EP3011069A1 - Resistor alloy, component produced therefrom and production method therefor - Google Patents

Resistor alloy, component produced therefrom and production method therefor

Info

Publication number
EP3011069A1
EP3011069A1 EP14734392.5A EP14734392A EP3011069A1 EP 3011069 A1 EP3011069 A1 EP 3011069A1 EP 14734392 A EP14734392 A EP 14734392A EP 3011069 A1 EP3011069 A1 EP 3011069A1
Authority
EP
European Patent Office
Prior art keywords
mass fraction
resistance
resistance alloy
component
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14734392.5A
Other languages
German (de)
French (fr)
Other versions
EP3011069B1 (en
Inventor
Daniel ZUCKERMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IsabellenHuette Heusler GmbH and Co KG
Original Assignee
IsabellenHuette Heusler GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IsabellenHuette Heusler GmbH and Co KG filed Critical IsabellenHuette Heusler GmbH and Co KG
Publication of EP3011069A1 publication Critical patent/EP3011069A1/en
Application granted granted Critical
Publication of EP3011069B1 publication Critical patent/EP3011069B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to a resistance alloy for an electrical resistance, in particular for a low-impedance current measuring resistor. Furthermore, the invention comprises a component manufactured therefrom and a corresponding production method.
  • Copper-manganese-nickel alloys have long been used as materials for precision resistors, in particular for low-resistance current measuring resistors ("shunts").
  • An example of such a copper-manganese-nickel alloy is the resistance alloy marketed by the Applicant under the trade name Manganin® (eg Cu84Ni 4 Mni2) with a copper content of 82-84%, a nickel content of 2-4 % and a mass fraction of manganese of 12-15%.
  • the known copper-manganese-nickel alloys meet all the requirements that are placed on resistance alloys for precision resistors, such as a low temperature coefficient of the specific electrical resistance, a low thermal power to copper and a high temporal constancy of the electrical resistance.
  • the known copper-manganese-nickel alloys have good technological properties, in particular a good processing capability, which makes it possible to process these copper-manganese-nickel alloys into wires, tapes, films and resistance components.
  • a disadvantage of the known copper-manganese-nickel alloys is the limitation to relatively low specific electrical resistances of at most 0.5 ( ⁇ -mm 2 ) / m.
  • nickel-chromium alloys For larger specific electrical resistances, for example, nickel-chromium alloys are known, which however also have various disadvantages. For one thing, nickel-chromium alloys are usually much more expensive than copper-manganese-nickel alloys. On the other hand, nickel-chromium alloys are more difficult to handle in terms of production technology in many respects. For example, the hot workability of nickel-chromium alloys. relatively poor and for adjusting certain electrical-physical material properties complex heat treatment processes are necessary. In addition, the working temperatures in the smelting process in the nickel-chromium alloys are 500K higher than in the copper-manganese-nickel alloys, which leads to higher energy costs and material wear of the work equipment.
  • the otherwise desirable good acid resistance of nickel-chromium alloys poses major problems in the etch-making of resistor structures and makes the removal of heat-treating oxides by pickling a costly and non-hazardous manufacturing step.
  • the copper-manganese-nickel-aluminum-magnesium alloy 29-5-1 is known, which has a resistivity of 1 (Q-mm 2 ) / m and thereby meets the demand for a low temperature coefficient of resistivity ,
  • this resistance alloy contributes a high thermal power to copper
  • DE 1 033 423 B discloses a generic resistance alloy.
  • a disadvantage of this known resistance alloy is the amount of relatively large thermo-power against copper of -2 ⁇ / ⁇ .
  • the invention is therefore an object of the invention to provide a correspondingly improved copper-manganese-based resistor alloy having the highest possible specific electrical resistance, a low thermal power to copper, a low temperature coefficient of electrical resistance and a high temporal constancy has the specific electrical resistance and combines these properties with the good technological properties described above (eg processability) of the known copper-manganese-nickel alloys.
  • This object is achieved by a resistance alloy according to the invention according to the main claim.
  • the resistance alloy according to the invention has first in accordance with the above-mentioned known copper-manganese-nickel alloys, a copper component, a
  • the invention is characterized in that the manganese component has a mass fraction of 23% to 28%, while the nickel component has a mass fraction of 9% to 13%. It has been found in practice that such a copper-manganese-nickel-based resistance alloy satisfies the requirements described above.
  • the mass fractions of the various alloy components are in this case coordinated so that the resistance alloy according to the invention has a low thermal power to copper, which is smaller at 20 ° C than ⁇ 1 pV / K, ⁇ 0.5 ⁇ // ⁇ or even as ⁇ 0 , 3 ⁇ / ⁇ .
  • the mass fraction of the manganese component may be, for example, in the range of 24% -27%, 25% -26%, 23% -25%, 23% -26%, 23% -27%, 24% -28%, 25%. 28%, 26% -28% or 27% -28%. Particularly advantageous is a mass fraction of the manganese component of 24, 5 -25, 5%.
  • the mass fraction of the nickel component can be in the range of 9% -12%, 9% -ll%, 9% -10%, 10% -13%, 11% -13%, 12% -13%, 10%, for example. -12% or 11% -12%.
  • the resistance alloy according to the invention preferably also has a tin component with a mass fraction of up to 3%.
  • the resistance alloy according to the invention can therefore have a silicon component with a mass fraction of up to 1% in addition to the tin component or instead of the tin component.
  • the resistance alloy according to the invention can therefore, in addition to the tin component and / or the silicon component or instead of these components, also have a magnesium component with a mass fraction of up to 0.3%.
  • a preferred embodiment of a resistance alloy according to the invention is Cu6s iioMn25 with a mass fraction of copper of 65%, a mass fraction of nickel of 10% and a mass fraction of manganese of 25%.
  • Another embodiment of a resistance alloy according to the invention is Cu64NiioMn25Sni with a mass fraction of copper of 64%, a mass fraction of nickel of 10%, a mass fraction of manganese of 25% and a mass fraction of tin of 1%.
  • the mass fraction of tin can also be smaller, which is then compensated by a correspondingly higher mass fraction of copper.
  • a further exemplary embodiment of a resistance alloy according to the invention is Cu62 in Mn27 with a mass fraction of copper of 62%, a mass fraction of nickel of 11% and a mass fraction of manganese of 27%.
  • a resistance alloy according to the invention is Cu6iNinMn27Sni with a mass fraction of copper of 61%, a mass fraction of manganese of 27%, a mass fraction of nickel of 11% and a mass fraction of tin of 1%.
  • the mass fraction of tin may also be lower, which is offset by a correspondingly higher Massenan ⁇ part of copper.
  • the specific electrical resistance is preferably in the range of 0.5 (Q-mm 2 ) / m to 2 ( ⁇ -mm 2 ) / m.
  • the specific electrical resistance of the resistance alloy according to the invention preferably has a high temporal constancy with a relative change of less than ⁇ 0.5% or ⁇ 0.25%, in particular within a period of 3000 hours and a temperature of at least + 140 ° C. , where the higher temperature of at least + 140 ° C accelerates the aging process.
  • the resistance alloy according to the invention preferably has a low thermoelectric force with respect to copper, which is preferably less than ⁇ 1 ⁇ / ⁇ , ⁇ 0.5 ⁇ / ⁇ or even no than ⁇ 0.3 at 20 ° C. pV / K.
  • the specific electrical resistance is relatively constant in temperature with a low temperature coefficient of preferably less than ⁇ 50-10 ⁇ 6 K -1 , ⁇ 35 ⁇ 10 -6 K _1 ,
  • the resistance alloy has a resistance-temperature curve representing the relative resistance change as a function of the temperature, wherein the resistance-temperature curve has a second zero crossing, preferably at a temperature of more than + 20 ° C, + 30 ° C or + 40 ° C and / or at a temperature of less than + 110 ° C, + 100 ° C or + 90 ° C.
  • the mechanical properties of the resistance alloy according to the invention include a mechanical tensile strength of at least 500 MPa, 550 MPa or 580 MPa.
  • the resistance alloy according to the invention preferably has a yield strength of at least 150 MPa, 200 MPa or 260 MPa, while the elongation at break is preferably greater than 30%, 35%, 40% or even 45%.
  • Resistance alloy is to be mentioned that the resistance alloy is preferably soft solderable and / or brazeable.
  • the resistance alloy according to the invention can be produced in various forms of delivery, for example as a wire (for example round wire, flat wire), as a band, as a sheet, as a rod, as a tube or as a foil.
  • the invention is not limited in terms of forms of delivery to the above-mentioned forms of delivery.
  • the invention also includes an electrical or electronic component with a resistance element of the resistance alloy according to the invention.
  • this may be a resistor, in particular a low-impedance current measuring resistor, as known per se from EP 0 605 800 A1, for example.
  • the invention also encompasses a corresponding production method, as already described in the foregoing. gives the description of the resistance alloy according to the invention.
  • the resistance alloy can be subjected to an artificial thermal aging process, wherein the resistance alloy is heated from an initial temperature to an aging temperature. This process can be repeated several times as part of the aging process, wherein the resistance alloy is repeatedly heated periodically to the aging temperature and cooled back to the starting temperature.
  • the aging temperature may be, for example, in the range of + 80 ° C to + 300 ° C, while the starting temperature is preferably less than + 30 ° C or + 20 ° C.
  • FIG. 1 shows a phase diagram for a copper-manganese-nickel alloy, wherein the region according to the invention is plotted in the phase diagram;
  • Figure 2 an exemplary design of an inventive
  • FIG. 3 shows a diagram for clarifying the temperature dependence of the specific electrical resistance in various exemplary embodiments of the resistance alloy according to the invention
  • FIG. 4 shows a diagram to illustrate the long-term stability of the resistance alloy according to the invention.
  • Figure 1 shows a phase diagram of a copper-manganese-nickel alloy, wherein the mass fraction of copper is indicated on the axis top left, while the mass fraction of nickel on the axis top right is reproduced. The mass fraction of manganese, however, is found on the lower axis.
  • the phase diagram shows in hatched form a region 1 in which the resistance alloy tends to harden.
  • the resistance alloy has a specific electrical resistance in this line, which is independent of the temperature.
  • phase diagram also shows a region 3 which characterizes the resistance alloy according to the invention, wherein the mass fraction of manganese in the region 3 is between 23% and 28%, while the mass fraction of nickel in the region 3 lies between 9% and 13%.
  • FIG. 2 shows a simplified perspective view of a current sense resistor 4 according to the invention, as it is already known from EP 0 605 800 AI, so reference is made to avoid repetition of this patent application, the contents of the present description is fully attributable.
  • the current measuring resistor 4 essentially consists of two plate-shaped connecting parts 5, 6 of copper and an interposed resistance element 7 from the resistance of the invention alloy, it can be, as is beispiels- C 65 iioM 2. 5
  • FIG. 3 shows the temperature-dependent profile of the relative resistance change DR / R20 as a function of the temperature. It can also be seen that the various exemplary resistance alloys each have a second
  • FIG. 4 shows the long-term stability of the resistance alloy according to the invention. It can be seen that the relative change in resistance dR over a period of 3000 hours is substantially less than 0.25%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Non-Adjustable Resistors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)

Abstract

The invention relates to a resistor alloy (3) for an electrical resistor, in particular for a low-resistance current-measuring resistor, having a copper constituent, a manganese constituent and a nickel constituent. According to the invention, the manganese constituent has a mass fraction of 23% to 28%, while the nickel constituent has a mass fraction of 9% to 13%. The mass fractions of the alloy constituents are adjusted to one another in such a manner that, compared to copper, the resistor alloy (3) has a low thermal electromotive force at 20°C of less than ±1 μν/Κ. The invention furthermore comprises a component made from such a resistor alloy and a production method therefor.

Description

BESCHREIBUNG Widerstandslegier ng, daraus hergestelltes Bauelement und  DESCRIPTION Resistance alloy, component manufactured therefrom and
Herstellungsverfahren dafür  Manufacturing process for it
Die Erfindung betrifft eine Widerstandslegierung für einen elektrischen Widerstand, insbesondere für einen niederohmigen Strommesswiderstand. Weiterhin umfasst die Erfindung ein daraus hergestelltes Bauelement und ein entsprechendes Herstellungsverfahren . The invention relates to a resistance alloy for an electrical resistance, in particular for a low-impedance current measuring resistor. Furthermore, the invention comprises a component manufactured therefrom and a corresponding production method.
Kupfer-Mangan-Nickel-Legierungen finden schon seit langem An- wendung als Materialien für Präzisionswiderstände, insbesondere für niederohmige Strommesswiderstände ("Shunts") . Ein Beispiel einer solchen Kupfer-Mangan-Nickel-Legierung ist die von der Anmelderin unter dem Markennamen Manganin® vertriebene Widerstandslegierung (z.B. Cu84Ni4Mni2) mit einem Massenan- teil von Kupfer von 82-84%, einem Massenanteil von Nickel von 2-4% und einem Massenanteil von Mangan von 12-15%. Die bekannten Kupfer-Mangan-Nickel-Legierungen erfüllen alle Anforderungen, die an Widerstandslegierungen für Präzisionswiderstände gestellt werden, wie beispielsweise ein niedriger Tem- peraturkoeffxzient des spezifischen elektrischen Widerstands, eine geringe Thermokraft gegen Kupfer und eine hohe zeitliche Konstanz des elektrischen Widerstands. Darüber hinaus besitzen die bekannten Kupfer-Mangan-Nickel-Legierungen gute technologische Eigenschaften, insbesondere eine gute Verarbei- tungsfähigkeit , die es ermöglicht, diese Kupfer-Mangan- Nickel-Legierungen zu Drähten, Bändern, Folien und Widerstandsbauteilen zu verarbeiten. Ein Nachteil der bekannten Kupfer-Mangan-Nickel-Legierungen ist jedoch die Begrenzung auf relativ geringe spezifische elektrische Widerstände von höchstens 0,5 (Ω-mm2) /m. Copper-manganese-nickel alloys have long been used as materials for precision resistors, in particular for low-resistance current measuring resistors ("shunts"). An example of such a copper-manganese-nickel alloy is the resistance alloy marketed by the Applicant under the trade name Manganin® (eg Cu84Ni 4 Mni2) with a copper content of 82-84%, a nickel content of 2-4 % and a mass fraction of manganese of 12-15%. The known copper-manganese-nickel alloys meet all the requirements that are placed on resistance alloys for precision resistors, such as a low temperature coefficient of the specific electrical resistance, a low thermal power to copper and a high temporal constancy of the electrical resistance. In addition, the known copper-manganese-nickel alloys have good technological properties, in particular a good processing capability, which makes it possible to process these copper-manganese-nickel alloys into wires, tapes, films and resistance components. However, a disadvantage of the known copper-manganese-nickel alloys is the limitation to relatively low specific electrical resistances of at most 0.5 (Ω-mm 2 ) / m.
Für größere spezifische elektrische Widerstände sind bei- spielsweise Nickel-Chrom-Legierungen bekannt, die jedoch ebenfalls verschiedene Nachteile aufweisen. Zum einen sind Nickel-Chrom-Legierungen meist wesentlich teurer als Kupfer- Mangan-Nickel-Legierungen. Zum anderen sind Nickel-Chrom- Legierungen fertigungstechnisch in vielerlei Hinsicht schwe- rer zu handhaben. Beispielsweise ist die Warmumformbarkeit von Nickel-Chrom-Legierungen . relativ schlecht und zum Einstellen bestimmter elektrisch-physikalischer Werkstoffeigen- schaften sind aufwändige Wärmebehandlungsprozesse notwendig. Außerdem sind die Arbeitstemperaturen im Schmelzprozess bei den Nickel-Chrom-Legierungen um 500K höher als bei den Kupfer-Mangan-Nickel-Legierungen, was zu höheren Energiekosten und Materialverschleiß der Arbeitsmittel führt. Darüber hinaus bereitet die ansonsten wünschenswerte gute Säurebeständigkeit von Nickel-Chrom-Legierungen große Probleme bei der ätztechnischen Herstellung von Widerstandsstrukturen und macht das Entfernen von wärmebehandlungsbedingten Oxiden durch Beizen zu einem aufwändigen und nicht gefährlichen Fertigungsschritt . Ferner ist die Kupfer-Mangan-Nickel-Aluminium-Magnesium- Legierung 29-5-1 bekannt, die einen spezifischen elektrischen Widerstand von 1 (Q-mm2)/m aufweist und dabei die Forderung nach einem niedrigen Temperaturkoeffizienten des spezifischen elektrischen Widerstandes erfüllt. Allerdings weist diese Wi- derstandslegierung eine hohe Thermokraft gegen Kupfer beiFor larger specific electrical resistances, for example, nickel-chromium alloys are known, which however also have various disadvantages. For one thing, nickel-chromium alloys are usually much more expensive than copper-manganese-nickel alloys. On the other hand, nickel-chromium alloys are more difficult to handle in terms of production technology in many respects. For example, the hot workability of nickel-chromium alloys. relatively poor and for adjusting certain electrical-physical material properties complex heat treatment processes are necessary. In addition, the working temperatures in the smelting process in the nickel-chromium alloys are 500K higher than in the copper-manganese-nickel alloys, which leads to higher energy costs and material wear of the work equipment. In addition, the otherwise desirable good acid resistance of nickel-chromium alloys poses major problems in the etch-making of resistor structures and makes the removal of heat-treating oxides by pickling a costly and non-hazardous manufacturing step. Further, the copper-manganese-nickel-aluminum-magnesium alloy 29-5-1 is known, which has a resistivity of 1 (Q-mm 2 ) / m and thereby meets the demand for a low temperature coefficient of resistivity , However, this resistance alloy contributes a high thermal power to copper
20°C von +3 μν/Κ auf, woraus hohe Fehlerströme resultieren, welche diese Legierung für präzise messtechnische Anwendungen ungeeignet machen. Ferner ist zum Stand der Technik hinzuweisen auf DE 1 092 218 B, US 3 985 589, JP 62202038 A und EP 1 264 906 AI. 20 ° C of +3 μν / Κ, resulting in high fault currents, which make this alloy unsuitable for precise metrological applications. Furthermore, reference is made to DE 1 092 218 B, US Pat. No. 3,985,589, JP 62202038 A and EP 1 264 906 A1 to the state of the art.
Schließlich offenbart DE 1 033 423 B eine gattungsgemäße Wi- derstandslegierung . Nachteilig an dieser bekannten Widerstandslegierung ist jedoch die betragsmäßig relativ große Thermokraft gegen Kupfer von -2μν/Κ. Finally, DE 1 033 423 B discloses a generic resistance alloy. A disadvantage of this known resistance alloy, however, is the amount of relatively large thermo-power against copper of -2μν / Κ.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine ent- sprechend verbesserte Widerstandslegierung auf Kupfer-Mangan- Nickel-Basis zu schaffen, die einen möglichst hohen spezifischen elektrischen Widerstand, eine niedrige Thermokraft gegen Kupfer, einen niedrigen Temperaturkoeffizienten des elektrischen Widerstands und eine hohe zeitliche Konstanz des spezifischen elektrischen Widerstands aufweist und diese Eigenschaften mit den eingangs beschriebenen guten technologischen Eigenschaften (z.B. Verarbeitbarkeit ) der bekannten Kupfer-Mangan-Nickel-Legierungen kombiniert . Diese Aufgabe wird durch eine erfindungsgemäße Widerstandslegierung gemäß dem Hauptanspruch gelöst. The invention is therefore an object of the invention to provide a correspondingly improved copper-manganese-based resistor alloy having the highest possible specific electrical resistance, a low thermal power to copper, a low temperature coefficient of electrical resistance and a high temporal constancy has the specific electrical resistance and combines these properties with the good technological properties described above (eg processability) of the known copper-manganese-nickel alloys. This object is achieved by a resistance alloy according to the invention according to the main claim.
Die erfindungsgemäße Widerstandslegierung weist zunächst in Übereinstimmung mit den eingangs erwähnten bekannten Kupfer- Mangan-Nickel-Legierungen einen Kupfer-Bestandteil, einenThe resistance alloy according to the invention has first in accordance with the above-mentioned known copper-manganese-nickel alloys, a copper component, a
Mangan-Bestandteil und einen Nickel-Bestandteil auf. Die Erfindung zeichnet sich dadurch aus, dass der Mangan-Bestandteil einen Massenanteil von 23% bis 28% aufweist, während der Nickel-Bestandteil einen Massenanteil von 9% bis 13% hat. Es hat sich in der Praxis gezeigt, dass eine solche Widerstandslegierung auf Kupfer-Mangan-Nickel-Basis die vorstehend beschriebenen Anforderungen erfüllt. Die Massenanteile der verschiedenen Legierungsbestandteile sind hierbei so aufeinander abgestimmt, dass die erfindungsgemäße Widerstandslegierung eine niedrige Thermokraft gegenüber Kupfer aufweist, die bei 20°C kleiner ist als ±1 pV/K, ±0,5 μλ//Κ oder sogar keiner als ±0,3 μν/Κ. Manganese Ingredient and a Nickel Ingredient. The invention is characterized in that the manganese component has a mass fraction of 23% to 28%, while the nickel component has a mass fraction of 9% to 13%. It has been found in practice that such a copper-manganese-nickel-based resistance alloy satisfies the requirements described above. The mass fractions of the various alloy components are in this case coordinated so that the resistance alloy according to the invention has a low thermal power to copper, which is smaller at 20 ° C than ± 1 pV / K, ± 0.5 μλ // Κ or even as ± 0 , 3 μν / Κ.
Der Massenanteil des Mangan-Bestandteils kann beispielsweise im Bereich von 24%-27%, 25%-26%, 23%-25%, 23%-26%, 23%-27%, 24%-28%, 25%-28%, 26%-28% oder 27%-28% liegen. Besonders vor- teilhaft ist ein Massenanteil des Mangan-Bestandteils von 24, 5 -25, 5% . The mass fraction of the manganese component may be, for example, in the range of 24% -27%, 25% -26%, 23% -25%, 23% -26%, 23% -27%, 24% -28%, 25%. 28%, 26% -28% or 27% -28%. Particularly advantageous is a mass fraction of the manganese component of 24, 5 -25, 5%.
Der Massenanteil des Nickel-Bestandteils kann dagegen beispielsweise im Bereich von 9%-12%, 9%-ll%, 9%-10%, 10%-13%, 11%-13%, 12%-13%, 10%-12% oder 11%-12% liegen. By contrast, the mass fraction of the nickel component can be in the range of 9% -12%, 9% -ll%, 9% -10%, 10% -13%, 11% -13%, 12% -13%, 10%, for example. -12% or 11% -12%.
Darüber hinaus hat sich gezeigt, dass ein zusätzlicher Zinn- Bestandteil mit einem Massenanteil von bis zu 3% zur Verbesserung der Temperaturkonstanz des spezifischen elektrischen Widerstands beiträgt. Die erfindungsgemäße Widerstandslegierung weist deshalb vorzugsweise auch einen Zinn-Bestandteil mit einem Massenanteil von bis zu 3% auf. In addition, it has been found that an additional tin component with a mass fraction of up to 3% contributes to the improvement in the temperature stability of the specific electrical resistance. Therefore, the resistance alloy according to the invention preferably also has a tin component with a mass fraction of up to 3%.
Weiterhin hat sich in der Praxis gezeigt, dass ein zusätzli- eher Silizium-Bestandteil mit einem Massenanteil von bis zuFurthermore, it has been shown in practice that an additional rather silicon component with a mass fraction of up to
1% ebenfalls zur Verbesserung der Temperaturkonstanz des spezifischen elektrischen Widerstands der Widerstandslegierung beiträgt. Die erfindungsgemäße Widerstandslegierung kann deshalb zusätzlich zu dem Zinn-Bestandteil oder anstelle des Zinn-Bestandteils einen Silizium-Bestandteil mit einem Massenanteil von bis zu 1% aufweisen. 1% also contributes to the improvement in the temperature constancy of the resistivity of the resistive alloy. The resistance alloy according to the invention can therefore have a silicon component with a mass fraction of up to 1% in addition to the tin component or instead of the tin component.
Ferner hat sich in der Praxis gezeigt, dass ein zusätzlicher Magnesium-Bestandteil mit einem Massenanteil von bis zu 0,3% dazu beiträgt, eine Versprödung durch Aushärtungseffekte zu vermeiden. Die erfindungsgemäße Widerstandslegierung kann deshalb zusätzlich zu dem Zinn-Bestandteil und/oder dem Silizium-Bestandteil oder anstelle dieser Bestandteile auch einen Magnesium-Bestandteil mit einem Massenanteil von bis zu 0,3% aufweisen . Furthermore, it has been shown in practice that an additional magnesium component with a mass fraction of up to 0.3% contributes to avoid embrittlement due to curing effects. The resistance alloy according to the invention can therefore, in addition to the tin component and / or the silicon component or instead of these components, also have a magnesium component with a mass fraction of up to 0.3%.
Ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Widerstandslegierung ist Cu6s iioMn25 mit einem Massenanteil von Kupfer von 65%, einem Massenanteil von Nickel von 10% und einem Massenanteil von Mangan von 25%. A preferred embodiment of a resistance alloy according to the invention is Cu6s iioMn25 with a mass fraction of copper of 65%, a mass fraction of nickel of 10% and a mass fraction of manganese of 25%.
Ein anderes Ausführungsbeispiel einer erfindungsgemäßen Widerstandslegierung ist Cu64NiioMn25Sni mit einem Massenanteil von Kupfer von 64%, einem Massenanteil von Nickel von 10%, einem Massenanteil von Mangan von 25% und einem Massenanteil von Zinn von 1%. Der Massenanteil von Zinn kann jedoch auch kleiner sein, was dann durch einen entsprechend höheren Massenanteil von Kupfer ausgeglichen wird. Another embodiment of a resistance alloy according to the invention is Cu64NiioMn25Sni with a mass fraction of copper of 64%, a mass fraction of nickel of 10%, a mass fraction of manganese of 25% and a mass fraction of tin of 1%. However, the mass fraction of tin can also be smaller, which is then compensated by a correspondingly higher mass fraction of copper.
Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Widerstandslegierung ist Cu62 inMn27 mit einem Massenanteil von Kupfer von 62%, einem Massenanteil von Nickel von 11% und einem Massenanteil von Mangan von 27%. A further exemplary embodiment of a resistance alloy according to the invention is Cu62 in Mn27 with a mass fraction of copper of 62%, a mass fraction of nickel of 11% and a mass fraction of manganese of 27%.
Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Widerstandslegierung ist Cu6iNinMn27Sni mit einem Massenanteil von Kupfer von 61%, einem Massenanteil von Mangan von 27%, einem Massenanteil von Nickel von 11% und einem Massenanteil von Zinn von 1%. Hierbei kann der Massenanteil von Zinn auch geringer sein, was durch einen entsprechend höheren Massenan¬ teil von Kupfer ausgeglichen wird. Bei der erfindungsgemäßen Widerstandslegierung liegt der spezifische elektrische Widerstand vorzugsweise im Bereich von 0,5 (Q-mm2)/m bis 2 (Ω-mm2) /m. Weiterhin weist der spezifische elektrische Widerstand der erfindungsgemäßen Widerstandslegierung vorzugsweise eine hohe zeitliche Konstanz mit einer relativen Änderung von weniger als ±0,5% oder ±0,25% auf, insbesondere innerhalb eines Zeitraums von 3000 Stunden und einer Temperatur von mindestens +140°C, wobei die höhere Temperatur von mindestens +140°C den Alterungsprozess beschleunigt. Another exemplary embodiment of a resistance alloy according to the invention is Cu6iNinMn27Sni with a mass fraction of copper of 61%, a mass fraction of manganese of 27%, a mass fraction of nickel of 11% and a mass fraction of tin of 1%. Here, the mass fraction of tin may also be lower, which is offset by a correspondingly higher Massenan ¬ part of copper. In the resistance alloy of the present invention, the specific electrical resistance is preferably in the range of 0.5 (Q-mm 2 ) / m to 2 (Ω-mm 2 ) / m. Furthermore, the specific electrical resistance of the resistance alloy according to the invention preferably has a high temporal constancy with a relative change of less than ± 0.5% or ± 0.25%, in particular within a period of 3000 hours and a temperature of at least + 140 ° C. , where the higher temperature of at least + 140 ° C accelerates the aging process.
Darüber hinaus ist zu erwähnen, dass die erfindungsgemäße Widerstandslegierung vorzugsweise eine niedrige Thermokraft ge- genüber Kupfer aufweist, die bei 20°C vorzugsweise kleiner ist als ±1 μν/Κ, ±0,5 μν/Κ oder sogar keiner als ±0,3 pV/K. In addition, it should be mentioned that the resistance alloy according to the invention preferably has a low thermoelectric force with respect to copper, which is preferably less than ± 1 μν / Κ, ± 0.5 μν / Κ or even no than ± 0.3 at 20 ° C. pV / K.
Weiterhin ist der spezifische elektrische Widerstand relativ temperaturkonstant mit einem niedrigen Temperaturkoeffizien- ten von vorzugsweise weniger als ±50-10~6 K"1, ±35·10-6 K_1,Furthermore, the specific electrical resistance is relatively constant in temperature with a low temperature coefficient of preferably less than ± 50-10 ~ 6 K -1 , ± 35 · 10 -6 K _1 ,
±30·10~6 K-1 oder ±20·10-6 K-1, insbesondere in einem Temperaturbereich von +20°C bis +60°C. ± 30 × 10 -6 K -1 or ± 20 × 10 -6 K -1, in particular in a temperature range from + 20 ° C to + 60 ° C.
Zu den elektrischen Eigenschaften der erfindungsgemäßen Wi- derstandslegierung ist ferner zu erwähnen, dass die Widerstandslegierung eine Widerstands-Temperaturkurve aufweist, welche die relative Widerstandsänderung in Abhängigkeit von der Temperatur wiedergibt, wobei die Widerstands-Temperaturkurve einen zweiten Nulldurchgang aufweist, der vorzugsweise bei einer Temperatur von mehr als +20°C, +30°C oder +40°C und/oder bei einer Temperatur von weniger als +110°C, +100°C oder +90°C erfolgt. Zu den mechanischen Eigenschaften der erfindungsgemäßen Widerstandslegierung ist eine mechanische Zugfestigkeit von mindestens 500 MPa, 550 MPa oder 580 MPa zu erwähnen. Darüber hinaus weist die erfindungsgemäße Widerstandslegierung vorzugsweise eine Streckgrenze von mindestens 150 MPa, 200 MPa oder 260 MPa auf, während die Bruchdehnung vorzugsweise größer ist als 30%, 35%, 40% oder sogar 45%. Zu den technologischen Eigenschaften der erfindungsgemäßenTo the electrical properties of the resistance alloy according to the invention is also to be mentioned that the resistance alloy has a resistance-temperature curve representing the relative resistance change as a function of the temperature, wherein the resistance-temperature curve has a second zero crossing, preferably at a temperature of more than + 20 ° C, + 30 ° C or + 40 ° C and / or at a temperature of less than + 110 ° C, + 100 ° C or + 90 ° C. The mechanical properties of the resistance alloy according to the invention include a mechanical tensile strength of at least 500 MPa, 550 MPa or 580 MPa. Moreover, the resistance alloy according to the invention preferably has a yield strength of at least 150 MPa, 200 MPa or 260 MPa, while the elongation at break is preferably greater than 30%, 35%, 40% or even 45%. To the technological properties of the invention
Widerstandslegierung ist zu erwähnen, dass die Widerstandslegierung vorzugsweise weichlötfähig und/oder hartlötfähig ist. Resistance alloy is to be mentioned that the resistance alloy is preferably soft solderable and / or brazeable.
Darüber hinaus ist die erfindungsgemäße Widerstandslegierung vorzugsweise sehr gut umformbar, was sich beim Drahtziehen in einem logarithmischen Umformgrad von mindestens φ=-4,β zeigt. In addition, the resistance alloy according to the invention is preferably very good formability, which is shown in the wire drawing in a logarithmic degree of deformation of at least φ = -4, β.
Die erfindungsgemäße Widerstandslegierung kann in verschiedenen Lieferformen hergestellt werden, wie beispielsweise als Draht (z.B. Runddraht, Flachdraht), als Band, als Blech, als Stab, als Rohr oder als Folie. Die Erfindung ist jedoch hinsichtlich der Lieferformen nicht auf die vorstehend genannten Lieferformen beschränkt. Darüber hinaus umfasst die Erfindung auch ein elektrisches bzw. elektronisches Bauelement mit einem Widerstandselement aus der erfindungsgemäßen Widerstandslegierung. Beispielsweise kann es sich hierbei um einen Widerstand handeln, insbesondere um einen niederohmigen Strommesswiderstand, wie er an sich beispielsweise aus EP 0 605 800 AI bekannt ist. The resistance alloy according to the invention can be produced in various forms of delivery, for example as a wire (for example round wire, flat wire), as a band, as a sheet, as a rod, as a tube or as a foil. However, the invention is not limited in terms of forms of delivery to the above-mentioned forms of delivery. In addition, the invention also includes an electrical or electronic component with a resistance element of the resistance alloy according to the invention. For example, this may be a resistor, in particular a low-impedance current measuring resistor, as known per se from EP 0 605 800 A1, for example.
Schließlich umfasst die Erfindung auch ein entsprechendes Herstellungsverfahren, wie es sich bereits aus der vorstehen- den Beschreibung der erfindungsgemäßen Widerstandslegierung ergibt . Finally, the invention also encompasses a corresponding production method, as already described in the foregoing. gives the description of the resistance alloy according to the invention.
Im Rahmen des erfindungsgemäßen Herstellungsverfahrens kann die Widerstandslegierung einem künstlichen thermischen Alte- rungsprozess unterworfen werden, wobei die Widerstandslegierung von einer Ausgangstemperatur auf eine Alterungstemperatur erwärmt wird. Dieser Prozess kann im Rahmen des Alterungsprozesses mehrfach wiederholt werden, wobei die Widerstandslegierung mehrfach periodisch auf die Alterungstemperatur erwärmt und wieder auf die Ausgangstemperatur abgekühlt wird. Die Alterungstemperatur kann beispielsweise im Bereich von +80°C bis +300°C liegen, während die Ausgangstemperatur vorzugsweise kleiner ist als +30°C oder +20°C. In the context of the manufacturing method according to the invention, the resistance alloy can be subjected to an artificial thermal aging process, wherein the resistance alloy is heated from an initial temperature to an aging temperature. This process can be repeated several times as part of the aging process, wherein the resistance alloy is repeatedly heated periodically to the aging temperature and cooled back to the starting temperature. The aging temperature may be, for example, in the range of + 80 ° C to + 300 ° C, while the starting temperature is preferably less than + 30 ° C or + 20 ° C.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusam¬ men mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen: Other advantageous developments of the invention are characterized in the dependent claims or are described below together ¬ together with the description of the preferred embodiments of the invention with reference to the figures. Show it:
Figur 1: ein Phasendiagramm für eine Kupfer-Mangan-Nickel- Legierung, wobei der erfindungsgemäße Bereich in dem Phasendiagramm eingetragen ist, FIG. 1 shows a phase diagram for a copper-manganese-nickel alloy, wherein the region according to the invention is plotted in the phase diagram;
Figur 2: eine exemplarische Bauform eines erfindungsgemäßen Figure 2: an exemplary design of an inventive
Strommesswiderstands mit einem Widerstandselement aus der erfindungsgemäßen Widerstandslegierung,  Current sense resistor with a resistance element of the resistance alloy according to the invention,
Figur 3: ein Diagramm zur Verdeutlichung der Temperaturabhängigkeit des spezifischen elektrischen Widerstands bei verschiedenen Ausführungsbeispielen der erfindungsgemäßen Widerstandslegierung sowie Figur 4: ein Diagramm zur Verdeutlichung der Langzeitstabilität der erfindungsgemäßen Widerstandslegierung. FIG. 3 shows a diagram for clarifying the temperature dependence of the specific electrical resistance in various exemplary embodiments of the resistance alloy according to the invention and FIG FIG. 4 shows a diagram to illustrate the long-term stability of the resistance alloy according to the invention.
Figur 1 zeigt ein Phasendiagramm einer Kupfer-Mangan-Nickel- Legierung, wobei der Massenanteil von Kupfer auf der Achse links oben angegeben ist, während der Massenanteil von Nickel auf der Achse rechts oben wiedergegeben ist. Der Massenanteil von Mangan findet sich dagegen auf der unteren Achse. Zum einen zeigt das Phasendiagramm in schraffierter Form ein Gebiet 1, in dem die Widerstandslegierung zu Aushärtungen neigt . Figure 1 shows a phase diagram of a copper-manganese-nickel alloy, wherein the mass fraction of copper is indicated on the axis top left, while the mass fraction of nickel on the axis top right is reproduced. The mass fraction of manganese, however, is found on the lower axis. On the one hand the phase diagram shows in hatched form a region 1 in which the resistance alloy tends to harden.
Zum anderen zeigt das Phasendiagramm eine Linie 2, die mit a=0 bezeichnet ist, wobei der Temperaturkoeffizient der Widerstandslegierung auf dieser Linie gleich Null ist, d.h. die Widerstandslegierung weist auf dieser Linie einen spezifischen elektrischen Widerstand auf, der unabhängig von der Temperatur ist. On the other hand, the phase diagram shows a line 2 labeled a = 0, where the temperature coefficient of the resistance alloy on that line is zero, i. The resistance alloy has a specific electrical resistance in this line, which is independent of the temperature.
Schließlich zeigt das Phasendiagramm noch einen Bereich 3, der die erfindungsgemäße Widerstandslegierung kennzeichnet, wobei der Massenanteil von Mangan in dem Bereich 3 zwischen 23% und 28% liegt, während der Massenanteil von Nickel im Be- reich 3 zwischen 9% und 13% liegt. Finally, the phase diagram also shows a region 3 which characterizes the resistance alloy according to the invention, wherein the mass fraction of manganese in the region 3 is between 23% and 28%, while the mass fraction of nickel in the region 3 lies between 9% and 13%.
Figur 2 zeigt eine vereinfachte perspektivische Ansicht eines erfindungsgemäßen Strommesswiderstands 4, wie er an sich bereits aus EP 0 605 800 AI bekannt ist, so dass zur Vermeidung von Wiederholungen auf diese Patentanmeldung verwiesen wird, deren Inhalt der vorliegenden Beschreibung in vollem Umfang zuzurechnen ist. Der Strommesswiderstand 4 besteht im Wesentlichen aus zwei plattenförmigen Anschlussteilen 5, 6 aus Kupfer und einem dazwischen angeordneten Widerstandselement 7 aus der erfindungsgemäßen Widerstandslegierung, wobei es sich beispiels- weise um C 65 iioM 25 handeln kann. Figure 2 shows a simplified perspective view of a current sense resistor 4 according to the invention, as it is already known from EP 0 605 800 AI, so reference is made to avoid repetition of this patent application, the contents of the present description is fully attributable. The current measuring resistor 4 essentially consists of two plate-shaped connecting parts 5, 6 of copper and an interposed resistance element 7 from the resistance of the invention alloy, it can be, as is beispiels- C 65 iioM 2. 5
Figur 3 zeigt den temperaturabhängigen Verlauf der relativen Widerstandsänderung DR/R20 in Abhängigkeit von der Temperatur. Daraus ist auch ersichtlich, dass die verschiedenen bei- spielhaften Widerstandslegierungen jeweils einen zweitenFIG. 3 shows the temperature-dependent profile of the relative resistance change DR / R20 as a function of the temperature. It can also be seen that the various exemplary resistance alloys each have a second
Nulldurchgang 8, 9 bzw. 10 aufweisen, wobei der Nulldurchgang 8 ungefähr bei einer Temperatur erfolgt, während der Nulldurchgang 9 ungefähr bei einer Temperatur Zero crossing 8, 9 and 10, wherein the zero crossing 8 approximately at a temperature takes place while the zero crossing 9 approximately at a temperature
erfolgt. Der Nulldurchgang 10 erfolgt dagegen ungefähr bei einer Temperatur von he follows. The zero crossing 10, however, takes place approximately at a temperature of
Schließlich zeigt Figur 4 die Langzeitstabilität der erfindungsgemäßen Widerstandslegierung. Daraus ist ersichtlich, dass die relative Widerstandsänderung dR über einen Zeitraum von 3000 Stunden wesentlich kleiner ist als 0,25%. Finally, FIG. 4 shows the long-term stability of the resistance alloy according to the invention. It can be seen that the relative change in resistance dR over a period of 3000 hours is substantially less than 0.25%.
Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die eben- falls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen. Darüber hinaus beansprucht die Erfindung auch Schutz für den Gegenstand und die Merkmale der Unteransprüche unabhängig von den in Bezug genommenen Ansprüchen, d.h. beispielsweise auch ohne das kennzeichnende Merk- mal des Hauptanspruchs. Bezugs zeichenliste : The invention is not limited to the preferred embodiments described above. Rather, a multiplicity of variants and modifications is possible, which likewise make use of the concept of the invention and therefore fall within the scope of protection. Moreover, the invention also claims protection for the subject matter and the features of the dependent claims independently of the claims referred to, ie, for example, without the characterizing feature of the main claim. Reference sign list:
1 Gebiet der Aushärtung 1 area of curing
2 Linie mit a=0 (Temperaturkonstanz) 2 line with a = 0 (temperature constancy)
3 Erfindungsgemäßer Legierungsbereich3 Inventive alloy area
4 Strommesswiderstand 4 current measuring resistor
5 Anschlussteil  5 connection part
6 Anschlussteil  6 connection part
7 Widerstandselement  7 resistance element
8 Zweiter Nulldurchgang  8 Second zero crossing
9 Zweiter Nulldurchgang  9 Second zero crossing
10 Zweiter Nulldurchgang  10 Second zero crossing

Claims

ANSPRÜCHE
1. Widerstandslegierung (3) für einen elektrischen Widerstand (4), insbesondere für einen niederohmigen Strommesswi¬ derstand ( 4 ) , mit 1. Resistance alloy (3) for an electrical resistor (4), in particular for a low-Strommesswi ¬ resistor (4), with
a) einem Kupfer-Bestandteil, a) a copper component,
b) einem Mangan-Bestandteil mit einem Massenanteil von 23% bis 28%, und b) a manganese component with a mass fraction of 23% to 28%, and
c) einem Nickel-Bestandteil mit einem Massenanteil von 9% bis 13%, c) a nickel component with a mass fraction of 9% to 13%,
dadurch gekennzeichnet, characterized,
d) dass die Massenanteile des Mangan-Bestandteils und des Nickel-Bestandteils so ausgewählt sind, dass die Widerstandslegierung (3) eine niedrige Thermokraft gegenüber Kupfer bei 20 °C von weniger als ±1 μν/Κ aufweist. d) that the mass fractions of the manganese constituent and the nickel constituent are selected so that the resistance alloy (3) has a low thermal power to copper at 20 ° C of less than ± 1 μν / Κ.
2. Widerstandslegierung (3) nach Anspruch 1, 2. Resistance alloy (3) according to claim 1,
gekennzeichnet durch marked by
a) einen Zinn-Bestandteil mit einem Massenanteil von bis zu 3%, insbesondere im Wesentlichen 1%, insbesondere zur Verbesserung der Temperaturkonstanz des spezifischen elektrischen Widerstands der Widerstandslegierung ( 3 ) , und/oder a) a tin component with a mass fraction of up to 3%, in particular substantially 1%, in particular for improving the temperature constancy of the electrical resistivity of the resistance alloy (3), and / or
b) einen Silizium-Bestandteil mit einem Massenanteil von bis zu 1%, insbesondere zur Verbesserung der Tempera¬ turkonstanz des spezifischen elektrischen Widerstands der Widerstandslegierung (3), und/oder b) a silicon component with a mass fraction of up to 1%, in particular for improving the Tempera ¬ turkonstanz the resistivity of the resistive alloy (3), and / or
c) einen Magnesium-Bestandteil mit einem Massenanteil von bis zu 0,3%, insbesondere zur Vermeidung einer Ver- sprödung durch Aushärtungseffekte. c) a magnesium component with a mass fraction of up to 0.3%, in particular to avoid embrittlement by curing effects.
3. Widerstandslegierung (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, 3. Resistance alloy (3) according to one of the preceding claims, characterized
a) dass der Massenanteil des Kupfer-Bestandteils im Wesentlichen 65% und der Massenanteil des Nickel-Bestandteils im Wesentlichen 10% und der Massenanteil des Mangan-Bestandteils im Wesentlichen 25% beträgt, oder b) dass der Massenanteil des Nickel-Bestandteils im Wesentlichen 10% und der Massenanteil des Mangan- Bestandteils im Wesentlichen 25% und der Massenanteil des Zinn-Bestandteils bis zu 1% beträgt und der Massenanteil des Kupfer-Bestandteils im Wesentlichen den Rest ausmacht, oder a) that the mass fraction of the copper constituent is substantially 65% and the mass fraction of the nickel constituent substantially 10% and the mass fraction of the manganese constituent substantially 25%, or b) that the mass fraction of the nickel constituent substantially 10 % and the mass fraction of the manganese component is substantially 25% and the mass fraction of the tin component is up to 1% and the mass fraction of the copper constituent essentially constitutes the balance, or
c) dass der Massenanteil des Kupfer-Bestandteils im Wesentlichen 62% und der Massenanteil des Nickel-Bestandteils im Wesentlichen 11% und der Massenanteil des Mangan-Bestandteils im Wesentlichen 27% beträgt, oder d) dass der Massenanteil des Nickel-Bestandteils im Wesentlichen 11% und der Massenanteil des Mangan-Bestandteils im Wesentlichen 27% und der Massenanteil des Zinn-Bestandteils bis zu 1% beträgt und der Massenanteil des Kupfer-Bestandteils im Wesentlichen den Rest ausmacht . c) that the mass fraction of the copper constituent is substantially 62% and the mass fraction of the nickel constituent substantially 11% and the mass fraction of the manganese constituent substantially 27%, or d) that the mass fraction of the nickel constituent is substantially 11 % and the mass fraction of the manganese component is substantially 27% and the mass fraction of the tin component is up to 1% and the mass fraction of the copper constituent essentially constitutes the balance.
4. Widerstandslegierung (3) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch 4. resistance alloy (3) according to one of the preceding claims, characterized by
a) einen spezifischen elektrischen Widerstand, der größer als 0,5 (Q-mm2)/m, 0,6 (Ω-mm2) /m, 0,7 (Ω-mm2) /m oder 0,8 (Ω-rnm2) /m und/oder kleiner als 2,0 (Q-mm2)/m, a) an electrical resistivity greater than 0.5 (Q-mm 2 ) / m, 0.6 (Ω-mm 2 ) / m, 0.7 (Ω-mm 2 ) / m or 0.8 ( Ω-rnm 2 ) / m and / or less than 2.0 (Q-mm 2 ) / m,
1,5 (Q-mm2)/m, 1,2 (Ω-mm2) /m oder 1 (Ω·ηιιη2)/:ηη ist, und/oder Is 1.5 (Q-mm 2 ) / m, 1.2 (Ω-mm 2 ) / m or 1 (Ω · ηιιη 2 ) /: ηη, and / or
b) einen spezifischen elektrischen Widerstand mit einer hohen zeitlichen Konstanz mit einer relativen Änderung von weniger als ±0,5% oder ±0,25%, insbesondere inner- halb eines Zeitraums von 3000 Stunden und einer Temperatur von mindestens +140°C, und/oder b) a resistivity with a high temporal constancy with a relative change of less than ± 0,5% or ± 0,25%, especially internal half a period of 3000 hours and a temperature of at least + 140 ° C, and / or
c) eine niedrige Thermokraft gegenüber Kupfer bei 20 °C von weniger als ±0,5μιν/Κ oder ±0,3μν/Κ, und/oder c) a low thermal power to copper at 20 ° C of less than ± 0.5μιν / Κ or ± 0.3μν / Κ, and / or
d) einen spezifischen elektrischen Widerstand mit einem niedrigen Temperaturkoeffizienten von weniger als d) a specific electrical resistance with a low temperature coefficient of less than
±50·10"6 K"1, +35-10'6 K"1, ±30·10-6 K_1 oder ±20-10"6 K_1 , insbesondere in einem Temperaturbereich von +20 °C bis +60°C, und/oder ± 50 · 10 "6 K " 1 , + 35-10 '6 K "1 , ± 30 · 10- 6 K _1 or ± 20-10 " 6 K _1 , especially in a temperature range from +20 ° C to +60 ° C, and / or
e) eine Widerstands-Temperaturkurve, welche die relative Widerstandsänderung (DR/R20) in Abhängigkeit von der Temperatur wiedergibt, wobei die Widerstands- Temperaturkurve einen zweiten Nulldurchgang (8, 9, 10) aufweist, der bei einer Temperatur von mehr als +20°C, +30°C oder +40°C und/oder bei weniger als +110°C, e) a resistance-temperature curve representing the relative resistance change (DR / R20) as a function of the temperature, wherein the resistance-temperature curve has a second zero crossing (8, 9, 10) at a temperature of more than + 20 ° C, + 30 ° C or + 40 ° C and / or less than + 110 ° C,
+100°C oder +90°C erfolgt.  + 100 ° C or + 90 ° C takes place.
5. Widerstandslegierung (3) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch 5. resistance alloy (3) according to one of the preceding claims, characterized by
a) eine mechanische Zugfestigkeit von mindestens 500 MPa, a) a mechanical tensile strength of at least 500 MPa,
550 MPa oder 580 MPa, und/oder  550 MPa or 580 MPa, and / or
b) eine Streckgrenze von mindestens 150 MPa, 200 MPa oder b) a yield strength of at least 150 MPa, 200 MPa or
260 MPa, und/oder  260 MPa, and / or
c) eine Bruchdehnung von mindestens 30%, 35%, 40% oder c) an elongation at break of at least 30%, 35%, 40% or
45%.  45%.
6. Widerstandslegierung (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , 6. Resistance alloy (3) according to one of the preceding claims, characterized in that
a) dass die Widerstandslegierung (3) weichlötfähig a) that the resistance alloy (3) soft solderable
und/oder hartlötfähig ist, und/oder  and / or brazeable, and / or
b) dass die Widerstandslegierung (3) so gut umformbar ist, dass sie beim Drahtziehen einen logarithmischen Umformgrad von mindestens φ=-4,β erreicht. b) that the resistance alloy (3) is so well formed that it reaches a logarithmic degree of deformation of at least φ = -4, β during wire drawing.
7. Widerstandslegierung (3) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine der folgende Lieferformen : 7. Resistance alloy (3) according to one of the preceding claims, characterized by one of the following delivery forms:
a) als Draht, insbesondere als Runddraht oder als Flach¬ draht, a) as a wire, in particular as a round wire or flat wire ¬,
b) als Band, b) as a band,
c) als Blech, c) as a sheet,
d) als Stab, d) as a rod,
e) als Rohr oder e) as a pipe or
f) als Folie. f) as a film.
8. Bauelement (4), insbesondere Widerstand (4), insbesondere niederohmiger Strommesswiderstand (4), mit einem Widerstandselement aus einer Widerstandslegierung (3) nach einem der vorhergehenden Ansprüche. 8. component (4), in particular resistor (4), in particular low-impedance current measuring resistor (4), with a resistance element made of a resistance alloy (3) according to one of the preceding claims.
9. Herstellungsverfahren zur Herstellung einer Widerstandslegierung (3) für einen elektrischen Widerstand (4), insbesondere für einen niederohmigen Strommesswiderstand (4), insbesondere zur Herstellung einer Widerstandslegierung (3) nach einem der Ansprüche 1 bis 7, mit den folgenden Schritten : 9. A manufacturing method for producing a resistance alloy (3) for an electrical resistance (4), in particular for a low-impedance current measuring resistor (4), in particular for producing a resistance alloy (3) according to one of claims 1 to 7, comprising the following steps:
a) ein Kupfer-Bestandteil, a) a copper component,
b) ein Mangan-Bestandteil mit einem Massenanteil von 23% bis 28% und b) a manganese component with a mass fraction of 23% to 28% and
c) ein Nickel-Bestandteil mit einem Massenanteil von 9% bis 13% werden zu der Widerstandslegierung (3) legiert, dadurch gekennzeichnet, c) a nickel component with a mass fraction of 9% to 13% are alloyed to the resistance alloy (3), characterized
d) dass die Massenanteile des Mangan-Bestandteils und des Nickel-Bestandteils so ausgewählt werden, dass die Wi¬ derstandslegierung (3) eine niedrige Thermokraft gegenüber Kupfer bei 20°C von weniger als ±1 μν/Κ aufweist. d) that the mass fractions of the manganese component and the nickel component are selected so that the Wi ¬ resistance alloy (3) has a low thermal energy to copper at 20 ° C of less than ± 1 μν / Κ.
10. Herstellungsverfahren nach Anspruch 9, 10. Manufacturing method according to claim 9,
dadurch gekennzeichnet, characterized,
a) dass die Widerstandslegierung (3) einem künstlichen a) that the resistance alloy (3) is an artificial one
thermischen Alterungsprozess unterworfen wird, wobei die Widerstandslegierung (3) von einer Ausgangstemperatur auf eine Alterungstemperatur erwärmt wird, und/oder b) dass die Widerstandslegierung (3) im Rahmen des Alte¬ rungsprozesses mehrfach periodisch auf die Alterungstemperatur erwärmt und wieder auf die Ausgangstemperatur abgekühlt wird, und/oder thermal aging process is subjected, wherein the resistance alloy (3) is heated from an initial temperature to an aging temperature, and / or b) that the resistance alloy (3) is repeatedly periodically heated to the aging temperature and cooled back to the starting temperature as part of the aging ¬ process , and or
c) dass die Alterungstemperatur größer als +80°C, +100°C, c) that the aging temperature is greater than + 80 ° C, + 100 ° C,
+120°C, und/oder kleiner als +300°C, +200°C oder +150°C ist, und/oder  + 120 ° C, and / or less than + 300 ° C, + 200 ° C or + 150 ° C, and / or
d) dass die Ausgangstemperatur kleiner als +30 °C oder d) that the outlet temperature is less than +30 ° C or
+20°C ist.  + 20 ° C is.
EP14734392.5A 2013-06-19 2014-06-18 Resistor alloy, component produced therefrom and production method therefor Active EP3011069B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013010301.0A DE102013010301A1 (en) 2013-06-19 2013-06-19 Resistance alloy, component manufactured therefrom and manufacturing method therefor
PCT/EP2014/001669 WO2014202221A1 (en) 2013-06-19 2014-06-18 Resistor alloy, component produced therefrom and production method therefor

Publications (2)

Publication Number Publication Date
EP3011069A1 true EP3011069A1 (en) 2016-04-27
EP3011069B1 EP3011069B1 (en) 2019-04-03

Family

ID=51059406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14734392.5A Active EP3011069B1 (en) 2013-06-19 2014-06-18 Resistor alloy, component produced therefrom and production method therefor

Country Status (8)

Country Link
US (2) US20160115570A1 (en)
EP (1) EP3011069B1 (en)
JP (1) JP6467408B2 (en)
KR (1) KR102194267B1 (en)
CN (1) CN105308204B (en)
DE (1) DE102013010301A1 (en)
ES (1) ES2733024T3 (en)
WO (1) WO2014202221A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201700578WA (en) * 2014-09-08 2017-02-27 Agency Science Tech & Res Reference clock signal generators and methods for generating a reference clock signal
JP2017053015A (en) * 2015-09-11 2017-03-16 日立金属株式会社 Resistive material
CN105603252B (en) * 2016-01-14 2017-12-08 厦门大学 It is a kind of based on the corronil of spinodal decomposition as strengthen constant resistivity alloy application
CN105648267A (en) * 2016-03-30 2016-06-08 广东合科泰实业有限公司 Low-temperature-coefficient resistor body, preparation method of low-temperature-coefficient resistor body and low-temperature-coefficient resistor with low-temperature-coefficient resistor body
CN114959355A (en) * 2017-01-10 2022-08-30 古河电气工业株式会社 Copper alloy material for resistor material, method for producing same, and resistor
CN108346496B (en) * 2018-05-18 2019-11-12 常熟市夸克电阻合金有限公司 A kind of PTC thermistor alloy wire
JP7194145B2 (en) * 2020-04-01 2022-12-21 Koa株式会社 Alloys for resistors and use of alloys for resistors in resistors
JP7430121B2 (en) * 2020-08-07 2024-02-09 Koa株式会社 Resistance alloys used in shunt resistors, use of resistance alloys in shunt resistors, and shunt resistors using resistance alloys
JP7214930B1 (en) * 2021-06-28 2023-01-30 古河電気工業株式会社 Copper alloy material, resistance material for resistor using the same, and resistor
WO2023276905A1 (en) 2021-06-28 2023-01-05 古河電気工業株式会社 Copper alloy material, resistive material for resistors using same, and resistor
CN117120645A (en) 2021-06-28 2023-11-24 古河电气工业株式会社 Copper alloy material, resistor material for resistor using same, and resistor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1858415A (en) * 1924-09-23 1932-05-17 Westinghouse Electric & Mfg Co Alloy
DE1092218B (en) * 1952-12-20 1960-11-03 Isabellen Huette Heusler Kom G Process for the production of hardened objects from copper-nickel-manganese-zinc alloys
DE1033423B (en) * 1953-12-29 1958-07-03 Isabellen Huette Heusler Kom G Use of wires or bands made of copper-manganese-nickel alloys as electrical resistance material
US3451808A (en) * 1966-12-06 1969-06-24 Isabellen Hutte Heusler Kg Copper-manganese alloys and articles made therefrom
US3985589A (en) * 1974-11-01 1976-10-12 Olin Corporation Processing copper base alloys
JPS60255425A (en) * 1984-05-31 1985-12-17 ヤマハ株式会社 Decorative material
JPH0768597B2 (en) * 1986-02-28 1995-07-26 株式会社東芝 Non-magnetic spring material and manufacturing method thereof
JP2989390B2 (en) * 1992-09-28 1999-12-13 三洋電機株式会社 Hybrid integrated circuit device
JPH06112614A (en) * 1992-09-28 1994-04-22 Sanyo Electric Co Ltd Hybrid integrated circuit device
DE4243349A1 (en) 1992-12-21 1994-06-30 Heusler Isabellenhuette Manufacture of resistors from composite material
ATE298007T1 (en) * 2001-04-19 2005-07-15 Wieland Werke Ag USE OF A SPRAY COMPACTED COPPER-NICKEL-MANGANESE ALLOY
JP2004136299A (en) * 2002-10-16 2004-05-13 Sumitomo Special Metals Co Ltd Brazing filler metal, clad material and brazed structural body
JP4974544B2 (en) * 2005-02-25 2012-07-11 コーア株式会社 Alloy material for resistance, resistor and method for manufacturing resistor
JP2007119874A (en) * 2005-10-31 2007-05-17 Bridgestone Corp Copper based alloy and method for producing copper based alloy
JP2009242895A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd High-strength copper alloy of excellent bending processability
TWI348716B (en) * 2008-08-13 2011-09-11 Cyntec Co Ltd Resistive component and making method thereof
JP5445329B2 (en) * 2010-05-25 2014-03-19 株式会社デンソー Power semiconductor device

Also Published As

Publication number Publication date
KR20160021195A (en) 2016-02-24
US20200224293A1 (en) 2020-07-16
KR102194267B1 (en) 2020-12-22
US20160115570A1 (en) 2016-04-28
JP2016528376A (en) 2016-09-15
WO2014202221A1 (en) 2014-12-24
ES2733024T3 (en) 2019-11-27
CN105308204A (en) 2016-02-03
DE102013010301A1 (en) 2014-12-24
CN105308204B (en) 2018-12-04
JP6467408B2 (en) 2019-02-13
EP3011069B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
EP3011069A1 (en) Resistor alloy, component produced therefrom and production method therefor
DE2516749C3 (en) Process for the production of metal bodies with repeatedly reversible shape change capability
DE602005002898T2 (en) Copper alloy and process for its production
DE60101026T2 (en) Copper alloy containing silver
DE112010001811B4 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
EP2162558B1 (en) Iron-nickel-chromium-silicon alloy
DE10147968B4 (en) Copper alloy of high mechanical strength
DE112011100481T5 (en) Soft copper alloy brazing material, soft copper alloy braided wire, soft copper alloy braided foil, soft copper alloy braided wire, and a cable using same, coaxial cable and mixed wire
EP2115179B1 (en) Iron-nickel-chromium- silicon alloy
DE3520407C2 (en) Process for the thermomechanical treatment of copper-beryllium alloys containing cobalt
EP3210214B1 (en) Electric component, method for producing the electric component, and composite material strip for producing the component
DE112009000731T5 (en) Cu-Ni-Si-Co-Cr system alloy for electronic materials
DE102020106433A1 (en) Nickel alloy with good corrosion resistance and high tensile strength as well as a process for the production of semi-finished products
DE112021002136T5 (en) Alloy for a resistor and use of a resistor alloy in a resistor
EP1712648A2 (en) Copper-zinc alloy and use thereof
DE112012002864T5 (en) Electrode material for thermal fuses and manufacturing method thereof as well as thermal fuse, which uses the electrode material
DE10157749B4 (en) Iron-chromium-aluminum alloy
EP3529389B1 (en) Copper-zinc alloy
EP2989224B1 (en) Cast copper alloy for asynchronous machines
CH669211A5 (en) COPPER-CHROME-TITANIUM-SILICONE ALLOY AND THEIR USE.
DE112019000657T5 (en) COPPER ALLOY PLATE AND METHOD FOR MANUFACTURING THE SAME
DE3522118A1 (en) METHOD FOR PRODUCING COPPER BERYLLIUM ALLOY MATERIAL AND PARTS PRODUCED THEREOF
DE102020004695A1 (en) ELECTRICAL CONTACT MATERIAL, CONNECTOR FITTING, CONNECTOR AND WIRING HARNESS
EP2243849B1 (en) Manganese and magnesium rich aluminium strip
DE112021004216T5 (en) Resistor alloy for use in a shunt resistor, Use of a resistor alloy in a shunt resistor, and Shunt resistor with a resistor alloy

Legal Events

Date Code Title Description
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20160426

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181030

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20190222

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1115824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011319

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2733024

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011319

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190618

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1115824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 10

Ref country code: DE

Payment date: 20230607

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230630

Year of fee payment: 10

Ref country code: GB

Payment date: 20230622

Year of fee payment: 10

Ref country code: ES

Payment date: 20230719

Year of fee payment: 10