JPH01237A - High strength and wear resistant copper alloy - Google Patents
High strength and wear resistant copper alloyInfo
- Publication number
- JPH01237A JPH01237A JP63-81174A JP8117488A JPH01237A JP H01237 A JPH01237 A JP H01237A JP 8117488 A JP8117488 A JP 8117488A JP H01237 A JPH01237 A JP H01237A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- wear
- alloy
- copper alloy
- wear resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 14
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 239000000956 alloy Substances 0.000 description 25
- 229910045601 alloy Inorganic materials 0.000 description 24
- 239000002244 precipitate Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 239000013078 crystal Substances 0.000 description 11
- 229910001369 Brass Inorganic materials 0.000 description 9
- 239000010951 brass Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 229910000765 intermetallic Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- -1 gold metal compound Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、優れた強度と耐摩耗性を有する高強度耐摩耗
性の銅合金に関する。DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a high-strength, wear-resistant copper alloy having excellent strength and wear resistance.
(従来の技術)
従来、高′l!A高荷重の下で使用された耐摩耗性銅合
金としては高力黄銅に81を添加したMn−3i金金属
化合物の析出型黄銅が知られており、これに強度と耐摩
耗性を向上させるために種々の元素を添加して改善した
ものなどがあった。(Prior art) Conventionally, high'l! A known wear-resistant copper alloy used under high loads is Mn-3i gold metal compound precipitated brass, which is made by adding 81 to high-strength brass, and this has improved strength and wear resistance. For this reason, there have been improvements made by adding various elements.
(発明が解決しようとするi題)
しかし、高強度耐摩耗性黄銅の析出物であるMn5 S
i3金属間化合物は一般に針状或は棒状に粗大に析出さ
れ、塑性変形により・一定方向に方向性をもつことにな
るため、その方向に従いfNf1粍性が左右され、尚且
つ素地の組織が粗大であるため、素材全体にわたって強
度及び耐摩耗性のごとき高強度耐摩耗性の銅合金に要求
される品質特性が均一でないという問題点を有していた
。(Problem to be solved by the invention) However, Mn5S, which is a precipitate of high-strength and wear-resistant brass,
i3 intermetallic compounds are generally coarsely precipitated in the form of needles or rods, and have directionality in a certain direction due to plastic deformation. Therefore, there was a problem in that the quality characteristics required for a high-strength, wear-resistant copper alloy, such as strength and wear resistance, were not uniform throughout the material.
従って、従来のMn−3i析出型高強度耐摩耗性の黄銅
は一般の高力黄銅に比して強度及び耐摩耗性が優れてい
るにもかかわらず、品質の信頼性を要求される精密部品
やより過酷なrlJi11条件の下では好適な素材であ
るとみなしえなかった。Therefore, although the conventional Mn-3i precipitated high-strength and wear-resistant brass has superior strength and wear resistance compared to general high-strength brass, it is still used for precision parts that require quality reliability. It could not be considered a suitable material under the harsher rlJi11 conditions.
本発明の目的は、このような従来のMn−3i析出型高
強度耐摩耗性黄銅が有した問題点を解消し耐摩耗性を向
上させるとともに品質特性を均一化させた高強度耐摩耗
性の銅合金を提供するものである。The purpose of the present invention is to solve the problems of conventional Mn-3i precipitated high-strength, wear-resistant brass, improve wear resistance, and create a high-strength, wear-resistant brass with uniform quality characteristics. It provides copper alloys.
(課題を解決するための手段)
本発明の高強度耐摩耗性の銅合金は、Cu:54〜66
%、/V: 1.0〜5.0%、14n: 1.0
〜5.0%、Si: 0.1〜2.0%、Sn:O8
1〜3.0%、B:0.01−〜1.0%を含み、残り
が亜鉛及び不可避的(避けられない)不純物よりなるも
のである。(Means for Solving the Problems) The high-strength, wear-resistant copper alloy of the present invention has Cu: 54 to 66
%, /V: 1.0-5.0%, 14n: 1.0
~5.0%, Si: 0.1~2.0%, Sn:O8
1 to 3.0%, B: 0.01 to 1.0%, and the remainder consists of zinc and unavoidable impurities.
また、本発明の高強度耐摩耗性の銅合金は、Cu:54
〜66%、Aj: 1.0〜5.0%、Mn: 1
.0〜5.0%、Si:O2N2.0%、Sn: 0
,1〜3.0%、・B : 0.01〜1.0%とr
e、 Ni、 Crの°3元素中の1種または2種以上
を0.1〜4.0%含み、残りが亜鉛と不可避的(避け
られない)不純物よりなるものである。Further, the high strength and wear resistant copper alloy of the present invention is Cu:54
~66%, Aj: 1.0~5.0%, Mn: 1
.. 0-5.0%, Si:O2N2.0%, Sn: 0
, 1~3.0%, ・B: 0.01~1.0% and r
It contains 0.1 to 4.0% of one or more of the °3 elements e.g., Ni, and Cr, and the remainder consists of zinc and inevitable impurities.
(作用)
本発明の高強度耐摩耗性の銅合金は、素地の組織をβ単
相またはα+β相とし、これにMn及びSiを適正比で
添加して耐摩耗性を向上さゼるMn−3i金金属の化合
物を析出させ、更にSnと8を添加してMn−8i析出
物を微細化させて強度及び耐摩耗性を向上させ、析出物
の微細化により析出物の方向性を減少させるとともに、
素地の結晶粒を微細化して、強度と靭性及び耐摩耗性の
高い高強度耐摩耗性の銅合金に要求される品質特性を素
材全体にわたって均一化させたものである。(Function) The high-strength, wear-resistant copper alloy of the present invention has a base structure having a β single phase or an α+β phase, and Mn and Si are added thereto in an appropriate ratio to improve the wear resistance. Precipitate a compound of 3i gold metal, and further add Sn and 8 to refine the Mn-8i precipitate to improve strength and wear resistance, and reduce the orientation of the precipitate by refining the precipitate. With,
By making the crystal grains of the base material finer, the quality characteristics required for a high-strength, wear-resistant copper alloy with high strength, toughness, and wear resistance are uniformized throughout the material.
また、Fe、 Ni、 Crの3元素中の1種または2
種以上を更に添加してMn−8i金金属化合物と複合′
化合物を形成して析出物の自己強度を増加させて、高強
度耐摩耗性銅合金の素材の強度及び耐摩耗性を更に向上
させたものである。In addition, one or two of the three elements Fe, Ni, and Cr
Further add more than one seed to form a composite with Mn-8i gold metal compound.
By forming a compound and increasing the self-strength of the precipitate, the strength and wear resistance of the high-strength, wear-resistant copper alloy material are further improved.
次に本発明を構成する特定の成分比(重量%)の元素の
作用について各個に説明する。Next, the effects of the elements at specific component ratios (wt%) constituting the present invention will be individually explained.
Cu:54〜66%
CUはN及びZnとともに素地組織をβ単相或はα+β
相にするためにそのように設定したのである。Cu: 54-66% CU has a base structure of β single phase or α+β together with N and Zn.
It was set up that way to make it compatible.
A1:1.0〜5.0%
Nは、β相生成促進元素であって機械的性質、殊に強度
及び硬度を向上させる。5%以上のときは鋳造組織を粗
大化する傾向が強く、酸化スラグを生成し易いため鋳造
性が低下し、或はγ相の生成量が増加して靭性がかなり
損われる。また、1%以下になると強度向上効果はあま
り期待できない。A1: 1.0 to 5.0% N is an element that promotes β-phase formation and improves mechanical properties, particularly strength and hardness. When it is 5% or more, there is a strong tendency to coarsen the casting structure, and oxidized slag is likely to be generated, resulting in a decrease in castability, or an increased amount of γ phase formation, resulting in a considerable loss of toughness. Further, if it is less than 1%, no significant strength improvement effect can be expected.
Mn: 1.0〜5.0%
Mnは、Nのごとく機械的性質を向上させ、特に耐摩耗
性を向上させるMn−8i f、属間化合物を析出させ
る必須の元素である。添加層が5%を超えると効果はさ
ほど大きくならず鋳造性を低下させる。一方、1%以下
の場合には上記金属間化合物の生成lは極度に減少する
。Mn: 1.0 to 5.0% Mn, like N, is an essential element that improves mechanical properties, particularly improves wear resistance, and precipitates Mn-8if and intermetallic compounds. If the additive layer exceeds 5%, the effect is not so great and castability is reduced. On the other hand, when the amount is less than 1%, the amount of intermetallic compound produced is extremely reduced.
Si: 0.1〜2io%
Siは、Mnと金属間化合物を形成する必須の元素であ
る。添加量が2%以上であると脆化して靭性が減少され
るし、0.1以下になると金属間化合物の析出量が極度
に減少する。Si: 0.1-2io% Si is an essential element that forms an intermetallic compound with Mn. If the amount added is 2% or more, it will become brittle and the toughness will be reduced, and if it is less than 0.1%, the amount of precipitation of intermetallic compounds will be extremely reduced.
以下、本発明の特徴とする添加元素のSn、 3及びF
OlNi、 Crの添加効果について説明する。Hereinafter, the additional elements Sn, 3 and F that are the characteristics of the present invention will be explained.
The effects of adding OlNi and Cr will be explained.
Sn: 0.1〜3.0%
anは、Mn−8i析出物を微細化して強度及び靭性を
向上させ、特に耐摩耗性の向上効果に優れる。Sn: 0.1 to 3.0% An improves strength and toughness by making Mn-8i precipitates finer, and is particularly effective in improving wear resistance.
しかし、3%を超えるときは合金が脆化する反面、0.
1%以下の場合には上記の効果は認められない。However, when it exceeds 3%, the alloy becomes brittle, while at 0.
The above effect is not observed when the amount is 1% or less.
B:0.01〜1.0%
8は、Snと同様にMn−3i析出物の微細化効果があ
り、特に少量の添加によっても素地の結晶粒を著しく微
細化させて強度及び靭性を向上させる。B: 0.01~1.0% 8 has the effect of refining Mn-3i precipitates like Sn, and even when added in a small amount, it significantly refines the crystal grains of the base material and improves strength and toughness. let
Bによる結晶粒微細化の効果は、特に高温でも結晶粒の
成長を抑えて微細な結晶粒を保持するため、過酷な摩擦
条件による摩擦熱によっても耐摩耗性及び強度低下を生
じさせないことになって品質特性を安定化させる。しか
し、1.0%以上を添加しても、効果は大きく増加しな
いことになるため、経済的側面から1.0%に限定する
のが望ましい。The crystal grain refining effect of B suppresses the growth of crystal grains and maintains fine crystal grains even at high temperatures, so there is no reduction in wear resistance and strength even due to frictional heat caused by harsh friction conditions. to stabilize quality characteristics. However, even if it is added in an amount of 1.0% or more, the effect will not increase significantly, so it is desirable to limit it to 1.0% from an economical point of view.
従って、従来の合金にsn及びBを添加すると、強度と
靭性及び耐摩耗性の向上はもとより、Mn−3i析出物
を微細化して塑性変形による析出物の1ノ向性発生を減
少させることができるし、また、結晶粒も微細化できる
ため、その結果、素材全体の品質特性を均一化すること
ができる。Therefore, adding sn and B to conventional alloys not only improves strength, toughness, and wear resistance, but also makes Mn-3i precipitates finer and reduces the unidirectional generation of precipitates due to plastic deformation. Furthermore, since the crystal grains can be made finer, the quality characteristics of the entire material can be made uniform.
一方、Fc、 Ni及びCrはこれらのうち1種または
2種以上の複合添加の際、Mn−3i金属間化合物と結
合してMn−3i (Fe、 Ni、 Cr)の複合
化合物を形成し、該複合化合物は従来の合金のMn−3
i金属間化合物に比して自己強度が高いので素材の強度
耐摩耗性の向上効果が大きい。しかし、これらの添加量
が0.1%以下であると、添加効果が表われない。On the other hand, when one or more of these are added in combination, Fc, Ni and Cr combine with the Mn-3i intermetallic compound to form a Mn-3i (Fe, Ni, Cr) composite compound, The composite compound is a conventional alloy Mn-3
i Since it has higher self-strength than intermetallic compounds, it has a great effect on improving the strength and wear resistance of the material. However, if the amount of these additions is less than 0.1%, the effect of addition will not be exhibited.
(実施例)
本発明の高強度耐摩耗性の銅合金を実施例によって説明
する。(Example) The high-strength, wear-resistant copper alloy of the present invention will be explained by way of example.
高周波溶解炉を用いてそれぞれ別紙(表1)に表示され
た成分組成(数値は重量%)を有する実施例の合金1乃
至14及び従来例の合金1乃至゛4を大気中において溶
解した後、金型で鋳造して30as+厚さのスラブを造
った。After melting in the atmosphere Alloys 1 to 14 of Examples and Alloys 1 to 4 of Conventional Examples having the component compositions (numbers are weight %) shown in the attached sheet (Table 1) using a high frequency melting furnace, A slab with a thickness of 30as+ was made by casting with a mold.
そして、30m厚さに鋳造されたスラブの面取りをした
後、熱間圧延を行い10M厚さの板につくった。Then, after chamfering the cast slab to a thickness of 30 m, hot rolling was performed to produce a plate with a thickness of 10 m.
更に、この熱間圧延された板を4oo℃で5時間焼なま
しをして試験片を採取しそれぞれ引張り試験、硬さ試験
、摩耗試験を行った。Furthermore, this hot-rolled plate was annealed at 40°C for 5 hours, test pieces were taken, and a tensile test, a hardness test, and an abrasion test were conducted on each test piece.
この際、摩耗試験は回転摺摩耗り式により測定した。即
ち、上記した10ag厚さのスラブがら内径16!Ia
φ、外径30as+φのドーナツ状の試料を取って、該
試料を5uJ−2特殊鋼等で造られた内径16a*φ、
外径35awφの相対鉄片と互に対向するように密着さ
せ、最大圧縮応力50に9/d、試料片の回転速度80
0rpm、相対鉄片の回転速度560 rl)l(ff
i度30%)で回転摩擦させ、50万回及び100乃回
を行った後の摩耗m (11g)を測定した。At this time, the abrasion test was performed using a rotary sliding abrasion method. That is, the inner diameter of the above-mentioned 10ag thick slab is 16! Ia
φ, a donut-shaped sample with an outer diameter of 30as+φ is taken, and the sample is made of 5uJ-2 special steel or the like with an inner diameter of 16a*φ,
The sample piece was placed in close contact with a relative iron piece having an outer diameter of 35 awφ so as to face each other, the maximum compressive stress was 9/d, and the rotation speed of the sample piece was 80.
0 rpm, relative iron piece rotation speed 560 rl)l(ff
The wear m (11 g) was measured after rotational friction was performed 500,000 times and 100 times.
また夫々の合金の平均粒度、析出物の大きさを測定した
。The average grain size and precipitate size of each alloy were also measured.
それぞれの試験結果、測定結果は別紙(表2)に示すと
おりである。The test results and measurement results for each are shown in the attached sheet (Table 2).
(表2)から実施例の合金1乃至14は従来例の合金1
乃至4に比して強度及び靭性が向上されており、殊に耐
摩耗性が大きく向上していることが分かる。(Table 2), alloys 1 to 14 of the examples are alloy 1 of the conventional example.
It can be seen that the strength and toughness are improved compared to samples 4 to 4, and in particular, the wear resistance is greatly improved.
また素地の結晶粒及びMn−8i金属間化合物(または
複合化合物)の大きさもかなり小となって従来例の合金
に比して強度と靭性及び耐摩耗性のごとき高強度耐摩耗
性の銅合金に要求される品質特性が素材全体にわたって
均一化されていることが分かる。In addition, the size of the crystal grains of the matrix and the Mn-8i intermetallic compound (or composite compound) is considerably smaller, resulting in a high-strength, wear-resistant copper alloy with greater strength, toughness, and wear resistance than conventional alloys. It can be seen that the quality characteristics required for are uniform throughout the material.
これを更に詳しく説明すれば、実施例の合金4は従来例
の合金1(従来の高強度耐摩耗性の黄銅)にSn :
2.52%及びB:0.011%を添加したもので、
従来例の合金1に比して強度と靭性が向上されており、
殊に耐摩耗性の向上とMn−3i析出物の微細化効果が
顕著であった。To explain this in more detail, alloy 4 of the example is alloy 1 of the conventional example (conventional high-strength, wear-resistant brass) with Sn:
2.52% and B:0.011% added,
It has improved strength and toughness compared to the conventional alloy 1,
In particular, the improvement in wear resistance and the effect of making Mn-3i precipitates finer were remarkable.
また実施例の合金5は、従来例の合金1にso:0.1
5%及びB : 0.664%を添加したもので、従
来例の金遣1に比して強度と耐摩耗性が向上されており
、殊に結晶粒の微細化及び析出物の微細化効果が顕著で
あった。In addition, the alloy 5 of the example is so: 0.1 compared to the alloy 1 of the conventional example.
5% and B: 0.664% are added, and the strength and wear resistance are improved compared to the conventional example 1, and in particular the effect of refining crystal grains and precipitates is improved. was remarkable.
更に、従来例の合金1にSn: 1.58%及びB二
0、121%を添加した実施例の合金6は強度と靭性及
び耐摩耗性向上が顕著であり、殊に結晶粒の微細化効果
が卓越であった。Furthermore, the alloy 6 of the example, in which 1.58% Sn and 121% of B2 were added to the conventional alloy 1, had remarkable improvements in strength, toughness, and wear resistance, and in particular, grain refinement. The effect was outstanding.
また、実施例の合金6の試験素材が400℃で5時間焼
なましされた状態であるのを勘案すれば、実施例の合金
6はsn及びBの添加により高温でも結晶粉の成長を抑
えられるものと判断される。In addition, considering that the test material of Alloy 6 of the Example was annealed at 400°C for 5 hours, the Alloy 6 of the Example suppresses the growth of crystal powder even at high temperatures due to the addition of sn and B. It is determined that the
従って、実施例の合金6はより過酷な摩擦条件の下で生
ずる摩擦熱に対しても強度及び耐摩耗性の低下が生じな
いことになり、これによっても強度及び耐摩耗性の特性
が安定化されるのが分かる。Therefore, the strength and wear resistance of Alloy 6 in Example does not decrease even when subjected to frictional heat generated under harsher friction conditions, and this also stabilizes the strength and wear resistance properties. I can see it being done.
これはsnとBの添加によりHローSi析出物が微細化
し素地中に均一・に分散されかつ素地の結晶粒を微細化
するためである。This is because the addition of sn and B makes the H low Si precipitates finer and uniformly dispersed in the base material, and also makes the crystal grains of the base material finer.
一方、実施例の合金3にFc1旧、Crの中の1種また
は2種以上を添加した実施例の合金7乃至実施例の合金
14は、実施例の合金3乃至実施例の合金6に比して強
度及び耐摩耗性がかなり向上されている。On the other hand, Alloy 7 to Alloy 14 of Example, in which one or more of Fc1 old and Cr were added to Alloy 3 of Example, were compared to Alloy 3 of Example to Alloy 6 of Example. As a result, strength and wear resistance are significantly improved.
これは、Fe、 Ni、crの中の2)ff!または3
f!を添加した従来の高強度耐摩耗性の黄銅におけるM
n−3i fltFfA間化合物とは異なるMn−3i
(Fe、 Ni1Cr)の複合化合物を形成させて
析出物の自己強度を大いに増加させたためである。This is 2) ff! in Fe, Ni, and cr. or 3
f! M in conventional high-strength, wear-resistant brass with added
Mn-3i different from the n-3i fltFfA compound
This is because the self-strength of the precipitate was greatly increased by forming a composite compound of (Fe, Ni1Cr).
本発明によれば、強化された金am化合物を微細化させ
て素地内に均一に分散させることにより、高強度及び耐
摩耗性を保持することはもとより、析出物の微細化によ
り塑性変形による析出物の方向性発生を減少させ、かつ
素地の結晶粒を微細化させることにより、素材全体にわ
たって均一な材質を保持して品質が安定されるので、よ
り過酷な使用条件や信頼を要求される耐摩耗性の精密部
品に好適である。According to the present invention, by making the strengthened gold-am compound fine and uniformly dispersing it within the base material, not only high strength and wear resistance are maintained, but also precipitation caused by plastic deformation is prevented by making the precipitates fine. By reducing the occurrence of directionality and making the crystal grains of the base material finer, uniform quality is maintained throughout the material and quality is stabilized. Suitable for abrasive precision parts.
Claims (2)
Mn:1.0〜5.0%、Si:0.1〜2.0%、S
n:0.1〜3.0%、B:0.01〜1.0%と残り
が亜鉛と不可避的不純物とからなることを特徴とする高
強度耐摩耗性の銅合金。(1) Cu: 54-66%, Al: 1.0-5.0%,
Mn: 1.0-5.0%, Si: 0.1-2.0%, S
A high-strength, wear-resistant copper alloy characterized by comprising n: 0.1 to 3.0%, B: 0.01 to 1.0%, and the remainder consisting of zinc and inevitable impurities.
Mn:1.0〜5.0%、Si:0.1〜2.0%、S
n:0.1〜3.0%、B:0.01〜1.0%とFe
、Ni、Crの3元素中の1種または2種以上を0.1
〜4.0%含み、残りが亜鉛と不可避的不純物とからな
ることを特徴とする高強度耐摩耗性の銅合金。(2) Cu: 54-66%, Al: 1.0-5.0%,
Mn: 1.0-5.0%, Si: 0.1-2.0%, S
n: 0.1-3.0%, B: 0.01-1.0% and Fe
, Ni, Cr, one or more of the three elements at 0.1
A high-strength, wear-resistant copper alloy characterized by containing ~4.0% and the remainder consisting of zinc and unavoidable impurities.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019870003452A KR900006104B1 (en) | 1987-04-10 | 1987-04-10 | Cu-alloy having a property of high strength and wear-proof |
KR3452 | 1987-04-10 |
Publications (3)
Publication Number | Publication Date |
---|---|
JPS64237A JPS64237A (en) | 1989-01-05 |
JPH01237A true JPH01237A (en) | 1989-01-05 |
JPH0524971B2 JPH0524971B2 (en) | 1993-04-09 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113584343B (en) | Corrosion-resistant high-manganese aluminum bronze alloy and preparation method thereof | |
JPS5952944B2 (en) | Mn-Si intermetallic compound dispersed high-strength brass with toughness and wear resistance | |
JPS5853057B2 (en) | Highly conductive copper-based alloy | |
US6110084A (en) | Combined roll having excellent resistance to thermal shock | |
US4851191A (en) | High strength and wear resistance copper alloys | |
US6037067A (en) | High temperature abrasion resistant copper alloy | |
JPS60114545A (en) | Wear resistant copper alloy | |
JPS6263637A (en) | Aluminum bearing alloy | |
JP3217661B2 (en) | High strength ductile cast iron | |
JP2002206143A (en) | High strength low thermal expansion casting steel and ring-shaped parts for blade ring of gas turbine and for seal ring holding ring consisting of the high strength low thermal expansion casting steel | |
US5925315A (en) | Aluminum alloy with improved tribological characteristics | |
JP2866384B2 (en) | Aluminum bronze casting with wear resistance for sliding members | |
JPH01237A (en) | High strength and wear resistant copper alloy | |
JP3920656B2 (en) | High rigidity aluminum alloy containing boron | |
JPS6241302B2 (en) | ||
JPS6086237A (en) | Cu-alloy for slide member | |
US3297435A (en) | Production of heat-treatable aluminum casting alloy | |
JPS6151620B2 (en) | ||
JPS6154854B2 (en) | ||
US2974035A (en) | Nodular graphite steel | |
JPS61143554A (en) | Cast iron material for surface hardening | |
JPH0757899B2 (en) | Wear resistant copper alloy | |
JPH07138680A (en) | Aluminum bronze for sliding material, excellent in seizuring resistance and wear resistance | |
JP2929680B2 (en) | Coil spring and manufacturing method thereof | |
JPS6227543A (en) | Wear-resisting aluminum alloy stock |