JPH0768597B2 - Non-magnetic spring material and manufacturing method thereof - Google Patents

Non-magnetic spring material and manufacturing method thereof

Info

Publication number
JPH0768597B2
JPH0768597B2 JP61041942A JP4194286A JPH0768597B2 JP H0768597 B2 JPH0768597 B2 JP H0768597B2 JP 61041942 A JP61041942 A JP 61041942A JP 4194286 A JP4194286 A JP 4194286A JP H0768597 B2 JPH0768597 B2 JP H0768597B2
Authority
JP
Japan
Prior art keywords
element group
spring
spring material
limit value
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61041942A
Other languages
Japanese (ja)
Other versions
JPS62202038A (en
Inventor
和美 中島
光雄 河合
建一郎 百瀬
典章 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61041942A priority Critical patent/JPH0768597B2/en
Publication of JPS62202038A publication Critical patent/JPS62202038A/en
Publication of JPH0768597B2 publication Critical patent/JPH0768597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は非磁性でかつ優れたバネ性をもつバネ材およ
びその製造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a spring material that is non-magnetic and has excellent spring properties, and a method for manufacturing the spring material.

〔発明の技術的背景およびその問題点〕[Technical background of the invention and its problems]

磁気記録関連機器をはじめとし、磁場の存在下ではしば
しば非磁性でかつ優れたネ性を有する高強度バネが要求
される。たとえば磁気へッドの製造においては磁気ヘッ
ドのケーシング工程で第1図に示したようにコア
(1)、巻線コイル(3)、端子(5)、樹脂部
(6)、コアホルダー(7)等からなる磁気ヘッドをシ
ールドケース(4)に固定し、かつ寸法精度を維持する
ために磁気ヘッド押えバネ(2)が使用されている。
In the presence of a magnetic field, including magnetic recording related equipment, a high-strength spring that is non-magnetic and has excellent nematicity is often required. For example, in the manufacture of a magnetic head, the core (1), the winding coil (3), the terminal (5), the resin portion (6), the core holder (7) in the casing process of the magnetic head as shown in FIG. The magnetic head pressing spring (2) is used to fix the magnetic head composed of the above) to the shield case (4) and to maintain the dimensional accuracy.

この磁気ヘッド押えバネには、これまでリン青銅やベリ
リウム銅が使用さているが最近は磁気ヘッドの高性能化
が進み製造技術が一段と困難になってきており、この磁
気ヘッド押えバネにもより寸法精度を良くすることを目
的にバネ性の高いものが要求されてきている。この観点
からベリリウム銅はよい材料といえるがその製造工程に
おいて人体に有害なベリリウムの蒸気やベリリウムの酸
化物などを発生すること、及びその製造工程が煩雑であ
ることから改善が望まれている。
Phosphor bronze and beryllium copper have been used for this magnetic head presser spring, but recently, as the performance of magnetic heads has advanced, manufacturing technology has become more difficult. A material having a high spring property has been required for the purpose of improving accuracy. From this point of view, beryllium copper can be said to be a good material, but there is a demand for improvement in that beryllium vapor, beryllium oxide, etc., which are harmful to the human body, are produced in the production process, and the production process is complicated.

またベリリウム銅と同等の高いバネ性を有する合金とし
て、最近Ni−Si−Cu系合金やTi−Cu系合金が開発されて
いるが、この合金も十分ではなかった。
Ni-Si-Cu based alloys and Ti-Cu based alloys have been recently developed as alloys having a high spring property equivalent to beryllium copper, but these alloys were not sufficient.

〔本発明の目的〕[Purpose of the present invention]

本発明は上記に鑑みてなされたもので、ベリリウム銅と
同等あるいはそれ以上のバネ性を有する非磁性のバネ材
およびその製造方法を提供することを目的としたもので
ある。
The present invention has been made in view of the above, and an object thereof is to provide a non-magnetic spring material having a spring property equal to or higher than that of beryllium copper, and a manufacturing method thereof.

〔発明の概要〕[Outline of Invention]

本願発明者らは重量パーセントでマンガン5%以上35%
未満、ニッケル5%以上35%未満、第1元素群及び第2
元素群に含まれるいずれかの元素を一種又は二種以上合
計で0.001〜20%含有し、残部が実質的に銅でなる合金
に溶体化処理後冷間加工を施し、更に時効処理を施す方
法を適用することによりベリリウム銅と同等の高バネ性
が得られることを初めて見い出した。
The present inventors have a weight percentage of manganese of 5% or more and 35% or more.
Less than, nickel 5% to less than 35%, first element group and second
A method that contains 0.001 to 20% of any one element contained in the element group in a total amount of one or two or more, and the rest is cold treated after solution treatment, and further subjected to aging treatment It was found for the first time that the high spring property equivalent to beryllium copper can be obtained by applying.

第1元素群 アルミニウム、ケイ素、チタン、バナジウ
ム、クロム、鉄、コバルト、ゲルマニウム、亜鉛、ス
ズ、ジルコニウム、ニオブ、モリブデン、ハフニウム、
タンタル、タングステン なお、第1元素群の元素の合計含有量は0.01〜15%の範
囲とする。
First element group Aluminum, silicon, titanium, vanadium, chromium, iron, cobalt, germanium, zinc, tin, zirconium, niobium, molybdenum, hafnium,
Tantalum, tungsten The total content of the elements of the first element group is in the range of 0.01 to 15%.

第2元素群 炭素、窒素、マグネシウム、リン、イオ
ウ、カルシウム、ガリウム、 セレン、イットリウム、
希土類元素、銀、インジウム、テルル、鉛 なお、第2元素群の元素の合計含有量は0.001〜5%の
範囲とする。
Second element group Carbon, nitrogen, magnesium, phosphorus, sulfur, calcium, gallium, selenium, yttrium,
Rare earth element, silver, indium, tellurium, lead Note that the total content of the elements of the second element group is 0.001 to 5%.

即ちバネ性は従来からバネ限界値(又は引張り強度)の
みで判断されて来たが、本願発明者らが初めてバネ性に
はバネ限界値だけでなく、バネ限界値以上の応力に対す
る永久歪が重要であり、これら双方(バネ限界値とバネ
限界値以上の変位に対する永久歪)の特性が満足されて
初めて高バネ性が得られることを見出した。例えば、Cu
−Ni−Sn系合金、Cu−Ti合金について検討して見ると、
バネ限界値は確かにベリリウム銅と同等に高い。しかし
バネ限界値以上の変位に偏する永久歪はベリリウム銅に
比べてはるかに大きい。したがってバネ性は必ずしも良
くないのである。この例でも示される様にバネ限界値
と、バネ限界値以上の変位に対する永久歪とが互に関連
がなく、それぞれ独立なのである。したがって、意図し
て双方の特性が良好なものを得ない限り高バネ性のもの
を得たということにならない。この双方の特性を満足す
るとしては、ベリリウム−銅があるが、これに匹敵する
ものがなかなか開発できなかったのである。
That is, the spring property has been conventionally judged only by the spring limit value (or tensile strength). However, the present inventors have for the first time found that the spring property has not only the spring limit value but also a permanent strain against a stress equal to or higher than the spring limit value. It has been found that the high spring property can be obtained only when the characteristics of both of them (the spring limit value and the permanent set against the displacement above the spring limit value) are satisfied. For example, Cu
-When examining the Ni-Sn alloy and Cu-Ti alloy,
The spring limit is certainly as high as beryllium copper. However, the permanent strain biased to the displacement above the spring limit is much larger than that of beryllium copper. Therefore, the elasticity is not necessarily good. As shown in this example as well, the spring limit value and the permanent strain for a displacement equal to or more than the spring limit value are not related to each other and are independent of each other. Therefore, unless both properties are intentionally obtained, it does not mean that a high spring property is obtained. Beryllium-copper is a material that satisfies both of these characteristics, but it was difficult to develop a comparable material.

そこで本願発明者らはバネ限界値が高く、かつバネ限界
値以上の変位に対する永久歪が小さいバネ材を得る為種
々研究実験した結果、本願発明の合金に対して本願発明
の方法を適用したとき初めて、双方の特性の良いものす
なわち、バネ限界値が100kg/mm2以上でかつバネ限界値
以上の変位に対する永久歪が小さいという高バネ性のバ
ネ材が得られたのである。
Therefore, the inventors of the present application conducted various research and experiments to obtain a spring material having a high spring limit value and a small permanent set with respect to a displacement of the spring limit value or more. As a result, when the method of the present invention was applied to the alloy of the present invention, For the first time, a spring material having good properties of both, that is, a spring material having a spring limit value of 100 kg / mm 2 or more and having a small permanent set against a displacement exceeding the spring limit value was obtained.

ここで本願発明に係る非磁性バネ材及びその製造方法に
ついて説明する。まず非磁性バネ材の組成の限定理由に
ついて述べる。マンガンはバネ強さを確保する為に必要
な元素で、その量が5%以上であると、従来のベリリウ
ム銅と同等以上のバネ強さが得られやすく、又35%以下
であると十分な伸びが得られやすくバネ限界値を越えた
変位をバネに加えた場合折れにくく、かつ永久歪が小さ
いとからこの範囲とした。なお望ましくは8〜20%、更
に望ましくは10〜15%が良い。この様に範囲を限定する
ことにより、バネ限界値以上の応力に対する永久歪は著
しく小さくなり、ベリリウム−銅同等以上のバネ材が一
層得られやすくなる。ニッケルは、マンガンと化合物を
形成して合金素地中に析出し、バネ強さを向上させるの
に必要な元素でその量が5%以上で充分なバネ強さが得
られやすく、又35%以下になると充分な伸びが得られや
すく、バネ限界値を超えた応力をバネに加えた場合折れ
にくく、かつ永久歪が小さいことからこの範囲とした。
なお望ましくは8〜20%、更に望ましくは10〜15%が良
い。この様に範囲を限定することによりマンガン同様バ
ネ限界値以上の変位に対する永久歪は更に小さくなり、
ベリリウム−銅同等以上のバネ材が一層得られやすくな
る。
Here, a non-magnetic spring material according to the present invention and a method for manufacturing the same will be described. First, the reasons for limiting the composition of the non-magnetic spring material will be described. Manganese is an element necessary to secure the spring strength. When the amount is 5% or more, it is easy to obtain the spring strength equal to or higher than that of conventional beryllium copper, and 35% or less is sufficient. This range was set because it is easy to obtain elongation and is difficult to break when a displacement exceeding the spring limit value is applied to the spring, and the permanent set is small. It is preferably 8 to 20%, more preferably 10 to 15%. By limiting the range in this way, the permanent set with respect to the stress equal to or higher than the spring limit value becomes remarkably small, and a spring material equal to or more than beryllium-copper can be obtained more easily. Nickel forms a compound with manganese and precipitates in the alloy substrate. It is an element necessary for improving the spring strength, and if the amount is 5% or more, sufficient spring strength is easily obtained, and 35% or less. In that case, sufficient elongation is likely to be obtained, and it is difficult for the spring to break when a stress exceeding the spring limit value is applied to the spring, and the permanent set is small, so this range was made.
It is preferably 8 to 20%, more preferably 10 to 15%. By limiting the range in this way, the permanent set for displacement above the spring limit value becomes smaller, as in manganese,
Beryllium-copper equivalent or better spring material can be obtained more easily.

第1元素群及び第2元素群の元素は本願発明において重
要な元素である。これらの元素が少なすぎるとバネ強さ
を確保できるだけの析出が出せず、伸びは大きいものの
バネ限界値が低く所望の特性が得られない。またこれら
元素の多量の含有は所望のバネ強さは十分得られるもの
の、伸びが小さくなりバネ限界値を越えた変位を加えた
場合折損し易くなるとともに永久歪が大きくなる。した
がって、これらの事を考慮して第1元素群の元素の合計
の含有量は0.01〜15%好ましくは0.02〜13%、更に好ま
しくは0.05〜10%、第2元素群の元素の合計の含有量は
0.001〜5%、好ましくは0.005〜4%更に好ましくは0.
01〜3%が良い。なお、第1元素群及び第2元素群に含
まれる元素の合計含有量は0.001〜20%が良い。
The elements of the first element group and the second element group are important elements in the present invention. If these elements are too small, precipitation sufficient to secure spring strength will not occur, and although elongation is large, the spring limit value is low and desired properties cannot be obtained. In addition, although a desired spring strength can be sufficiently obtained by containing a large amount of these elements, elongation becomes small, and when a displacement exceeding the spring limit value is applied, breakage easily occurs and permanent set increases. Therefore, in consideration of these things, the total content of the elements of the first element group is 0.01 to 15%, preferably 0.02 to 13%, more preferably 0.05 to 10%, and the total content of the elements of the second element group. Quantity is
0.001 to 5%, preferably 0.005 to 4%, more preferably 0.
01-3% is good. The total content of the elements contained in the first element group and the second element group is preferably 0.001 to 20%.

次に製造方法について説明する。まず溶体化処理である
が、この処理は合金成分を均質化し、またその後の時効
処理で均質なバネ強さを付与するためのもので少なくと
も700℃以上は必要で望ましくは800℃以上が良い。しか
し温度を高くしてもその効果は小さくなり、また結晶粒
の粗大化をまねくことなどの点から1000℃以下としたが
望ましくは850〜950℃が良い。
Next, the manufacturing method will be described. First, solution treatment is performed to homogenize the alloy components and to impart a uniform spring strength in the subsequent aging treatment. It is necessary that the temperature is 700 ° C or higher, preferably 800 ° C or higher. However, even if the temperature is raised, the effect becomes small, and the temperature is set to 1000 ° C. or less from the viewpoint of causing coarsening of crystal grains, but it is preferably 850 to 950 ° C.

次に冷間加工であるが、この冷間加工は本発明に係るバ
ネ材、例えば磁気ヘッド押えバネの製造にとって重要で
あり、冷間加工を施さないとバネ形状に成形する際素材
がやわらかすぎて、いわゆる腰のない状態であるため、
バネ形状への成形時に取扱いが困難であること、また時
効処理時間が長くかかり工業的でないこと、十分なバネ
強さが得られないことなどにより、その冷間加工率は少
なくとも10%以上が必要で、望ましくは30%以上が良い
が、過度の冷間加工は素材の硬さを上げバネ成形時にプ
レス金型をいためやすくすること、曲げ加工部分に割れ
が入りやすくなることから実用上80%以下、望ましくは
70%以下が良い。
Next is cold working. This cold working is important for manufacturing the spring material according to the present invention, for example, a magnetic head holding spring, and if cold working is not performed, the material is too soft when forming into a spring shape. Because it is a so-called waistless state,
The cold working rate must be at least 10% because it is difficult to handle when forming it into a spring shape, it is not industrial due to long aging treatment time, and sufficient spring strength cannot be obtained. However, 30% or more is desirable, but excessive cold working raises the hardness of the material and makes it easier to damage the press die during spring forming, and cracks tend to occur in the bent part, so it is practically 80%. Below, preferably
70% or less is good.

次に時効処理であるが、この時効処理は本発明に係るバ
ネ材のバネ強さを与えるために重要な熱処理で350℃以
上の温度を処理することが必要であるが、500℃を超え
た温度での時効処理では過時効となることからこの範囲
としたが、工業的に望ましくは380℃〜480℃が良く更に
望ましくは430℃〜470℃が良い。
Next is an aging treatment. This aging treatment is an important heat treatment for giving the spring strength of the spring material according to the present invention, and it is necessary to treat a temperature of 350 ° C. or more, but it exceeds 500 ° C. This range is set because aging treatment at temperature results in overaging, but industrially preferably 380 ° C to 480 ° C, more preferably 430 ° C to 470 ° C.

ところで本願発明のバネ材としては、弾性を求められる
部品であれば何でも良く、例えば磁気ヘッド押えバネ、
コネクター、眼鏡部品が特に好ましい。
By the way, the spring material of the present invention may be any component as long as elasticity is required, for example, a magnetic head pressing spring,
Connectors and spectacle parts are particularly preferred.

〔発明の効果〕〔The invention's effect〕

第1表に示す成分を有する合金について第1表に示す製
造方法を施して板厚0.25mm、幅10.0mm、板長100mmの板
を作成した。この板を間隔12mmで両端を支え、上方から
中心部の変位が3mmになるまで荷重をかける。この状態
で5秒保ったのち荷重をとき、そのときの中央部に生じ
た永久歪を測定した。その結果を第1表に記載した。
The alloy having the components shown in Table 1 was subjected to the manufacturing method shown in Table 1 to prepare a plate having a plate thickness of 0.25 mm, a width of 10.0 mm and a plate length of 100 mm. Both ends of this plate are supported with a space of 12 mm, and a load is applied from above until the displacement of the central part becomes 3 mm. After maintaining for 5 seconds in this state, when a load was applied, the permanent strain generated in the central portion at that time was measured. The results are shown in Table 1.

この結果よりわかる様に本発明の合金はバネ限界値が高
く、かつバネ限界値上のある変位に対する永久歪が小さ
い為、極めて優れたバネ性(高バネ性)を有すると言え
る。更に本発明のバネ性を実際に磁気ヘッド押えバネと
して実装して、その寿命、扱いやすさ及び信頼性を測定
したところ、ベリリウム−銅合金と同等又はそれ以上と
確認できた。
As can be seen from these results, the alloy of the present invention has a high spring limit value and a small permanent set with respect to a certain displacement on the spring limit value, and thus it can be said that the alloy of the present invention has extremely excellent spring property (high spring property). Further, when the spring property of the present invention was actually mounted as a magnetic head pressing spring and the life, easiness of handling and reliability were measured, it could be confirmed that it was equivalent to or better than the beryllium-copper alloy.

前記製法により製造された本発明のバネ材は極めて優れ
たバネ性を有している為、電子部品、磁気部品などのバ
ネ材として好適である。
The spring material of the present invention manufactured by the above manufacturing method has an extremely excellent spring property, and thus is suitable as a spring material for electronic parts, magnetic parts and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は磁気ヘッドの一例を示す断面図で、図中(1)
はコア、(2)は磁気ヘッド押えバネ、(3)は巻線コ
イル、(4)はシールドケース、(5)は端子、(6)
は樹脂、(7)はコアホルダーである。
FIG. 1 is a sectional view showing an example of a magnetic head.
Is a core, (2) is a magnetic head pressing spring, (3) is a winding coil, (4) is a shield case, (5) is a terminal, (6).
Is a resin, and (7) is a core holder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 典章 神奈川県横浜市磯子区新杉田町8 株式会 社東芝横浜金属工場内 (56)参考文献 特開 昭50−17318(JP,A) 特開 昭52−136828(JP,A) 特開 昭56−51545(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Noriaki Yagi Inventor Noriaki Yagi 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company Toshiba Yokohama metal factory (56) Reference JP-A-50-17318 (JP, A) JP 52-136828 (JP, A) JP-A-56-51545 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】重量パーセントでマンガン5%以上35%未
満,ニッケル5%以上35%未満に、下記第1元素群及び
第2元素群に含まれるいずれかの元素を一種又は二種以
上合計で0.001〜20%含有し、残部が実質的に銅でな
り、バネ限界値が100kg/mm2以上でかつバネ限界値以上
の変位に対する永久歪が小さいことを特徴とする非磁性
バネ材。 (記) 第1元素群 アルミニウム、ケイ素、チタン、バナジウ
ム、クロム、鉄、コバルト、ゲルマニウム、亜鉛、ス
ス、ジルコニウム、ニオブ、モリブデン、ハフニウム、
タンタル、タングステン なお、第1元素群の元素の合計含有量は0.01〜15%の範
囲とする。 第2元素群 炭素、窒素、マグネシウム、リン、イオ
ウ、カルシウム、ガリウム、 セレン、イットリウム、
希土類元素、銀、インジウム、テルル、鉛 なお、第2元素群の元素の合計含有量は0.001〜5%の
範囲とする。
1. A weight percentage of manganese 5% or more and less than 35%, nickel 5% or more and less than 35%, and one or more of any one of the elements included in the following first element group and second element group in total. A non-magnetic spring material containing 0.001 to 20%, the balance being substantially copper, having a spring limit value of 100 kg / mm 2 or more and having a small permanent set against a displacement exceeding the spring limit value. (Note) First element group Aluminum, silicon, titanium, vanadium, chromium, iron, cobalt, germanium, zinc, soot, zirconium, niobium, molybdenum, hafnium,
Tantalum, tungsten The total content of the elements of the first element group is in the range of 0.01 to 15%. Second element group Carbon, nitrogen, magnesium, phosphorus, sulfur, calcium, gallium, selenium, yttrium,
Rare earth element, silver, indium, tellurium, lead Note that the total content of the elements of the second element group is 0.001 to 5%.
【請求項2】バネ材は磁気ヘッド用であることを特徴と
する特許請求の範囲第1項に記載の非磁性バネ材。
2. The non-magnetic spring material according to claim 1, wherein the spring material is for a magnetic head.
【請求項3】重量パーセントでマンガン5%以上35%未
満、ニッケル5%以上35%未満に、下記第1元素群及び
第2元素群に含まれるいずれかの元素を一種又は二種以
上合計で0.001〜20%含有し、残部が実質的に銅でなる
合金を、溶体化処理後冷間加工を施し、更に時効処理を
施して成る、バネ限界値が100kg/mm2以上でかつバネ限
界値以上の変位に対する永久歪が小さいことを特徴とす
る高バネ性を有する非磁性バネ材の製造方法。 (記) 第1元素群 アルミニウム、ケイ素、チタン、バナジウ
ム、クロム、鉄、コバルト、ゲルマニウム、亜鉛、ス
ズ、ジルコニウム、ニオブ、モリブデン、ハフニウム、
タンタル、タングステン なお、第1元素群の元素の合計含有量は0.01〜15%の範
囲とする。 第2元素群 炭素、窒素、マグネシウム、リン、イオ
ウ、カルシウム、ガリウム、 セレン、イットリウム、
希土類元素、銀、インジウム、テルル、鉛 なお、第2元素群の元素の合計含有量は0.001〜5%の
範囲とする。
3. A weight percentage of manganese 5% or more and less than 35%, nickel 5% or more and less than 35%, and one or more of any one of the elements included in the following first element group and second element group in total. An alloy containing 0.001 to 20%, the balance being substantially copper, subjected to solution treatment, cold working, and then aging treatment. Spring limit value is 100 kg / mm 2 or more and spring limit value. A method for manufacturing a non-magnetic spring material having a high spring property, which is characterized by having a small permanent set with respect to the above displacement. (Note) First element group Aluminum, silicon, titanium, vanadium, chromium, iron, cobalt, germanium, zinc, tin, zirconium, niobium, molybdenum, hafnium,
Tantalum, tungsten The total content of the elements of the first element group is in the range of 0.01 to 15%. Second element group Carbon, nitrogen, magnesium, phosphorus, sulfur, calcium, gallium, selenium, yttrium,
Rare earth element, silver, indium, tellurium, lead Note that the total content of the elements of the second element group is 0.001 to 5%.
【請求項4】溶体化処理は700℃〜1000℃でなされるこ
とを特徴とする特許請求の範囲第3項に記載の非磁性バ
ネ材の製造方法。
4. The method for producing a non-magnetic spring material according to claim 3, wherein the solution treatment is performed at 700 ° C. to 1000 ° C.
【請求項5】冷間加工は10%以上の加工率でなされるこ
とを特徴とする特許請求の範囲第3項に記載の非磁性バ
ネ材の製造方法。
5. The method for manufacturing a non-magnetic spring material according to claim 3, wherein the cold working is performed at a working rate of 10% or more.
【請求項6】時効処理は350℃〜500℃でなされることを
特徴とする特許請求の範囲第3項に記載の非磁性バネ材
の製造方法。
6. The method for producing a non-magnetic spring material according to claim 3, wherein the aging treatment is performed at 350 ° C. to 500 ° C.
JP61041942A 1986-02-28 1986-02-28 Non-magnetic spring material and manufacturing method thereof Expired - Lifetime JPH0768597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041942A JPH0768597B2 (en) 1986-02-28 1986-02-28 Non-magnetic spring material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041942A JPH0768597B2 (en) 1986-02-28 1986-02-28 Non-magnetic spring material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62202038A JPS62202038A (en) 1987-09-05
JPH0768597B2 true JPH0768597B2 (en) 1995-07-26

Family

ID=12622266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041942A Expired - Lifetime JPH0768597B2 (en) 1986-02-28 1986-02-28 Non-magnetic spring material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0768597B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8906237D0 (en) * 1989-03-17 1989-05-04 Langley Alloys Ltd Copper based alloys
JP3853100B2 (en) * 1998-02-26 2006-12-06 三井金属鉱業株式会社 Copper alloy with excellent wear resistance
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
EP1251186A1 (en) 2001-04-19 2002-10-23 Wieland-Werke AG Copper-Nickel-Manganese alloy and its use
JP4829485B2 (en) * 2003-06-10 2011-12-07 有限会社真空実験室 Vacuum component material, vacuum component, vacuum device, vacuum component material manufacturing method, vacuum component processing method, and vacuum device processing method
CN102537162B (en) * 2012-01-06 2014-07-02 北京科技大学 Spring with stiffness coefficient controlled by magnitude field and preparation method thereof
DE102013010301A1 (en) 2013-06-19 2014-12-24 Isabellenhütte Heusler Gmbh & Co. Kg Resistance alloy, component manufactured therefrom and manufacturing method therefor
CN103572090B (en) * 2013-07-01 2015-06-17 浙江省东阳市诚基电机有限公司 Composite metal material for elastic sheet type micromotor conductive spring leaf
CN106244843A (en) * 2016-08-03 2016-12-21 苏州市虎丘区浒墅关弹簧厂 A kind of spring high-strength alloy material
CN111057902B (en) * 2018-10-16 2021-09-03 比亚迪股份有限公司 Die-casting copper alloy, preparation method and application thereof and die-casting copper alloy composite plastic product
CN111057901B (en) * 2018-10-16 2021-09-03 比亚迪股份有限公司 Die-casting copper alloy, preparation method and application thereof and die-casting copper alloy composite plastic product
CN109943750B (en) * 2019-03-25 2020-09-08 中南大学 Ultrahigh-strength high-elasticity copper-nickel-manganese alloy and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824135A (en) * 1973-06-14 1974-07-16 Olin Corp Copper base alloys
US4052204A (en) * 1976-05-11 1977-10-04 Bell Telephone Laboratories, Incorporated Quaternary spinodal copper alloys
JPS5933180B2 (en) * 1979-10-01 1984-08-14 三菱マテリアル株式会社 High-strength non-magnetic copper alloy and its manufacturing method
JPS61143541A (en) * 1984-12-14 1986-07-01 Toshiba Corp Nonmagnetic spring and its manufacture

Also Published As

Publication number Publication date
JPS62202038A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
KR910001490B1 (en) Copper alloy having an improved combination of strenth and conductivity and the process for making
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
JPH0768597B2 (en) Non-magnetic spring material and manufacturing method thereof
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
WO2009116649A1 (en) Copper alloy material for electric and electronic components
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
JPH11256255A (en) High strength and high conductivity copper alloy excellent in shearing workability
US6059905A (en) Process for treating a copper-beryllium alloy
JPS619563A (en) Manufacture of copper alloy
JPH0453936B2 (en)
JPS62182240A (en) Conductive high-tensile copper alloy
JPH10152737A (en) Copper alloy material and its production
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH0987814A (en) Production of copper alloy for electronic equipment
KR20210149830A (en) Copper alloys having high strength and high conductivity and methods for producing such copper alloys
JP2002302727A (en) Electroconductive, heat-resistant aluminum alloy wire and production method therefor
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPH03140444A (en) Manufacture of beryllium copper alloy member
JPS61142672A (en) Electric connection terminal clip for filament lighting of magnetron
JPS6326192B2 (en)
JPH0285330A (en) Copper alloy having good press bendability and its manufacture
JP2929680B2 (en) Coil spring and manufacturing method thereof
JPH0788545B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JP3779830B2 (en) Copper alloy for semiconductor lead frames
JPH09143597A (en) Copper alloy for lead frame and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term