JP2929680B2 - Coil spring and manufacturing method thereof - Google Patents

Coil spring and manufacturing method thereof

Info

Publication number
JP2929680B2
JP2929680B2 JP21067690A JP21067690A JP2929680B2 JP 2929680 B2 JP2929680 B2 JP 2929680B2 JP 21067690 A JP21067690 A JP 21067690A JP 21067690 A JP21067690 A JP 21067690A JP 2929680 B2 JP2929680 B2 JP 2929680B2
Authority
JP
Japan
Prior art keywords
hardness
coil spring
wire
test
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21067690A
Other languages
Japanese (ja)
Other versions
JPH0499242A (en
Inventor
望 河部
照幸 村井
進 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21067690A priority Critical patent/JP2929680B2/en
Publication of JPH0499242A publication Critical patent/JPH0499242A/en
Application granted granted Critical
Publication of JP2929680B2 publication Critical patent/JP2929680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、耐食性、及び耐摩耗性に優れた炭化
物析出硬化型Co合金のコイルばね及びその製造方法に関
するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbide precipitation hardening type Co alloy coil spring having excellent heat resistance, corrosion resistance, and wear resistance, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来より用途を問わず耐熱性及び耐食性に優れた合金
として、Fe系、Ni系、Co系の超合金があげられる。この
うちFe系、Ni系合金はFe−Cr−Ni合金、Ni−Cr合金とし
て添加元素等による合金開発が行なわれており、いずれ
も熱間加工、冷間線引が容易なため、コイルばねも得ら
れている。
Conventionally, Fe-based, Ni-based, and Co-based superalloys are known as alloys having excellent heat resistance and corrosion resistance regardless of the use. Of these, Fe-based and Ni-based alloys are being developed as Fe-Cr-Ni alloys and Ni-Cr alloys with additional elements, etc. Has also been obtained.

一方、前記三系の中で最も耐熱性、耐食性に優れると
されるCo合金はCr,W,Cを添加したものを中心に開発がさ
れている。
On the other hand, Co alloys, which are said to be the most excellent in heat resistance and corrosion resistance among the above three systems, have been developed mainly by adding Cr, W and C.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、Co合金は前記の優れた特性を備えたものの、
硬い材料であるため線引加工などの塑性加工より線材を
得ることが困難であり、従って、コイルばねを得ること
も困難であった。又、線材を得た場合であってもCo合金
の耐熱性向上のキーとなる炭化物の析出が疲労特性の低
下を招く(炭化物が起点となり破断するおそれがあ
る)。さらに、材料強度そのものが低いため(ビッカー
ス硬度(Hv)で400〜500が一般)、疲労強度が劣るなど
の問題があった。
However, although the Co alloy has the above-mentioned excellent properties,
Since it is a hard material, it is difficult to obtain a wire by plastic working such as drawing, and it is also difficult to obtain a coil spring. Further, even when a wire is obtained, precipitation of carbide, which is a key to improving the heat resistance of the Co alloy, causes a decrease in fatigue characteristics (there is a possibility that the carbide may be a starting point and break). Furthermore, since the material strength itself is low (Vickers hardness (Hv) is generally 400 to 500), there is a problem that the fatigue strength is inferior.

〔課題を解決するための手段〕[Means for solving the problem]

上記Co合金は硬い材料であるため、線引加工が困難で
ある点を考察してみると、通常の溶解鋳造材では、炭化
物がデンドライトに沿って析出し、しかも非常に大きく
析出しているため、そのマトリックスと析出物の間に沿
って加工時割れを生ずる。これを改善するため、鋳造時
5×10℃/sec以上の冷却速度でインゴットを凝固させる
か、5×10℃/sec以上の冷却速度で凝固した粉末を固化
するなどの方法で炭化物を7μm以下にすれば、線材加
工が可能になることを見出した。
Considering that the above-mentioned Co alloy is a hard material, it is difficult to draw, and in ordinary molten cast materials, carbide precipitates along the dendrite, and because it is very large, , Cracks during processing along the matrix and the precipitate. To improve this, carbide is reduced to 7 μm or less by a method such as solidifying the ingot at a cooling rate of 5 × 10 ° C./sec or more during casting or solidifying powder solidified at a cooling rate of 5 × 10 ° C./sec or more. It has been found that wire processing becomes possible if it is set to.

又、Co合金線材の疲労強度の向上についても考察する
と、コイリングする前の材料は焼鈍(1150℃)後、減面
率で10〜20%の加工を施す。この材料を所望の形状にコ
イリングし、その後550〜650℃×(30〜120分)時効処
理を行なうと、線表面の硬度が550以上あり、中心部よ
り表面の硬度がHv=50以上高いコイルばねが得られるこ
とがわかった。
Considering the improvement of the fatigue strength of the Co alloy wire, the material before coiling is subjected to a processing of 10 to 20% at a reduction in area after annealing (1150 ° C.). When this material is coiled into the desired shape and then subjected to aging at 550 to 650 ° C x (30 to 120 minutes), the coil has a wire surface hardness of 550 or more and a surface hardness of Hv = 50 or more higher than the center. It turns out that a spring is obtained.

しかし、上記のコイルばねでは、疲労の起点が炭化物
とマトリックスの境界であることがあり、必ずしも特性
的に優れているとはいえない。
However, in the above-described coil spring, the starting point of fatigue may be the boundary between the carbide and the matrix, and it cannot be said that the coil spring is always excellent in characteristics.

これは、従来の鋳造法による材料には5μm超、例え
ば7μm程度の大きな炭化物があるためで、これを5μ
m以下の大きさにすれば破断はコイルばねの内面が起点
となり、疲労特性が向上することがわかった。炭化物の
大きさを5μm以下に抑えるには1×102℃/sec以上の
冷却速度によるインゴット、もしくは粉末の固化材を用
いればよい。
This is because the material obtained by the conventional casting method has a large carbide exceeding 5 μm, for example, about 7 μm.
When the size is not more than m, the fracture starts from the inner surface of the coil spring and the fatigue characteristics are improved. In order to suppress the size of the carbide to 5 μm or less, an ingot with a cooling rate of 1 × 10 2 ° C./sec or more or a solidified powder may be used.

このようにCo系合金を本来の特徴である耐熱性、耐食
性、耐摩耗性の他、例えばコイルばねのように優れた疲
労特性を要求されるものに加工するには同合金中に生じ
る炭化物の成長を抑えることが重要なことであり、Co系
合金の鋳造、もしくはCo合金粉末の冷却段階で、その冷
却速度を1×102℃/sec以上として、炭化物を5μm以
下の大きさに抑え、このCo系合金の線引加工、コイリン
グ加工を実現するものである。
In this way, in order to process Co-based alloys into those that require excellent fatigue properties such as coil springs, in addition to the original characteristics of heat resistance, corrosion resistance, wear resistance, etc. It is important to suppress the growth, at the stage of casting the Co-based alloy or cooling the Co alloy powder, the cooling rate is set to 1 × 10 2 ° C / sec or more, and the carbide is suppressed to a size of 5 μm or less, This realizes wire drawing and coiling of the Co-based alloy.

このように本発明は上記の課題を解決すべくなされた
もので、耐熱性、耐食性、耐摩耗性及び疲労特性に優れ
た炭化物析出硬化型Co合金のコイルばね及びその製造方
法を提供するものである。
Thus, the present invention has been made to solve the above problems, and provides a coil spring of a carbide precipitation hardening type Co alloy excellent in heat resistance, corrosion resistance, wear resistance and fatigue characteristics, and a method for manufacturing the same. is there.

即ち、本発明のコイルばねは成分が重量%で26.0≦Cr
≦33.0,3.0≦W≦13.0,0.2≦C≦0.6,Fe+Ni≦6.0,残部
実質Coからなる合金よりなり、炭化物の大きさが5μm
以下であって線表面の硬化がビッカース硬度で550以上
あり、かつ線中心部よりも線表面の硬度が前記硬度で50
以上高いことを特徴としている。
That is, in the coil spring of the present invention, the component is 26.0 ≦ Cr in weight%.
≦ 33.0, 3.0 ≦ W ≦ 13.0, 0.2 ≦ C ≦ 0.6, Fe + Ni ≦ 6.0, the balance consisting essentially of Co, with carbide size of 5 μm
The hardness of the wire surface is less than or equal to 550 in Vickers hardness, and the hardness of the wire surface is 50 or more in the hardness than the center of the wire.
It is characterized by being higher.

又上記コイルばねの製造方法は、前記成分構成からな
る合金塊を鋳造時1×102℃/sec以上の冷却速度で凝固
させたもの、又は同成分構成からなる粉末を1×102℃/
sec以上の冷却速度で固化したものを、熱間加工若しく
は冷間加工により所望の線径まで必要に応じて焼鈍りを
施しながら加工して、その最終工程で減面率10〜20%の
冷間線引加工を施し、該線引材をコイリングした後、55
0〜650℃で30〜120分時効させるというものである。
Further, the method of manufacturing the coil spring is characterized in that the alloy lump having the above-mentioned composition is solidified at a cooling rate of 1 × 10 2 ° C./sec or more at the time of casting, or the powder having the same composition is made 1 × 10 2 ° C./sec.
The solidified material at a cooling speed of at least sec is processed by hot working or cold working while performing annealing to a desired wire diameter as necessary, and in the final step, a cold reduction of 10 to 20% is achieved. After performing the drawing process and coiling the drawn material, 55
Aging at 0 to 650 ° C for 30 to 120 minutes.

本発明コイルばねに用いるCo合金は上記のような成分
構成であるが、まずCrは26.0%未満では耐食性及び耐熱
性に劣り、33.0%超では硬くなりすぎて加工が困難とな
る。次にWは30%未満では耐熱性に劣り、13.0%超では
硬すぎて加工が困難となる。又、Cは0.2%未満では強
度が低下し、0.6%超ではコイリングが困難となる。そ
して、不純物としてのFe+Niは耐食性の点から6%以下
とするのがよい。もっとも無理に減らそうとすればコス
ト高につながる。
The Co alloy used in the coil spring of the present invention has the above-described composition. First, if Cr is less than 26.0%, the corrosion resistance and heat resistance are inferior, and if it exceeds 33.0%, it becomes too hard to work. Next, if W is less than 30%, the heat resistance is inferior. If C is less than 0.2%, the strength is reduced, and if it exceeds 0.6%, coiling becomes difficult. The content of Fe + Ni as an impurity is preferably 6% or less from the viewpoint of corrosion resistance. However, trying to reduce it will lead to higher costs.

〔試験例〕(Test example)

さて、このような成分構成からなる合金塊又は粉末を
線材へ加工するわけであるが、ここに試験例として冷却
速度を変えて溶解鋳造又は粉末押出法によりインゴット
を作り、各々2mmφまで線引加工を試みた(線材加工試
験)。この結果を表1に示す。
By the way, an alloy ingot or a powder composed of such a composition is processed into a wire rod.Here, as a test example, an ingot is made by melting casting or powder extrusion method while changing a cooling rate, and each is drawn to 2 mmφ. (Wire material processing test). Table 1 shows the results.

以上のことから線引可能な条件として炭化物を7μm
以下の大きさとし、そのための冷却速度として少くとも
5×10℃/secが必要であることが確認された。
From the above, carbide was set to 7 μm
It was confirmed that the size was as follows, and that a cooling rate of at least 5 × 10 ° C./sec was required.

次に上記溶解鋳造4、粉末押出7の2材に減面率5,1
0,15,20,25%の線引加工を施し、コイリングを行って折
損状況を調べた(コイリング試験)。尚、上記コイリン
グにより得られたコイルばねは線径2mmφ、コイル中心
径20mmφ、自由長50mm有効巻数3.5である。試験結果を
表2に示す。
Next, the surface reduction rate of 5,1
A wire drawing of 0, 15, 20, and 25% was performed, and coiling was performed to check the state of breakage (coiling test). The coil spring obtained by the above coiling has a wire diameter of 2 mm, a coil center diameter of 20 mm, a free length of 50 mm, and an effective number of turns of 3.5. Table 2 shows the test results.

以上の結果より減面率5%から20%までの線引加工が
適していることがわかった。
From the above results, it was found that wire drawing with a reduction in area from 5% to 20% was suitable.

次に減面率の異なる線引加工を行なった前記粉末押出
7のコイルばねについて、その断面硬度分布を測定した
(硬度−線引加工試験)。この場合の時効温度は600
℃、時効時間は1時間であった。その結果を第1図のグ
ラフに示す。グラフからわかるように、各々表面から中
心に向かうに従い硬度は下がり、又減面率の低いコイル
ばねほど硬度が低いことがわかった。
Next, with respect to the coil spring of the powder extruded 7 which had been subjected to the wire drawing with different area reduction rates, the cross-sectional hardness distribution was measured (hardness-wire drawing test). The aging temperature in this case is 600
° C and the aging time was 1 hour. The results are shown in the graph of FIG. As can be seen from the graph, the hardness decreases from the surface toward the center, and the hardness decreases as the coil spring has a lower area reduction rate.

次にコイルばねの断面硬度分布と時効温度の関係につ
いて調べてみた(硬度−時効温度試験)。本試験に用い
たコイルばねは前記粉末押出7に減面率10%の線引加工
を施した線材をコイリングしたもので、時効時間は1時
間である。結果を第2図のグラフに示す。グラフに示す
ようにいずれも表面から中心に向かうに従い硬度は低下
し、特に500℃及び700℃の場合に硬度の低いことが確認
された。
Next, the relationship between the cross-sectional hardness distribution of the coil spring and the aging temperature was examined (hardness-aging temperature test). The coil spring used in this test was obtained by coiling a wire rod that had been subjected to wire drawing with a surface reduction rate of 10% on the powder extrusion 7, and had an aging time of 1 hour. The results are shown in the graph of FIG. As shown in the graph, it was confirmed that the hardness decreased from the surface toward the center, and that the hardness was particularly low at 500 ° C. and 700 ° C.

又、コイルばねの断面硬度分布と時効時間の関係につ
いても調べてみた(硬度−時効時間試験)。ここで用い
たコイルばねも前記硬度−時効温度試験と同じであり、
時効温度は600度であった。その結果を第3図のグラフ
に示す。同グラフに示すように、第2図同様表面から中
心に向かうに従い硬度が低下し、特に時効時間20分及び
180分のものは表面硬度がHv=550を下回っていることが
わかった。
The relationship between the cross-sectional hardness distribution of the coil spring and the aging time was also examined (hardness-aging time test). The coil spring used here is also the same as the hardness-aging temperature test,
The aging temperature was 600 degrees. The results are shown in the graph of FIG. As shown in the graph, the hardness decreases from the surface toward the center as in FIG.
At 180 minutes, the surface hardness was found to be lower than Hv = 550.

さらに、コイルばねの重要な特性である疲労特性につ
いても試験を行なった。用いたコイルばねは粉末押出
7、線径2.0mmφ、コイル中心径20mmφ自由長40mm、有
効巻数3.5である。まず同じ硬度値を示すコイルばねを
炭化物の大きさで分け、平均締付力40kg/mm2で試験を行
なった(疲労試験1)。その結果を第4図のグラフに示
す。このグラフから明らかなように、最大7μmの大き
さの炭化物を含むコイルばねは疲労特性が劣ることがわ
かった。
In addition, tests were also conducted on fatigue characteristics, which are important characteristics of coil springs. The coil spring used had a powder extrusion of 7, a wire diameter of 2.0 mm, a coil center diameter of 20 mm, a free length of 40 mm, and an effective number of turns of 3.5. First, coil springs having the same hardness value were classified according to the size of carbide, and a test was performed with an average tightening force of 40 kg / mm 2 (fatigue test 1). The results are shown in the graph of FIG. As is clear from this graph, it was found that the coil spring containing carbide having a maximum size of 7 μm had poor fatigue characteristics.

そこで、最大5μmの大きさの炭化物を含むコイルば
ねのへたり量について試験を行なった(疲労試験2)。
試験方法は締付力40±25kg/mm2、締付回数1×107回の
繰り返し締付後にへたり量を測定するもので、用いたコ
イルばねは粉末押出7、600℃×1Hr時効材である。結果
を第5図のグラフに示す。このグラフからわかるように
表面硬度Hv=550以上でへたりの少いことが確認され
た。
Therefore, a test was performed on the set amount of the coil spring containing carbide having a maximum size of 5 μm (fatigue test 2).
The test method is to measure the amount of set after repeated tightening with a tightening force of 40 ± 25 kg / mm 2 and a tightening frequency of 1 × 10 7 times. The coil spring used is powder extruded 7, 600 ° C. × 1 hr aging material It is. The results are shown in the graph of FIG. As can be seen from this graph, it was confirmed that the surface hardness was at least Hv = 550 and the sag was small.

最後に耐食性についての試験を行なった。これは1%
H2SO4液中で分極試験を実施し、電圧−電流特性を求め
るもので、試験に用いたコイルばねの組成及び結果を表
3に、電圧−電流特性のグラフを第6図に示す。
Finally, a test for corrosion resistance was performed. This is 1%
A polarization test was performed in an H 2 SO 4 solution to determine voltage-current characteristics. The composition and results of the coil spring used in the test are shown in Table 3, and a graph of the voltage-current characteristics is shown in FIG.

表3及び第6図のグラフに示すようにFe+Niが5%
超、Crが26.0%未満の場合に耐食性が劣ることがわかっ
た。この他、W,Cの量を変えて調べてみたがWは3.0〜1
3.0%、Cは0.2〜0.6%の範囲内で耐食性に大きな変化
はなかった。尚、第6図のグラフに示すXはFe−Cr−Ni
合金(SUS304)、YはNi−Cr−Fe合金(インコネル71
8)であり、これとの比較からも本発明開発材が耐食性
に優れていることがわかる。
Fe + Ni is 5% as shown in Table 3 and the graph of FIG.
It was found that the corrosion resistance was inferior when the super content was less than 26.0%. In addition, I examined the amount of W and C by changing the amount.
There was no significant change in corrosion resistance in the range of 3.0% and C in the range of 0.2 to 0.6%. X shown in the graph of FIG. 6 is Fe-Cr-Ni
Alloy (SUS304), Y is Ni-Cr-Fe alloy (Inconel 71
8), which indicates that the developed material of the present invention has excellent corrosion resistance.

以上のような各種試験、検討の結果、疲労試験1より
線材中の炭化物の大きさを5μm以下とする必要があ
り、このことと線材加工試験の結果から溶解鋳造、粉末
押出いずれの方法においても冷却速度を1×102℃/sec
としなければならない。又、疲労試験2より表面硬度が
Hv=600以上である必要があり、この結果と硬度−時効
温度試験の結果から時効温度は550℃が最適であること
がわかった。又、硬度−時効時間試験の結果との比較に
より、時効時間は30〜180分が最適であることが確認さ
れた。さらに、最終工程で施こす線引加工は、コイリン
グ試験において減面率5%の場合でも良好な結果が得ら
れているが、疲労試験2の結果より表面硬度Hv=550以
上が必要であり、その一方で、硬度−線引加工試験にお
いて減面率5%の線材の表面硬度はHv=550を大きく下
回っている。以上のことより減面率10〜20%の線引加工
を施すことが最適といえる。
As a result of the various tests and examinations described above, the size of the carbide in the wire must be 5 μm or less from the fatigue test 1, and from this and the results of the wire processing test, it is possible to use any of the melting casting and powder extrusion methods. Cooling rate 1 × 10 2 ℃ / sec
And must be. Moreover, the surface hardness is higher than the fatigue test 2
It is necessary that Hv = 600 or more. From this result and the result of the hardness-aging temperature test, it was found that the aging temperature was optimally 550 ° C. In addition, comparison with the results of the hardness-aging time test confirmed that the optimum aging time was 30 to 180 minutes. Furthermore, in the wire drawing performed in the final step, good results have been obtained even in the case of a surface reduction rate of 5% in the coiling test. On the other hand, in the hardness-drawing test, the surface hardness of the wire having the area reduction rate of 5% is significantly lower than Hv = 550. From the above, it can be said that it is optimal to perform the wire drawing with the area reduction rate of 10 to 20%.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明コイルばねは、従来耐食性
に優れているとされたFe系、Ni系合金よりもさらに耐食
性に優れたもので、海水、酸等の腐食性環境下において
有効な利用を図ることができる。
As described above, the coil spring of the present invention is more excellent in corrosion resistance than Fe-based and Ni-based alloys, which are conventionally considered to be excellent in corrosion resistance, and can be effectively used in a corrosive environment such as seawater and acid. Can be planned.

又、他の優れた特性として耐熱性、耐摩耗性も兼ね備
えるため、これら複数ょ特性が要求される環境でも用い
ることが可能である。
In addition, since it also has heat resistance and abrasion resistance as other excellent characteristics, it can be used in an environment where these plural characteristics are required.

【図面の簡単な説明】[Brief description of the drawings]

第1図は減面率の異った線材加工を施したものについて
その表面硬度を示したグラフ、第2図は時効温度と断面
硬度の関係を示すグラフ、第3図は時効時間と断面硬度
の関係を示すグラフ、第4図及び第5図は表面硬度の異
なるコイルについて疲労試験の結果を示すグラフ、第6
図は分極試験による電圧−電流特性を示すグラフであ
る。
FIG. 1 is a graph showing the surface hardness of wires processed with different surface reduction rates, FIG. 2 is a graph showing the relationship between aging temperature and sectional hardness, and FIG. 3 is aging time and sectional hardness. FIGS. 4 and 5 are graphs showing the results of a fatigue test on coils having different surface hardnesses, and FIGS.
The figure is a graph showing voltage-current characteristics by a polarization test.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−31594(JP,A) 特開 昭63−84791(JP,A) 特公 昭61−46529(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 19/07 B B21F 35/00 A C22F 1/10 J ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-64-31594 (JP, A) JP-A-63-84791 (JP, A) JP-B-61-46529 (JP, B2) (58) Field (Int.Cl. 6 , DB name) C22C 19/07 B B21F 35/00 A C22F 1/10 J

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】成分が重量%で26.0≦Cr≦33.0,3.0≦W≦
13.0,0.2≦C≦0.6,Fe+Ni≦6.0,残部実質Coからなる合
金よりなり、炭化物の大きさが5μm以下であって、線
表面の硬度がビッカース硬度で550以上あり、かつ線中
心部よりも線表面の硬度が前記硬度で50以上高いことを
特徴とするコイルばね。
(1) The composition contains 26.0 ≦ Cr ≦ 33.0, 3.0 ≦ W ≦
13.0, 0.2 ≦ C ≦ 0.6, Fe + Ni ≦ 6.0, with the balance being essentially Co, the size of carbide is 5 μm or less, the hardness of the wire surface is 550 or more in Vickers hardness, and it is higher than the center of the wire. A coil spring, wherein the hardness of the wire surface is higher than the hardness by 50 or more.
【請求項2】成分が重量%で26.0≦Cr≦33.0,3.0≦W≦
13.0,0.2≦C≦0.6,Fe+Ni≦6.0,残部実質Coからなる合
金塊を鋳造時1×102℃/sec以上の冷却速度で凝固させ
たもの、又は前記成分からなる粉末を1×102℃/sec以
上の冷却速度で固化したものを、熱間加工若しくは冷間
加工により所望の線径まで必要に応じて焼鈍を施しなが
ら加工して、その最終工程で減面率10〜20%の冷間線引
加工を施し、該線引材をコイリングした後、550〜650℃
で30〜120分時効させることを特徴とするコイルばねの
製造方法。
2. The composition in which the components are in weight% 26.0 ≦ Cr ≦ 33.0,3.0 ≦ W ≦
13.0, 0.2 ≦ C ≦ 0.6, Fe + Ni ≦ 6.0, alloy solid consisting of the balance substantially Co was solidified at the cooling rate of 1 × 10 2 ° C./sec or more during casting, or powder composed of the above components was 1 × 10 2 The material solidified at a cooling rate of at least ℃ / sec is processed by performing hot working or cold working while performing annealing to a desired wire diameter as required, and in the final step, a surface reduction rate of 10 to 20%. After performing cold drawing and coiling the drawn material, 550-650 ° C
Aging for 30 to 120 minutes.
JP21067690A 1990-08-08 1990-08-08 Coil spring and manufacturing method thereof Expired - Lifetime JP2929680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21067690A JP2929680B2 (en) 1990-08-08 1990-08-08 Coil spring and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21067690A JP2929680B2 (en) 1990-08-08 1990-08-08 Coil spring and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0499242A JPH0499242A (en) 1992-03-31
JP2929680B2 true JP2929680B2 (en) 1999-08-03

Family

ID=16593269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21067690A Expired - Lifetime JP2929680B2 (en) 1990-08-08 1990-08-08 Coil spring and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2929680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174791B (en) * 2014-07-22 2016-03-30 中国科学院金属研究所 The preparation method of profiled-cross-section silk material titanium alloy spring

Also Published As

Publication number Publication date
JPH0499242A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
EP0361524B1 (en) Ni-base superalloy and method for producing the same
JP4493029B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP5582532B2 (en) Co-based alloy
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JPS6167738A (en) Improved copper base alloy having strength and conductivity in combination
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
JP6826766B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP6748951B2 (en) Method for producing Ni-base superheat-resistant alloy and Ni-base superheat-resistant alloy
JPH01237A (en) High strength and wear resistant copper alloy
JP2002256395A (en) High strength and low thermal expansion alloy having excellent twisting and alloy wire thereof
JPH10226839A (en) High strength aluminum alloy wire-coil spring and its production
JPH0768597B2 (en) Non-magnetic spring material and manufacturing method thereof
JP2929680B2 (en) Coil spring and manufacturing method thereof
JP2002206143A (en) High strength low thermal expansion casting steel and ring-shaped parts for blade ring of gas turbine and for seal ring holding ring consisting of the high strength low thermal expansion casting steel
JP2870156B2 (en) Coil spring and manufacturing method thereof
JP4145454B2 (en) Wear-resistant aluminum alloy elongated body and method for producing the same
JPH06184700A (en) Alloy with high strength, non-magnetism, and low thermal expansion
JP4275334B2 (en) Copper-based alloy and manufacturing method thereof
JPS6223951A (en) Co-base alloy excellent in wear resistance
JP3839957B2 (en) High strength low thermal expansion alloy wire
JP2003201530A (en) High-strength titanium alloy with excellent hot workability