, has a volume fraction of α phase of 5 to 80%, and has a composition containing at least Al and Mn. Further, as a preferred composition of the copper-based alloy of the present embodiment, it contains 3 to 10% by weight of Al, 5 to 20% by weight of Mn, and 10% by weight or less of Ni or Co, with the balance being 60 to 92%. For example, copper (Cu) and inevitable impurities are used.

このAl元素の含有量が3重量%未満では銅系合金がβ単相を形成できず、また、Al元素の含有量が10重量%を超えると銅系合金は極めて脆くなる。但し、Al元素のより好ましい含有量は、Mn元素の含有量により変化する。   If the Al element content is less than 3% by weight, the copper alloy cannot form a β single phase, and if the Al element content exceeds 10% by weight, the copper alloy becomes extremely brittle. However, the more preferable content of the Al element varies depending on the content of the Mn element.

つまり、Mn元素を含有することにより、β相が存在し得る組成範囲が低Al側へ広がり、銅系合金の冷間加工性は著しく向上する。但し、Mn元素の添加量が5重量%未満では満足な冷間加工性が得られず、かつβ単相領域を形成することができない。また、Mn元素の添加量が20重量%を超えると、十分な耐疲労特性が得られない。従って、好ましいMnの含有量は5〜20重量%となる。   That is, by containing the Mn element, the composition range in which the β phase can exist is expanded to the low Al side, and the cold workability of the copper-based alloy is remarkably improved. However, if the amount of Mn element added is less than 5% by weight, satisfactory cold workability cannot be obtained, and a β single phase region cannot be formed. Further, if the amount of Mn element added exceeds 20% by weight, sufficient fatigue resistance characteristics cannot be obtained. Therefore, the preferable Mn content is 5 to 20% by weight.

さらに、Ni元素又はCo元素は、冷間加工性を維持したまま固溶強化して、銅系合金の強度を向上させる効果を発揮する。但し、これらの元素の添加量が10重量%を超えた場合には、満足な効果が得られない。   Furthermore, the Ni element or the Co element exerts an effect of improving the strength of the copper alloy by solid solution strengthening while maintaining cold workability. However, when the added amount of these elements exceeds 10% by weight, a satisfactory effect cannot be obtained.

上記基本組成の元素以外に、本実施の形態の銅系合金は、Ni、Co、Fe、Ti、V、Cr、Si、Ge、Nb、Mo、W、Sn、Sb、Mg、P、Be、Zr、Zn、B、C、Ag及びミッシュメタルからなる群から選ばれた1種又は2種以上をさらに含有することができる。   In addition to the elements of the above basic composition, the copper-based alloy of the present embodiment includes Ni, Co, Fe, Ti, V, Cr, Si, Ge, Nb, Mo, W, Sn, Sb, Mg, P, Be, 1 type (s) or 2 or more types selected from the group which consists of Zr, Zn, B, C, Ag, and a misch metal can further be contained.

これらの添加元素の含有量は、合計で0.001〜10重量%であるのが好ましく、特に0.001〜5重量%が好ましい。つまり、これらの添加元素の合計含有量が10重量%を超えると、マルテンサイト変態温度が低下し、β’マルテンサイト相が不安定になる。また、これらの添加元素の合計含有量が0.001重量%未満では添加元素による満足な効果が得られない。   The total content of these additive elements is preferably 0.001 to 10% by weight, particularly preferably 0.001 to 5% by weight. That is, when the total content of these additive elements exceeds 10% by weight, the martensite transformation temperature decreases and the β ′ martensite phase becomes unstable. Further, when the total content of these additive elements is less than 0.001% by weight, a satisfactory effect by the additive elements cannot be obtained.

ここで、Ni、Co、Fe、Sn及びSbは基地組織の強化に有効な元素である。Ni及びFeの好ましい含有量はそれぞれ0.001〜3重量%である。CoはまたCoAlの形成により析出強化するが、過剰になると銅系合金の靭性を低下させる。Coの好ましい含有量は0.001〜2重量%である。Sn及びSbの好ましい含有量はそれぞれ0.001〜1重量%である。   Here, Ni, Co, Fe, Sn and Sb are effective elements for strengthening the base structure. The preferred contents of Ni and Fe are 0.001 to 3% by weight, respectively. Co also strengthens by precipitation due to the formation of CoAl, but if excessive, it lowers the toughness of the copper-based alloy. The preferable content of Co is 0.001 to 2% by weight. The preferred contents of Sn and Sb are 0.001 to 1% by weight, respectively.

Tiは合金特性を阻害する元素であるN及びOと結合して、酸化物及び窒化物を形成する。またBと複合添加するとボライドを形成し、析出強化に寄与する。Tiの好ましい含有量は0.001〜2重量%である。   Ti combines with N and O, which are elements that impede alloy properties, to form oxides and nitrides. When combined with B, boride is formed, contributing to precipitation strengthening. The preferable content of Ti is 0.001 to 2% by weight.

W、V、Nb、Mo及びZrは硬さを向上させて、耐摩耗性を向上させる効果を有する。またこれらの元素はほとんど合金基地に固溶しないので、bcc 結晶として析出し、析出強化に有効である。W、V、Nb、Mo及びZrの好ましい含有量はそれぞれ0.001〜1重量%である。   W, V, Nb, Mo, and Zr have the effect of improving hardness and improving wear resistance. Since these elements hardly dissolve in the alloy matrix, they precipitate as bcc crystals and are effective for precipitation strengthening. The preferred contents of W, V, Nb, Mo and Zr are 0.001 to 1% by weight, respectively.

Crは耐摩耗性及び耐食性を維持するのに有効な元素である。Crの好ましい含有量は0.001〜2重量%である。Siは耐食性を向上させる効果を有する。Siの好ましい含有量は0.001〜2重量%である。Geはマルテンサイト変態温度を上昇させるのに有効な元素である。Geの好ましい含有量は0.001〜2重量%である。   Cr is an effective element for maintaining wear resistance and corrosion resistance. A preferable content of Cr is 0.001 to 2% by weight. Si has the effect of improving the corrosion resistance. A preferable content of Si is 0.001 to 2% by weight. Ge is an effective element for raising the martensitic transformation temperature. A preferable content of Ge is 0.001 to 2% by weight.

Mgは合金特性を阻害する元素であるN及びOを除去するとともに、阻害元素であるSを硫化物として固定し、熱間加工性や靭性の向上に効果があるが、多量の添加は粒界偏析を招き、脆化の原因となる。Mgの好ましい含有量は0.001〜0.5重量%である。   Mg removes N and O, which are elements that hinder the alloy properties, and fixes S, which is an inhibitory element, as a sulfide, which is effective in improving hot workability and toughness. It causes segregation and causes embrittlement. A preferable content of Mg is 0.001 to 0.5% by weight.

Pは脱酸剤として作用し、靭性向上の効果を有する。Pの好ましい含有量は0.01〜0.5重量%である。Beは基地組織を強化する効果を有する。Beの好ましい含有量は0.001〜1重量%である。Znの好ましい含有量は0.001〜5重量%である。   P acts as a deoxidizer and has the effect of improving toughness. A preferable content of P is 0.01 to 0.5% by weight. Be has the effect of strengthening the base organization. The preferred content of Be is 0.001 to 1% by weight. The preferable content of Zn is 0.001 to 5% by weight.

B及びCは粒界に偏析し、粒界を強化する効果を有する。B及びCの好ましい含有量はそれぞれ0.001〜0.5重量%である。Agは冷間加工性を向上させる効果を有する。Agの好ましい含有量は0.001〜2重量%である。ミッシュメタルは脱酸剤として作用し、靭性向上の効果を有する。ミッシュメタルの好ましい含有量は0.001〜5重量%である。   B and C segregate at the grain boundaries and have the effect of strengthening the grain boundaries. The preferred contents of B and C are each 0.001 to 0.5% by weight. Ag has the effect of improving cold workability. The preferable content of Ag is 0.001 to 2% by weight. Misch metal acts as a deoxidizer and has the effect of improving toughness. The preferred content of misch metal is 0.001 to 5% by weight.

以上より、本実施の形態によれば、β’マルテンサイト相中にα相が析出している銅系合金であって、α相の体積分率を5〜80%としたことにより、銅系合金の疲労特性が改善されて、塑性変形域に入るような高歪で繰り返して変形させた場合でも、容易に破壊に至らないような優れた疲労特性を有する銅系合金となる。   From the above, according to the present embodiment, the copper-based alloy in which the α-phase is precipitated in the β ′ martensite phase, and the volume fraction of the α-phase is set to 5 to 80%. The fatigue characteristics of the alloy are improved, and a copper alloy having excellent fatigue characteristics that does not easily break even when deformed repeatedly at a high strain that falls within the plastic deformation range.

次に、本実施の形態に係る銅系合金の製造方法を説明する。
上記組成の銅系合金を一旦溶解してから鋳造し、ビレットを作製した後、850℃の温度で熱間圧延等により熱間加工する。この後、熱処理空冷し冷間圧延等により冷間加工すると共に600℃空冷で焼鈍をするというサイクルを数回繰り返して、板材を作製する。
Next, the manufacturing method of the copper-type alloy which concerns on this Embodiment is demonstrated.
The copper-based alloy having the above composition is once melted and cast to produce a billet, and then hot-worked by hot rolling or the like at a temperature of 850 ° C. After that, a plate material is produced by repeating the cycle of heat treatment air cooling, cold working by cold rolling or the like and annealing at 600 ° C. air cooling several times.

このようにして得られた板材を再度加熱して、β+αの2相温度域である700〜850℃の温度で熱処理してから、空冷又は水冷により冷却して(β’+α)の2相組織の銅系合金とする。つまり、β’マルテンサイト相中にα相が析出していて、このα相の体積分率が5〜80%とした銅系合金を作製する。従って、銅系合金の製造に際して、上記手順を経ることにより、β’マルテンサイト相マトリックス中にα相が析出したβ’+αの2相組織が得られることになるが、銅系合金をこのβ’+αの2相組織としたときに、高い耐疲労特性が得られるようになる。必要に応じて100〜400℃の温度で時効することにより、マルテンサイト変態温度の安定化あるいは時効硬化による強度上昇が可能である。   The plate material thus obtained is heated again and heat-treated at a temperature of 700 to 850 ° C. which is a β + α two-phase temperature range, and then cooled by air cooling or water cooling (β ′ + α) two-phase structure. Copper alloy. That is, a copper-based alloy in which an α phase is precipitated in the β ′ martensite phase and the volume fraction of the α phase is 5 to 80% is manufactured. Therefore, in the production of a copper-based alloy, a two-phase structure of β ′ + α in which an α phase is precipitated in a β ′ martensite phase matrix is obtained through the above procedure. When a two-phase structure of '+ α is used, high fatigue resistance can be obtained. By aging at a temperature of 100 to 400 ° C. as required, the martensite transformation temperature can be stabilized or the strength can be increased by age hardening.

次に、以下の実施例により本発明をさらに詳細に説明するが、本発明はそれらに限定されるものではない。
まず、(Cu−17.5Al−8.5Mn)−2Ni(at%)の組成を有する銅系合金を一旦溶解した後に凝固して、縦横がそれぞれ約100mmで厚さが12mmの板状のビレットを作製する。次いで、850℃の温度で厚さ2.5mmまでこのビレットを熱間圧延した。
Next, although the following examples explain the present invention still in detail, the present invention is not limited to them.
First, a copper-based alloy having a composition of (Cu-17.5Al-8.5Mn) -2Ni (at%) is once melted and then solidified to form a plate-like billet having a length and width of about 100 mm and a thickness of 12 mm. Is made. The billet was then hot rolled to a thickness of 2.5 mm at a temperature of 850 ° C.

さらに、冷間圧延及び600℃で15分間の焼鈍空冷からなるサイクルを3回繰り返すことで、厚さ1mmの板材を作製した。このようにして得られた厚さ1mmの板材を切断等して試験片に加工し、700〜850℃の温度で5分間の熱処理をした後、空冷又は水冷して(β’+α)の2相組織を有する銅系合金を実施例として作製した。   Furthermore, the plate material of thickness 1mm was produced by repeating the cycle which consists of cold rolling and annealing air cooling for 15 minutes at 600 degreeC 3 times. The plate material having a thickness of 1 mm obtained as described above is cut into a test piece and subjected to heat treatment at a temperature of 700 to 850 ° C. for 5 minutes, and then air-cooled or water-cooled (β ′ + α) 2 A copper alloy having a phase structure was produced as an example.

尚、この際、熱処理温度が高い例えば900℃とすると共に水冷で冷却した場合には、金属組織がβ単相で結晶粒が大きく、耐疲労特性が低下する。また、熱処理温度が低い例えば600℃とした場合には、金属組織がα相になり、同様に耐疲労特性が低下する。この為、700〜850℃の温度範囲が最適なことが、これらの事からも裏付けられたことになる。   In this case, when the heat treatment temperature is high, for example, 900 ° C. and cooling is performed by water cooling, the metal structure is β single phase, the crystal grains are large, and the fatigue resistance is deteriorated. Further, when the heat treatment temperature is low, for example, 600 ° C., the metal structure becomes an α phase, and the fatigue resistance is similarly lowered. For this reason, the fact that the temperature range of 700 to 850 ° C. is optimal is supported by these facts.

次に、上記のようにして得られた板材を加工して形成された実施例の試験片及び比較例の試験片に対して、以下の繰り返し屈曲試験を行った結果を説明する。
まず、サンプルとしては、M2052(Mn系合金)、Brass(黄銅)、SUS304(ステンレス鋼)、SUS430(ステンレス鋼)、Pb、Cu、Fe等の金属を比較例とする他、上記実施例の銅系合金を二種類作製した。具体的には、実施例の銅系合金として、700〜850℃の温度での熱処理をした後、空冷したサンプルと水冷したサンプルをそれぞれ作製した。
Next, the results of performing the following repeated bending tests on the test pieces of Examples and Comparative Examples formed by processing the plate material obtained as described above will be described.
First, as a sample, M2052 (Mn alloy), Brass (brass), SUS304 (stainless steel), SUS430 (stainless steel), Pb, Cu, Fe, and other metals are used as comparative examples, and the copper of the above examples. Two types of alloys were produced. Specifically, as a copper-based alloy of the example, after heat treatment at a temperature of 700 to 850 ° C., an air-cooled sample and a water-cooled sample were respectively produced.

また、上記の各サンプルを試験する為の試験片1は、幅寸法を10mmとし、図1に示す厚さTを1mmとし、二箇所の直線部1Aの長さLをそれぞれ40mmとし、曲げ部1Bの外径Dを25mmとしたU字型形状に、それぞれ形成する。そして、図2(A)に示すようなそれぞれ左右方向に延びる一対の固定部材3の中間に、同様に左右方向に沿って延び且つ左右方向に沿って往復動可能な可動部材4を配置した試験装置2に、2つの試験片1を取り付けて繰り返し屈曲試験を行った。   Further, the test piece 1 for testing each sample has a width dimension of 10 mm, a thickness T shown in FIG. 1 of 1 mm, a length L of each of the two straight portions 1A of 40 mm, and a bent portion. The outer diameter D of 1B is formed into a U-shape with 25 mm. Then, a test in which a movable member 4 extending in the left-right direction and reciprocating in the left-right direction is disposed between a pair of fixing members 3 extending in the left-right direction as shown in FIG. Two test pieces 1 were attached to the apparatus 2 and repeated bending tests were performed.

つまり、図2(A)に示すように、試験片1の二箇所の直線部1Aの内の一方の直線部1Aを固定部材3に固定し、他方の直線部1Aを可動部材4に固定するという形で、2つの試験片1を試験装置2にそれぞれ取り付ける。そして、表面最大歪が4%に対応するストロークSが±25mmで周波数が0.3Hzとなるように、図2(B)の状態と図2(C)の状態との間で可動部材4を往復動させて、1往復を1回と計測する形で繰り返し屈曲試験を行った。   That is, as shown in FIG. 2A, one of the two straight portions 1 </ b> A of the test piece 1 is fixed to the fixed member 3, and the other straight portion 1 </ b> A is fixed to the movable member 4. In this manner, two test pieces 1 are attached to the test apparatus 2 respectively. Then, the movable member 4 is moved between the state of FIG. 2B and the state of FIG. 2C so that the stroke S corresponding to the surface maximum strain of 4% is ± 25 mm and the frequency is 0.3 Hz. A repetitive bending test was conducted in such a manner that the reciprocating motion was measured as one reciprocation.

この繰り返し屈曲試験の結果、図3に示すグラフのように、空冷された実施例及び水冷された実施例のサンプルは耐疲労特性が高く、空冷した実施例のサンプル(Cu(Ni)ACと表す)の破断までの屈曲回数は1111回であり、また、水冷した実施例のサンプル(Cu(Ni)WQと表す)の破断までの屈曲回数は1000回であった。   As a result of this repeated bending test, as shown in the graph of FIG. 3, the air-cooled example and the water-cooled example sample have high fatigue resistance, and the sample of the air-cooled example (Cu (Ni) AC) is represented. ) Was bent 1111 times, and the water-cooled example sample (represented as Cu (Ni) WQ) was bent 1000 times.

尚、図3に示すグラフのように、他の比較例の金属は、数十回〜300回程度の屈曲回数で破断した。以上より、実施例の銅系合金の耐疲労特性が他の比較例のサンプルの耐疲労特性より三倍以上高いことが、この繰り返し屈曲試験により確認された。また、上記のU字型の試験片1による繰り返し屈曲試験において、表面最大歪4%、周波数0.3Hzという条件における破断までの繰り返し屈曲回数が500回以上あれば、十分な性能と言えるので、この点でも実施例の銅系合金は問題が無いことが確認された。   In addition, as the graph shown in FIG. 3, the metal of the other comparative example fractured | ruptured with the frequency | count of bending of about dozens of times to 300 times. From the above, it was confirmed by this repeated bending test that the fatigue resistance characteristics of the copper-based alloys of the examples were three times higher than the fatigue resistance characteristics of the samples of the other comparative examples. Further, in the repeated bending test using the U-shaped test piece 1 described above, it can be said that the performance is sufficient if the number of repeated bending until breakage is 500 times or more under the conditions of a maximum surface strain of 4% and a frequency of 0.3 Hz. Also in this respect, it was confirmed that the copper-based alloy of the example had no problem.

さらに、上記組成の銅系合金を空冷したサンプル及び、同様の銅系合金を水冷したサンプルを熱処理温度を変えて、それぞれ複数種類の作製した。つまり、熱処理の温度条件として、600℃、650℃、700℃、750℃、800℃、850℃、900℃の7条件のサンプルをそれぞれ作製した。そして、上記と同様の試験装置2により上記と同様の試験条件で、各サンプルを繰り返し屈曲試験した。   Furthermore, a sample obtained by air-cooling a copper-based alloy having the above composition and a sample obtained by water-cooling a similar copper-based alloy were produced in a plurality of types by changing the heat treatment temperature. That is, samples under seven conditions of 600 ° C., 650 ° C., 700 ° C., 750 ° C., 800 ° C., 850 ° C., and 900 ° C. were prepared as the heat treatment temperature conditions, respectively. Then, each sample was repeatedly subjected to a bending test under the same test conditions as described above using the same test apparatus 2 as described above.

この繰り返し屈曲試験の結果、図4に示すグラフのように、空冷した実施例のサンプルの特性曲線ACにおいて、熱処理温度が約800℃で、破断までの屈曲回数が1000回以上のピークとなり、また、水冷した実施例のサンプルの特性曲線WQにおいて、熱処理温度が約750℃で、破断までの屈曲回数が同じく1000回以上のピークとなった。   As a result of this repeated bending test, as shown in the graph of FIG. 4, in the characteristic curve AC of the sample of the air-cooled example, the heat treatment temperature is about 800 ° C., and the number of bendings until breakage reaches a peak of 1000 times or more. In the characteristic curve WQ of the sample of the water-cooled example, the heat treatment temperature was about 750 ° C., and the number of bending until breakage was also a peak of 1000 times or more.

従って、700〜850℃の温度で熱処理をした実施例の銅系合金の内でも、水冷したサンプルに関しては約750℃で熱処理し、空冷したサンプルに関しては約800℃で熱処理したときにおけるβ’相及びα相の混在の2相組織により、最高の耐疲労特性が得られることが、この繰り返し屈曲試験の結果として確認された。   Accordingly, among the copper-based alloys of the examples heat-treated at a temperature of 700 to 850 ° C., the β ′ phase when the water-cooled sample was heat-treated at about 750 ° C. and the air-cooled sample was heat-treated at about 800 ° C. As a result of this repeated bending test, it was confirmed that the best fatigue resistance can be obtained by a two-phase structure in which α and α phases are mixed.

次に、本実施の形態の銅系合金を制振合金として採用した免震装置10を、図5及び図6に基づき説明する。これらの図に示すように、この免震装置10の上下部分をそれぞれ円板状に形成された連結板12、14が構成している。この内の下側の連結板12が地盤と当接し、また上側の連結板14が建築物の下部に当接するような構造になっている。   Next, the seismic isolation device 10 employing the copper-based alloy of the present embodiment as a damping alloy will be described with reference to FIGS. 5 and 6. As shown in these figures, the upper and lower parts of the seismic isolation device 10 are constituted by connecting plates 12 and 14 each formed in a disc shape. The lower connecting plate 12 is in contact with the ground, and the upper connecting plate 14 is in contact with the lower part of the building.

また、これら一対の連結板12、14の間には、中心部分に円形の穴部16Aを有しつつ円筒状に形成されたゴム体16が配置されている。このゴム体16は、リング状に形成されて弾性変形し得るゴム製のゴムリング18と、リング状に形成されて剛性を維持する為の金属製の金属リング20とが、交互に複数枚ずつ配置された形の構造になっている。   Between the pair of connecting plates 12 and 14, a rubber body 16 formed in a cylindrical shape with a circular hole 16A in the center is disposed. The rubber body 16 includes a plurality of rubber rubber rings 18 that are formed in a ring shape and can be elastically deformed, and a plurality of metal metal rings 20 that are formed in a ring shape and maintain rigidity. The structure is arranged.

一方、これら一対の連結板12、14は、ゴム体16の上下端にそれぞれ加硫接着されて取り付けられており、また、これら一対の連結板12、14の中心には、それぞれ途中に段部を有した円形の貫通穴12A、14Aが形成されている。但し、これら貫通穴12A、14Aに対応した大きさであって外周側にフランジを有した蓋材30が、ボルト32によるねじ止めによって、一対の連結板12、14にそれぞれ固定されることで、貫通穴12A、14Aがそれぞれ閉鎖されている。   On the other hand, the pair of connecting plates 12 and 14 are attached by vulcanization and bonding to the upper and lower ends of the rubber body 16, respectively, and stepped portions are provided in the middle of the pair of connecting plates 12 and 14, respectively. Circular through-holes 12A and 14A having the shape are formed. However, the lid member 30 having a size corresponding to the through holes 12A and 14A and having a flange on the outer peripheral side is fixed to the pair of connecting plates 12 and 14 by screwing with bolts 32, respectively. The through holes 12A and 14A are closed.

このゴム体16の中心に存在する円形の穴部16Aには、円筒状に形成された制振部材26が嵌まり込むように、配置されており、また、この制振部材26には、銅系合金で弾性変形可能な螺旋状のコイルスプリングの形に形成された制振合金22が内蔵されている。つまり、制振合金22の周囲にゴム材が加硫接着されて、このゴム材によって円筒状に形成された加硫ゴム部24で制振合金22が覆われた形とされている。   A vibration damping member 26 formed in a cylindrical shape is fitted into the circular hole 16A present at the center of the rubber body 16, and the vibration damping member 26 is provided with copper. A damping alloy 22 formed in the shape of a helical coil spring that can be elastically deformed with an alloy is incorporated. That is, a rubber material is vulcanized and bonded around the damping alloy 22, and the damping alloy 22 is covered with a vulcanized rubber portion 24 formed in a cylindrical shape by the rubber material.

次に、本実施の形態の銅系合金を制振合金22として採用した免震装置10の作用を以下に説明する。本実施の形態によれば、弾性変形可能な螺旋状のコイルスプリングとされた銅系合金の制振合金22が、加硫ゴム部24により覆われた形とされており、さらに、この制振合金22と並列的にゴム体16が配置された構造の免震装置10となっている。   Next, the operation of the seismic isolation device 10 employing the copper-based alloy of the present embodiment as the damping alloy 22 will be described below. According to the present embodiment, the damping alloy 22 made of a copper alloy, which is an elastically deformable helical coil spring, is covered with the vulcanized rubber portion 24. The seismic isolation device 10 has a structure in which the rubber body 16 is arranged in parallel with the alloy 22.

これに伴い、本実施の形態に係る免震装置10によれば、地震が生じた場合でも、制振合金22と並列的に配置されて弾性変形するゴム体16とこの制振合金22との間の複合的な作用で地震の揺れを低減し、建築物側に地震の揺れが伝達し難くなる。   Accordingly, according to the seismic isolation device 10 according to the present embodiment, even when an earthquake occurs, the rubber body 16 arranged in parallel with the vibration damping alloy 22 and elastically deformed and the vibration damping alloy 22 The combined action between them reduces earthquake shaking and makes it difficult to transmit earthquake shaking to the building.

つまり、本実施の形態の銅系合金による制振合金22は、地震に際して塑性変形域に入るような高歪で繰り返して変形されることになるが、このような場合でも、容易に破壊に至らないような優れた疲労特性を有するので、免震装置10に採用される制振合金として、最適なものとなる。   That is, the damping alloy 22 made of the copper-based alloy according to the present embodiment is repeatedly deformed with a high strain so as to enter the plastic deformation region in the event of an earthquake, but even in such a case, it easily breaks. Since it has such excellent fatigue characteristics, it is optimal as a damping alloy used in the seismic isolation device 10.

一方、本実施の形態の免震装置10に用いられる制振合金22は、銅系合金で弾性変形可能なバネ状に形成されたことで、鉛材を用いずとも上記のような良好な制振特性及び疲労特性を得られる。この為、本実施の形態の免震装置10によれば環境に負荷を与えることもない。そして、鉛材ではなく銅系合金とされているので、周囲を拘束して剪断変形した形で使用する必要もなくなり、制振合金として使用する際の自由度も高くなる。   On the other hand, the damping alloy 22 used in the seismic isolation device 10 of the present embodiment is formed of a copper-based alloy in a spring shape that can be elastically deformed. Vibration characteristics and fatigue characteristics can be obtained. For this reason, according to the seismic isolation apparatus 10 of this Embodiment, it does not give a load to an environment. And since it is set as the copper-type alloy instead of a lead material, it becomes unnecessary to use it in the form which restrained the circumference | surroundings and carried out the shear deformation, and the freedom degree at the time of using as a damping alloy also becomes high.

他方、本実施の形態では、制振合金22が螺旋状のコイルスプリングとされたことで、制振合金22がより確実に変形するようになるので、この制振合金22に引張力や剪断力が加わった際に、より一層、バネ定数が低くなると共に減衰係数が高くなって、より良好な制振特性を有するようにもなる。尚、本実施の形態では、銅系合金にNiが含有された例を基にして説明したが、Niの替わりにCoを含有した銅系合金を制振合金22として用いても良い。   On the other hand, in the present embodiment, since the damping alloy 22 is a spiral coil spring, the damping alloy 22 is more reliably deformed. Therefore, a tensile force or a shearing force is applied to the damping alloy 22. When is added, the spring constant is further reduced and the damping coefficient is increased, so that a better damping characteristic can be obtained. Although the present embodiment has been described based on an example in which Ni is contained in the copper-based alloy, a copper-based alloy containing Co instead of Ni may be used as the damping alloy 22.

さらに、上記実施の形態では、制振合金22が螺旋状のコイルスプリングとなっているが、制振合金22を他の構造としても良い。また、上記実施の形態では、制振合金22の周囲にゴム材を加硫接着したが、必要な特性が得られれば、ゴム材を用いないようにしたり、或いはゴム材の替わりに合成樹脂で制振合金22の周囲を覆っても良い。そして、上記実施の形態では、免震装置に使用される例を説明したが、制振装置に本発明の銅系合金を用いても良い。   Furthermore, in the said embodiment, although the damping alloy 22 is a helical coil spring, you may make the damping alloy 22 into another structure. Further, in the above embodiment, the rubber material is vulcanized and bonded around the damping alloy 22, but if necessary characteristics are obtained, the rubber material is not used, or a synthetic resin is used instead of the rubber material. The periphery of the damping alloy 22 may be covered. And although the example used for a seismic isolation apparatus was demonstrated in the said embodiment, you may use the copper-type alloy of this invention for a damping device.

本発明の実施の形態に係る銅系合金等で作製した試験片の正面図である。It is a front view of the test piece produced with the copper-type alloy etc. which concern on embodiment of this invention. 本発明の実施の形態に係る銅系合金等で作製した試験片を試験する試験装置を示す図であって、(A)は試験片を取り付ける状態を示す図であり、(B)は試験装置の可動部材が左側に最大限寄った状態を示す図であり、(C)は試験装置の可動部材が右側に最大限寄った状態を示す図である。It is a figure which shows the test apparatus which tests the test piece produced with the copper-type alloy etc. which concern on embodiment of this invention, Comprising: (A) is a figure which shows the state which attaches a test piece, (B) is a test apparatus. It is a figure which shows the state which left the movable member of the maximum to the left side, (C) is a figure which shows the state where the movable member of the test apparatus has approached the maximum to the right side. 繰り返し屈曲試験における実施例と比較例の破断までの回数をそれぞれ表すグラフを示す図である。It is a figure which shows the graph each showing the frequency | count to the fracture | rupture of the Example in a repeated bending test, and a comparative example. 繰り返し屈曲試験における破断までの回数と熱処理温度との関係を表すグラフを示す図である。It is a figure which shows the graph showing the relationship between the frequency | count to a fracture | rupture in a repeated bending test, and heat processing temperature. 本発明の実施の形態に係る銅系合金が採用された免震装置の分解斜視図である。1 is an exploded perspective view of a seismic isolation device employing a copper alloy according to an embodiment of the present invention. 本発明の実施の形態に係る銅系合金が採用された免震装置の断面図である。It is sectional drawing of the seismic isolation apparatus by which the copper type alloy which concerns on embodiment of this invention was employ | adopted.

符号の説明Explanation of symbols

1 試験片
2 試験装置
10 免震装置
22 制振合金
1 Test piece 2 Test device 10 Seismic isolation device 22 Damping alloy

Claims (5)

β’マルテンサイト相中にα相が析出している銅系合金において、α相の体積分率が5〜80%であることを特徴とする銅系合金。   A copper-based alloy in which an α-phase is precipitated in a β 'martensite phase, wherein the volume fraction of the α-phase is 5 to 80%. 3〜10重量%のAl、5〜20重量%のMn、10重量%以下のNiまたはCo及び、残部をCuとした組成を有することを特徴とする請求項1記載の銅系合金。   The copper-based alloy according to claim 1, having a composition of 3 to 10% by weight of Al, 5 to 20% by weight of Mn, 10% by weight or less of Ni or Co, and the balance being Cu. 合金全体を100重量%としたとき、Ni、Co、Fe、Ti、V、Cr、Si、Ge、Nb、Mo、W、Sn、Sb、Mg、P、Be、Zr、Zn、B、C、Ag及びミッシュメタルからなる群から選ばれた少なくとも一種の元素を合計で、0.001〜10重量%含有することを特徴とする請求項1或いは請求項2に記載の銅系合金。   When the total alloy is 100% by weight, Ni, Co, Fe, Ti, V, Cr, Si, Ge, Nb, Mo, W, Sn, Sb, Mg, P, Be, Zr, Zn, B, C, 3. The copper-based alloy according to claim 1, further comprising 0.001 to 10 wt% of at least one element selected from the group consisting of Ag and Misch metal. 螺旋状のコイルスプリングとされたことを特徴とする請求項1から請求項3の何れかに記載の銅系合金。   The copper-based alloy according to any one of claims 1 to 3, wherein the copper-based alloy is a spiral coil spring. 請求項1から請求項4の何れかに記載の銅系合金を製造する銅系合金の製造方法であって、
銅系合金に焼鈍及び冷間加工をした後、
β+αの2相温度域でこの銅系合金を熱処理することを特徴とする銅系合金の製造方法。
A method for producing a copper-based alloy for producing the copper-based alloy according to any one of claims 1 to 4,
After annealing and cold working copper alloy,
A method for producing a copper-based alloy, comprising heat-treating the copper-based alloy in a two-phase temperature range of β + α.
JP2005315645A 2005-10-31 2005-10-31 Copper based alloy and method for producing copper based alloy Withdrawn JP2007119874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315645A JP2007119874A (en) 2005-10-31 2005-10-31 Copper based alloy and method for producing copper based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315645A JP2007119874A (en) 2005-10-31 2005-10-31 Copper based alloy and method for producing copper based alloy

Publications (1)

Publication Number Publication Date
JP2007119874A true JP2007119874A (en) 2007-05-17

Family

ID=38144019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315645A Withdrawn JP2007119874A (en) 2005-10-31 2005-10-31 Copper based alloy and method for producing copper based alloy

Country Status (1)

Country Link
JP (1) JP2007119874A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002325A1 (en) 2013-07-04 2015-01-08 Ricoh Company, Ltd. Inkjet recording ink, ink cartridge, inkjet recording method, and inkjet recording apparatus
KR20160021195A (en) * 2013-06-19 2016-02-24 이자벨렌휘테 호이슬러 게엠베하 운트 코. 카게 Resistor alloy, component produced therefrom and production method therefor
CN110551931A (en) * 2018-05-31 2019-12-10 比亚迪股份有限公司 Structural component of electronic product, preparation method of structural component and electronic product
CN114592141A (en) * 2022-03-10 2022-06-07 中机智能装备创新研究院(宁波)有限公司 Impregnated alloy for drill bit matrix and preparation method and application thereof
CN116144972A (en) * 2023-02-03 2023-05-23 有研工程技术研究院有限公司 Damping copper alloy material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021195A (en) * 2013-06-19 2016-02-24 이자벨렌휘테 호이슬러 게엠베하 운트 코. 카게 Resistor alloy, component produced therefrom and production method therefor
KR102194267B1 (en) 2013-06-19 2020-12-22 이자벨렌휘테 호이슬러 게엠베하 운트 코. 카게 Resistor alloy, component produced therefrom and production method therefor
WO2015002325A1 (en) 2013-07-04 2015-01-08 Ricoh Company, Ltd. Inkjet recording ink, ink cartridge, inkjet recording method, and inkjet recording apparatus
CN110551931A (en) * 2018-05-31 2019-12-10 比亚迪股份有限公司 Structural component of electronic product, preparation method of structural component and electronic product
CN114592141A (en) * 2022-03-10 2022-06-07 中机智能装备创新研究院(宁波)有限公司 Impregnated alloy for drill bit matrix and preparation method and application thereof
CN116144972A (en) * 2023-02-03 2023-05-23 有研工程技术研究院有限公司 Damping copper alloy material and preparation method thereof
CN116144972B (en) * 2023-02-03 2024-01-09 有研工程技术研究院有限公司 Damping copper alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5462281B2 (en) Stainless austenitic low Ni steel alloy
KR100264494B1 (en) Precipitation hardenable martensitic stainless steel
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
KR100605983B1 (en) Alloy wire for heat-resistant spring
RU2169786C2 (en) Nitrogen-containing iron based-alloys having properties of damping and effect of memory of shape
JP4421877B2 (en) Co-Ni based high elastic alloy, power spring using Co-Ni based high elastic alloy and method for manufacturing the same
JP6370392B2 (en) Hardening nickel / chromium / titanium / aluminum alloy with good wear resistance, creep resistance, corrosion resistance, and workability
JP6113870B2 (en) Use of copper-zinc alloy
KR20160068765A (en) High tensile strength steel wire
JP2007119874A (en) Copper based alloy and method for producing copper based alloy
EP2194154A1 (en) Two-way shape-recovery alloy
JP2008127590A (en) Austenitic stainless steel
JP2007289979A (en) Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot
KR20190046593A (en) Transformation Induced Plasticity High Entropy Alloy and Manufacturing Method for the Same
JP2010215953A (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
JP4327601B2 (en) Precipitation hardening austenitic steel
CA2416950C (en) Inert material with increased hardness for thermally stressed parts
JP4790539B2 (en) High-strength, high-elasticity stainless steel and stainless steel wire
JP2008075119A (en) Alloy wire for heat resistant spring, and heat resistant spring product using the same
JP2015054977A (en) Cu-Al-Mn BASED ALLOY MATERIAL EXCELLENT IN BREAKING EXTENSION AND SEISMIC CONTROL MEMBER USING THE SAME
JP2002161343A (en) Precipitation-hardening type martensitic stainless-steel with high strength superior in corrosion resistance
JP2008195976A (en) Steel sheet for spring, spring material using the same, and method for manufacturing them
JP6987651B2 (en) High hardness precipitation hardening stainless steel with excellent hot workability and no sub-zero treatment required
JPH11140598A (en) High strength stainless steel strip with high spring limit value, and its production
JP4315049B2 (en) Thin steel strip with excellent strength, fatigue strength, corrosion resistance and wear resistance, and manufacturing method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080912

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106