JP5376604B2 - Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof - Google Patents

Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof Download PDF

Info

Publication number
JP5376604B2
JP5376604B2 JP2010511043A JP2010511043A JP5376604B2 JP 5376604 B2 JP5376604 B2 JP 5376604B2 JP 2010511043 A JP2010511043 A JP 2010511043A JP 2010511043 A JP2010511043 A JP 2010511043A JP 5376604 B2 JP5376604 B2 JP 5376604B2
Authority
JP
Japan
Prior art keywords
brass alloy
brass
lead
phase
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010511043A
Other languages
Japanese (ja)
Other versions
JPWO2009136552A1 (en
Inventor
勝義 近藤
元 片野
久志 今井
美治 上坂
明倫 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Osaka University NUC
San Etsu Metals Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Osaka University NUC
San Etsu Metals Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Osaka University NUC, San Etsu Metals Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2010511043A priority Critical patent/JP5376604B2/en
Publication of JPWO2009136552A1 publication Critical patent/JPWO2009136552A1/en
Application granted granted Critical
Publication of JP5376604B2 publication Critical patent/JP5376604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Brass alloy powder has a brass composition formed by a mixed phase of ±-phase and ²-phase, and contains 0.5 to 5.0 mass% of chromium. The chromium includes a component that is solid-solved in a mother phase of brass, and a component that is precipitated at crystal grain boundaries.

Description

本発明は、高強度黄銅合金に関するものであり、特に環境や人体に有害な鉛を含有しない黄銅合金粉末および黄銅合金押出材に関するものである。   The present invention relates to a high-strength brass alloy, and particularly to a brass alloy powder and a brass alloy extruded material that do not contain lead harmful to the environment and the human body.

近年、環境問題が大きくクローズアップされており、合金開発においてもこの点の注意が必要である。6/4黄銅は、適度な強度および良好な機械的特性を有し、さらに非磁性であることから、機械部品として利用されるのみならず、ガス配管、水道配管、バルブなど広範囲に亘って利用されている。   In recent years, environmental problems have been greatly highlighted, and attention to this point is also necessary in alloy development. 6/4 brass has moderate strength, good mechanical properties, and is non-magnetic, so it is not only used as a machine part, but also used in a wide range of gas pipes, water pipes, valves, etc. Has been.

6/4黄銅からなる部材の加工性を上げるために、通常、合金組成中に数%の鉛を含有させている。この鉛含有黄銅部材を水道配管に使用したとき、鉛が上水道中に溶け出すおそれがある。   In order to improve the workability of a member made of 6/4 brass, several percent of lead is usually included in the alloy composition. When this lead-containing brass member is used for a water pipe, lead may be dissolved into the water supply.

上記の問題を解消するために、鉛レスの黄銅素材の開発が進められている。従来の開発例として、鉛の代わりにビスマスを添加したもの、特開2000−309835号公報(特許文献1)や国際公開公報WO98/10106(特許文献2)に開示されているようにスズを添加することによってγ相を析出させたもの、シリコンの微粒子を分散させたもの等がある。これらの開発技術の中には、鉛レスを実現するだけでなく、黄銅そのものの強度を同時に向上させて、応用範囲の拡大を図ったものもある。   In order to solve the above problems, lead-free brass materials are being developed. As a conventional development example, tin is added as disclosed in Japanese Patent Application Laid-Open No. 2000-309835 (Patent Document 1) and International Publication WO98 / 10106 (Patent Document 2), in which bismuth is added instead of lead. In this case, a γ phase is precipitated, and silicon fine particles are dispersed. Some of these developed technologies not only realize lead-free, but also simultaneously improve the strength of brass itself to expand the application range.

しかしながら、ビスマスの添加は、鉛の添加と同程度の強度しか得られていないのが現状である。ビスマスおよび鉛は、共に、添加されることによって黄銅の強度を下げる元素であり、黄銅部材の強度向上には寄与しない。特開2000−309835号公報(特許文献1)や国際公開公報WO98/10106(特許文献2)に開示されているようにスズの添加によってγ相を析出させる方法は、黄銅部材の耐力値や引張強度などを向上させるが、黄銅部材の変形能が大きく低下して加工性に劣るようになる。それに加えて、γ相が起点となり脆性破壊するといった問題も生じてくる。シリコンの微粒子を分散させる方法は、黄銅合金部材の機械的強度の向上には寄与するが、部材の切削性が劣るようになるという欠点を有する。   However, at present, the addition of bismuth has only obtained the same strength as the addition of lead. Both bismuth and lead are elements that lower the strength of brass when added, and do not contribute to improving the strength of the brass member. As disclosed in Japanese Patent Application Laid-Open No. 2000-309835 (Patent Document 1) and International Publication WO98 / 10106 (Patent Document 2), the method of precipitating the γ phase by the addition of tin, Although the strength and the like are improved, the deformability of the brass member is greatly reduced and the workability is inferior. In addition, the problem of brittle fracture starting from the γ phase also arises. The method of dispersing the silicon fine particles contributes to the improvement of the mechanical strength of the brass alloy member, but has a disadvantage that the machinability of the member becomes inferior.

第46回銅及び銅合金技術研究会講演大会講演概要集(2006)、pp.153−154、近藤勝義ほか(非特許文献1)には、「粉体プロセスによる完全鉛フリー快削性黄銅合金の特性」と題して、粉末冶金法を基調とした黒鉛粒子分散型快削性黄銅合金の作製法が開示されている。黒鉛添加のメリットは、完全鉛フリーにすることができるということと、リサイクルの際に溶融した黄銅上に黒鉛が浮くので分離が容易であるということにある。他方、添加した黒鉛による黄銅部材の強度向上は見込めない。そこで、黒鉛を添加するにあたっては、粉末冶金法を利用した黄銅部材の強度向上技術も考慮すべきである。   46th Annual Meeting of Copper and Copper Alloy Technology Conference (2006), pp. 153-154, Katsuyoshi Kondo et al. (Non-Patent Document 1) entitled “Characteristics of completely lead-free free-cutting brass alloy by powder process” and graphite particle-dispersed free-cutting properties based on powder metallurgy. A method for producing a brass alloy is disclosed. The merit of adding graphite is that it can be made completely lead-free and that the graphite floats on the molten brass at the time of recycling, so that the separation is easy. On the other hand, the strength improvement of the brass member by the added graphite cannot be expected. Therefore, when adding graphite, the strength improvement technology of the brass member using the powder metallurgy method should be considered.

一般に、低融点金属を高温化で高融点金属中に溶融させようとすると、低融点金属の蒸気圧が高いために溶融中に急速に低融点金属が蒸発してしまい、所望の合金組成となるように制御することが困難である。   In general, when a low melting point metal is melted in a high melting point metal at a high temperature, the low melting point metal vaporizes rapidly during melting due to the high vapor pressure of the low melting point metal, resulting in a desired alloy composition. Is difficult to control.

黄銅は、銅と亜鉛の合金である。この黄銅に高融点金属を添加すれば強度の向上が見込める可能性がある。しかしながら、亜鉛の沸点は907℃と低く、融点が1907℃のクロムや、融点が1902℃のバナジウムなどを添加するのは容易ではない。液相状態の黄銅の温度を上昇させて行けば必然的に亜鉛の蒸発量が増大し、急激に合金組成が銅リッチの方向へと変化してしまう。   Brass is an alloy of copper and zinc. If a high melting point metal is added to this brass, the strength may be improved. However, the boiling point of zinc is as low as 907 ° C., and it is not easy to add chromium having a melting point of 1907 ° C. or vanadium having a melting point of 1902 ° C. Increasing the temperature of the brass in the liquid phase inevitably increases the amount of zinc evaporated, and the alloy composition suddenly changes in the direction of copper richness.

高融点金属の溶融法としては、電子ビーム溶解法や水素プラズマアーク溶解法などがあるが、これらの方法は、大量生産に適した方法ではなく、希少金属の少量バッチ処理に用いられている。しかも、これらの方法では、低融点金属の蒸発を防ぐことはできない。   Examples of the melting method of the refractory metal include an electron beam melting method and a hydrogen plasma arc melting method, but these methods are not suitable for mass production but are used for batch processing of rare metals. Moreover, these methods cannot prevent evaporation of the low melting point metal.

低融点金属中に、溶融した高融点金属を添加する方法も考えられるが、高融点金属をその融点まで加熱して溶解させるのは、工業的にみて、コスト的に見合わず、量産が困難である。そのため、一般的には、酸化物のテルミット反応を利用した方法や、より融点の低い母合金の添加などの方法が行なわれる。   Although a method of adding a molten high melting point metal to a low melting point metal is also conceivable, heating and melting the high melting point metal to its melting point is not industrially appropriate and difficult to mass-produce. It is. Therefore, generally, a method using the thermite reaction of an oxide or a method of adding a mother alloy having a lower melting point is performed.

特開平10−168533号公報(特許文献3)には、亜鉛中に合金成分を添加する方法が開示されている。この公報には、クロムの添加には母合金を使用したと記載されているが、Zn−Crの熱平衡状態図を見ると、クロムは亜鉛にほとんど固溶しないことがわかる。言い換えれば、亜鉛のマトリクス中に、化合物としてのZn17CrまたはZn13Crが分散した状態になることが理解できる。この母合金を亜鉛に添加した場合、亜鉛の成分比率が増えるだけで、クロム化合物に変化は起こらない。このように、非固溶元素でかつ高融点の金属を低融点金属中に溶解させることは、非常に困難であり、他の手法を開発する必要がある。Japanese Patent Laid-Open No. 10-168533 (Patent Document 3) discloses a method of adding an alloy component to zinc. This publication describes that a mother alloy was used for the addition of chromium, but it can be seen from the thermal equilibrium diagram of Zn—Cr that chromium hardly dissolves in zinc. In other words, it can be understood that Zn 17 Cr or Zn 13 Cr as a compound is dispersed in a zinc matrix. When this mother alloy is added to zinc, only the component ratio of zinc increases, and the chromium compound does not change. As described above, it is very difficult to dissolve a high melting point metal which is a non-solid solution element in a low melting point metal, and it is necessary to develop another method.

銅中へのクロムの添加は、亜鉛含有合金に比べて進んでいる。代表的なものとして、特開平11−209835号公報(特許文献4)や特開2006−124835号公報(特許文献5)に開示された手法がある。これらの公報に開示された方法では、銅中にクロム、ジルコニウム、テルル、イオウ、鉄、シリコン、チタンまたはリンの含有を行なっている。いずれも析出型の銅合金であり、強化相として銅・ジルコニウム化合物等の析出を行うものであるが、亜鉛含有の合金と異なり、高温でも合金化が可能であるので、これらの材料作製を容易にしている。   The addition of chromium into copper is more advanced than zinc-containing alloys. As representative ones, there are techniques disclosed in Japanese Patent Application Laid-Open No. 11-209835 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2006-124835 (Patent Document 5). In the methods disclosed in these publications, chromium, zirconium, tellurium, sulfur, iron, silicon, titanium or phosphorus is contained in copper. Both are precipitation-type copper alloys that precipitate copper and zirconium compounds as a strengthening phase, but unlike zinc-containing alloys, they can be alloyed even at high temperatures, making these materials easy to produce. I have to.

鉛レス黄銅の開発過程で、黒鉛を添加する手法として粉末冶金法を適用することが有効であることが知られている。これは、黒鉛と黄銅の混合が、粉末を使うことによって可能となったことが大きな理由である。通常の溶製法で黒鉛添加を試みたとしても、両者の比重の違いから、黒鉛は、黄銅の溶湯上に浮いてしまい、黄銅中に分散させることができない。   In the development process of leadless brass, it is known that it is effective to apply the powder metallurgy method as a method of adding graphite. This is largely because the mixing of graphite and brass has become possible by using powder. Even if the addition of graphite is attempted by an ordinary melting method, the graphite floats on the brass melt due to the difference in specific gravity between them, and cannot be dispersed in the brass.

特開2000−309835号公報JP 2000-309835 A 国際公開公報WO98/10106International Publication No. WO98 / 10106 特開平10−168533号公報JP 10-168533 A 特開平11−209835号公報JP-A-11-209835 特開2006−124835号公報JP 2006-124835 A

第46回銅及び銅合金技術研究会講演大会講演概要集(2006)、pp.153−154、近藤勝義ほか46th Annual Meeting of Copper and Copper Alloy Technology Conference (2006), pp. 153-154, Katsuyoshi Kondo and others

本願発明の発明者らは、鉛レス黄銅合金の開発の一環として、黒鉛を添加した黄銅の開発に取り組んできた。しかし、黒鉛粒子分散型鉛フリー快削性黄銅合金は、その強度が鉛入り快削性黄銅合金と同等程度であり、飛躍的に強度が向上しているわけではない。   The inventors of the present invention have been working on the development of brass to which graphite is added as part of the development of a lead-less brass alloy. However, the graphite particle-dispersed lead-free free-cutting brass alloy has the same strength as the lead-containing free-cutting brass alloy, and the strength is not dramatically improved.

本発明の目的は、黄銅合金部材の強度向上に寄与する黄銅合金粉末を提供することである。   An object of the present invention is to provide a brass alloy powder that contributes to improving the strength of a brass alloy member.

本発明の他の目的は、優れた機械的強度を有する黄銅合金押出材を提供することである。   Another object of the present invention is to provide a brass alloy extruded material having excellent mechanical strength.

本発明のさらに他の目的は、優れた機械的強度を有する黄銅合金部材を提供することである。   Still another object of the present invention is to provide a brass alloy member having excellent mechanical strength.

本発明のさらに他の目的は、優れた機械的強度を有する黄銅合金押出材の製造方法を提供することである。   Still another object of the present invention is to provide a method for producing a brass alloy extruded material having excellent mechanical strength.

本発明に従った黄銅合金粉末は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5〜5.0質量%含有する。上記クロムは、黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む。   The brass alloy powder according to the present invention has a brass composition composed of a mixed phase of an α phase and a β phase, and contains 0.5 to 5.0% by mass of chromium. The chromium contains a component that dissolves in the parent phase of brass and a component that precipitates at the crystal grain boundary.

上記の黄銅合金粉末の集合体を押出加工すれば、機械的強度に優れた黄銅合金押出材が得られる。所望の機械的強度を得るには、クロムの含有量を0.5質量%以上にする必要がある。最終的に得られる黄銅合金押出材の機械的強度をより高めるには、黄銅合金粉末中のクロムの含有量を高めればよいが、現時点での製造上の観点から5.0質量%が限界である。より好ましいクロムの含有量は、1.0〜2.4質量%である。   If the aggregate of the brass alloy powder is extruded, a brass alloy extruded material having excellent mechanical strength can be obtained. In order to obtain a desired mechanical strength, the chromium content needs to be 0.5 mass% or more. In order to increase the mechanical strength of the brass alloy extruded material finally obtained, the chromium content in the brass alloy powder may be increased. However, 5.0 mass% is the limit from the viewpoint of production at the present time. is there. A more preferable chromium content is 1.0 to 2.4% by mass.

黄銅の母相中に強制固溶されるクロム成分は、結晶中の転位運動を抑制して耐力値の向上に寄与する。一方、結晶粒界に析出したクロム成分は、粒界すべりを抑制して極度の加工硬化を引き起こし、引張強度の向上に寄与する。黄銅の母相中に固溶する成分は、母相中に固溶して分散する成分と、母相中に析出物として分散する成分とを含む。   The chromium component that is forcibly dissolved in the mother phase of brass contributes to the improvement of the yield strength by suppressing the dislocation movement in the crystal. On the other hand, the chromium component precipitated at the crystal grain boundary suppresses the grain boundary sliding, causes extreme work hardening, and contributes to the improvement of the tensile strength. The components that dissolve in the mother phase of brass include a component that dissolves and disperses in the mother phase, and a component that disperses as a precipitate in the mother phase.

黄銅合金粉末中に、ニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含むようにしてもよい。   The brass alloy powder may contain at least one element selected from the group consisting of nickel, manganese, zirconium, vanadium, titanium, silicon, aluminum, and tin.

好ましくは、上記の黄銅合金粉末は、急冷凝固粉末であり、より好ましくは、水アトマイズ法によって急冷凝固させた粉末である。   Preferably, the brass alloy powder is a rapidly solidified powder, and more preferably a powder that has been rapidly solidified by a water atomization method.

この発明に従った黄銅合金押出材は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5〜5.0質量%含有し、上記クロムが黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む黄銅合金粉末の集合体を押出加工することによって得られる。   A brass alloy extruded material according to the present invention has a brass composition composed of a mixed phase of an α phase and a β phase, contains 0.5 to 5.0% by mass of chromium, and the chromium is in a mother phase of brass. It can be obtained by extruding an aggregate of brass alloy powder containing a component that dissolves and a component that precipitates at the grain boundary.

一つの実施形態では、黄銅合金押出材の0.2%耐力値が300MPa以上である。また、引張強度が500MPa以上である。   In one embodiment, the 0.2% proof stress value of the brass alloy extruded material is 300 MPa or more. Moreover, the tensile strength is 500 MPa or more.

黄銅合金押出材の切削性を向上させるために、一つの実施形態では、黄銅合金押出材は、黄銅合金粉末に対して0.2〜2.0重量%の黒鉛粒子を添加して混合した後に、この混合粉末集合体を押出加工することによって得られる。添加する黒鉛粒子の粒子径は、好ましくは、1μm〜100μmの範囲内にある。   In order to improve the machinability of the brass alloy extrudate, in one embodiment, the brass alloy extrudate is added after 0.2 to 2.0% by weight of graphite particles are added to and mixed with the brass alloy powder. The mixed powder aggregate is obtained by extruding. The particle diameter of the graphite particles to be added is preferably in the range of 1 μm to 100 μm.

この発明に従った黄銅合金部材は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5〜5.0質量%含有し、さらにニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含む。クロムは、黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む。   The brass alloy member according to the present invention has a brass composition composed of a mixed phase of an α phase and a β phase, contains 0.5 to 5.0% by mass of chromium, and is further nickel, manganese, zirconium, vanadium, titanium. And at least one element selected from the group consisting of silicon, aluminum and tin. Chromium contains a component that dissolves in the mother phase of brass and a component that precipitates at the grain boundaries.

黄銅合金部材の切削性を向上させるために、一つの実施形態では、黄銅合金部材は、黒鉛粒子をさらに含む。   In order to improve the machinability of the brass alloy member, in one embodiment, the brass alloy member further includes graphite particles.

この発明に従った黄銅合金押出材の製造方法は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5〜5.0質量%含有する黄銅合金粉末を急冷凝固法によって作製する工程と、上記の急冷凝固した黄銅合金粉末の集合体を押出加工する工程とを備える。   A method for producing a brass alloy extruded material according to the present invention has a brass composition comprising a mixed phase of an α phase and a β phase, and rapidly solidifies a brass alloy powder containing 0.5 to 5.0% by mass of chromium. And a step of extruding the aggregate of the rapidly solidified brass alloy powder.

好ましくは、急冷凝固法は、水アトマイズ法である。押出加工時の加熱温度は650℃以下が好ましい。   Preferably, the rapid solidification method is a water atomization method. The heating temperature at the time of extrusion is preferably 650 ° C. or less.

一つの実施形態における製造方法は、押出加工に先立ち、黄銅合金粉末に対して0.2〜2.0重量%の黒鉛粒子を添加して混合する工程を備える。   The manufacturing method in one embodiment includes a step of adding and mixing 0.2 to 2.0% by weight of graphite particles with respect to the brass alloy powder prior to extrusion.

上記の記載事項を含めて、本発明の構成によってもたらされる作用効果等については、以下の項目で詳しく説明する。   Including the above description, the effects and the like brought about by the configuration of the present invention will be described in detail in the following items.

水アトマイズ法によって作製した粉末を示すSEM(走査型電子顕微鏡)写真であり、(a)はCr無添加の6/4黄銅合金粉末、(b)は0.5質量%Cr添加の6/4黄銅合金粉末、(c)は1.0質量%Cr添加の6/4黄銅合金粉末を示す。It is a SEM (scanning electron microscope) photograph which shows the powder produced by the water atomization method, (a) is 6/4 brass alloy powder without Cr addition, (b) is 6/4 with 0.5 mass% Cr addition. Brass alloy powder, (c) shows 6/4 brass alloy powder with 1.0 mass% Cr added. 作製した水アトマイズ粉末のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the produced water atomized powder. 押出材の応力−ひずみ曲線を示す図である。It is a figure which shows the stress-strain curve of an extruded material. 押出材の光学顕微鏡による組織写真を示す図であり、(a)は1質量%Cr添加の黄銅合金圧粉体ビレットの押出材、(b)は0.5質量%Cr添加の黄銅合金圧粉体ビレットの押出材、(c)はCr無添加の黄銅合金圧粉体ビレットの押出材、(d)はCr無添加の黄銅合金溶製ビレットの押出材を示す。It is a figure which shows the structure | tissue photograph by the optical microscope of an extrusion material, (a) is the extrusion material of the brass alloy compacting billet of 1 mass% Cr addition, (b) is the brass alloy powder compact of 0.5 mass% Cr addition. (C) shows an extruded material of a brass alloy green compact billet without addition of Cr, and (d) shows an extruded material of a brass alloy melted billet without addition of Cr. 1.0質量%Cr添加の黄銅合金圧粉体ビレットの押出材のSEM像を示す写真である。It is a photograph which shows the SEM image of the extrusion material of the brass alloy compacting billet of 1.0 mass% Cr addition. 黄銅の母相中に固溶するクロム成分の濃度と耐力値との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the chromium component which dissolves in the mother phase of a brass, and a proof stress value. 黒鉛粒子添加量と切削性との関係を示す図である。It is a figure which shows the relationship between graphite particle addition amount and machinability.

[新規な黄銅合金粉末作製方法]
本願発明の発明者らは、基材となる黄銅そのものの強度を上げることによって、従来にはない高強度の快削性黄銅部材を作る方法について検討した。黄銅の強度を上げる方法として、一般的には、種々の添加物を加える方法が採用される。例えば、高力黄銅は、銅亜鉛合金に、鉄、アルミニウム、マンガンなどを添加したものであり、その引張強さが460MPaと高く、耐食性も良好なため、船舶用プロペラ等に応用されている。しかしながら、この高力黄銅は、その伸びが15%程度しか保証されず、決して加工性が良いとはいえない。
[New brass alloy powder production method]
The inventors of the present invention have studied a method for producing a high-strength, free-cutting brass member that has never been obtained by increasing the strength of the brass itself as a base material. As a method for increasing the strength of brass, generally, a method of adding various additives is employed. For example, high-strength brass is obtained by adding iron, aluminum, manganese, and the like to a copper-zinc alloy, and has high tensile strength of 460 MPa and good corrosion resistance, and is therefore applied to marine propellers and the like. However, this high-strength brass is not guaranteed to have good workability because its elongation is only guaranteed about 15%.

黒鉛添加を視野に入れた合金開発を行なうためには、今までにない新規な黄銅合金粉末を作製し、この粉末の集合体を押出加工して強度を向上させる必要がある。従来、黄銅の生産には溶製法が採用されていたが、本発明者らは、溶製法に代えて、粉末冶金法によって新しい合金組成の黄銅合金の作製を試みた。   In order to develop an alloy with a view to adding graphite, it is necessary to produce an unprecedented new brass alloy powder and to extrude this powder aggregate to improve the strength. Conventionally, a melting method has been adopted for the production of brass, but the present inventors have attempted to produce a brass alloy having a new alloy composition by a powder metallurgy method instead of the melting method.

急冷凝固法の一種である水アトマイズ法によれば、溶湯を非常に高速で急冷凝固して粉末を作製するものであるので、粉末中に非平衡相が出現するだけでなく、微細な結晶粒が得られるといった特徴がある。本発明者らは、新たな試みとして、α相とβ相の混合相からなる黄銅合金に、第三元素としてクロム(Cr)を微量添加することによって、従来の黄銅粉末とは性質の異なる粉末を製造し、この粉末の集合体を熱間押出法で押出して固化することによって新しい素材を得た。   According to the water atomization method, which is a kind of rapid solidification method, the melt is rapidly solidified by solidification at a very high speed, so that not only a nonequilibrium phase appears in the powder but also fine crystal grains. There is a feature that can be obtained. As a new attempt, the present inventors have added a small amount of chromium (Cr) as a third element to a brass alloy composed of a mixed phase of an α phase and a β phase. A new material was obtained by extruding and solidifying this powder aggregate by hot extrusion.

黄銅に様々な添加物を加えて性質を改善しようとする試みは、従来から多数行なわれているが、水アトマイズ法で6/4黄銅に遷移元素を積極的に添加したという前例は見当たらない。   Many attempts have been made to improve the properties by adding various additives to brass, but there is no precedent that a transition element is positively added to 6/4 brass by the water atomization method.

本発明者らは、6/4黄銅に、高融点金属であるクロムを添加するための新しい方法を提案するものである。前述したように、黄銅を溶解して、そこにクロムを溶かし込むためには、溶湯をクロムの融点まで加熱しなければならないが、そのような加熱温度は亜鉛の沸点を超えている。そのため、現実的には、亜鉛の蒸気圧の高さを考慮すると、液体の黄銅をクロムの融点まで昇温させることは不可能といってもよい。   The present inventors propose a new method for adding chromium, which is a refractory metal, to 6/4 brass. As described above, in order to dissolve brass and dissolve chromium therein, the molten metal must be heated to the melting point of chromium, but such heating temperature exceeds the boiling point of zinc. Therefore, in reality, in view of the high vapor pressure of zinc, it may be impossible to raise the temperature of liquid brass to the melting point of chromium.

黄銅にクロムを添加するための別の方法として、クロムを含む母合金を使用することが考えられる。しかしながら、銅クロムの母合金もその融点が高いので、これを融解したものに黄銅を加える方法では、やはり亜鉛が蒸発してしまい、所定の組成を保つことができない。   As another method for adding chromium to brass, it is conceivable to use a mother alloy containing chromium. However, since the melting point of the copper-chromium master alloy is also high, zinc is evaporated by the method of adding brass to the melted copper alloy, and the predetermined composition cannot be maintained.

本発明者らは、市販のCu−10%Cr母合金を用いた黄銅合金作製法を開発した。母合金中では、クロムは10〜50μm程度の大きさの粒として分散しており、銅に固溶しているわけではない。この母合金をまず1200℃程度で溶解する。この温度では、母合金に含有されているクロムは溶解しないので、固相のまま銅の液相中に浮遊している。この状態で、銅を加えてゆき、クロムの濃度が薄くなるように調節する。すると、クロム濃度が4%程度になったところで、状態図上での固液相線を越えて液相の一相状態になる。このようにして、高融点金属であるクロムを銅との混合液相にすることができた。この状態で所定量の亜鉛を添加し、水アトマイズ法で急冷凝固すると、黄銅中にクロムが強制固溶した非平衡相をもつ粉末を得ることができた。   The present inventors have developed a brass alloy manufacturing method using a commercially available Cu-10% Cr master alloy. In the mother alloy, chromium is dispersed as grains having a size of about 10 to 50 μm, and is not dissolved in copper. The mother alloy is first melted at about 1200 ° C. At this temperature, chromium contained in the mother alloy does not dissolve, so it remains floating in the copper liquid phase in the solid phase. In this state, add copper and adjust the concentration of chromium to be thin. Then, when the chromium concentration becomes about 4%, the liquid phase becomes a single phase state exceeding the solid-liquid phase line on the phase diagram. In this way, chromium, which is a refractory metal, could be made into a mixed liquid phase with copper. When a predetermined amount of zinc was added in this state and rapidly solidified by the water atomization method, a powder having a non-equilibrium phase in which chromium was forcibly dissolved in brass could be obtained.

上記と同様の方法で、黄銅中にバナジウムを強制固溶させることも可能である。ただし、バナジウムと銅との二元状態図では、固液相線はバナジウム濃度が約0.5%のところにあるため、添加バナジウム量は非常に微量となる。従って、現実的には、黄銅中へのバナジウムの添加は技術的に難易度が高いだけでなく、その添加効果を大きくすることが困難である。   It is also possible to forcibly dissolve vanadium in brass by the same method as described above. However, in the binary phase diagram of vanadium and copper, since the solid-liquid phase line is at a vanadium concentration of about 0.5%, the amount of added vanadium is very small. Therefore, in reality, the addition of vanadium into brass is not only technically difficult, but it is difficult to increase the effect of the addition.

本発明者らが開発した方法によれば、添加する亜鉛を極力蒸発させることなく、合金の組成制御を適切に行なうことができる。6/4黄銅においては、亜鉛成分の微妙な量の違いによって、α相とβ相の比率が変化することが知られている。また、α相とβ相の比率の違いが、黄銅合金の機械的性質にも影響を及ぼすことも知られている。   According to the method developed by the present inventors, the composition of the alloy can be appropriately controlled without evaporating the added zinc as much as possible. In 6/4 brass, it is known that the ratio between the α phase and the β phase changes due to a subtle difference in the amount of the zinc component. It is also known that the difference in the ratio between the α phase and the β phase affects the mechanical properties of the brass alloy.

従って、本発明者らが開発した上記の粉末生成方法が、黄銅合金の組成制御という観点から見ても、黄銅に高融点金属を添加するための有利な手法であることがわかる。これに加え、比較的融点の低いニッケルおよびマンガンを添加すれば、より強度を向上させ得る粉末としてその利用価値が高まる。さらに、このようにして得られた黄銅合金粉末に黒鉛を添加して押出加工すれば、強度および快削性に優れた鉛レス快削性黄銅合金が得られる。以上のように本発明の応用範囲は広いので、本発明者らは、様々な機械的特性を持つ多品種の鉛レス黄銅の開発への道を開いたということができる。   Therefore, it can be seen that the above-described powder production method developed by the present inventors is an advantageous method for adding a refractory metal to brass from the viewpoint of composition control of the brass alloy. In addition to this, if nickel and manganese having a relatively low melting point are added, the utility value thereof increases as a powder capable of further improving the strength. Furthermore, if graphite is added to the brass alloy powder thus obtained and extruded, a lead-free free-cutting brass alloy excellent in strength and free-cutting property can be obtained. As described above, since the application range of the present invention is wide, it can be said that the present inventors have paved the way for the development of various types of leadless brass having various mechanical characteristics.

従来の典型的な結晶粒微細化の方法は、部材に対して塑性加工と熱処理を繰り返して行なうことであったが、本発明のように粉末冶金法を用いれば既に出発原料として微細化された結晶組織を持つ粉末が準備されているので、微細化のための特別なプロセスを必要としない。また、粉末の状態で、既に材料組成が決まっているので、最終製品の組成をこの段階で把握できる。このような生産工程上の優位性に加えて、本発明に係る材料には、以下に記載する幾つかの優れた特徴がある。   The conventional typical method of crystal grain refinement was to repeatedly perform plastic working and heat treatment on a member, but if the powder metallurgy method was used as in the present invention, it was already refined as a starting material. Since a powder having a crystal structure is prepared, a special process for miniaturization is not required. In addition, since the material composition is already determined in the powder state, the composition of the final product can be grasped at this stage. In addition to such superiority in production process, the material according to the present invention has several excellent features described below.

[第三元素添加の効果]
通常、クロムは、黄銅にほとんど固溶しない。しかし、水アトマイズ法のような急冷凝固法を採用することにより、液相状態で溶解しているクロムは、ある一定量だけ、黄銅の母相中に強制固溶される。また、凝固の過程における結晶の成長に伴い、クロムの一部は、結晶粒界に凝縮して微細結晶粒として析出する。黄銅の母相中に固溶する成分は、厳密に言えば、母相中に固溶して分散する成分と、母相中に析出物として分散する成分とを含む。母相中に強制固溶したクロム成分と、結晶粒界に析出したクロム成分とは、加えられる応力に対して異なった作用を呈する。すなわち、母相中に強制固溶したクロム成分は、結晶中の転位運動を抑制して黄銅合金部材の耐力値の向上に寄与する。他方、結晶粒界に析出したクロム成分は、粒界すべりを抑制して極度の加工硬化を引き起こし、引張強度の向上に大きく寄与する。
[Effect of adding third element]
Usually, chromium hardly dissolves in brass. However, by adopting a rapid solidification method such as the water atomization method, chromium dissolved in the liquid phase is forcibly solid-solved in the mother phase of brass by a certain amount. Further, as the crystal grows during the solidification process, a part of chromium is condensed at the crystal grain boundary and precipitated as fine crystal grains. Strictly speaking, the components that dissolve in the mother phase of brass include components that dissolve and disperse in the mother phase, and components that disperse as precipitates in the mother phase. The chromium component forcibly dissolved in the matrix and the chromium component precipitated at the grain boundaries exhibit different effects on the applied stress. That is, the chromium component forcibly dissolved in the matrix phase suppresses dislocation movement in the crystal and contributes to an improvement in the proof stress value of the brass alloy member. On the other hand, the chromium component deposited at the crystal grain boundary suppresses the grain boundary sliding, causes extreme work hardening, and greatly contributes to the improvement of the tensile strength.

マンガンを添加した場合の効果は、以下の通りである。マンガンは、クロムと異なり、基本的に黄銅に固溶する。従って、マンガンは、粒界析出物を作ることはなく、極端な加工硬化を引き起こさないが、耐力値および引張強度を共にバランスよく向上させるように作用する。その理由は、母相中に固溶したマンガンが転位をピンニングするからと思われる。   The effect of adding manganese is as follows. Unlike chromium, manganese basically dissolves in brass. Therefore, manganese does not produce grain boundary precipitates and does not cause extreme work hardening, but acts to improve both the proof stress value and the tensile strength in a balanced manner. The reason seems to be that manganese dissolved in the matrix phase pins dislocations.

ニッケルを添加した場合の効果は、以下の通りである。ニッケルも黄銅中に完全に固溶するが、黄銅合金の熱間押出の過程でβ相からα相への変態を促し、結晶中に微細なα相を形成して耐力の向上に大きく寄与する。ただし、ニッケルは加工硬化に寄与しないため、最大引張応力に関しては、ニッケルを添加しない粉末押出材と大差はない。   The effect of adding nickel is as follows. Nickel also dissolves completely in brass, but promotes transformation from β phase to α phase in the process of hot extrusion of brass alloy, and forms a fine α phase in the crystal, greatly contributing to improvement in yield strength. . However, since nickel does not contribute to work hardening, the maximum tensile stress is not much different from a powder extruded material to which nickel is not added.

クロム、マンガンおよびニッケルは、周期表の第4周期に現れる遷移元素であるが、上記のように黄銅に添加した場合の効果がそれぞれ異なっており、それらは全く異なった挙動を示す。その理由は、各遷移元素が異なる機構で黄銅を強化しているからである。従って、添加する元素を2種類以上とすれば、それぞれの効果が発現するものと考えられる。   Chromium, manganese, and nickel are transition elements that appear in the fourth period of the periodic table, but have different effects when added to brass as described above, and they behave completely differently. The reason is that each transition element strengthens brass by a different mechanism. Therefore, if two or more elements are added, each effect is considered to be manifested.

さらに、上記の研究結果から、他の元素を添加した場合の挙動についても、推察が可能になった。周期表の第4周期の遷移元素であるバナジウムは、クロムとよく似た平衡状態図を持っている。従って、クロムの添加と同様の方法でバナジウムを添加してアトマイズ粉末を作れば、母相中に強制固溶するバナジウム成分と、結晶粒界に析出するバナジウム成分とが現れ、クロムと同様の強化機構で黄銅の性能を向上させることができる。   Furthermore, from the above research results, it has become possible to infer the behavior when other elements are added. Vanadium, which is a transition element in the fourth period of the periodic table, has an equilibrium diagram very similar to chromium. Therefore, if vanadium is added and the atomized powder is made in the same way as the addition of chromium, vanadium components that are forcibly dissolved in the matrix and vanadium components that precipitate at the grain boundaries appear, and strengthening is the same as chromium. The mechanism can improve the performance of brass.

上記の元素以外に、一般的に黄銅の強化元素として知られているチタン、シリコン、アルミニウム、スズなども、補助的な添加元素としてクロム添加黄銅の強化に有効に働くことが期待される。   In addition to the above elements, titanium, silicon, aluminum, tin, and the like, which are generally known as brass strengthening elements, are expected to work effectively for strengthening chromium-added brass as an auxiliary additive element.

[急冷凝固法]
本発明の効果が顕著に現れる要因は、急冷凝固法によって黄銅合金粉末を作製することによって、非平衡相および微細な結晶粒を生成することに加えて、クロムの粒界析出を利用した加工硬化を引き起こしたことにある。本発明者らは、急冷凝固法の一例として、水アトマイズ法を利用した。6/4黄銅組成の水アトマイズ粉末の特徴は、非平衡相のβ相になることである。より具体的に説明する。6/4黄銅合金の急冷凝固過程において、固液相線を越えたところはβ相領域であるので、粉末はβ相として凝固する。そのままゆっくりと冷却すれば、相変態してα相とβ相の混合相になるはずであるが、急冷度が高いためにこの相変態はほとんど起こらない。このβ相粉末を熱間加工する過程で昇温したとき、β相からα相への相変態が起こり、混合相となる。
[Rapid solidification method]
Factors in which the effects of the present invention appear remarkably are not only to produce a non-equilibrium phase and fine crystal grains by producing brass alloy powder by a rapid solidification method, but also work hardening using grain boundary precipitation of chromium. It is in having caused. The present inventors used a water atomization method as an example of the rapid solidification method. The feature of the water atomized powder having a 6/4 brass composition is that it becomes a β phase which is a nonequilibrium phase. This will be described more specifically. In the rapid solidification process of the 6/4 brass alloy, the portion beyond the solid-liquid phase line is in the β phase region, so that the powder solidifies as the β phase. If it is slowly cooled as it is, it should transform into a mixed phase of α and β phases, but this phase transformation hardly occurs due to the high degree of rapid cooling. When the temperature of the β-phase powder is raised during the hot working process, a phase transformation from the β-phase to the α-phase occurs, resulting in a mixed phase.

ある種類の添加元素は、β相を安定に保つ効果を発揮する。クロムおよびマンガンには、α相への変態を遅らせる効果が認められた。これは、結晶粒内での原子拡散を抑制している効果であり、急冷凝固で形成された非平衡相を保持する効果が高いと考えられる。   Certain types of additive elements exhibit the effect of keeping the β phase stable. Chromium and manganese were found to delay the transformation to α phase. This is an effect of suppressing atomic diffusion in the crystal grains, and it is considered that the effect of maintaining the non-equilibrium phase formed by rapid solidification is high.

本発明では、凝固過程における粒界析出物が粒界すべりを抑制することによって、加工硬化現象を顕著に発現している。好ましくは、粒界析出物の大きさを、100nm〜500nm程度のサイズ(最大長さ)に制御する。また、析出物の分散状態も重要なファクターであり、組織中で析出物が均一に分散していることが理想なので、原料粉末が均質であることが望ましい。粉末作製法として、アトマイズ法であれば、凝固速度とそれに伴う粉末粒径の制御が容易である。   In the present invention, the grain hardening precipitates in the solidification process suppress the grain boundary sliding, so that the work hardening phenomenon is remarkably exhibited. Preferably, the size of the grain boundary precipitate is controlled to a size (maximum length) of about 100 nm to 500 nm. In addition, the dispersion state of the precipitate is an important factor, and it is ideal that the precipitate is uniformly dispersed in the structure. Therefore, it is desirable that the raw material powder is homogeneous. If the atomization method is used as the powder preparation method, the solidification rate and the accompanying powder particle size can be easily controlled.

[押出加工]
黄銅合金押出材の強度の向上には、押出温度が非常に重要な因子となる。押出温度は、低いほど望ましい。粉末の集合体を押出加工するには、粉末を加熱する必要がある。この加熱温度が高ければ、原子拡散が早くなり、急冷凝固で作られた非平衡相が熱平衡状態に近づいてしまう。従って、黄銅合金粉末集合体を、押出加工が可能な最低温度で押出すことが重要である。好ましい押出温度は650℃以下である。押出温度の下限値を決定することは困難である。なぜなら、下限温度は、押出ビレットの大きさ、押出比、装置の押出最大荷重等によって決まるからである。500℃での押出が可能であればその温度が適切な条件であるといえるが、実際には、押出加工を行なうには550℃以上が必要になると思われる。
[Extrusion]
The extrusion temperature is a very important factor for improving the strength of the brass alloy extruded material. The lower the extrusion temperature, the better. In order to extrude the powder aggregate, it is necessary to heat the powder. When this heating temperature is high, atomic diffusion is accelerated, and the nonequilibrium phase formed by rapid solidification approaches a thermal equilibrium state. Therefore, it is important to extrude the brass alloy powder aggregate at the lowest temperature at which extrusion processing is possible. A preferable extrusion temperature is 650 ° C. or lower. It is difficult to determine the lower limit of the extrusion temperature. This is because the lower limit temperature is determined by the size of the extrusion billet, the extrusion ratio, the maximum extrusion load of the apparatus, and the like. If extrusion at 500 ° C. is possible, it can be said that the temperature is an appropriate condition, but in reality, it seems that 550 ° C. or higher is necessary for the extrusion process.

押出の際には、ビレットの放熱による温度降下、および押出圧力による温度上昇の二つのファクターが影響して実際の押出温度が決まる。従って、押出温度を規定することは現実的ではなく、ビレットの加熱温度を管理するのが実用的である。黄銅の押出実験では、ビレットの加熱管理温度を650℃にしたとき、押出開始までに48秒を要したことがある。模擬実験で得たデータと照らし合わせると、このときの押出開始温度は577℃になる。   At the time of extrusion, the actual extrusion temperature is determined by the influence of two factors, a temperature drop due to heat radiation of the billet and a temperature rise due to extrusion pressure. Therefore, it is not practical to define the extrusion temperature, and it is practical to control the heating temperature of the billet. In the brass extrusion experiment, when the heating control temperature of the billet is 650 ° C., 48 seconds may be required until the extrusion starts. Compared with the data obtained in the simulation experiment, the extrusion start temperature at this time is 577 ° C.

本発明者らは、クロム含有黄銅合金粉末集合体を押出加工する際の押出速度を制御することで、より高強度の材料が得られることを見出した。より高強度の材料を得るための押出条件としては、低温での押出が効果的であり、さらに押出速度を低速にすることでより強度の向上が見込まれる。この点については、実験結果に基いて後述する。   The present inventors have found that a material having higher strength can be obtained by controlling the extrusion speed when extruding the chromium-containing brass alloy powder aggregate. As an extrusion condition for obtaining a material having higher strength, extrusion at a low temperature is effective, and further, an improvement in strength is expected by lowering the extrusion speed. This will be described later based on the experimental results.

黄銅合金押出材の切削性を向上させるために、クロム含有黄銅合金粉末に黒鉛粒子を添加して混合し、この混合粉末集合体を押出加工するようにしても良い。切削性向上効果を発現するには、クロム含有黄銅合金粉末に対して0.2〜2.0重量%の黒鉛粒子を添加する必要がある。添加黒鉛粒子の粒子径は、好ましくは、1μm〜100μmの範囲内である。   In order to improve the machinability of the brass alloy extruded material, graphite particles may be added to and mixed with the chromium-containing brass alloy powder, and this mixed powder aggregate may be extruded. In order to develop the machinability improving effect, it is necessary to add 0.2 to 2.0% by weight of graphite particles to the chromium-containing brass alloy powder. The particle diameter of the added graphite particles is preferably in the range of 1 μm to 100 μm.

[元素の添加量]
第三元素の添加量については、各種元素により適量がある。
[Amount of element added]
There is an appropriate amount of the third element added depending on various elements.

クロムについては、0.5質量%の添加で耐力値の向上が認められた。さらにクロムの添加量を増して1質量%にすると、耐力値には差が認められなかったものの、引張強度が非常に高い値を示した。従って、クロムの添加量は0.5質量%以上が好ましく、より好ましくは1.0質量%以上である。   For chromium, an improvement in yield strength was observed with the addition of 0.5% by mass. Further, when the addition amount of chromium was increased to 1% by mass, no difference was observed in the proof stress value, but the tensile strength was very high. Therefore, the addition amount of chromium is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more.

クロム含有量の上限値は、5.0質量%である。粉末製造段階での制限により、銅−クロムの液相状態でクロムの濃度の上限は4%となる。ここで亜鉛を添加した場合に、クロム含有量は2.4質量%となる。銅−クロムの溶解温度を上げることで、クロムの含有量を増やすことは可能である。例えば、溶解温度を1300℃まで上げると、クロムを8%の濃度まで溶解可能であり、ここで亜鉛を添加した場合のクロム含有量は5.0質量%となる。しかしながら、この温度では、亜鉛の蒸気圧が高くなりすぎて、組成制御が困難となる。従って、より好ましいクロム含有量の上限値は、2.4質量%である。   The upper limit of the chromium content is 5.0% by mass. Due to limitations in the powder production stage, the upper limit of the chromium concentration in the copper-chromium liquid phase is 4%. When zinc is added here, the chromium content is 2.4% by mass. It is possible to increase the chromium content by increasing the melting temperature of copper-chromium. For example, when the melting temperature is increased to 1300 ° C., chromium can be dissolved to a concentration of 8%, and the chromium content when zinc is added here is 5.0% by mass. However, at this temperature, the vapor pressure of zinc becomes too high, making composition control difficult. Therefore, a more preferable upper limit of the chromium content is 2.4% by mass.

バナジウムは、極微量であっても、粒界析出が起こる。銅−バナジウムの液相状態でのバナジウムの濃度の上限値が0.5%であることを考慮すると、バナジウムの効果を最大限に活かすためには上限値近くまでバナジウムを添加すべきである。その場合、亜鉛添加により、バナジウムの濃度は、0.3質量%となる。バナジウムの濃度をこの値よりも大きくするためには、溶解温度を上げる必要がある。しかし、1200℃以上の温度になると亜鉛の蒸気圧が非常に高くなりすぎるため、最適の組成で粉末を作ることが困難になる。従って、バナジウム添加の効果は限定的にならざるを得ず、他元素との組合せでの強化が必要になる。   Vanadium causes grain boundary precipitation even in a very small amount. Considering that the upper limit of the vanadium concentration in the liquid phase state of copper-vanadium is 0.5%, vanadium should be added to near the upper limit in order to maximize the effect of vanadium. In that case, the concentration of vanadium becomes 0.3 mass% by adding zinc. In order to make the vanadium concentration higher than this value, it is necessary to raise the melting temperature. However, at a temperature of 1200 ° C. or higher, the vapor pressure of zinc becomes too high, making it difficult to produce a powder with an optimal composition. Therefore, the effect of vanadium addition must be limited, and strengthening in combination with other elements is necessary.

黄銅にマンガンを添加することによって得られる効果については、既に多くの研究例があり、高マンガン黄銅として実用化もされている。本発明においては、上記のクロム添加、またはクロムおよびバナジウム添加と組み合わせて、マンガンを補助的に添加することにより、黄銅合金をより高強度化することができる。マンガン添加量としては、0.5質量%で十分な効果が得られることを確認した。従来の研究例によると、マンガンの添加量を増大すると材料の加工性を著しく低下させることも認められているので、マンガン添加量の好ましい上限値は、化合物を作らない範囲である7質量%以下である。より好ましいマンガンの添加量は、1〜3質量%であり、この量を超えると伸びが低下して、黄銅の加工性の低下をきたすおそれがある。   There are already many research examples of the effects obtained by adding manganese to brass, and it has been put into practical use as high manganese brass. In the present invention, the brass alloy can be further strengthened by supplementarily adding manganese in combination with the above chromium addition or chromium and vanadium addition. As manganese addition amount, it confirmed that a sufficient effect was acquired with 0.5 mass%. According to the conventional research example, it is recognized that increasing the amount of manganese added significantly reduces the workability of the material. Therefore, the preferable upper limit of the amount of manganese added is 7 mass% or less, which is a range in which no compound is formed. It is. The more preferable amount of manganese added is 1 to 3% by mass. If this amount is exceeded, the elongation is lowered and the workability of brass may be lowered.

ニッケルは、銅に対して全率固溶するので、Cu−Zn−Ni系においては任意の量を添加して合金化することが可能である。従って、本発明において、ニッケルの添加量については特に上限はない。ニッケルの添加は、耐力値のみを引き上げるという特殊な効果をもたらすものであり、1質量%の添加量で300MPaを超える耐力値を実現できる。   Since nickel is completely dissolved in copper, any amount can be added and alloyed in the Cu—Zn—Ni system. Accordingly, in the present invention, there is no upper limit on the amount of nickel added. The addition of nickel brings about a special effect of raising only the proof stress value, and a proof stress value exceeding 300 MPa can be realized with an addition amount of 1% by mass.

合金部材の実用上の見地からすれば、引張強度よりも耐力値の方が重要であることは言うまでも無い。本発明にとっての最大の効果は6/4黄銅に所定量のクロムを含有させたことにあるが、ニッケルをさらに添加することによってより多くの利点が得られる。クロムは高融点であるがゆえに、微量であっても添加させることが容易ではない。これを克服する手法として、冶金学における熱平衡状態を利用することを既に説明した。クロムとニッケルの効果を同時に発現させるためには、当然両方の元素を添加することになる。この場合の添加方法として、より容易な方法がある。すなわち、クロムのみを添加するためには、前述したようなプロセスを取ることになるが、同時にニッケルも添加するためには、母合金に最初からクロムとニッケルが含まれていることが好ましい。   It goes without saying that the proof stress value is more important than the tensile strength from the practical viewpoint of the alloy member. The greatest effect for the present invention is that a predetermined amount of chromium is contained in 6/4 brass, but more advantages can be obtained by further adding nickel. Since chromium has a high melting point, it is not easy to add even a trace amount. As a technique to overcome this, the use of thermal equilibrium in metallurgy has already been explained. In order to exhibit the effects of chromium and nickel simultaneously, it is natural to add both elements. In this case, there is an easier method as an addition method. That is, in order to add only chromium, the above-described process is performed. However, in order to add nickel at the same time, it is preferable that the mother alloy contains chromium and nickel from the beginning.

ニッケルクロム合金は市販されており、合金化することでその融点は下がり、1345℃になる。この合金と銅とを高周波炉を使って溶解することは可能である。ニッケルとクロムとの混合比は1:1になるが、銅−クロム母合金を使って製造するよりもはるかに容易に溶湯を作ることができる。この方法を使ってニッケルを添加することを実施するならば、ニッケル添加量の好ましい上限値は、クロムと同じく、2.4質量%となる。   Nickel-chromium alloys are commercially available, and their melting point decreases to 1345 ° C. when alloyed. It is possible to melt this alloy and copper using a high frequency furnace. The mixing ratio of nickel and chromium is 1: 1, but it is much easier to make molten metal than using a copper-chromium master alloy. If nickel is added using this method, the preferable upper limit of the amount of nickel added is 2.4% by mass, similarly to chromium.

ニッケルとクロムの母合金での混合比率を変えることにより、ニッケル添加量を増やすことが可能である。母合金でクロム添加量を増やすことは急激に融点を高めてしまうので、粉末製造の難易度が上がるが、ニッケルの比率を上げても融点はあまり上がらず、ニッケルの融点を超えることは無い。従って、ニッケルリッチの粉末を作ることは可能であり、ニッケルの添加量を増やすことは可能である。ニッケルの添加量の上限値については特に制限されないが、黄銅としての特性を損なわない範囲として、5質量%以下の添加に留めておくのが望ましい。ニッケルの含有量をこの範囲にしておけば、所望の機械的特性を持った合金を作ることが可能であり、広い応用範囲に適用可能となる。   It is possible to increase the amount of nickel added by changing the mixing ratio of the master alloy of nickel and chromium. Increasing the amount of chromium added to the mother alloy raises the melting point rapidly, increasing the difficulty of powder production. However, increasing the nickel ratio does not increase the melting point and does not exceed the melting point of nickel. Therefore, it is possible to make a nickel-rich powder, and it is possible to increase the amount of nickel added. The upper limit value of the addition amount of nickel is not particularly limited, but it is desirable to keep the addition of 5% by mass or less as a range that does not impair the properties as brass. If the nickel content is within this range, it is possible to produce an alloy having desired mechanical properties, and it can be applied to a wide range of applications.

その他の添加元素に関しては、概ね数%程度、少なくとも0.1%以上で添加効果を発現する。各種元素の適量、組合せについては、求める機械的性質によって異なってくる。強度向上の観点から見れば、ジルコニウムは結晶粒微細化効果を発現するので、0.1%の添加でも十分にその効果が認められ、ホールペッチの経験則から明確な強化元素であるといえる。   With respect to other additive elements, the effect of addition is exhibited at about several percent, at least 0.1% or more. Appropriate amounts and combinations of various elements vary depending on the mechanical properties required. From the viewpoint of improving the strength, zirconium exhibits a crystal grain refining effect. Therefore, even when added in 0.1%, the effect is sufficiently recognized, and it can be said that it is a clear strengthening element from Hall Petch's rule of thumb.

チタンやアルミニウムなどは、固溶強化により母相の強度を上げるので、1%以下の微量添加でもその効果を発現する。   Titanium, aluminum, and the like increase the strength of the matrix phase by solid solution strengthening, so that the effect is exhibited even when added in a trace amount of 1% or less.

シリコンは、通常、分散強化に用いられる元素であり、3%程度の添加が適量である。しかしながら、他の元素との兼ね合いから、添加が必ずしも強化につながらない場合もある。特に、本発明の合金系では、クロムの析出サイトとシリコンの分散サイトとが同一箇所になってしまうと、強化効果が得られなくなる。従って、クロムの添加量によってシリコンの添加量は制限される関係にあり、クロムとシリコンとを合わせて3%以下にするのが好適といえる。   Silicon is an element usually used for dispersion strengthening, and an addition amount of about 3% is an appropriate amount. However, the addition may not necessarily lead to strengthening in consideration of other elements. In particular, in the alloy system of the present invention, if the chromium precipitation site and the silicon dispersion site are at the same location, the strengthening effect cannot be obtained. Accordingly, the amount of silicon added is limited by the amount of chromium added, and it can be said that it is preferable that the total amount of chromium and silicon is 3% or less.

スズは、0.3%程度で固溶して強化元素としての効果を発現するが、添加量を増やすとγ相が出現するため、脆化の原因となり、多量添加は好ましくなく、0.1%〜0.5%の範囲が好適といえる。   Tin is solid-solved at about 0.3% and expresses the effect as a strengthening element. However, when the addition amount is increased, the γ phase appears, which causes embrittlement. It can be said that the range of% -0.5% is suitable.

[粉末の作製]
Cu−40%Znの黄銅素材より、水アトマイズ法によって、Cr無添加の黄銅粉末、0.5質量%Cr添加の黄銅粉末、および1.0質量%Cr添加の黄銅粉末を作製した。粉末の化学組成を表1に示し、粉末の外観のSEM(Scanning Electron Microscope)写真を図1に示す。図1の(a)はCrを添加していない6/4黄銅合金粉末を示し、(b)は0.5質量%Crを添加した6/4黄銅合金粉末を示し、(c)は1.0質量%Crを添加した6/4黄銅合金粉末を示す。
[Preparation of powder]
From a brass material of Cu-40% Zn, brass powder without addition of Cr, brass powder with addition of 0.5 mass% Cr, and brass powder with addition of 1.0 mass% Cr were prepared by a water atomization method. The chemical composition of the powder is shown in Table 1, and an SEM (Scanning Electron Microscope) photograph of the appearance of the powder is shown in FIG. 1A shows 6/4 brass alloy powder to which Cr is not added, FIG. 1B shows 6/4 brass alloy powder to which 0.5 mass% Cr is added, and FIG. 6/4 brass alloy powder added with 0% by mass Cr is shown.

作製した粉末のX線回折結果を図2に示す。Cr無添加の黄銅合金粉末および0.5質量%Crを添加した黄銅合金粉末では、β相のみが検出された。1.0質量%Crを添加した黄銅合金粉末では、α相とβ相の2相が検出された。6/4黄銅組成の場合、液相から固液相線を越えるとβ相になり、急冷凝固粉末は一般的にα変態せずに冷却される。1.0質量%Cr添加の黄銅合金粉末を詳細に調査した結果、α相粉末とβ相粉末の混合状態であった。アトマイズの過程で個々の粉末に冷却速度差が生じ、α変態した粉末が生成したものと考えられる。なお、Crは微細粒子として存在するため、X線回折では明瞭な回折ピークは検出されなかった。   The X-ray diffraction result of the produced powder is shown in FIG. Only the β phase was detected in the brass alloy powder containing no Cr and the brass alloy powder containing 0.5% by mass of Cr. In the brass alloy powder to which 1.0 mass% Cr was added, two phases of α phase and β phase were detected. In the case of the 6/4 brass composition, when it exceeds the solid-liquid phase line from the liquid phase, it becomes β phase, and the rapidly solidified powder is generally cooled without undergoing α transformation. As a result of examining the brass alloy powder added with 1.0 mass% Cr in detail, it was in a mixed state of α phase powder and β phase powder. It is thought that a powder having undergone α-transformation was generated due to a difference in cooling rate between individual powders during the atomization process. Since Cr exists as fine particles, no clear diffraction peak was detected by X-ray diffraction.

[1.0質量%Cr添加の黄銅合金粉末の押出]
水アトマイズ法で作製された組成59%Cu−40%Zn−1%Crの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of brass alloy powder containing 1.0 mass% Cr]
A powder of composition 59% Cu-40% Zn-1% Cr produced by the water atomization method was compacted at 600 MPa to obtain an extrusion billet. This billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were four types of 650 ° C., 700 ° C., 750 ° C., and 780 ° C. The billet was processed with an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.

棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果を表2に示す。   A tensile test piece having a distance of 10 mm between the grades and 3 mm around the waist was cut out from the bar, and a tensile test was performed to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 2.

表2の結果から明らかなように、ビレットを650℃の温度に加熱して押出したものが、最大引張強度および0.2%耐力値において高い数値を示した。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。   As is clear from the results of Table 2, the billet extruded at a temperature of 650 ° C. showed high values in the maximum tensile strength and the 0.2% proof stress value. As the heating temperature was raised, these mechanical strengths tended to decrease. Accordingly, the heating temperature of the billet before extrusion is preferably 650 ° C. or less.

[0.5質量%Cr添加の黄銅合金粉末の押出]
水アトマイズ法で作製された組成59.5%Cu−40%Zn−0.5%Crの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of brass alloy powder containing 0.5 mass% Cr]
A 59.5% Cu-40% Zn-0.5% Cr powder produced by the water atomization method was compacted at 600 MPa to obtain an extrusion billet. This billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were four types of 650 ° C., 700 ° C., 750 ° C., and 780 ° C. The billet was processed with an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.

棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果を表3に示す。   A tensile test piece having a distance of 10 mm between the grades and 3 mm around the waist was cut out from the bar, and a tensile test was performed to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 3.

表3の結果から明らかなように、ビレットを650℃の温度に加熱して押出したものが、最大引張強度および0.2%耐力値において高い数値を示した。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。   As is apparent from the results in Table 3, the billet extruded at a temperature of 650 ° C. showed high values in the maximum tensile strength and the 0.2% proof stress value. As the heating temperature was raised, these mechanical strengths tended to decrease. Accordingly, the heating temperature of the billet before extrusion is preferably 650 ° C. or less.

また、表2の結果と比較すればわかるように、0.2%耐力値に関しては、0.5%Cr添加のものと、1.0%Cr添加のものとでほぼ同じ値を示した。従って、添加するクロム量が少なくても耐力値は維持されることが認められた。しかし、最大引張強度はクロム量が少なくなると低下している。このことは、耐力値が強制固溶したクロム量によって決まるのに対し、最大引張応力は余剰なクロムが粒界に析出することによって加工硬化度が上昇していることの裏付けとなっている。   As can be seen from the comparison with the results in Table 2, the 0.2% proof stress value was almost the same for the 0.5% Cr addition and the 1.0% Cr addition. Therefore, it was recognized that the proof stress value is maintained even if the amount of chromium to be added is small. However, the maximum tensile strength decreases as the chromium content decreases. This is supported by the fact that the yield strength value is determined by the amount of chromium that is forcibly dissolved, whereas the maximum tensile stress is that the work hardening degree is increased due to precipitation of excess chromium at the grain boundaries.

[1.0質量%Ni添加の黄銅合金粉末の押出]
水アトマイズ法で作製された組成59%Cu−40%Zn−1.0%Niの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of brass alloy powder containing 1.0 mass% Ni]
A powder of composition 59% Cu-40% Zn-1.0% Ni produced by the water atomization method was compacted at 600 MPa to obtain an extrusion billet. This billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were four types of 650 ° C., 700 ° C., 750 ° C., and 780 ° C. The billet was processed with an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.

棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果、ビレットを650℃で加熱して押出したものは、その0.2%耐力値が311MPaで、最大引張強度が479MPaであった。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。   A tensile test piece having a distance of 10 mm between the grades and 3 mm around the waist was cut out from the bar, and a tensile test was performed to measure a 0.2% proof stress value and a maximum tensile strength. As a result, the billet heated at 650 ° C. and extruded had a 0.2% proof stress of 311 MPa and a maximum tensile strength of 479 MPa. As the heating temperature was raised, these mechanical strengths tended to decrease. Accordingly, the heating temperature of the billet before extrusion is preferably 650 ° C. or less.

[0.7質量%Mn添加の黄銅合金粉末の押出]
水アトマイズ法で作製された組成59%Cu−40%Zn−0.7%%Mnの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of 0.7% by mass Mn added brass alloy powder]
A powder of composition 59% Cu-40% Zn-0.7%% Mn produced by the water atomization method was compacted at 600 MPa to obtain an extrusion billet. This billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were four types of 650 ° C., 700 ° C., 750 ° C., and 780 ° C. The billet was processed with an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.

棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果、ビレットを650℃で加熱して押出したものは、その0.2%耐力値が291MPaで、最大引張強度が503MPaであった。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。   A tensile test piece having a distance of 10 mm between the grades and 3 mm around the waist was cut out from the bar, and a tensile test was performed to measure a 0.2% proof stress value and a maximum tensile strength. As a result, the billet extruded at 650 ° C. had a 0.2% proof stress of 291 MPa and a maximum tensile strength of 503 MPa. As the heating temperature was raised, these mechanical strengths tended to decrease. Accordingly, the heating temperature of the billet before extrusion is preferably 650 ° C. or less.

[Cr無添加の黄銅合金粉末の押出]
水アトマイズ法で作製された組成60%Cu−40%Znの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of Cr-free brass alloy powder]
A powder of composition 60% Cu-40% Zn produced by the water atomization method was compacted at 600 MPa to obtain a billet for extrusion. This billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were four types of 650 ° C., 700 ° C., 750 ° C., and 780 ° C. The billet was processed with an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.

棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果を表4に示す。   A tensile test piece having a distance of 10 mm between the grades and 3 mm around the waist was cut out from the bar, and a tensile test was performed to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 4.

表4の結果から明らかなように、ビレットを650℃の温度に加熱して押出したものが、最大引張強度および0.2%耐力値において高い数値を示した。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。   As is apparent from the results in Table 4, the billet extruded at a temperature of 650 ° C. showed high values in the maximum tensile strength and the 0.2% proof stress value. As the heating temperature was raised, these mechanical strengths tended to decrease. Accordingly, the heating temperature of the billet before extrusion is preferably 650 ° C. or less.

[Cr無添加の黄銅合金の溶製材ビレットの押出]
組成60%Cu−40%Znの溶製材ビレットを電気炉で加熱して押出加工を行なった。加熱電気炉の温度条件を650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of molten billet of brass alloy without addition of Cr]
A melted billet having a composition of 60% Cu-40% Zn was heated in an electric furnace for extrusion. The temperature conditions of the heating electric furnace were four types of 650 ° C, 700 ° C, 750 ° C, and 780 ° C. The billet was processed with an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.

棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行なった。その結果、ビレットを650℃で加熱して押出したものは、その0.2%耐力値が226MPaで、最大引張強度が442MPaであった。   Tensile test pieces with a distance between scores of 10 mm and a waist circumference of 3 mm were cut out from the bar, and a tensile test was performed. As a result, the billet heated at 650 ° C. and extruded had a 0.2% proof stress of 226 MPa and a maximum tensile strength of 442 MPa.

[最大引張強度および0.2%耐力値の比較]
各種ビレットを650℃の温度に加熱して押出加工した黄銅合金押出材の最大引張強度および0.2%耐力値を比較し、それを表5に示した。また、押出材の応力−ひずみ曲線を図3に示す。比較したビレットは、Cr無添加の黄銅合金の溶製ビレット、Cr無添加の黄銅合金圧粉体ビレット、0.5%Cr添加の黄銅合金圧粉体ビレット、1.0%Cr添加の黄銅合金圧粉体ビレットの4種類である。
[Comparison of maximum tensile strength and 0.2% proof stress]
The maximum tensile strength and 0.2% proof stress value of the brass alloy extruded materials that were extruded by heating various billets to a temperature of 650 ° C. were compared. Moreover, the stress-strain curve of an extruded material is shown in FIG. The billets to be compared are a melted billet made of brass alloy containing no Cr, a brass alloy green compact billet containing no Cr, a brass alloy green billet containing 0.5% Cr, and a brass alloy containing 1.0% Cr. There are four types of green compact billets.

図3および表5から、次のことを理解できる。まず、Cr無添加の黄銅合金ビレットの2種類を比較すると、溶製ビレットよりも圧粉体ビレットの方が、最大引張強度および0.2%耐力値の両者において高い数値を示している。具体的には、圧粉体ビレットにすることによって、最大引張強度が5.4%向上し、0.2%耐力値が20.7%向上している。この点からだけでも、粉末冶金法の優位性は明らかである。   From FIG. 3 and Table 5, the following can be understood. First, when comparing two types of brass alloy billets containing no Cr, the green compact billet shows higher values in both the maximum tensile strength and the 0.2% proof stress value than the melt billet. Specifically, by using a green compact billet, the maximum tensile strength is improved by 5.4% and the 0.2% proof stress value is improved by 20.7%. From this point alone, the advantages of powder metallurgy are clear.

さらにクロムを1.0質量%添加した圧粉体ビレットと、Cr無添加の溶製ビレットとを比較すると、1.0質量%のCrを添加した圧粉体ビレットの押出材は、その最大引張強度が27.8%向上し、0.2%耐力値が40.2%向上している。0.2%耐力値が大きく向上しているのは、強制固溶しているクロムによる固溶強化であると考えられる。   Furthermore, comparing the green compact billet with 1.0% by mass of chromium and the molten billet without addition of Cr, the extruded material of the green compact billet with 1.0% by mass of Cr has its maximum tensile strength. The strength is improved by 27.8% and the 0.2% proof stress value is improved by 40.2%. It is considered that the 0.2% proof stress value is greatly improved due to the solid solution strengthening by the forced solid solution chromium.

また、Cr無添加の圧粉体ビレットに比較して、Cr添加の圧粉体ビレットの最大引張強度が大きく向上していることが認められる。これは、粉末製造工程の凝固過程において、固溶しきれなかったクロムが結晶粒界で濃化することによってクロムの粒界偏析が起こり、100nm〜500nm程度の直径を持った球状の析出物が主に粒界三重点や粒界上に存在していることが原因として考えられる。こうした微細析出物は、塑性変形時の粒界すべりに対して大きな抵抗力として働き、結果として高い加工硬化度を示した。   It can also be seen that the maximum tensile strength of the Cr-added green compact billet is greatly improved compared to the Cr-free green compact billet. This is because, in the solidification process of the powder manufacturing process, chromium that could not be completely dissolved is concentrated at the crystal grain boundaries, resulting in segregation of chromium grain boundaries, and spherical precipitates having a diameter of about 100 nm to 500 nm. The main cause is considered to be the grain boundary triple point or the grain boundary. Such fine precipitates acted as a great resistance against grain boundary sliding during plastic deformation, and as a result showed a high degree of work hardening.

[組織観察結果]
ビレットの加熱温度を650℃にして押出加工した押出材の光学顕微鏡による組織観察結果を図4に示す。図4の(a)は1質量%Cr添加の黄銅合金圧粉体ビレットの押出材、(b)は0.5質量%Cr添加の黄銅合金圧粉体ビレットの押出材、(c)はCr無添加の黄銅合金圧粉体ビレットの押出材、(d)はCr無添加の黄銅合金溶製ビレットの押出材を示す。
[Tissue observation result]
FIG. 4 shows the result of observation of the structure of the extruded material, which was extruded by setting the billet heating temperature to 650 ° C., using an optical microscope. 4A is an extruded material of a brass alloy green compact billet with 1% by mass Cr added, FIG. 4B is an extruded material of a brass alloy green compact billet with 0.5% by mass Cr added, and FIG. 4C is Cr. An extruded material of an additive-free brass alloy green compact billet, (d) shows an extruded material of an brass-added brass alloy melt billet.

図4の写真を比較観察すれば明らかなように、溶製ビレット押出材に比べて、圧粉体ビレット押出材はより微細な結晶粒を有している。黄銅合金溶製ビレット押出材の場合、結晶粒サイズは3〜10μmであるのに対し、Cr無添加の黄銅合金圧粉体ビレット押出材の結晶粒サイズは1〜6μmと微細になっている。また、Cr添加の黄銅合金圧粉体ビレット押出材になると、結晶粒サイズがサブミクロン〜5μmと更なる微細化が進行していることが認められる。   As is apparent from comparative observation of the photograph in FIG. 4, the green compact billet extrudate has finer crystal grains than the melt billet extrudate. In the case of the brass alloy melt billet extruded material, the crystal grain size is 3 to 10 μm, while the crystal grain size of the Cr-free brass alloy green compact billet extruded material is 1 to 6 μm. Moreover, when it becomes a brass alloy green compact billet extrusion material of Cr addition, it is recognized that further refinement | miniaturization is progressing with a crystal grain size of submicron-5 micrometers.

結晶粒微細化に伴い、耐力値はホールペッチ(Hall−Petch)の経験則に従って増加した。Cr添加材の組織には、黒点状の1μm以下の微細な析出物が結晶粒界に観察された。EDS分析を行なった結果、これらの析出物はCrであることを同定した。   With grain refinement, the proof stress value increased according to the Hall-Petch empirical rule. In the structure of the Cr additive, black dot-like fine precipitates of 1 μm or less were observed at the grain boundaries. As a result of EDS analysis, these precipitates were identified as Cr.

図5は、1質量%Cr添加の黄銅合金圧粉体ビレットの押出材のSEM像を示している。   FIG. 5 shows an SEM image of an extruded material of a brass alloy green compact billet containing 1 mass% Cr.

なお、以上の説明では、黄銅合金粉末または黄銅合金粉末押出材を中心に記載したが、本発明は、黄銅合金部材にも適用可能である。すなわち、黄銅合金部材は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5〜5.0質量%含有し、さらにニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含む。   In addition, in the above description, although it described centering on the brass alloy powder or the brass alloy powder extrusion material, this invention is applicable also to a brass alloy member. That is, the brass alloy member has a brass composition composed of a mixed phase of α phase and β phase, contains 0.5 to 5.0% by mass of chromium, and further nickel, manganese, zirconium, vanadium, titanium, silicon, It contains at least one element selected from the group consisting of aluminum and tin.

[降伏応力(YS)の増大]
クロムを添加することによって黄銅合金部材の降伏応力が増大することが認められるが、この降伏応力増大に寄与するのは、クロムのうち、特に、黄銅の母相中に固溶して分散するクロム成分である。組織解析の結果を利用し、析出物を定量化することで添加したクロムの量から母相中に固溶したクロムの量を算出した。
[Increase in yield stress (YS)]
It is recognized that the addition of chromium increases the yield stress of brass alloy members, but it is the chromium that contributes to the increase in the yield stress, especially chromium that dissolves and disperses in the parent phase of brass. It is an ingredient. The amount of chromium dissolved in the matrix was calculated from the amount of chromium added by quantifying the precipitates using the results of the structural analysis.

クロム無添加の黄銅合金部材の降伏応力とクロム添加の黄銅合金部材の降伏応力との差を縦軸で表し、母相中に固溶したクロム成分の濃度(%)を横軸に表したのが図6である。クロム固溶量が0.22%のとき降伏応力の増加量は34MPaで、クロム固溶量が0.35%のとき降伏応力の増加量は54MPaであった。このように、黄銅の母相中に固溶するクロムの濃度に比例して降伏応力が増大していることが認められた。   The vertical axis represents the difference between the yield stress of the brass alloy member without addition of chromium and the yield stress of the brass alloy member with addition of chromium, and the horizontal axis represents the concentration (%) of the chromium component dissolved in the matrix. Is FIG. When the chromium solid solution amount was 0.22%, the increase in yield stress was 34 MPa, and when the chromium solid solution amount was 0.35%, the increase in yield stress was 54 MPa. Thus, it was confirmed that the yield stress increased in proportion to the concentration of chromium dissolved in the parent phase of brass.

[黒鉛粒子添加による快削性の向上]
粉末押出による黄銅合金押出材の作製においては、黒鉛粒子を添加することにより、鉛フリーにして環境への悪影響を抑制することができる。一般の黄銅に対して黒鉛を添加することは過去になされたことがあるが、クロムを添加して強度を向上させた黄銅合金に対して黒鉛を添加した前例は無い。そこで、クロム添加により強度を向上させた黄銅への黒鉛添加を行い、切削性の向上を試みた。
[Improvement of free machinability by adding graphite particles]
In the production of a brass alloy extruded material by powder extrusion, by adding graphite particles, it can be made lead-free and the adverse effects on the environment can be suppressed. Although graphite has been added to general brass in the past, there is no precedent for adding graphite to a brass alloy whose strength has been improved by adding chromium. Therefore, graphite was added to brass whose strength was improved by adding chromium, and an attempt was made to improve machinability.

使用した黒鉛粒子の平均粒子径は5μmであった。水アトマイズ法で作製したクロム含有黄銅粉末と、黒鉛粒子とを機械的撹拌法で混合した。この混合粉末を前述の方法と同様に圧粉体ビレットとし、熱間押出加工を施して棒材を得た。添加する黒鉛粒子の量としては、クロム含有黄銅合金粉末に対して0.5重量%、0.75重量%および1.0重量%の3種類とした。   The average particle size of the graphite particles used was 5 μm. The chromium-containing brass powder produced by the water atomization method and the graphite particles were mixed by a mechanical stirring method. This mixed powder was used as a green compact billet in the same manner as described above, and subjected to hot extrusion to obtain a bar. The amount of graphite particles to be added was three types of 0.5 wt%, 0.75 wt%, and 1.0 wt% with respect to the chromium-containing brass alloy powder.

図7は、黒鉛粒子添加量と切削性との関係を示す図である。クロム含有黄銅合金粉末に黒鉛粒子を添加して押出加工すれば、切削性が飛躍的に向上することが認められた。切削性の評価は、ドリルによる貫通試験の試験時間を計測することで行った。試験片は5cmの長さに切断した丸棒であり、これにドリル径4.5mmで貫通試験を行った。ドリルには1.3kgfの荷重を与え、主軸回転数を900rpmとした。10回の試験を行い、貫通に要する時間を平均したものを図7のグラフに表示した。   FIG. 7 is a graph showing the relationship between the graphite particle addition amount and the machinability. It was confirmed that if the graphite particles were added to the chromium-containing brass alloy powder and extruded, the machinability improved dramatically. The machinability was evaluated by measuring the test time of a penetration test using a drill. The test piece was a round bar cut to a length of 5 cm, and a penetration test was performed with a drill diameter of 4.5 mm. A load of 1.3 kgf was applied to the drill, and the spindle rotation speed was set to 900 rpm. Ten tests were performed, and the average time required for penetration was displayed in the graph of FIG.

黒鉛を全く添加していない試験片では、180秒以上の切削を行ってもドリルは全く貫通しなかった。ドリルの切削進行が止まっているように見られたため、180秒で貫通しないものに関してはそこで試験を中止することにした。   In the test piece to which no graphite was added, the drill did not penetrate at all even after cutting for 180 seconds or longer. Since it seemed that the cutting progress of the drill had stopped, it was decided to stop the test for those that did not penetrate in 180 seconds.

黒鉛添加量と、ドリル貫通に要する時間との関係を調べた。0.5%クロム含有黄銅合金では、黒鉛無添加の場合に180秒以上であったものが、0.5%の黒鉛添加量で平均28秒の時間でドリルが貫通した。0.75%以上の黒鉛添加量では、貫通時間が20秒以下となり、切削性の飛躍的な向上が認められた。したがって、0.5%クロム含有黄銅合金の場合においては、0.75%以上の黒鉛添加が切削性を大幅に向上させるのに好適な条件であるということができる。   The relationship between the amount of graphite added and the time required for drill penetration was investigated. In the 0.5% chromium-containing brass alloy, what was 180 seconds or more when no graphite was added, but the drill penetrated in an average of 28 seconds with a graphite addition amount of 0.5%. With a graphite addition amount of 0.75% or more, the penetration time was 20 seconds or less, and a dramatic improvement in machinability was recognized. Therefore, in the case of a 0.5% chromium-containing brass alloy, it can be said that addition of 0.75% or more of graphite is a suitable condition for greatly improving the machinability.

1.0%クロム含有黄銅合金では、黒鉛を0.5%添加しても貫通時間は180秒以上であった。黒鉛添加量を0.75%に増加させると、平均38秒でドリルが貫通した。また、黒鉛添加量を1.0%にすると、貫通時間は20秒以下となった。したがって、1.0%クロム含有黄銅合金の場合においては、1.0%以上の黒鉛添加が切削性を大幅に向上させるのに好適な条件であるということができる。   In the 1.0% chromium-containing brass alloy, the penetration time was 180 seconds or more even when 0.5% of graphite was added. When the graphite addition amount was increased to 0.75%, the drill penetrated in an average of 38 seconds. When the graphite addition amount was 1.0%, the penetration time was 20 seconds or less. Therefore, in the case of a 1.0% chromium-containing brass alloy, it can be said that addition of 1.0% or more of graphite is a suitable condition for greatly improving the machinability.

[低速押出による強度の向上]
本発明者らは、クロム含有黄銅合金の押出速度を制御することで、より高強度の材料が得られることを見出した。高強度材を得るための押出条件としては、低温での押出が効果的であるが、さらに押出速度を低速にすることにより、より強度を向上させることができる。実測値を記載すると、1.0%クロム含有黄銅合金の場合、通常の押出速度(ラム速度3mm/s)で押出を行ったときの耐力値は317MPaで、最大引張強度は565MPaであったが、この押出速度を十分の一(ラム速度0.3mm/s)に減じて押出加工を行ったところ、耐力値は467MPaまで向上し、最大引張強度は632MPaまで向上した。
[Improvement of strength by low-speed extrusion]
The present inventors have found that a material having higher strength can be obtained by controlling the extrusion rate of the chromium-containing brass alloy. As extrusion conditions for obtaining a high-strength material, extrusion at low temperature is effective, but the strength can be further improved by lowering the extrusion speed. When the measured value is described, in the case of a brass alloy containing 1.0% chromium, the proof stress value was 317 MPa when the extrusion was performed at a normal extrusion speed (ram speed 3 mm / s), and the maximum tensile strength was 565 MPa. When this extrusion speed was reduced to one tenth (ram speed 0.3 mm / s) and extrusion was performed, the proof stress value was improved to 467 MPa, and the maximum tensile strength was improved to 632 MPa.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

本発明は、優れた機械的特性を有する6/4黄銅合金部材の製造に有利に利用され得る。   The present invention can be advantageously used in the manufacture of 6/4 brass alloy members having excellent mechanical properties.

Claims (14)

α相とβ相の混合相からなる黄銅組成を有し、水アトマイズ法によって急冷凝固した鉛フリー黄銅合金粉末であって、
クロムを0.5〜5.0質量%含有し、
前記クロムは、黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む、鉛フリー黄銅合金粉末。
have a brass composition formed by a mixed phase of α-phase and β-phase, a lead-free brass alloy powder rapidly solidified by a water atomizing method,
Containing 0.5 to 5.0% by mass of chromium,
The chromium is a lead-free brass alloy powder containing a component that dissolves in the mother phase of brass and a component that precipitates at grain boundaries.
前記黄銅の母相中に固溶する成分は、母相中に固溶して分散する成分と、母相中に析出物として分散する成分とを含む、請求項1に記載の鉛フリー黄銅合金粉末。 2. The lead-free brass alloy according to claim 1, wherein the components that are solid-solved in the mother phase of brass include a component that is dissolved and dispersed in the mother phase and a component that is dispersed as a precipitate in the mother phase. Powder. 前記クロムの含有量は、1.0〜2.4質量%である、請求項1に記載の鉛フリー黄銅合金粉末。 The lead-free brass alloy powder according to claim 1, wherein the chromium content is 1.0 to 2.4 mass%. 前記粉末中に、ニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含む、請求項1に記載の鉛フリー黄銅合金粉末。 The lead-free brass alloy powder according to claim 1, wherein the powder contains at least one element selected from the group consisting of nickel, manganese, zirconium, vanadium, titanium, silicon, aluminum, and tin. α相とβ相の混合相からなる黄銅組成を有し、水アトマイズ法によって急冷凝固した黄銅合金粉末の集合体を押出加工することによって得られる鉛フリー黄銅合金押出材であって、
クロムを0.5〜5.0質量%含有し、前記クロムが黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む、鉛フリー黄銅合金押出材。
A lead-free brass alloy extrudate obtained by extruding an aggregate of brass alloy powder having a brass composition composed of a mixed phase of an α phase and a β phase and rapidly solidified by a water atomization method,
A lead-free brass alloy extruded material containing 0.5 to 5.0% by mass of chromium and containing a component in which the chromium is dissolved in a mother phase of brass and a component that precipitates at a grain boundary.
0.2%耐力値が300MPa以上である、請求項5に記載の鉛フリー黄銅合金押出材。 The lead-free brass alloy extruded material according to claim 5, wherein the 0.2% proof stress value is 300 MPa or more. 引張強度が500MPa以上である、請求項5に記載の鉛フリー黄銅合金押出材。 The lead-free brass alloy extruded material according to claim 5 , which has a tensile strength of 500 MPa or more. 前記黄銅合金粉末に対して0.2〜2.0重量%の黒鉛粒子を添加して混合した後に、この混合粉末集合体を押出加工することによって得られる、請求項5に記載の鉛フリー黄銅合金押出材。 The lead-free brass according to claim 5, obtained by extruding the mixed powder aggregate after adding and mixing 0.2 to 2.0% by weight of graphite particles with respect to the brass alloy powder. Alloy extruded material. 前記添加黒鉛粒子の粒子径は、1μm〜100μmの範囲内にある、請求項8に記載の鉛フリー黄銅合金押出材。 The lead-free brass alloy extruded material according to claim 8, wherein a particle diameter of the added graphite particles is in a range of 1 µm to 100 µm. 当該黄銅合金押出材の結晶粒のサイズが5μm以下である、請求項5に記載の鉛フリー黄銅合金押出材。The lead-free brass alloy extruded material according to claim 5, wherein the size of crystal grains of the brass alloy extruded material is 5 µm or less. 前記結晶粒界に存在するクロム析出物の直径が100nm〜500nmである、請求項5に記載の鉛フリー黄銅合金押出材。The lead-free brass alloy extruded material according to claim 5, wherein a diameter of a chromium precipitate existing at the crystal grain boundary is 100 nm to 500 nm. α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5〜5.0質量%含有する鉛フリー黄銅合金粉末を水アトマイズ法によって作製する工程と、
前記水アトマイズ法によって急冷凝固した黄銅合金粉末の集合体を押出加工する工程とを備える、鉛フリー黄銅合金押出材の製造方法。
a step of producing a lead-free brass alloy powder having a brass composition composed of a mixed phase of an α phase and a β phase and containing 0.5 to 5.0 mass% of chromium by a water atomization method ;
And a step of extruding an aggregate of brass alloy powder rapidly solidified by the water atomizing method, a manufacturing method of a lead-free brass alloy extruded material.
前記押出加工時の加熱温度は650℃以下である、請求項12に記載の鉛フリー黄銅合金押出材の製造方法。 The manufacturing method of the lead-free brass alloy extrusion material of Claim 12 whose heating temperature at the time of the said extrusion process is 650 degrees C or less. 前記押出加工に先立ち、前記黄銅合金粉末に対して0.2〜2.0重量%の黒鉛粒子を添加して混合する工程を備える、請求項12に記載の鉛フリー黄銅合金押出材の製造方法。 The manufacturing method of the lead-free brass alloy extrusion material of Claim 12 provided with the process of adding 0.2-2.0 weight% graphite particle | grain with respect to the said brass alloy powder prior to the said extrusion process, and mixing. .
JP2010511043A 2008-05-07 2009-04-24 Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof Expired - Fee Related JP5376604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010511043A JP5376604B2 (en) 2008-05-07 2009-04-24 Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008121475 2008-05-07
JP2008121475 2008-05-07
PCT/JP2009/058142 WO2009136552A1 (en) 2008-05-07 2009-04-24 Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
JP2010511043A JP5376604B2 (en) 2008-05-07 2009-04-24 Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2009136552A1 JPWO2009136552A1 (en) 2011-09-08
JP5376604B2 true JP5376604B2 (en) 2013-12-25

Family

ID=41264607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010511043A Expired - Fee Related JP5376604B2 (en) 2008-05-07 2009-04-24 Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof

Country Status (5)

Country Link
US (1) US20110056591A1 (en)
EP (1) EP2275582A4 (en)
JP (1) JP5376604B2 (en)
CN (1) CN102016089B (en)
WO (1) WO2009136552A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516868A (en) * 2016-05-18 2019-06-20 アルマグ・ソシエタ・ペル・アチオニAlmag S.P.A. Method for producing lead-free or low lead content brass billets and billets obtained thereby

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023272B2 (en) * 2010-07-05 2015-05-05 Ykk Corporation Copper-zinc alloy product and process for producing copper-zinc alloy product
KR101284495B1 (en) * 2011-04-29 2013-07-16 성기철 Wire electrode for electro discharge machining and thesame methode
ITBS20130119A1 (en) * 2013-08-02 2015-02-03 Almag Spa COPPER ALLOY INCLUDING GRAPHITE
CN103627930B (en) * 2013-11-25 2015-11-25 宁波博威合金材料股份有限公司 A kind of high-ductility Cutting free zinc alloy
JP6030186B1 (en) 2015-05-13 2016-11-24 株式会社ダイヘン Copper alloy powder, manufacturing method of layered object, and layered object
US11440094B2 (en) * 2018-03-13 2022-09-13 Mueller Industries, Inc. Powder metallurgy process for making lead free brass alloys
US11459639B2 (en) 2018-03-13 2022-10-04 Mueller Industries, Inc. Powder metallurgy process for making lead free brass alloys
IT202000004480A1 (en) * 2020-03-03 2021-09-03 A L M A G S P A Azienda Lavorazioni Metallurgiche E Affini Gnutti PROCESS FOR OBTAINING A BRASS BILLET WITH A REDUCED LEAD CONTENT AND BILLET SO OBTAINED
CN111621667A (en) * 2020-06-30 2020-09-04 兰州理工大学 Copper-titanium alloy and preparation method thereof
CN112458334A (en) * 2020-11-27 2021-03-09 台州正兴阀门有限公司 Low-lead free-cutting copper alloy for casting faucet body and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026634A (en) * 1983-07-22 1985-02-09 Furukawa Electric Co Ltd:The Electrode wire for wire electric spark machining
JPS6213549A (en) * 1985-07-10 1987-01-22 Hitachi Ltd Wear-resisting copper alloy
JPS6284924A (en) * 1985-10-09 1987-04-18 Furukawa Electric Co Ltd:The Electrode wire and its manufacture wire electric discharge machining
JPS63157825A (en) * 1986-09-08 1988-06-30 Oiles Ind Co Ltd Wear resistant copper alloy
JPH02250203A (en) * 1989-03-23 1990-10-08 Furukawa Electric Co Ltd:The Copper alloy fiber and copper alloy fiber bundle to be added to conductive plastic
JPH07118777A (en) * 1993-10-21 1995-05-09 Taiho Kogyo Co Ltd Sliding member
JPH07197110A (en) * 1993-11-29 1995-08-01 Nikko Rika Kk Production of spherical raney copper alloy for catalyst and production of copper catalyst
JPH0853725A (en) * 1994-08-10 1996-02-27 Taiho Kogyo Co Ltd Copper-base sliding material and its surface treatment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1680046A (en) * 1924-01-30 1928-08-07 Victor O Homerberg Method of treating copper alloys and improved product
US2373158A (en) * 1943-12-28 1945-04-10 Wulff John Brass powders
US3802852A (en) * 1972-01-11 1974-04-09 Toyota Motor Co Ltd Sintered alloys having wear resistance at high temperature comprising a sintered femo-c alloy skeleton infiltrated with cu or pb base alloys or sb
NL7714494A (en) * 1977-12-28 1979-07-02 Leuven Res & Dev Vzw METHOD FOR MAKING SOLID BODIES FROM COPPER-ZINC ALUMINUM ALLOYS
CN1007734B (en) * 1985-11-27 1990-04-25 北京有色金属研究总院 Spray coating materials for combined layers
JPH0681734B2 (en) 1988-03-11 1994-10-19 株式会社クラレ Method for producing bicyclohymurenone
DE4201065C2 (en) * 1992-01-17 1994-12-08 Wieland Werke Ag Application of the spray compacting process to improve the bending fatigue strength of semi-finished products made of copper alloys
AU4136097A (en) 1996-09-09 1998-03-26 Toto Ltd. Copper alloy and method of manufacturing same
JP4204650B2 (en) 1996-12-09 2009-01-07 三井金属鉱業株式会社 High strength heat-resistant zinc alloy and molded product
JPH10168433A (en) 1996-12-12 1998-06-23 Kounosuke Tsunoda Snow-thawing antifreeze material and snow-thawing antifreeze coating material, sheet, tile, panel, exterior material, roofing material, road and defroster containing the same
JP2000309835A (en) 1998-12-22 2000-11-07 Toto Ltd Brass material, production of brass material and method for working brass material
US20060088437A1 (en) 2004-10-22 2006-04-27 Russell Nippert Copper based precipitation hardening alloy
KR100982611B1 (en) * 2005-07-28 2010-09-15 산에츠긴조쿠가부시키가이샤 Copper alloy extruded material and method for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026634A (en) * 1983-07-22 1985-02-09 Furukawa Electric Co Ltd:The Electrode wire for wire electric spark machining
JPS6213549A (en) * 1985-07-10 1987-01-22 Hitachi Ltd Wear-resisting copper alloy
JPS6284924A (en) * 1985-10-09 1987-04-18 Furukawa Electric Co Ltd:The Electrode wire and its manufacture wire electric discharge machining
JPS63157825A (en) * 1986-09-08 1988-06-30 Oiles Ind Co Ltd Wear resistant copper alloy
JPH02250203A (en) * 1989-03-23 1990-10-08 Furukawa Electric Co Ltd:The Copper alloy fiber and copper alloy fiber bundle to be added to conductive plastic
JPH07118777A (en) * 1993-10-21 1995-05-09 Taiho Kogyo Co Ltd Sliding member
JPH07197110A (en) * 1993-11-29 1995-08-01 Nikko Rika Kk Production of spherical raney copper alloy for catalyst and production of copper catalyst
JPH0853725A (en) * 1994-08-10 1996-02-27 Taiho Kogyo Co Ltd Copper-base sliding material and its surface treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516868A (en) * 2016-05-18 2019-06-20 アルマグ・ソシエタ・ペル・アチオニAlmag S.P.A. Method for producing lead-free or low lead content brass billets and billets obtained thereby

Also Published As

Publication number Publication date
US20110056591A1 (en) 2011-03-10
CN102016089B (en) 2012-08-22
EP2275582A1 (en) 2011-01-19
WO2009136552A1 (en) 2009-11-12
EP2275582A4 (en) 2014-08-20
CN102016089A (en) 2011-04-13
JPWO2009136552A1 (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5376604B2 (en) Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof
JP5326114B2 (en) High strength copper alloy
US11505850B2 (en) 7000-series aluminum alloy wire for additive manufacturing and preparation method thereof
CN113789459B (en) Copper-nickel-tin alloy and preparation method and application thereof
Yang et al. Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy
JP5546196B2 (en) Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
WO2006016631A1 (en) Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
CN106065443B (en) Copper alloy and method for producing same
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
JP2007211310A (en) Raw material brass alloy for casting half-melted alloy
EP4083244A1 (en) Heat-resistant powdered aluminium material
Yang et al. High-strength and free-cutting silicon brasses designed via the zinc equivalent rule
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
JP2021507088A (en) Aluminum alloy for additive technology
TWI586819B (en) Sliding contact material and manufacturing method thereof
Yang et al. As-cast microstructures and mechanical properties of Mg–4Zn–xY–1Ca (x= 1.0, 1.5, 2.0, 3.0) magnesium alloys
JP2007039748A (en) HEAT RESISTANT Al-BASED ALLOY
JP2009167450A (en) Copper alloy and producing method therefor
JP7167479B2 (en) Aluminum alloy wire rod and manufacturing method thereof
Abdelaziz et al. Microstructure and mechanical properties of tin-bismuth solder alloy reinforced by antimony oxide nanoparticles
CN105132739A (en) Lead-free brass alloy and preparing method of lead-free brass alloy
Boby et al. Effect of Sb, Sn and Pb additions on the microstructure and mechanical properties of AZ91 alloy
Nnakwo et al. Effect of Nickel and Iron Addition on the Structure and Mechanical Properties of Tin Bronze (Cu-10wt% Sn)
JP5733728B2 (en) Ni-based double-duplex intermetallic alloy containing Ti and C and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5376604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees