JPH0757899B2 - Wear resistant copper alloy - Google Patents

Wear resistant copper alloy

Info

Publication number
JPH0757899B2
JPH0757899B2 JP60150253A JP15025385A JPH0757899B2 JP H0757899 B2 JPH0757899 B2 JP H0757899B2 JP 60150253 A JP60150253 A JP 60150253A JP 15025385 A JP15025385 A JP 15025385A JP H0757899 B2 JPH0757899 B2 JP H0757899B2
Authority
JP
Japan
Prior art keywords
alloy
phase
wear
silicon
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60150253A
Other languages
Japanese (ja)
Other versions
JPS6213549A (en
Inventor
勝 坂倉
馬場  昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60150253A priority Critical patent/JPH0757899B2/en
Publication of JPS6213549A publication Critical patent/JPS6213549A/en
Publication of JPH0757899B2 publication Critical patent/JPH0757899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は耐摩耗性及び機械的強度が要求される軸受材な
どに好適な耐摩耗性銅合金に関するものである。
TECHNICAL FIELD The present invention relates to a wear-resistant copper alloy suitable for bearing materials and the like that require wear resistance and mechanical strength.

〔発明の背景〕[Background of the Invention]

従来の高力黄銅系合金において特にMn−Si化合物析出型
合金は、アルミニウム青銅なみの強度とリン青銅なみの
耐摩耗性を兼ねそなえた材料である。しかし、さらに耐
摩耗性を要求される圧延機用圧下雌ねじでは、Mn−Si化
合物を分散させて耐摩耗性を維持しつつ、余剰の珪素で
さらに耐摩耗性を向上させ、アルミニウムで地を強化す
るようにした銅60%,珪素2%,アルミニウム1%,マ
ンガン4%,亜鉛残部よりなる合金が特公昭51−41569
号公報に示されている。また、特開昭51−140821号公報
にはこれと同等の組成にCr0.01〜0.50%及び鉛0.03%以
下の合金が示されている。
Among the conventional high-strength brass alloys, Mn-Si compound precipitation type alloys are materials that have both the strength of aluminum bronze and the wear resistance of phosphor bronze. However, in the rolling internal thread for rolling mills, which requires further wear resistance, Mn-Si compounds are dispersed to maintain wear resistance, while surplus silicon improves wear resistance further and aluminum strengthens the ground. An alloy composed of 60% copper, 2% silicon, 1% aluminum, 4% manganese, and the balance zinc is made into Japanese Patent Publication No. 51-41569.
It is shown in the publication. Further, JP-A-51-140821 discloses an alloy containing Cr 0.01 to 0.50% and lead 0.03% or less in the same composition.

しかし、さらに高強度と耐摩耗性が要求される軸受材で
は摩擦面での“へたり”が大きく実用面で充分とはいえ
ず、更に高性能のものが要求されているのが現状であ
る。
However, bearing materials that are required to have higher strength and wear resistance have a large "fatigue" on the friction surface, which is not sufficient for practical use, and at present, higher performance is required. .

〔発明の目的〕[Object of the Invention]

本発明の目的は、高強度とすぐれた耐摩耗性を兼ねそな
えた耐摩耗性銅合金を提供することにある。
It is an object of the present invention to provide a wear resistant copper alloy having both high strength and excellent wear resistance.

〔発明の概要〕[Outline of Invention]

本発明は、余剰の珪素を含むMn−Si化合物析出型合金に
Crを添加し組織を微細化しCr添加による素地の軟化を更
にSiを添加することで防止したものである。
The present invention is an Mn-Si compound precipitation type alloy containing excess silicon.
Cr is added to make the structure finer and softening of the base material due to Cr addition is prevented by further adding Si.

具体的には、銅58〜68%,珪素1.94〜3%,アルミニウ
ム0.5〜1.5%,マンガン3.08〜5%,クロム0.01〜1
%,亜鉛残部よりなり、特にα+β又はβ相と珪化マン
ガン相とが混合した組織を有し、固溶珪素量を1.0〜1.5
%とした耐摩耗銅合金にある。
Specifically, copper 58-68%, silicon 1.94-3%, aluminum 0.5-1.5%, manganese 3.08-5%, chromium 0.01-1.
%, The balance of zinc, and has a structure in which an α + β or β phase and a manganese silicide phase are mixed, and the amount of solid solution silicon is 1.0 to 1.5.
% Of wear-resistant copper alloy.

この銅合金には、更に、鉛2%以下,リン0.5%以下、
及びマグネシウムとゲルマニウムとニッケルの1つ以上
を単独又は合計で1%以下を含有することができる。
This copper alloy also contains lead 2% or less, phosphorus 0.5% or less,
Also, one or more of magnesium, germanium, and nickel may be contained alone or in a total of 1% or less.

次に成分組成範囲を上記とした理由を説明する。Next, the reason why the component composition range is set as above will be described.

(1)アルミニウム(Al) アルミニウムは亜鉛当量が高く、β相の形成を促進す
る。また強度の向上に大きく貢献するものの、1.5%よ
り多くなると靭性が低下し、0.5%以上でないとその効
果も少ないため、Al含有量を0.5〜1.5%とした。
(1) Aluminum (Al) Aluminum has a high zinc equivalent and promotes the formation of β phase. Although it greatly contributes to the improvement of strength, if it exceeds 1.5%, the toughness deteriorates, and if it does not exceed 0.5%, its effect is small. Therefore, the Al content is set to 0.5 to 1.5%.

(2)珪素(Si),マンガン(Mn)およびクロム(Cr) マンガンはMn−Si化合物を形成させるため必要な元素で
あり耐摩耗性を改善するためには3.08%以上添加が必要
である。また5%以上となると機械的強度を低下させる
ため、Mn含有量を3.08〜5%とした。
(2) Silicon (Si), manganese (Mn), and chromium (Cr) Manganese is an element necessary for forming an Mn-Si compound, and 3.08% or more must be added to improve wear resistance. Further, if it exceeds 5%, the mechanical strength is lowered, so the Mn content is set to 3.08 to 5%.

珪素とマンガンは重量比で23.4対76.6の割合でMn−Si化
合物となる。Mn3.08%ではSiは1.94%以上の含有量とす
る必要があるが、Crが0.5%程度共存する場合SiをMn−S
i化合物を形成した残りの基地に固溶する珪素量として
余剰に1%以上入れるとより耐摩耗性,強度も改善され
る。しかしSiが3%以上になるとγ相が析出し脆化する
のでSi含有量を1.94〜3%とした。また、余剰Siとなる
固溶珪素量として1.5%を越えると靭性が著しく低下す
るので、固溶珪素量を1.0〜1.5%とする。
Silicon and manganese become Mn-Si compounds in a weight ratio of 23.4 to 76.6. When Mn is 3.08%, Si must be 1.94% or more, but when Cr coexists about 0.5%, Mn-S
The wear resistance and strength are further improved by adding an excess of 1% or more as the amount of silicon solid-dissolved in the remaining matrix in which the i compound has been formed. However, when Si exceeds 3%, the γ phase precipitates and becomes brittle, so the Si content was set to 1.94 to 3%. Further, if the solid solution amount of excess Si exceeds 1.5%, the toughness is remarkably deteriorated, so the solution amount of the solid solution silicon is set to 1.0 to 1.5%.

クロムは素地及びMn−Si化合物を細粒にし、Mn−Si化合
物を素地からの離脱を防止するために添加されるが、1
%を超えると靭性を劣化させるので上限を1%とした。
また0.01%以下ではその効果がないので、Cr含有量を0.
01〜1%とした。
Chromium is added to make the matrix and the Mn-Si compound into fine particles and prevent the Mn-Si compound from leaving the matrix.
%, The toughness deteriorates, so the upper limit was made 1%.
If the content is 0.01% or less, the effect is not obtained, so the Cr content is set to 0.
It was set to 01 to 1%.

(3)マグネシウム(Mg),ゲルマニウム(Ge)および
ニッケル(Ni) これらの成分には、Mn−Si化合物を細くし強化する作用
があるので、特に高強度を要求される場合に必要に応じ
て含有される成分であるが、その添加量は合計で1%を
超えると靭性を劣化させるので上限を1%とした。
(3) Magnesium (Mg), Germanium (Ge) and Nickel (Ni) These components have the action of thinning and strengthening the Mn-Si compound. Although it is a component contained, if the total amount of addition exceeds 1%, the toughness deteriorates, so the upper limit was made 1%.

(4)リン(P)および鉛(Pb) リンは耐摩耗性を向上させるためのものであるが、0.5
%以上含有すると靭性を劣化させるので上限を0.5%と
した。
(4) Phosphorus (P) and lead (Pb) Phosphorus is for improving wear resistance, but 0.5
%, The toughness deteriorates, so the upper limit was made 0.5%.

鉛は被削性及び耐焼付性を向上させるためのものである
が、2%以上含有すると機械的性質を害するので上限を
2%とした。
Lead is for improving machinability and seizure resistance, but if it is contained in an amount of 2% or more, mechanical properties are impaired, so the upper limit was made 2%.

〔発明の実施例〕Example of Invention

実施例1 第1図はCu58.1%,Al0.75%,Mn5Si34.02%(Mn3.08%,S
i0.94%),Zn残部なる合金にSiを0.5〜1.5%,Crを0%
及び0.05%含有させた時の余剰Si量と硬さとの関係を示
したものである。第1図より明らかなようにCrを入れる
と硬さが低下するので、Cr0%,余剰Si0.5%の硬さを維
持するにはCr0.05%では余剰Siを1.0%入れる必要があ
る。
Example 1 FIG. 1 shows Cu 58.1%, Al 0.75%, Mn 5 Si 3 4.02% (Mn 3.08%, S
i0.94%), 0.5 to 1.5% Si and 0% Cr in the balance Zn alloy
And the relationship between the amount of excess Si and the hardness when 0.05% is included. As is clear from Fig. 1, the hardness decreases when Cr is added, so in order to maintain the hardness of Cr0% and excess Si0.5%, it is necessary to add 1.0% excess Si at Cr0.05%.

第2図及び第3図はMn−Si化合物析出型合金の組織(倍
率500倍)を示したものであり、第2図はCrの存しない
もの(第1表合金No.7)、第3図はCr0.04%存するもの
(第1表合金No.1)の組織である。本発明合金において
もNo.1と同様にCr添加によりMn5Si3及び地ともに細くな
っていることが確認された。
2 and 3 show the structure of the Mn-Si compound precipitation type alloy (magnification: 500 times), and Fig. 2 shows the structure without Cr (Alloy No. 7 in Table 1), No. 3 The figure shows the structure of the one with Cr of 0.04% (Table 1 alloy No. 1). It was confirmed that in the alloy of the present invention as well as No. 1, both Mn 5 Si 3 and the base were thinned by adding Cr.

第1表に示す組成の各種銅合金を鋳造により作製し本発
明材については700℃2時間保持後空冷の条件で焼鈍し
引張試験,硬さ試験および西原式摩耗試験を行った。引
張試験,硬さ試験の結果を第1表に、摩耗試験の結果を
第4図に示す。
Various copper alloys having the compositions shown in Table 1 were produced by casting, and the materials of the present invention were held at 700 ° C. for 2 hours, annealed under the conditions of air cooling, and subjected to a tensile test, a hardness test, and a Nishihara wear test. The results of the tensile test and the hardness test are shown in Table 1, and the results of the abrasion test are shown in FIG.

No.1〜6及び10は本発明合金で、いずれもα+β相を有
するものであった。No.7は公知の圧下雌ねじ材、No.8は
アルミニウム青銅2種、No.9はリン青銅鋳物2種であ
る。
Nos. 1 to 6 and 10 were alloys of the present invention, and all had an α + β phase. No. 7 is a known internally threaded screw material, No. 8 is 2 types of aluminum bronze, and No. 9 is 2 types of phosphor bronze casting.

第1表から明らかなように本発明合金は公知のNo.7〜9
に比べ硬さが著しく大きく、引張強さもNo.7と同程度又
はそれ以上であることが確認された。また、本発明合金
は700℃2時間保持後の冷却速度を速くすると例えば水
冷すると合金組織がβ相のみになり硬さが著しく向上す
ることが確認された。No.5はPb量が多いため強度及び硬
さが低いが、優れた耐摩耗性を有する。また、本発明合
金のNo.1〜6及び10は固溶珪素量としての余剰Si量が1.
00〜1.21%であり、伸び率が2.1%以上である高い靭性
を有するが、余剰Si量の増加とともに伸び率が急激に低
下し、特に余剰Si量が1.5%を越えると伸び率が0%付
近まで低下してしまうことが明らかとなった。
As is clear from Table 1, the alloys of the present invention are known Nos. 7-9.
It was confirmed that the hardness was significantly higher than that of No. 7, and the tensile strength was similar to or higher than that of No. 7. It was also confirmed that when the cooling rate of the alloy of the present invention after holding at 700 ° C. for 2 hours was increased, for example, when it was water-cooled, the alloy structure became only the β phase and the hardness was significantly improved. No. 5 has a large amount of Pb, so the strength and hardness are low, but it has excellent wear resistance. Further, Nos. 1 to 6 and 10 of the alloys of the present invention have an excess Si content of 1.
It has a high toughness of 00 to 1.21% and an elongation rate of 2.1% or more, but the elongation rate sharply decreases with an increase in the excess Si content, and especially when the excess Si content exceeds 1.5%, the elongation rate is 0%. It became clear that it would decrease to the vicinity.

次に第4図は第1表に示した各種銅合金の摩耗試験結果
を示したものである。
Next, FIG. 4 shows the wear test results of the various copper alloys shown in Table 1.

第4図より明らかなようにNo.8の合金は摺動距離103mか
ら104mの間において急激な摩耗量の増加が認められる。
No.9はNo.8に比べて著しく摩耗量が少なく耐摩耗性にす
ぐれているが、摺動距離が105m以上になると摩耗量が急
激に増大し始めMn−Si化合物析出型合金No.7の方が一段
とすぐれた耐摩耗性を有することは明らかである。比較
合金のNo.1は105mまではほぼNo.7と同程度の摩耗量で、
106mでの摩耗量は50mg/cm2以下であるが、本発明合金の
No.6及び10は30mg/cm2以下で比較合金の約半分であり特
に耐摩耗性がすぐれていることが確認された。
As is clear from Fig. 4, in the No. 8 alloy, a drastic increase in the wear amount is recognized between the sliding distances of 10 3 m and 10 4 m.
No. 9 has significantly less wear than No. 8 and is excellent in wear resistance, but when the sliding distance is 10 5 m or more, the wear begins to increase rapidly and Mn-Si compound precipitation alloy No. It is clear that .7 has even better wear resistance. The comparative alloy No. 1 has about the same wear amount as No. 7 up to 10 5 m,
Although the wear amount at 10 6 m is 50 mg / cm 2 or less,
It was confirmed that Nos. 6 and 10 were 30 mg / cm 2 or less, which was about half that of the comparative alloys, and particularly excellent in wear resistance.

〔発明の効果〕 以上説明したように、本発明によれば高強度と耐摩耗性
が苛酷に要求される自動車の軸受材として使用できるの
でその効果はすぐれたものといえる。
[Advantages of the Invention] As described above, according to the present invention, since it can be used as a bearing material for automobiles that are highly required to have high strength and wear resistance, the effect can be said to be excellent.

【図面の簡単な説明】 第1図は圧下雌ねじ材の余剰Si量と硬さの関係を示した
曲線図、第2図及び第3図はMn−Si化合物析出型合金の
金属組織(倍率500倍)を示す顕微鏡写真、第4図は本
発明およびその比較のための合金の摩耗量と摺動距離の
比較を示す曲線図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a curve diagram showing the relationship between the surplus Si amount and hardness of the rolled internal thread material, and FIGS. 2 and 3 are the metal structures of Mn-Si compound precipitation type alloys (magnification 500 FIG. 4 is a curve diagram showing the comparison between the wear amount and the sliding distance of the alloys of the present invention and the comparison thereof.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−140821(JP,A) 特開 昭60−114545(JP,A) 特開 昭57−114632(JP,A) 特開 昭57−76143(JP,A) 特公 昭44−28789(JP,B1) 特公 昭50−7010(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-51-140821 (JP, A) JP-A-60-114545 (JP, A) JP-A-57-114632 (JP, A) JP-A-57- 76143 (JP, A) JP-B 44-28789 (JP, B1) JP-B 50-7010 (JP, B1)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量で、銅58〜68%,珪素1.94〜3%,ア
ルミニウム0.5〜1.5%,マンガン3.08〜5%,クロム0.
01〜1%,亜鉛残部よりなり、その合金組織がα+β相
あるいはβ相と珪化マンガンの分散相からなり、固溶珪
素量が1.0〜1.5%であることを特徴とする耐摩耗性銅合
金。
1. By weight, copper 58 to 68%, silicon 1.94 to 3%, aluminum 0.5 to 1.5%, manganese 3.08 to 5%, chromium 0.
A wear-resistant copper alloy, characterized in that it comprises 01 to 1%, the balance of zinc, its alloy structure consists of an α + β phase or a β phase and a disperse phase of manganese silicide, and the amount of solid solution silicon is 1.0 to 1.5%.
【請求項2】重量で、銅58〜68%,珪素1.94〜3%,ア
ルミニウム0.5〜1.5%,マンガン3.08〜5%,クロム0.
01〜1%,鉛2%以下,リン0.5%以下,マグネシウム
とゲルマニウム及びニッケルの一種以上を合計で1%以
下,残部亜鉛よりなり、その合金組織がα+β相あるい
はβ相と珪化マンガンの分散相からなり、固溶珪素量が
1.0〜1.5%であることを特徴とする耐摩耗性銅合金。
2. By weight, copper 58 to 68%, silicon 1.94 to 3%, aluminum 0.5 to 1.5%, manganese 3.08 to 5%, chromium 0.
01 to 1%, lead 2% or less, phosphorus 0.5% or less, magnesium and germanium and nickel 1% or more in total 1% or less, balance zinc, the alloy structure is α + β phase or β phase and dispersed phase of manganese silicide The amount of solid solution silicon is
A wear-resistant copper alloy characterized by 1.0 to 1.5%.
JP60150253A 1985-07-10 1985-07-10 Wear resistant copper alloy Expired - Fee Related JPH0757899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150253A JPH0757899B2 (en) 1985-07-10 1985-07-10 Wear resistant copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150253A JPH0757899B2 (en) 1985-07-10 1985-07-10 Wear resistant copper alloy

Publications (2)

Publication Number Publication Date
JPS6213549A JPS6213549A (en) 1987-01-22
JPH0757899B2 true JPH0757899B2 (en) 1995-06-21

Family

ID=15492900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150253A Expired - Fee Related JPH0757899B2 (en) 1985-07-10 1985-07-10 Wear resistant copper alloy

Country Status (1)

Country Link
JP (1) JPH0757899B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215642A (en) * 1990-01-22 1991-09-20 Daido Metal Co Ltd Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance
JP3304021B2 (en) * 1994-07-20 2002-07-22 日産自動車株式会社 Copper alloy with excellent high-temperature wear resistance
JP3718147B2 (en) * 2001-07-31 2005-11-16 株式会社日立製作所 Turbocharger for internal combustion engines
JP5376604B2 (en) * 2008-05-07 2013-12-25 独立行政法人科学技術振興機構 Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof
JP5139890B2 (en) * 2008-06-17 2013-02-06 株式会社イズミフードマシナリ Emulsifying and dispersing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507010A (en) * 1973-05-21 1975-01-24
JPS51140821A (en) * 1975-05-30 1976-12-04 Nippon Shindo Kk Abrasion resistant cu alloy
JPS5952944B2 (en) * 1980-10-30 1984-12-22 三菱マテリアル株式会社 Mn-Si intermetallic compound dispersed high-strength brass with toughness and wear resistance
JPS57114632A (en) * 1981-01-08 1982-07-16 Kobe Steel Ltd High-strength copper alloy with superior wear resistance
JPS60114545A (en) * 1983-11-25 1985-06-21 Kobe Steel Ltd Wear resistant copper alloy

Also Published As

Publication number Publication date
JPS6213549A (en) 1987-01-22

Similar Documents

Publication Publication Date Title
JPH083135B2 (en) Wear resistant copper alloy
US5286445A (en) Aluminium bearing alloy containing bismuth
US4851191A (en) High strength and wear resistance copper alloys
US4822561A (en) Aluminum bearing alloy
JPH01237A (en) High strength and wear resistant copper alloy
US5512242A (en) Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance
JPH0757899B2 (en) Wear resistant copper alloy
US7601434B2 (en) Plain bearing composite material
EP1096028A2 (en) High-strength aluminum alloy for pressure casting and cast aluminum alloy comprising the same
JP3351181B2 (en) Wear-resistant aluminum alloy sliding member
JPS6134154A (en) Wear resistant and high strength brass alloy
KR102489980B1 (en) Aluminum alloy
US5925315A (en) Aluminum alloy with improved tribological characteristics
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JP3865430B2 (en) Heat and wear resistant magnesium alloy
JP2776645B2 (en) High-strength wear-resistant aluminum alloy with excellent cold forgeability
KR20220141485A (en) Aluminum alloy
JPH0238651B2 (en)
JPS6086237A (en) Cu-alloy for slide member
JP2592397B2 (en) Aluminum bronze for sliding materials with excellent seizure resistance and wear resistance
JPH04173935A (en) Wear resistant aluminum alloy
JPH10219373A (en) Copper alloy for press forming die
US6296952B1 (en) Sliding bearing material based on aluminum with 10-25 wt % tin alloyed with manganese and silicon
JP2759873B2 (en) Wear resistant high strength copper alloy
US6335106B1 (en) Slide bearing material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees