WO2009136552A1 - Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material - Google Patents

Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material Download PDF

Info

Publication number
WO2009136552A1
WO2009136552A1 PCT/JP2009/058142 JP2009058142W WO2009136552A1 WO 2009136552 A1 WO2009136552 A1 WO 2009136552A1 JP 2009058142 W JP2009058142 W JP 2009058142W WO 2009136552 A1 WO2009136552 A1 WO 2009136552A1
Authority
WO
WIPO (PCT)
Prior art keywords
brass
brass alloy
chromium
powder
phase
Prior art date
Application number
PCT/JP2009/058142
Other languages
French (fr)
Japanese (ja)
Inventor
勝義 近藤
元 片野
久志 今井
美治 上坂
明倫 小島
Original Assignee
独立行政法人科学技術振興機構
国立大学法人大阪大学
サンエツ金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構, 国立大学法人大阪大学, サンエツ金属株式会社 filed Critical 独立行政法人科学技術振興機構
Priority to CN200980116310.7A priority Critical patent/CN102016089B/en
Priority to EP09742676.1A priority patent/EP2275582A4/en
Priority to JP2010511043A priority patent/JP5376604B2/en
Priority to US12/991,259 priority patent/US20110056591A1/en
Publication of WO2009136552A1 publication Critical patent/WO2009136552A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a high-strength brass alloy, and more particularly to a lead-free brass alloy powder and a brass alloy extruded material which are harmful to the environment and the human body.
  • 6/4 brass has moderate strength, good mechanical properties, and is nonmagnetic, so it is not only used as a mechanical part, but also widely used in gas piping, water piping, valves, etc. It is done.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-309835
  • Patent Document 2 International Publication WO 98/10106
  • the low melting point metal evaporates rapidly during melting because the vapor pressure of the low melting point metal is high, and the desired alloy composition is obtained. So difficult to control.
  • Brass is an alloy of copper and zinc. If a high melting point metal is added to this brass, there is a possibility that an improvement in strength can be expected. However, the boiling point of zinc is as low as 907 ° C., and it is not easy to add chromium having a melting point of 1907 ° C., vanadium having a melting point of 1902 ° C., and the like. If the temperature of brass in liquid phase is increased, the amount of evaporation of zinc inevitably increases, and the alloy composition rapidly changes in the copper-rich direction.
  • a melting method of the high melting point metal there are an electron beam melting method, a hydrogen plasma arc melting method and the like, but these methods are not suitable for mass production, but are used for small batch processing of rare metals. Moreover, these methods can not prevent evaporation of the low melting point metal.
  • Patent Document 3 discloses a method of adding an alloy component to zinc.
  • the mother alloy is used for the addition of chromium
  • Zn 17 Cr or Zn 13 Cr as a compound is dispersed in the zinc matrix.
  • this master alloy is added to zinc, the change in the chromium compound does not occur only by increasing the proportion of the zinc component.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 11-209835
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2006-124835
  • the methods disclosed in these publications involve the inclusion of chromium, zirconium, tellurium, sulfur, iron, silicon, titanium or phosphorus in copper. Both are precipitation-type copper alloys, and precipitation of copper / zirconium compounds etc. is performed as a strengthening phase, but unlike zinc-containing alloys, they can be alloyed even at high temperatures, so the preparation of these materials is easy. I have to.
  • the inventors of the present invention have been working on the development of graphite-added brass as a part of the development of leadless brass alloys.
  • the graphite particle dispersion type lead-free machinable brass alloy has the same strength as that of lead-containing machinable brass alloy, and the strength is not improved dramatically.
  • An object of the present invention is to provide a brass alloy powder which contributes to the improvement of the strength of a brass alloy member.
  • Another object of the present invention is to provide a brass alloy extruded material having excellent mechanical strength.
  • Still another object of the present invention is to provide a brass alloy member having excellent mechanical strength.
  • Still another object of the present invention is to provide a method for producing a brass alloy extruded material having excellent mechanical strength.
  • the brass alloy powder according to the present invention has a brass composition consisting of a mixed phase of ⁇ phase and ⁇ phase, and contains 0.5 to 5.0% by mass of chromium.
  • the chromium contains a component dissolved in the matrix of brass and a component precipitated in grain boundaries.
  • the content of chromium needs to be 0.5% by mass or more.
  • the chromium content in the brass alloy powder may be increased, but the limit is 5.0 mass% from the viewpoint of production at the present time is there.
  • the more preferable content of chromium is 1.0 to 2.4% by mass.
  • the chromium component forcibly dissolved in the matrix of brass suppresses the dislocation motion in the crystal and contributes to the improvement of the proof stress value.
  • the chromium component precipitated at the grain boundaries suppresses grain boundary sliding to cause extreme work hardening and contributes to the improvement of tensile strength.
  • the component dissolved in the matrix of brass includes a component dispersed and dispersed in the matrix and a component dispersed as a precipitate in the matrix.
  • the brass alloy powder may contain at least one element selected from the group consisting of nickel, manganese, zirconium, vanadium, titanium, silicon, aluminum and tin.
  • the above-mentioned brass alloy powder is a rapidly solidified powder, more preferably a rapidly solidified powder by a water atomizing method.
  • the extruded brass alloy according to the present invention has a brass composition consisting of a mixed phase of ⁇ phase and ⁇ phase, contains 0.5 to 5.0% by mass of chromium, and the above chromium is in the matrix phase of brass. It is obtained by extruding an assembly of a brass alloy powder containing a component to be solid-solved and a component to be precipitated at grain boundaries.
  • the 0.2% proof stress value of the brass alloy extruded material is 300 MPa or more. Moreover, tensile strength is 500 MPa or more.
  • the brass alloy extruded material is added after 0.2 to 2.0% by weight of graphite particles are added to and mixed with the brass alloy powder. Obtained by extruding this mixed powder aggregate.
  • the particle size of the graphite particles to be added is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • a brass alloy member according to the present invention has a brass composition consisting of a mixed phase of ⁇ phase and ⁇ phase, contains 0.5 to 5.0% by mass of chromium, and further, nickel, manganese, zirconium, vanadium, titanium , At least one element selected from the group consisting of silicon, aluminum and tin. Chromium contains a component dissolved in the matrix of brass and a component precipitated in grain boundaries.
  • the brass alloy member further includes graphite particles to improve the machinability of the brass alloy member.
  • the method for producing a brass alloy extruded material according to the present invention has a brass composition comprising a mixed phase of ⁇ phase and ⁇ phase, and rapidly solidifies a brass alloy powder containing 0.5 to 5.0% by mass of chromium. And extruding the assembly of the rapidly solidified brass alloy powder described above.
  • the rapid solidification method is a water atomization method.
  • the heating temperature at the time of extrusion processing is preferably 650 ° C. or less.
  • the manufacturing method in one embodiment includes the step of adding and mixing 0.2 to 2.0% by weight of graphite particles with respect to the brass alloy powder prior to extrusion processing.
  • Novel brass alloy powder preparation method The inventors of the present invention examined a method for producing an unprecedented high strength free-cutting brass member by increasing the strength of brass itself as a base material.
  • a method of increasing the strength of brass generally, a method of adding various additives is employed.
  • high-strength brass is obtained by adding iron, aluminum, manganese or the like to a copper-zinc alloy and has a high tensile strength of 460 MPa and good corrosion resistance, and thus is applied to propellers for ships and the like.
  • this high strength brass is only guaranteed to have an elongation of about 15%, and it can not be said that the workability is never good.
  • the water atomization method which is a type of rapid solidification method
  • the molten metal is rapidly solidified at a very high speed to produce a powder
  • not only non-equilibrium phase appears in the powder but also fine crystal grains
  • the inventors of the present invention have newly proposed a powder having a property different from that of a conventional brass powder by adding a small amount of chromium (Cr) as a third element to a brass alloy composed of a mixed phase of ⁇ phase and ⁇ phase.
  • Cr chromium
  • the present inventors propose a new method for adding chromium, which is a refractory metal, to 6/4 brass.
  • chromium which is a refractory metal
  • the molten metal must be heated to the melting point of chromium, but such heating temperature exceeds the boiling point of zinc. Therefore, practically, it can be said that it is impossible to heat liquid brass to the melting point of chromium in consideration of the high vapor pressure of zinc.
  • the present inventors developed a brass alloy production method using a commercially available Cu-10% Cr master alloy.
  • chromium is dispersed as grains of about 10 to 50 ⁇ m in size and is not necessarily in solid solution in copper.
  • This mother alloy is first melted at about 1200 ° C. At this temperature, the chromium contained in the master alloy does not dissolve, and therefore, it floats in the liquid phase of copper as it is in solid phase. In this state, add copper and adjust the concentration of chromium to be thin. Then, when the chromium concentration reaches about 4%, the solid-liquid phase line in the phase diagram is crossed to be in the one-phase state of the liquid phase.
  • chromium which is a high melting point metal, could be made into a mixed liquid phase with copper.
  • a predetermined amount of zinc was added, and when it was quenched and solidified by a water atomizing method, it was possible to obtain a powder having a non-equilibrium phase in which chromium was forcibly dissolved in brass.
  • the above-mentioned powder production method developed by the present inventors is an advantageous method for adding a high melting point metal to brass also from the viewpoint of composition control of brass alloy.
  • the addition of relatively low melting point nickel and manganese increases the utility value as a powder which can further improve strength.
  • graphite added to the brass alloy powder thus obtained and extruding it, a lead-less machinable brass alloy excellent in strength and machinability can be obtained.
  • the conventional method of grain refinement has been to repeat the plastic working and heat treatment on the member repeatedly, but if powder metallurgy is used as in the present invention, it is already refined as a starting material Since a powder having a crystalline structure is prepared, no special process for micronization is required. In addition, since the material composition is already determined in the powder state, the composition of the final product can be grasped at this stage. In addition to such production advantages, the material according to the invention has several excellent features as described below.
  • chromium hardly dissolves in brass.
  • a rapid solidification method such as a water atomization method
  • chromium dissolved in a liquid phase is forcibly dissolved in a matrix of brass by a certain amount.
  • the component dissolved in the matrix of brass includes a component dispersed and dispersed in the matrix and a component dispersed as a precipitate in the matrix.
  • the chromium component forcibly dissolved in the matrix and the chromium component precipitated at the grain boundaries exhibit different effects on the applied stress.
  • the chromium component forced to form a solid solution in the matrix suppresses the dislocation movement in the crystal and contributes to the improvement of the proof stress value of the brass alloy member.
  • the chromium component precipitated at the grain boundaries suppresses grain boundary sliding to cause extreme work hardening, which greatly contributes to the improvement of tensile strength.
  • manganese unlike chromium, basically dissolves in brass. Therefore, manganese does not form intergranular precipitates and does not cause extreme work hardening, but acts to improve both the load resistance value and the tensile strength in a well-balanced manner. The reason is believed to be that manganese in solid solution in the matrix phase pinpoints dislocations.
  • Nickel also forms a solid solution completely in brass, but promotes the transformation from ⁇ phase to ⁇ phase in the process of hot extrusion of brass alloy, and forms a fine ⁇ phase in the crystal to greatly contribute to the improvement of proof stress .
  • nickel does not contribute to work hardening, the maximum tensile stress is almost the same as that of a powder extruded material to which no nickel is added.
  • Chromium, manganese and nickel are transition elements that appear in the fourth period of the periodic table, but as described above, their effects when added to brass are different from one another, and they exhibit completely different behavior. The reason is that each transition element strengthens brass by a different mechanism. Therefore, if two or more elements are added, it is considered that the respective effects are exhibited.
  • Vanadium a transition element of the fourth period of the periodic table, has an equilibrium diagram similar to chromium. Therefore, if vanadium is added by the same method as the addition of chromium to make atomized powder, the vanadium component which is forced to form a solid solution in the matrix and the vanadium component which precipitates in grain boundaries appear, and the same reinforcement as chromium The mechanism can improve the performance of brass.
  • titanium, silicon, aluminum, tin, etc. which are generally known as reinforcement elements for brass, are also expected to work effectively for strengthening chromium-added brass as an additional additive element.
  • phase transformation should be a mixed phase of ⁇ phase and ⁇ phase, but this phase transformation hardly occurs because of high quenching degree.
  • phase transformation from the ⁇ phase to the ⁇ phase occurs to become a mixed phase.
  • Chromium and manganese were found to have the effect of delaying the transformation to the alpha phase. This is an effect of suppressing atomic diffusion in crystal grains, and is considered to be highly effective in maintaining the non-equilibrium phase formed by rapid solidification.
  • the work-hardening phenomenon is manifested remarkably by the grain boundary precipitates in the solidification process suppressing the grain boundary sliding.
  • the size of grain boundary precipitates is controlled to a size (maximum length) of about 100 nm to 500 nm.
  • the dispersion state of the precipitates is also an important factor, and it is desirable that the raw material powder be homogeneous since it is ideal that the precipitates be uniformly dispersed in the structure. If it is an atomizing method as a powder production method, control of the solidification speed and the powder particle size accompanying it is easy.
  • the extrusion temperature is a very important factor in improving the strength of the brass alloy extruded material.
  • the extrusion temperature is preferably as low as possible. In order to extrude the powder assembly, the powder needs to be heated. The higher the heating temperature, the faster the atomic diffusion, and the non-equilibrium phase produced by rapid solidification approaches the thermal equilibrium state. Therefore, it is important to extrude the brass alloy powder assembly at the lowest temperature that allows extrusion.
  • the preferred extrusion temperature is 650 ° C. or less. It is difficult to determine the lower limit of the extrusion temperature. This is because the lower limit temperature is determined by the size of the extruded billet, the extrusion ratio, the maximum extrusion load of the apparatus, and the like. If extrusion at 500 ° C. is possible, the temperature is an appropriate condition, but in practice, it seems that 550 ° C. or more is required to carry out the extrusion process.
  • the present inventors have found that a material of higher strength can be obtained by controlling the extrusion rate at the time of extruding a chromium-containing brass alloy powder aggregate.
  • extrusion conditions for obtaining a material of higher strength extrusion at low temperature is effective, and further improvement in strength can be expected by reducing the extrusion speed. This point will be described later based on the experimental results.
  • graphite particles may be added to and mixed with the chromium-containing brass alloy powder, and this mixed powder aggregate may be extruded. In order to exhibit the effect of improving the machinability, it is necessary to add 0.2 to 2.0% by weight of graphite particles to the chromium-containing brass alloy powder.
  • the particle size of the additive graphite particles is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the addition amount of chromium is preferably 0.5% by mass or more, more preferably 1.0% by mass or more.
  • the upper limit value of the chromium content is 5.0% by mass. Due to limitations at the powder production stage, the upper limit of the chromium concentration in the copper-chromium liquid phase state is 4%. When zinc is added here, the chromium content is 2.4% by mass. It is possible to increase the chromium content by raising the melting temperature of copper-chromium. For example, when the dissolution temperature is raised to 1300 ° C., chromium can be dissolved to a concentration of 8%, and the chromium content when zinc is added is 5.0 mass%. However, at this temperature, the vapor pressure of zinc becomes too high, making composition control difficult. Therefore, the upper limit value of the more preferable chromium content is 2.4 mass%.
  • vanadium should be added to the vicinity of the upper limit in order to make the most of the effect of vanadium.
  • the concentration of vanadium is 0.3% by mass by the addition of zinc.
  • it is necessary to raise the melting temperature.
  • the vapor pressure of zinc becomes too high, making it difficult to make a powder with an optimal composition. Therefore, the effect of the addition of vanadium can not but be limited, and strengthening in combination with other elements is required.
  • the brass alloy can be further strengthened by supplementarily adding manganese in combination with the above chromium addition or chromium and vanadium addition.
  • the addition amount of manganese it was confirmed that a sufficient effect can be obtained at 0.5% by mass.
  • the more preferable addition amount of manganese is 1 to 3% by mass, and when the amount is exceeded, the elongation may be reduced, which may result in the deterioration of the processability of brass.
  • nickel Since nickel is completely dissolved in copper, it can be alloyed by adding an arbitrary amount in the Cu—Zn—Ni system. Therefore, in the present invention, there is no upper limit in particular about the addition amount of nickel.
  • the addition of nickel has a special effect of increasing only the proof stress value, and a proof stress value exceeding 300 MPa can be realized with an addition amount of 1% by mass.
  • the proof stress is more important than the tensile strength.
  • the greatest effect of the present invention is the inclusion of a predetermined amount of chromium in 6/4 brass, but the addition of more nickel provides more advantages. Since chromium has a high melting point, it is not easy to add even trace amounts. The use of thermal equilibrium in metallurgy has already been described as a means of overcoming this. Naturally, both elements should be added to simultaneously exhibit the effects of chromium and nickel. There is an easier method as an addition method in this case. That is, in order to add only chromium, the process described above is to be taken, but in order to add also nickel at the same time, it is preferable that the mother alloy initially contains chromium and nickel.
  • Nickel-chromium alloys are commercially available and their melting point is lowered to 1345 ° C. by alloying. It is possible to melt this alloy and copper using a high frequency furnace. Although the mixing ratio of nickel to chromium is 1: 1, the melt can be made much easier than manufacturing using a copper-chromium master alloy. If it is carried out to add nickel using this method, the preferable upper limit of the amount of added nickel is 2.4% by mass like chromium.
  • the upper limit of the amount of addition of nickel is not particularly limited, but it is desirable to keep the addition of 5% by mass or less as a range that does not impair the characteristics as brass. If the content of nickel is in this range, it is possible to make an alloy having desired mechanical properties, and it becomes applicable to a wide range of application.
  • the additive effect is exhibited at about several percent, at least 0.1% or more.
  • the appropriate amounts and combinations of various elements differ depending on the mechanical properties to be obtained. From the viewpoint of improving the strength, zirconium exhibits a grain refining effect, so even if it is added at 0.1%, its effect is sufficiently recognized, and it can be said from the hole-pitch's rule of thumb that it is a clear strengthening element.
  • Titanium, aluminum and the like increase the strength of the matrix by solid solution strengthening, and therefore the addition of a small amount of 1% or less exerts the effect.
  • Silicon is usually an element used for dispersion strengthening, and addition of about 3% is an appropriate amount. However, due to the balance with other elements, addition may not always lead to strengthening. In particular, in the alloy system of the present invention, if the chromium precipitation site and the silicon dispersion site are at the same location, the strengthening effect can not be obtained. Therefore, the addition amount of silicon is in a relation of being limited by the addition amount of chromium, and it can be said that the total amount of chromium and silicon is 3% or less.
  • Tin forms a solid solution at about 0.3% to exhibit the effect as a strengthening element, but when the addition amount is increased, a ⁇ phase appears, which causes embrittlement, and a large amount addition is not preferable, 0.1 It can be said that the range of% to 0.5% is preferable.
  • the X-ray-diffraction result of the produced powder is shown in FIG. Only the ⁇ phase was detected in the Cr-free brass alloy powder and the brass alloy powder to which 0.5% by mass of Cr was added. In the brass alloy powder to which 1.0 mass% of Cr was added, two phases of ⁇ phase and ⁇ phase were detected. In the case of the 6/4 brass composition, when the liquid phase is crossed the solid-liquid line, it becomes a ⁇ phase, and the rapidly solidified powder is generally cooled without ⁇ transformation. As a result of investigating in detail the brass alloy powder of 1.0 mass% Cr addition, it was a mixed state of alpha phase powder and beta phase powder.
  • Extrusion of 1.0 mass% Cr-added brass alloy powder A powder of composition 59% Cu-40% Zn-1% Cr prepared by a water atomizing method was pressed at 600 MPa to make a billet for extrusion.
  • the billet was heated in an electric furnace and extruded.
  • the temperature conditions of the electric furnace for heating were set to four types of 650 ° C., 700 ° C., 750 ° C. and 780 ° C.
  • the billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
  • a tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 2.
  • the billet was heated to a temperature of 650 ° C. and extruded showed high values in maximum tensile strength and 0.2% proof stress value. These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
  • a tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 3.
  • the billet heated at a temperature of 650 ° C. and extruded showed high values in maximum tensile strength and 0.2% proof stress value. These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
  • the values of 0.5% Cr addition and 1.0% Cr addition showed substantially the same value. Therefore, it was found that the proof stress is maintained even if the amount of chromium added is small. However, the maximum tensile strength decreases as the amount of chromium decreases. While this shows that the proof stress value is determined by the amount of chromium which is forced to form a solid solution, the maximum tensile stress supports the increase of the degree of work hardening due to the precipitation of excess chromium at grain boundaries.
  • a tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength.
  • the one obtained by heating and extruding the billet at 650 ° C. had a 0.2% proof stress value of 311 MPa and a maximum tensile strength of 479 MPa.
  • These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
  • Extrusion of 0.7 mass% Mn-added brass alloy powder A powder of composition 59% Cu-40% Zn-0.7 %% Mn prepared by a water atomizing method was pressed at 600 MPa to make a billet for extrusion.
  • the billet was heated in an electric furnace and extruded.
  • the temperature conditions of the electric furnace for heating were set to four types of 650 ° C., 700 ° C., 750 ° C. and 780 ° C.
  • the billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
  • a tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength.
  • the one obtained by heating and extruding the billet at 650 ° C. had a 0.2% proof stress value of 291 MPa and a maximum tensile strength of 503 MPa.
  • These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
  • Extrusion of Cr-free brass alloy powder A powder of composition 60% Cu-40% Zn prepared by a water atomizing method was compressed at 600 MPa to be a billet for extrusion. The billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were set to four types of 650 ° C., 700 ° C., 750 ° C. and 780 ° C. The billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
  • a tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 4.
  • the billet heated at a temperature of 650 ° C. and extruded showed high values in maximum tensile strength and 0.2% proof stress. These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
  • a tensile test was carried out by cutting a tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm from the bar.
  • the one obtained by heating and extruding the billet at 650 ° C. had a 0.2% proof stress value of 226 MPa and a maximum tensile strength of 442 MPa.
  • the powder billet exhibits higher numerical values in both of the maximum tensile strength and the 0.2% proof stress value than the molten billet. Specifically, by using a green compact billet, the maximum tensile strength is improved by 5.4%, and the 0.2% proof stress value is improved by 20.7%. From this point of view alone, the superiority of powder metallurgy is clear.
  • the extruded material of the green compact billet to which 1.0 mass% of Cr is added has the maximum tension
  • the strength is improved by 27.8%
  • the 0.2% proof stress value is improved by 40.2%. It is considered that the fact that the 0.2% proof stress value is greatly improved is the solid solution strengthening by the forced-solid solution chromium.
  • the maximum tensile strength of the powder billet added with Cr is greatly improved as compared to the powder billet with no addition of Cr. This is because, during the solidification process of the powder production process, chromium which did not form a solid solution is concentrated at grain boundaries to cause segregation of chromium at grain boundaries, resulting in spherical precipitates having a diameter of about 100 nm to 500 nm. It is considered that the cause is mainly existing at grain boundary triple points and grain boundaries. Such fine precipitates act as a large resistance to grain boundary sliding during plastic deformation, and as a result, exhibit a high degree of work hardening.
  • FIG. (A) of FIG. 4 is an extruded material of a brass alloy green compact billet added with 1 mass% Cr
  • (b) is an extruded material of a brass alloy green compact billet added with 0.5 mass% Cr
  • (c) is Cr.
  • (d) shows an extruded material of the additive-free billet brass alloy infused with Cr.
  • the powder billet extruded material has finer crystal grains as compared with the molten billet extruded material.
  • the grain size is 3 to 10 ⁇ m
  • the grain size of a brass alloy compacted billet extruded material with no Cr added is as fine as 1 to 6 ⁇ m.
  • the grain size is progressing to further submicron to 5 ⁇ m.
  • FIG. 5 shows an SEM image of an extruded material of a 1% by mass Cr-added brass alloy green compact billet.
  • the brass alloy powder or brass alloy powder extruded material is mainly described, but the present invention is also applicable to a brass alloy member. That is, the brass alloy member has a brass composition composed of a mixed phase of ⁇ phase and ⁇ phase, contains 0.5 to 5.0% by mass of chromium, and further, nickel, manganese, zirconium, vanadium, titanium, silicon, It contains at least one element selected from the group consisting of aluminum and tin.
  • the difference between the yield stress of the chromium-free brass alloy member and the yield stress of the chromium-added brass alloy member is represented on the vertical axis, and the concentration (%) of the chromium component in solid solution in the matrix is represented on the horizontal axis.
  • the increase in yield stress was 34 MPa when the solid solution amount of chromium was 0.22%, and the increase amount of yield stress was 54 MPa when the solid solution amount of chromium was 0.35%.
  • the yield stress increased in proportion to the concentration of chromium in solid solution in the matrix of brass.
  • the average particle size of the graphite particles used was 5 ⁇ m.
  • the chromium-containing brass powder produced by the water atomizing method and the graphite particles were mixed by a mechanical stirring method. This mixed powder was made into a powder compact billet in the same manner as the above-mentioned method, and subjected to hot extrusion processing to obtain a bar.
  • the amount of graphite particles to be added was three types of 0.5 wt%, 0.75 wt% and 1.0 wt% with respect to the chromium-containing brass alloy powder.
  • FIG. 7 is a graph showing the relationship between the amount of graphite particles added and the machinability. It was found that when the graphite particles were added to the chromium-containing brass alloy powder and extrusion processing was performed, the machinability was dramatically improved. Evaluation of machinability was performed by measuring the test time of the penetration test by a drill. The test piece was a round bar cut to a length of 5 cm, which was subjected to a penetration test with a drill diameter of 4.5 mm. A load of 1.3 kgf was applied to the drill, and the spindle rotational speed was 900 rpm. Ten tests were conducted, and the time required for penetration was averaged and displayed in the graph of FIG.
  • the relationship between the amount of graphite added and the time required for drill penetration was investigated.
  • the drill penetrated in a time of an average of 28 seconds at a graphite addition amount of 0.5%, though it was 180 seconds or more when no graphite was added.
  • the amount of graphite added was 0.75% or more, the penetration time was 20 seconds or less, and a drastic improvement in the machinability was observed. Therefore, in the case of a 0.5% chromium-containing brass alloy, it can be said that the addition of 0.75% or more of graphite is a condition suitable for greatly improving the machinability.
  • the penetration time was 180 seconds or more even when 0.5% of graphite was added.
  • the drill penetration occurred in an average of 38 seconds as the graphite loading was increased to 0.75%.
  • the penetration time was 20 seconds or less. Therefore, in the case of a 1.0% chromium-containing brass alloy, it can be said that the addition of 1.0% or more of graphite is a suitable condition for greatly improving the machinability.
  • the present invention can be advantageously utilized in the manufacture of 6/4 brass alloy members having excellent mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Disclosed is a brass alloy powder which has a brass composition composed of a mixed phase of an α-phase and a β-phase, and contains 0.5-5.0% by mass of chromium. The chromium contains a component solid-solved in the brass matrix and a component deposited at crystal grain boundaries.

Description

黄銅合金粉末、黄銅合金押出材およびその製造方法Brass alloy powder, brass alloy extruded material and method for producing the same
 本発明は、高強度黄銅合金に関するものであり、特に環境や人体に有害な鉛を含有しない黄銅合金粉末および黄銅合金押出材に関するものである。 The present invention relates to a high-strength brass alloy, and more particularly to a lead-free brass alloy powder and a brass alloy extruded material which are harmful to the environment and the human body.
 近年、環境問題が大きくクローズアップされており、合金開発においてもこの点の注意が必要である。6/4黄銅は、適度な強度および良好な機械的特性を有し、さらに非磁性であることから、機械部品として利用されるのみならず、ガス配管、水道配管、バルブなど広範囲に亘って利用されている。 In recent years, environmental problems have been greatly highlighted, and attention must be paid to this point also in alloy development. 6/4 brass has moderate strength, good mechanical properties, and is nonmagnetic, so it is not only used as a mechanical part, but also widely used in gas piping, water piping, valves, etc. It is done.
 6/4黄銅からなる部材の加工性を上げるために、通常、合金組成中に数%の鉛を含有させている。この鉛含有黄銅部材を水道配管に使用したとき、鉛が上水道中に溶け出すおそれがある。 In order to improve the workability of a member made of 6/4 brass, a few percent of lead is usually contained in the alloy composition. When this lead-containing brass member is used for water supply piping, there is a risk that lead may dissolve into the water supply water.
 上記の問題を解消するために、鉛レスの黄銅素材の開発が進められている。従来の開発例として、鉛の代わりにビスマスを添加したもの、特開2000-309835号公報(特許文献1)や国際公開公報WO98/10106(特許文献2)に開示されているようにスズを添加することによってγ相を析出させたもの、シリコンの微粒子を分散させたもの等がある。これらの開発技術の中には、鉛レスを実現するだけでなく、黄銅そのものの強度を同時に向上させて、応用範囲の拡大を図ったものもある。 In order to solve the above problems, development of lead-free brass materials is in progress. As an example of conventional development, one to which bismuth is added instead of lead, tin is added as disclosed in Japanese Patent Application Laid-Open No. 2000-309835 (Patent Document 1) and International Publication WO 98/10106 (Patent Document 2) There are those in which the γ phase is precipitated by carrying out the reaction and those in which fine particles of silicon are dispersed. Among these developed technologies, not only lead-free but also the strength of brass itself is simultaneously improved to expand the application range.
 しかしながら、ビスマスの添加は、鉛の添加と同程度の強度しか得られていないのが現状である。ビスマスおよび鉛は、共に、添加されることによって黄銅の強度を下げる元素であり、黄銅部材の強度向上には寄与しない。特開2000-309835号公報(特許文献1)や国際公開公報WO98/10106(特許文献2)に開示されているようにスズの添加によってγ相を析出させる方法は、黄銅部材の耐力値や引張強度などを向上させるが、黄銅部材の変形能が大きく低下して加工性に劣るようになる。それに加えて、γ相が起点となり脆性破壊するといった問題も生じてくる。シリコンの微粒子を分散させる方法は、黄銅合金部材の機械的強度の向上には寄与するが、部材の切削性が劣るようになるという欠点を有する。 However, the current situation is that the addition of bismuth is only as strong as the addition of lead. Both bismuth and lead are elements that reduce the strength of brass by being added, and do not contribute to the improvement of the strength of brass members. As disclosed in JP-A-2000-309835 (Patent Document 1) and International Publication WO 98/10106 (Patent Document 2), the method of precipitating the γ phase by the addition of tin is the proof stress value or tension of the brass member. Although the strength and the like are improved, the deformability of the brass member is largely reduced to deteriorate the processability. In addition to that, there arises a problem that the γ phase is a starting point to cause brittle fracture. The method of dispersing the fine particles of silicon contributes to the improvement of the mechanical strength of the brass alloy member, but has a disadvantage that the machinability of the member becomes inferior.
 第46回銅及び銅合金技術研究会講演大会講演概要集(2006)、pp.153-154、近藤勝義ほか(非特許文献1)には、「粉体プロセスによる完全鉛フリー快削性黄銅合金の特性」と題して、粉末冶金法を基調とした黒鉛粒子分散型快削性黄銅合金の作製法が開示されている。黒鉛添加のメリットは、完全鉛フリーにすることができるということと、リサイクルの際に溶融した黄銅上に黒鉛が浮くので分離が容易であるということにある。他方、添加した黒鉛による黄銅部材の強度向上は見込めない。そこで、黒鉛を添加するにあたっては、粉末冶金法を利用した黄銅部材の強度向上技術も考慮すべきである。 Proceedings of the 46th Annual Conference on Copper and Copper Alloy Technical Conference (2006), pp. Graphite particle dispersed machinability based on powder metallurgy, entitled "Characteristics of complete lead-free machinable brass alloy by powder process" in Kondo et al. (Non-patent document 1) 153-154, Kondo et al. A method of making a brass alloy is disclosed. The merits of the addition of graphite are that it can be made completely lead free and that it is easy to separate because graphite floats on molten brass during recycling. On the other hand, the strength improvement of the brass member by the added graphite can not be expected. Therefore, when adding graphite, a technique for improving the strength of a brass member utilizing powder metallurgy should also be considered.
 一般に、低融点金属を高温化で高融点金属中に溶融させようとすると、低融点金属の蒸気圧が高いために溶融中に急速に低融点金属が蒸発してしまい、所望の合金組成となるように制御することが困難である。 Generally, when trying to melt a low melting point metal into a high melting point metal at high temperature, the low melting point metal evaporates rapidly during melting because the vapor pressure of the low melting point metal is high, and the desired alloy composition is obtained. So difficult to control.
 黄銅は、銅と亜鉛の合金である。この黄銅に高融点金属を添加すれば強度の向上が見込める可能性がある。しかしながら、亜鉛の沸点は907℃と低く、融点が1907℃のクロムや、融点が1902℃のバナジウムなどを添加するのは容易ではない。液相状態の黄銅の温度を上昇させて行けば必然的に亜鉛の蒸発量が増大し、急激に合金組成が銅リッチの方向へと変化してしまう。 Brass is an alloy of copper and zinc. If a high melting point metal is added to this brass, there is a possibility that an improvement in strength can be expected. However, the boiling point of zinc is as low as 907 ° C., and it is not easy to add chromium having a melting point of 1907 ° C., vanadium having a melting point of 1902 ° C., and the like. If the temperature of brass in liquid phase is increased, the amount of evaporation of zinc inevitably increases, and the alloy composition rapidly changes in the copper-rich direction.
 高融点金属の溶融法としては、電子ビーム溶解法や水素プラズマアーク溶解法などがあるが、これらの方法は、大量生産に適した方法ではなく、希少金属の少量バッチ処理に用いられている。しかも、これらの方法では、低融点金属の蒸発を防ぐことはできない。 As a melting method of the high melting point metal, there are an electron beam melting method, a hydrogen plasma arc melting method and the like, but these methods are not suitable for mass production, but are used for small batch processing of rare metals. Moreover, these methods can not prevent evaporation of the low melting point metal.
 低融点金属中に、溶融した高融点金属を添加する方法も考えられるが、高融点金属をその融点まで加熱して溶解させるのは、工業的にみて、コスト的に見合わず、量産が困難である。そのため、一般的には、酸化物のテルミット反応を利用した方法や、より融点の低い母合金の添加などの方法が行なわれる。 Although it is conceivable to add a molten high melting point metal to the low melting point metal, it is not industrially possible to dissolve the high melting point metal by heating it to its melting point, and it is difficult to mass-produce it. It is. Therefore, generally, a method utilizing thermite reaction of oxide, a method such as addition of a lower melting point mother alloy, and the like are performed.
 特開平10-168533号公報(特許文献3)には、亜鉛中に合金成分を添加する方法が開示されている。この公報には、クロムの添加には母合金を使用したと記載されているが、Zn-Crの熱平衡状態図を見ると、クロムは亜鉛にほとんど固溶しないことがわかる。言い換えれば、亜鉛のマトリクス中に、化合物としてのZn17CrまたはZn13Crが分散した状態になることが理解できる。この母合金を亜鉛に添加した場合、亜鉛の成分比率が増えるだけで、クロム化合物に変化は起こらない。このように、非固溶元素でかつ高融点の金属を低融点金属中に溶解させることは、非常に困難であり、他の手法を開発する必要がある。 Japanese Patent Application Laid-Open No. 10-168533 (Patent Document 3) discloses a method of adding an alloy component to zinc. Although this publication describes that the mother alloy is used for the addition of chromium, it can be seen from the thermal equilibrium phase diagram of Zn-Cr that chromium hardly dissolves in zinc. In other words, it can be understood that Zn 17 Cr or Zn 13 Cr as a compound is dispersed in the zinc matrix. When this master alloy is added to zinc, the change in the chromium compound does not occur only by increasing the proportion of the zinc component. As described above, it is very difficult to dissolve the non-solid solution element and the high melting point metal in the low melting point metal, and it is necessary to develop another method.
 銅中へのクロムの添加は、亜鉛含有合金に比べて進んでいる。代表的なものとして、特開平11-209835号公報(特許文献4)や特開2006-124835号公報(特許文献5)に開示された手法がある。これらの公報に開示された方法では、銅中にクロム、ジルコニウム、テルル、イオウ、鉄、シリコン、チタンまたはリンの含有を行なっている。いずれも析出型の銅合金であり、強化相として銅・ジルコニウム化合物等の析出を行うものであるが、亜鉛含有の合金と異なり、高温でも合金化が可能であるので、これらの材料作製を容易にしている。 The addition of chromium into copper is advanced compared to zinc-containing alloys. As representative ones, there are methods disclosed in Japanese Patent Application Laid-Open No. 11-209835 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2006-124835 (Patent Document 5). The methods disclosed in these publications involve the inclusion of chromium, zirconium, tellurium, sulfur, iron, silicon, titanium or phosphorus in copper. Both are precipitation-type copper alloys, and precipitation of copper / zirconium compounds etc. is performed as a strengthening phase, but unlike zinc-containing alloys, they can be alloyed even at high temperatures, so the preparation of these materials is easy. I have to.
 鉛レス黄銅の開発過程で、黒鉛を添加する手法として粉末冶金法を適用することが有効であることが知られている。これは、黒鉛と黄銅の混合が、粉末を使うことによって可能となったことが大きな理由である。通常の溶製法で黒鉛添加を試みたとしても、両者の比重の違いから、黒鉛は、黄銅の溶湯上に浮いてしまい、黄銅中に分散させることができない。 In the development process of lead-less brass, it is known that it is effective to apply powder metallurgy as a method of adding graphite. This is largely because mixing of graphite and brass is made possible by using powder. Even if it is attempted to add graphite by the usual melting method, the graphite floats on the molten brass and can not be dispersed in the brass because of the difference in specific gravity between the two.
特開2000-309835号公報JP 2000-309835 A 国際公開公報WO98/10106International Publication WO 98/10106 特開平10-168533号公報Unexamined-Japanese-Patent No. 10-168533 特開平11-209835号公報JP-A-11-209835 特開2006-124835号公報Unexamined-Japanese-Patent No. 2006-124835
 本願発明の発明者らは、鉛レス黄銅合金の開発の一環として、黒鉛を添加した黄銅の開発に取り組んできた。しかし、黒鉛粒子分散型鉛フリー快削性黄銅合金は、その強度が鉛入り快削性黄銅合金と同等程度であり、飛躍的に強度が向上しているわけではない。 The inventors of the present invention have been working on the development of graphite-added brass as a part of the development of leadless brass alloys. However, the graphite particle dispersion type lead-free machinable brass alloy has the same strength as that of lead-containing machinable brass alloy, and the strength is not improved dramatically.
 本発明の目的は、黄銅合金部材の強度向上に寄与する黄銅合金粉末を提供することである。 An object of the present invention is to provide a brass alloy powder which contributes to the improvement of the strength of a brass alloy member.
 本発明の他の目的は、優れた機械的強度を有する黄銅合金押出材を提供することである。 Another object of the present invention is to provide a brass alloy extruded material having excellent mechanical strength.
 本発明のさらに他の目的は、優れた機械的強度を有する黄銅合金部材を提供することである。 Still another object of the present invention is to provide a brass alloy member having excellent mechanical strength.
 本発明のさらに他の目的は、優れた機械的強度を有する黄銅合金押出材の製造方法を提供することである。 Still another object of the present invention is to provide a method for producing a brass alloy extruded material having excellent mechanical strength.
 本発明に従った黄銅合金粉末は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5~5.0質量%含有する。上記クロムは、黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む。 The brass alloy powder according to the present invention has a brass composition consisting of a mixed phase of α phase and β phase, and contains 0.5 to 5.0% by mass of chromium. The chromium contains a component dissolved in the matrix of brass and a component precipitated in grain boundaries.
 上記の黄銅合金粉末の集合体を押出加工すれば、機械的強度に優れた黄銅合金押出材が得られる。所望の機械的強度を得るには、クロムの含有量を0.5質量%以上にする必要がある。最終的に得られる黄銅合金押出材の機械的強度をより高めるには、黄銅合金粉末中のクロムの含有量を高めればよいが、現時点での製造上の観点から5.0質量%が限界である。より好ましいクロムの含有量は、1.0~2.4質量%である。 By extruding the assembly of the above-mentioned brass alloy powder, a brass alloy extruded material excellent in mechanical strength can be obtained. In order to obtain a desired mechanical strength, the content of chromium needs to be 0.5% by mass or more. In order to further increase the mechanical strength of the finally obtained brass alloy extruded material, the chromium content in the brass alloy powder may be increased, but the limit is 5.0 mass% from the viewpoint of production at the present time is there. The more preferable content of chromium is 1.0 to 2.4% by mass.
 黄銅の母相中に強制固溶されるクロム成分は、結晶中の転位運動を抑制して耐力値の向上に寄与する。一方、結晶粒界に析出したクロム成分は、粒界すべりを抑制して極度の加工硬化を引き起こし、引張強度の向上に寄与する。黄銅の母相中に固溶する成分は、母相中に固溶して分散する成分と、母相中に析出物として分散する成分とを含む。 The chromium component forcibly dissolved in the matrix of brass suppresses the dislocation motion in the crystal and contributes to the improvement of the proof stress value. On the other hand, the chromium component precipitated at the grain boundaries suppresses grain boundary sliding to cause extreme work hardening and contributes to the improvement of tensile strength. The component dissolved in the matrix of brass includes a component dispersed and dispersed in the matrix and a component dispersed as a precipitate in the matrix.
 黄銅合金粉末中に、ニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含むようにしてもよい。 The brass alloy powder may contain at least one element selected from the group consisting of nickel, manganese, zirconium, vanadium, titanium, silicon, aluminum and tin.
 好ましくは、上記の黄銅合金粉末は、急冷凝固粉末であり、より好ましくは、水アトマイズ法によって急冷凝固させた粉末である。 Preferably, the above-mentioned brass alloy powder is a rapidly solidified powder, more preferably a rapidly solidified powder by a water atomizing method.
 この発明に従った黄銅合金押出材は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5~5.0質量%含有し、上記クロムが黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む黄銅合金粉末の集合体を押出加工することによって得られる。 The extruded brass alloy according to the present invention has a brass composition consisting of a mixed phase of α phase and β phase, contains 0.5 to 5.0% by mass of chromium, and the above chromium is in the matrix phase of brass. It is obtained by extruding an assembly of a brass alloy powder containing a component to be solid-solved and a component to be precipitated at grain boundaries.
 一つの実施形態では、黄銅合金押出材の0.2%耐力値が300MPa以上である。また、引張強度が500MPa以上である。 In one embodiment, the 0.2% proof stress value of the brass alloy extruded material is 300 MPa or more. Moreover, tensile strength is 500 MPa or more.
 黄銅合金押出材の切削性を向上させるために、一つの実施形態では、黄銅合金押出材は、黄銅合金粉末に対して0.2~2.0重量%の黒鉛粒子を添加して混合した後に、この混合粉末集合体を押出加工することによって得られる。添加する黒鉛粒子の粒子径は、好ましくは、1μm~100μmの範囲内にある。 In order to improve the machinability of the brass alloy extruded material, in one embodiment, the brass alloy extruded material is added after 0.2 to 2.0% by weight of graphite particles are added to and mixed with the brass alloy powder. Obtained by extruding this mixed powder aggregate. The particle size of the graphite particles to be added is preferably in the range of 1 μm to 100 μm.
 この発明に従った黄銅合金部材は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5~5.0質量%含有し、さらにニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含む。クロムは、黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む。 A brass alloy member according to the present invention has a brass composition consisting of a mixed phase of α phase and β phase, contains 0.5 to 5.0% by mass of chromium, and further, nickel, manganese, zirconium, vanadium, titanium , At least one element selected from the group consisting of silicon, aluminum and tin. Chromium contains a component dissolved in the matrix of brass and a component precipitated in grain boundaries.
 黄銅合金部材の切削性を向上させるために、一つの実施形態では、黄銅合金部材は、黒鉛粒子をさらに含む。 In one embodiment, the brass alloy member further includes graphite particles to improve the machinability of the brass alloy member.
 この発明に従った黄銅合金押出材の製造方法は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5~5.0質量%含有する黄銅合金粉末を急冷凝固法によって作製する工程と、上記の急冷凝固した黄銅合金粉末の集合体を押出加工する工程とを備える。 The method for producing a brass alloy extruded material according to the present invention has a brass composition comprising a mixed phase of α phase and β phase, and rapidly solidifies a brass alloy powder containing 0.5 to 5.0% by mass of chromium. And extruding the assembly of the rapidly solidified brass alloy powder described above.
 好ましくは、急冷凝固法は、水アトマイズ法である。押出加工時の加熱温度は650℃以下が好ましい。 Preferably, the rapid solidification method is a water atomization method. The heating temperature at the time of extrusion processing is preferably 650 ° C. or less.
 一つの実施形態における製造方法は、押出加工に先立ち、黄銅合金粉末に対して0.2~2.0重量%の黒鉛粒子を添加して混合する工程を備える。 The manufacturing method in one embodiment includes the step of adding and mixing 0.2 to 2.0% by weight of graphite particles with respect to the brass alloy powder prior to extrusion processing.
 上記の記載事項を含めて、本発明の構成によってもたらされる作用効果等については、以下の項目で詳しく説明する。 The effects and the like provided by the configuration of the present invention, including the items described above, will be described in detail in the following items.
水アトマイズ法によって作製した粉末を示すSEM(走査型電子顕微鏡)写真であり、(a)はCr無添加の6/4黄銅合金粉末、(b)は0.5質量%Cr添加の6/4黄銅合金粉末、(c)は1.0質量%Cr添加の6/4黄銅合金粉末を示す。It is a SEM (scanning electron microscope) photograph which shows the powder produced by the water atomization method, (a) is 6/4 brass alloy powder of Cr-free addition, (b) is 6/4 of 0.5 mass% Cr addition. A brass alloy powder, (c) shows a 6/4 brass alloy powder with 1.0 mass% Cr added. 作製した水アトマイズ粉末のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the produced water atomization powder. 押出材の応力-ひずみ曲線を示す図である。It is a figure which shows the stress-strain curve of an extruded material. 押出材の光学顕微鏡による組織写真を示す図であり、(a)は1質量%Cr添加の黄銅合金圧粉体ビレットの押出材、(b)は0.5質量%Cr添加の黄銅合金圧粉体ビレットの押出材、(c)はCr無添加の黄銅合金圧粉体ビレットの押出材、(d)はCr無添加の黄銅合金溶製ビレットの押出材を示す。It is a figure which shows the structure | tissue photograph by the optical microscope of the extruded material, (a) is an extruded material of the brass alloy green compact billet added with 1 mass% Cr, (b) is a brass alloy green compact containing 0.5 mass% Cr. An extruded material of the body billet, (c) shows an extruded material of a brass alloy compacted billet without addition of Cr, and (d) shows an extruded material of a billet alloy-free billet made of Cr. 1.0質量%Cr添加の黄銅合金圧粉体ビレットの押出材のSEM像を示す写真である。It is a photograph which shows the SEM image of the extruded material of the brass alloy green compact billet of 1.0 mass% Cr addition. 黄銅の母相中に固溶するクロム成分の濃度と耐力値との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the chromium component solid-solved in the parent phase of brass, and a proof stress value. 黒鉛粒子添加量と切削性との関係を示す図である。It is a figure which shows the relationship between the graphite particle addition amount and machinability.
 [新規な黄銅合金粉末作製方法]
 本願発明の発明者らは、基材となる黄銅そのものの強度を上げることによって、従来にはない高強度の快削性黄銅部材を作る方法について検討した。黄銅の強度を上げる方法として、一般的には、種々の添加物を加える方法が採用される。例えば、高力黄銅は、銅亜鉛合金に、鉄、アルミニウム、マンガンなどを添加したものであり、その引張強さが460MPaと高く、耐食性も良好なため、船舶用プロペラ等に応用されている。しかしながら、この高力黄銅は、その伸びが15%程度しか保証されず、決して加工性が良いとはいえない。
[Novel brass alloy powder preparation method]
The inventors of the present invention examined a method for producing an unprecedented high strength free-cutting brass member by increasing the strength of brass itself as a base material. As a method of increasing the strength of brass, generally, a method of adding various additives is employed. For example, high-strength brass is obtained by adding iron, aluminum, manganese or the like to a copper-zinc alloy and has a high tensile strength of 460 MPa and good corrosion resistance, and thus is applied to propellers for ships and the like. However, this high strength brass is only guaranteed to have an elongation of about 15%, and it can not be said that the workability is never good.
 黒鉛添加を視野に入れた合金開発を行なうためには、今までにない新規な黄銅合金粉末を作製し、この粉末の集合体を押出加工して強度を向上させる必要がある。従来、黄銅の生産には溶製法が採用されていたが、本発明者らは、溶製法に代えて、粉末冶金法によって新しい合金組成の黄銅合金の作製を試みた。 In order to carry out alloy development with a view to adding graphite, it is necessary to produce a novel brass alloy powder which has never been available, and to extrude the aggregate of the powder to improve the strength. Conventionally, a melting process has been adopted for production of brass, but the present inventors attempted to produce a brass alloy of a new alloy composition by powder metallurgy instead of the melting process.
 急冷凝固法の一種である水アトマイズ法によれば、溶湯を非常に高速で急冷凝固して粉末を作製するものであるので、粉末中に非平衡相が出現するだけでなく、微細な結晶粒が得られるといった特徴がある。本発明者らは、新たな試みとして、α相とβ相の混合相からなる黄銅合金に、第三元素としてクロム(Cr)を微量添加することによって、従来の黄銅粉末とは性質の異なる粉末を製造し、この粉末の集合体を熱間押出法で押出して固化することによって新しい素材を得た。 According to the water atomization method, which is a type of rapid solidification method, since the molten metal is rapidly solidified at a very high speed to produce a powder, not only non-equilibrium phase appears in the powder but also fine crystal grains There is a feature that can be obtained. The inventors of the present invention have newly proposed a powder having a property different from that of a conventional brass powder by adding a small amount of chromium (Cr) as a third element to a brass alloy composed of a mixed phase of α phase and β phase. To obtain a new material by extruding and solidifying the powder assembly by a hot extrusion method.
 黄銅に様々な添加物を加えて性質を改善しようとする試みは、従来から多数行なわれているが、水アトマイズ法で6/4黄銅に遷移元素を積極的に添加したという前例は見当たらない。 Many attempts have been made to improve properties by adding various additives to brass, but there has been no precedent of actively adding a transition element to 6/4 brass by water atomization.
 本発明者らは、6/4黄銅に、高融点金属であるクロムを添加するための新しい方法を提案するものである。前述したように、黄銅を溶解して、そこにクロムを溶かし込むためには、溶湯をクロムの融点まで加熱しなければならないが、そのような加熱温度は亜鉛の沸点を超えている。そのため、現実的には、亜鉛の蒸気圧の高さを考慮すると、液体の黄銅をクロムの融点まで昇温させることは不可能といってもよい。 The present inventors propose a new method for adding chromium, which is a refractory metal, to 6/4 brass. As described above, in order to melt brass and dissolve chromium therein, the molten metal must be heated to the melting point of chromium, but such heating temperature exceeds the boiling point of zinc. Therefore, practically, it can be said that it is impossible to heat liquid brass to the melting point of chromium in consideration of the high vapor pressure of zinc.
 黄銅にクロムを添加するための別の方法として、クロムを含む母合金を使用することが考えられる。しかしながら、銅クロムの母合金もその融点が高いので、これを融解したものに黄銅を加える方法では、やはり亜鉛が蒸発してしまい、所定の組成を保つことができない。 As another method for adding chromium to brass, it is conceivable to use a master alloy containing chromium. However, since the copper-chromium master alloy also has a high melting point, the method of adding brass to the melted copper also evaporates the zinc and can not maintain a predetermined composition.
 本発明者らは、市販のCu-10%Cr母合金を用いた黄銅合金作製法を開発した。母合金中では、クロムは10~50μm程度の大きさの粒として分散しており、銅に固溶しているわけではない。この母合金をまず1200℃程度で溶解する。この温度では、母合金に含有されているクロムは溶解しないので、固相のまま銅の液相中に浮遊している。この状態で、銅を加えてゆき、クロムの濃度が薄くなるように調節する。すると、クロム濃度が4%程度になったところで、状態図上での固液相線を越えて液相の一相状態になる。このようにして、高融点金属であるクロムを銅との混合液相にすることができた。この状態で所定量の亜鉛を添加し、水アトマイズ法で急冷凝固すると、黄銅中にクロムが強制固溶した非平衡相をもつ粉末を得ることができた。 The present inventors developed a brass alloy production method using a commercially available Cu-10% Cr master alloy. In the mother alloy, chromium is dispersed as grains of about 10 to 50 μm in size and is not necessarily in solid solution in copper. This mother alloy is first melted at about 1200 ° C. At this temperature, the chromium contained in the master alloy does not dissolve, and therefore, it floats in the liquid phase of copper as it is in solid phase. In this state, add copper and adjust the concentration of chromium to be thin. Then, when the chromium concentration reaches about 4%, the solid-liquid phase line in the phase diagram is crossed to be in the one-phase state of the liquid phase. In this way, chromium, which is a high melting point metal, could be made into a mixed liquid phase with copper. In this state, a predetermined amount of zinc was added, and when it was quenched and solidified by a water atomizing method, it was possible to obtain a powder having a non-equilibrium phase in which chromium was forcibly dissolved in brass.
 上記と同様の方法で、黄銅中にバナジウムを強制固溶させることも可能である。ただし、バナジウムと銅との二元状態図では、固液相線はバナジウム濃度が約0.5%のところにあるため、添加バナジウム量は非常に微量となる。従って、現実的には、黄銅中へのバナジウムの添加は技術的に難易度が高いだけでなく、その添加効果を大きくすることが困難である。 It is also possible to force vanadium into solid solution in brass in the same manner as described above. However, in the binary phase diagram of vanadium and copper, since the solid-liquidus line has a vanadium concentration of about 0.5%, the amount of vanadium added is very small. Therefore, practically, addition of vanadium into brass is not only technically difficult but it is difficult to increase the effect of the addition.
 本発明者らが開発した方法によれば、添加する亜鉛を極力蒸発させることなく、合金の組成制御を適切に行なうことができる。6/4黄銅においては、亜鉛成分の微妙な量の違いによって、α相とβ相の比率が変化することが知られている。また、α相とβ相の比率の違いが、黄銅合金の機械的性質にも影響を及ぼすことも知られている。 According to the method developed by the present inventors, it is possible to appropriately control the composition of the alloy without evaporating the added zinc as much as possible. In 6/4 brass, it is known that the ratio of the α phase to the β phase changes due to a slight difference in the amount of zinc component. It is also known that the difference between the ratio of the α phase and the β phase affects the mechanical properties of the brass alloy.
 従って、本発明者らが開発した上記の粉末生成方法が、黄銅合金の組成制御という観点から見ても、黄銅に高融点金属を添加するための有利な手法であることがわかる。これに加え、比較的融点の低いニッケルおよびマンガンを添加すれば、より強度を向上させ得る粉末としてその利用価値が高まる。さらに、このようにして得られた黄銅合金粉末に黒鉛を添加して押出加工すれば、強度および快削性に優れた鉛レス快削性黄銅合金が得られる。以上のように本発明の応用範囲は広いので、本発明者らは、様々な機械的特性を持つ多品種の鉛レス黄銅の開発への道を開いたということができる。 Therefore, it is understood that the above-mentioned powder production method developed by the present inventors is an advantageous method for adding a high melting point metal to brass also from the viewpoint of composition control of brass alloy. In addition to this, the addition of relatively low melting point nickel and manganese increases the utility value as a powder which can further improve strength. Further, by adding graphite to the brass alloy powder thus obtained and extruding it, a lead-less machinable brass alloy excellent in strength and machinability can be obtained. As described above, since the application range of the present invention is wide, it can be said that the present inventors have paved the way to the development of various types of leadless brass having various mechanical properties.
 従来の典型的な結晶粒微細化の方法は、部材に対して塑性加工と熱処理を繰り返して行なうことであったが、本発明のように粉末冶金法を用いれば既に出発原料として微細化された結晶組織を持つ粉末が準備されているので、微細化のための特別なプロセスを必要としない。また、粉末の状態で、既に材料組成が決まっているので、最終製品の組成をこの段階で把握できる。このような生産工程上の優位性に加えて、本発明に係る材料には、以下に記載する幾つかの優れた特徴がある。 The conventional method of grain refinement has been to repeat the plastic working and heat treatment on the member repeatedly, but if powder metallurgy is used as in the present invention, it is already refined as a starting material Since a powder having a crystalline structure is prepared, no special process for micronization is required. In addition, since the material composition is already determined in the powder state, the composition of the final product can be grasped at this stage. In addition to such production advantages, the material according to the invention has several excellent features as described below.
 [第三元素添加の効果]
 通常、クロムは、黄銅にほとんど固溶しない。しかし、水アトマイズ法のような急冷凝固法を採用することにより、液相状態で溶解しているクロムは、ある一定量だけ、黄銅の母相中に強制固溶される。また、凝固の過程における結晶の成長に伴い、クロムの一部は、結晶粒界に凝縮して微細結晶粒として析出する。黄銅の母相中に固溶する成分は、厳密に言えば、母相中に固溶して分散する成分と、母相中に析出物として分散する成分とを含む。母相中に強制固溶したクロム成分と、結晶粒界に析出したクロム成分とは、加えられる応力に対して異なった作用を呈する。すなわち、母相中に強制固溶したクロム成分は、結晶中の転位運動を抑制して黄銅合金部材の耐力値の向上に寄与する。他方、結晶粒界に析出したクロム成分は、粒界すべりを抑制して極度の加工硬化を引き起こし、引張強度の向上に大きく寄与する。
[Effect of addition of third element]
Usually, chromium hardly dissolves in brass. However, by adopting a rapid solidification method such as a water atomization method, chromium dissolved in a liquid phase is forcibly dissolved in a matrix of brass by a certain amount. In addition, with the growth of crystals in the process of solidification, part of chromium condenses at grain boundaries and precipitates as fine crystal grains. Strictly speaking, the component dissolved in the matrix of brass includes a component dispersed and dispersed in the matrix and a component dispersed as a precipitate in the matrix. The chromium component forcibly dissolved in the matrix and the chromium component precipitated at the grain boundaries exhibit different effects on the applied stress. That is, the chromium component forced to form a solid solution in the matrix suppresses the dislocation movement in the crystal and contributes to the improvement of the proof stress value of the brass alloy member. On the other hand, the chromium component precipitated at the grain boundaries suppresses grain boundary sliding to cause extreme work hardening, which greatly contributes to the improvement of tensile strength.
 マンガンを添加した場合の効果は、以下の通りである。マンガンは、クロムと異なり、基本的に黄銅に固溶する。従って、マンガンは、粒界析出物を作ることはなく、極端な加工硬化を引き起こさないが、耐力値および引張強度を共にバランスよく向上させるように作用する。その理由は、母相中に固溶したマンガンが転位をピンニングするからと思われる。 The effects of the addition of manganese are as follows. Manganese, unlike chromium, basically dissolves in brass. Therefore, manganese does not form intergranular precipitates and does not cause extreme work hardening, but acts to improve both the load resistance value and the tensile strength in a well-balanced manner. The reason is believed to be that manganese in solid solution in the matrix phase pinpoints dislocations.
 ニッケルを添加した場合の効果は、以下の通りである。ニッケルも黄銅中に完全に固溶するが、黄銅合金の熱間押出の過程でβ相からα相への変態を促し、結晶中に微細なα相を形成して耐力の向上に大きく寄与する。ただし、ニッケルは加工硬化に寄与しないため、最大引張応力に関しては、ニッケルを添加しない粉末押出材と大差はない。 The effects of the addition of nickel are as follows. Nickel also forms a solid solution completely in brass, but promotes the transformation from β phase to α phase in the process of hot extrusion of brass alloy, and forms a fine α phase in the crystal to greatly contribute to the improvement of proof stress . However, since nickel does not contribute to work hardening, the maximum tensile stress is almost the same as that of a powder extruded material to which no nickel is added.
 クロム、マンガンおよびニッケルは、周期表の第4周期に現れる遷移元素であるが、上記のように黄銅に添加した場合の効果がそれぞれ異なっており、それらは全く異なった挙動を示す。その理由は、各遷移元素が異なる機構で黄銅を強化しているからである。従って、添加する元素を2種類以上とすれば、それぞれの効果が発現するものと考えられる。 Chromium, manganese and nickel are transition elements that appear in the fourth period of the periodic table, but as described above, their effects when added to brass are different from one another, and they exhibit completely different behavior. The reason is that each transition element strengthens brass by a different mechanism. Therefore, if two or more elements are added, it is considered that the respective effects are exhibited.
 さらに、上記の研究結果から、他の元素を添加した場合の挙動についても、推察が可能になった。周期表の第4周期の遷移元素であるバナジウムは、クロムとよく似た平衡状態図を持っている。従って、クロムの添加と同様の方法でバナジウムを添加してアトマイズ粉末を作れば、母相中に強制固溶するバナジウム成分と、結晶粒界に析出するバナジウム成分とが現れ、クロムと同様の強化機構で黄銅の性能を向上させることができる。 Furthermore, from the above-described research results, it has become possible to infer the behavior when other elements are added. Vanadium, a transition element of the fourth period of the periodic table, has an equilibrium diagram similar to chromium. Therefore, if vanadium is added by the same method as the addition of chromium to make atomized powder, the vanadium component which is forced to form a solid solution in the matrix and the vanadium component which precipitates in grain boundaries appear, and the same reinforcement as chromium The mechanism can improve the performance of brass.
 上記の元素以外に、一般的に黄銅の強化元素として知られているチタン、シリコン、アルミニウム、スズなども、補助的な添加元素としてクロム添加黄銅の強化に有効に働くことが期待される。 In addition to the above elements, titanium, silicon, aluminum, tin, etc., which are generally known as reinforcement elements for brass, are also expected to work effectively for strengthening chromium-added brass as an additional additive element.
 [急冷凝固法]
 本発明の効果が顕著に現れる要因は、急冷凝固法によって黄銅合金粉末を作製することによって、非平衡相および微細な結晶粒を生成することに加えて、クロムの粒界析出を利用した加工硬化を引き起こしたことにある。本発明者らは、急冷凝固法の一例として、水アトマイズ法を利用した。6/4黄銅組成の水アトマイズ粉末の特徴は、非平衡相のβ相になることである。より具体的に説明する。6/4黄銅合金の急冷凝固過程において、固液相線を越えたところはβ相領域であるので、粉末はβ相として凝固する。そのままゆっくりと冷却すれば、相変態してα相とβ相の混合相になるはずであるが、急冷度が高いためにこの相変態はほとんど起こらない。このβ相粉末を熱間加工する過程で昇温したとき、β相からα相への相変態が起こり、混合相となる。
[Rapid solidification method]
In addition to the formation of non-equilibrium phase and fine crystal grains by producing a brass alloy powder by a rapid solidification method, a factor for the effects of the present invention to be prominent is a work hardening using grain boundary precipitation of chromium. The cause is The present inventors utilized the water atomization method as an example of the rapid solidification method. The characteristic of water atomized powder of 6/4 brass composition is that it becomes the beta phase of non-equilibrium phase. It will be described more specifically. In the rapid solidification process of the 6/4 brass alloy, the powder solidifies as a β phase because it is a β phase region beyond the solid-liquid line. If it is cooled slowly as it is, the phase transformation should be a mixed phase of α phase and β phase, but this phase transformation hardly occurs because of high quenching degree. When the temperature is raised in the process of hot working of the β phase powder, phase transformation from the β phase to the α phase occurs to become a mixed phase.
 ある種類の添加元素は、β相を安定に保つ効果を発揮する。クロムおよびマンガンには、α相への変態を遅らせる効果が認められた。これは、結晶粒内での原子拡散を抑制している効果であり、急冷凝固で形成された非平衡相を保持する効果が高いと考えられる。 One kind of additive element exerts the effect of keeping the β phase stable. Chromium and manganese were found to have the effect of delaying the transformation to the alpha phase. This is an effect of suppressing atomic diffusion in crystal grains, and is considered to be highly effective in maintaining the non-equilibrium phase formed by rapid solidification.
 本発明では、凝固過程における粒界析出物が粒界すべりを抑制することによって、加工硬化現象を顕著に発現している。好ましくは、粒界析出物の大きさを、100nm~500nm程度のサイズ(最大長さ)に制御する。また、析出物の分散状態も重要なファクターであり、組織中で析出物が均一に分散していることが理想なので、原料粉末が均質であることが望ましい。粉末作製法として、アトマイズ法であれば、凝固速度とそれに伴う粉末粒径の制御が容易である。 In the present invention, the work-hardening phenomenon is manifested remarkably by the grain boundary precipitates in the solidification process suppressing the grain boundary sliding. Preferably, the size of grain boundary precipitates is controlled to a size (maximum length) of about 100 nm to 500 nm. Further, the dispersion state of the precipitates is also an important factor, and it is desirable that the raw material powder be homogeneous since it is ideal that the precipitates be uniformly dispersed in the structure. If it is an atomizing method as a powder production method, control of the solidification speed and the powder particle size accompanying it is easy.
 [押出加工]
 黄銅合金押出材の強度の向上には、押出温度が非常に重要な因子となる。押出温度は、低いほど望ましい。粉末の集合体を押出加工するには、粉末を加熱する必要がある。この加熱温度が高ければ、原子拡散が早くなり、急冷凝固で作られた非平衡相が熱平衡状態に近づいてしまう。従って、黄銅合金粉末集合体を、押出加工が可能な最低温度で押出すことが重要である。好ましい押出温度は650℃以下である。押出温度の下限値を決定することは困難である。なぜなら、下限温度は、押出ビレットの大きさ、押出比、装置の押出最大荷重等によって決まるからである。500℃での押出が可能であればその温度が適切な条件であるといえるが、実際には、押出加工を行なうには550℃以上が必要になると思われる。
[Extrusion processing]
The extrusion temperature is a very important factor in improving the strength of the brass alloy extruded material. The extrusion temperature is preferably as low as possible. In order to extrude the powder assembly, the powder needs to be heated. The higher the heating temperature, the faster the atomic diffusion, and the non-equilibrium phase produced by rapid solidification approaches the thermal equilibrium state. Therefore, it is important to extrude the brass alloy powder assembly at the lowest temperature that allows extrusion. The preferred extrusion temperature is 650 ° C. or less. It is difficult to determine the lower limit of the extrusion temperature. This is because the lower limit temperature is determined by the size of the extruded billet, the extrusion ratio, the maximum extrusion load of the apparatus, and the like. If extrusion at 500 ° C. is possible, the temperature is an appropriate condition, but in practice, it seems that 550 ° C. or more is required to carry out the extrusion process.
 押出の際には、ビレットの放熱による温度降下、および押出圧力による温度上昇の二つのファクターが影響して実際の押出温度が決まる。従って、押出温度を規定することは現実的ではなく、ビレットの加熱温度を管理するのが実用的である。黄銅の押出実験では、ビレットの加熱管理温度を650℃にしたとき、押出開始までに48秒を要したことがある。模擬実験で得たデータと照らし合わせると、このときの押出開始温度は577℃になる。 During extrusion, two factors, the temperature drop due to the heat dissipation of the billet and the temperature rise due to the extrusion pressure, affect the actual extrusion temperature. Therefore, it is not practical to define the extrusion temperature, but it is practical to control the heating temperature of the billet. In the brass extrusion experiment, when the heating control temperature of the billet was 650 ° C., it took 48 seconds to start extrusion. In view of the data obtained in the simulation, the extrusion start temperature at this time is 577 ° C.
 本発明者らは、クロム含有黄銅合金粉末集合体を押出加工する際の押出速度を制御することで、より高強度の材料が得られることを見出した。より高強度の材料を得るための押出条件としては、低温での押出が効果的であり、さらに押出速度を低速にすることでより強度の向上が見込まれる。この点については、実験結果に基いて後述する。 The present inventors have found that a material of higher strength can be obtained by controlling the extrusion rate at the time of extruding a chromium-containing brass alloy powder aggregate. As extrusion conditions for obtaining a material of higher strength, extrusion at low temperature is effective, and further improvement in strength can be expected by reducing the extrusion speed. This point will be described later based on the experimental results.
 黄銅合金押出材の切削性を向上させるために、クロム含有黄銅合金粉末に黒鉛粒子を添加して混合し、この混合粉末集合体を押出加工するようにしても良い。切削性向上効果を発現するには、クロム含有黄銅合金粉末に対して0.2~2.0重量%の黒鉛粒子を添加する必要がある。添加黒鉛粒子の粒子径は、好ましくは、1μm~100μmの範囲内である。 In order to improve the machinability of the brass alloy extruded material, graphite particles may be added to and mixed with the chromium-containing brass alloy powder, and this mixed powder aggregate may be extruded. In order to exhibit the effect of improving the machinability, it is necessary to add 0.2 to 2.0% by weight of graphite particles to the chromium-containing brass alloy powder. The particle size of the additive graphite particles is preferably in the range of 1 μm to 100 μm.
 [元素の添加量]
 第三元素の添加量については、各種元素により適量がある。
[Amount of addition of element]
The amount of addition of the third element is appropriate for the various elements.
 クロムについては、0.5質量%の添加で耐力値の向上が認められた。さらにクロムの添加量を増して1質量%にすると、耐力値には差が認められなかったものの、引張強度が非常に高い値を示した。従って、クロムの添加量は0.5質量%以上が好ましく、より好ましくは1.0質量%以上である。 With respect to chromium, an improvement in the proof stress value was observed by the addition of 0.5% by mass. When the addition amount of chromium was further increased to 1% by mass, no difference was found in the proof stress value, but the tensile strength showed a very high value. Therefore, the addition amount of chromium is preferably 0.5% by mass or more, more preferably 1.0% by mass or more.
 クロム含有量の上限値は、5.0質量%である。粉末製造段階での制限により、銅-クロムの液相状態でクロムの濃度の上限は4%となる。ここで亜鉛を添加した場合に、クロム含有量は2.4質量%となる。銅-クロムの溶解温度を上げることで、クロムの含有量を増やすことは可能である。例えば、溶解温度を1300℃まで上げると、クロムを8%の濃度まで溶解可能であり、ここで亜鉛を添加した場合のクロム含有量は5.0質量%となる。しかしながら、この温度では、亜鉛の蒸気圧が高くなりすぎて、組成制御が困難となる。従って、より好ましいクロム含有量の上限値は、2.4質量%である。 The upper limit value of the chromium content is 5.0% by mass. Due to limitations at the powder production stage, the upper limit of the chromium concentration in the copper-chromium liquid phase state is 4%. When zinc is added here, the chromium content is 2.4% by mass. It is possible to increase the chromium content by raising the melting temperature of copper-chromium. For example, when the dissolution temperature is raised to 1300 ° C., chromium can be dissolved to a concentration of 8%, and the chromium content when zinc is added is 5.0 mass%. However, at this temperature, the vapor pressure of zinc becomes too high, making composition control difficult. Therefore, the upper limit value of the more preferable chromium content is 2.4 mass%.
 バナジウムは、極微量であっても、粒界析出が起こる。銅-バナジウムの液相状態でのバナジウムの濃度の上限値が0.5%であることを考慮すると、バナジウムの効果を最大限に活かすためには上限値近くまでバナジウムを添加すべきである。その場合、亜鉛添加により、バナジウムの濃度は、0.3質量%となる。バナジウムの濃度をこの値よりも大きくするためには、溶解温度を上げる必要がある。しかし、1200℃以上の温度になると亜鉛の蒸気圧が非常に高くなりすぎるため、最適の組成で粉末を作ることが困難になる。従って、バナジウム添加の効果は限定的にならざるを得ず、他元素との組合せでの強化が必要になる。 Even with a very small amount of vanadium, intergranular precipitation occurs. Considering that the upper limit of the concentration of vanadium in the liquid phase of copper-vanadium is 0.5%, vanadium should be added to the vicinity of the upper limit in order to make the most of the effect of vanadium. In that case, the concentration of vanadium is 0.3% by mass by the addition of zinc. In order to make the concentration of vanadium higher than this value, it is necessary to raise the melting temperature. However, at temperatures above 1200 ° C., the vapor pressure of zinc becomes too high, making it difficult to make a powder with an optimal composition. Therefore, the effect of the addition of vanadium can not but be limited, and strengthening in combination with other elements is required.
 黄銅にマンガンを添加することによって得られる効果については、既に多くの研究例があり、高マンガン黄銅として実用化もされている。本発明においては、上記のクロム添加、またはクロムおよびバナジウム添加と組み合わせて、マンガンを補助的に添加することにより、黄銅合金をより高強度化することができる。マンガン添加量としては、0.5質量%で十分な効果が得られることを確認した。従来の研究例によると、マンガンの添加量を増大すると材料の加工性を著しく低下させることも認められているので、マンガン添加量の好ましい上限値は、化合物を作らない範囲である7質量%以下である。より好ましいマンガンの添加量は、1~3質量%であり、この量を超えると伸びが低下して、黄銅の加工性の低下をきたすおそれがある。 There are many research examples on the effects obtained by adding manganese to brass, and it has been put to practical use as high manganese brass. In the present invention, the brass alloy can be further strengthened by supplementarily adding manganese in combination with the above chromium addition or chromium and vanadium addition. As the addition amount of manganese, it was confirmed that a sufficient effect can be obtained at 0.5% by mass. According to conventional research examples, it has been recognized that increasing the added amount of manganese significantly reduces the processability of the material, so the preferable upper limit of the added amount of manganese is 7% by mass or less which is a range in which no compound is formed It is. The more preferable addition amount of manganese is 1 to 3% by mass, and when the amount is exceeded, the elongation may be reduced, which may result in the deterioration of the processability of brass.
 ニッケルは、銅に対して全率固溶するので、Cu-Zn-Ni系においては任意の量を添加して合金化することが可能である。従って、本発明において、ニッケルの添加量については特に上限はない。ニッケルの添加は、耐力値のみを引き上げるという特殊な効果をもたらすものであり、1質量%の添加量で300MPaを超える耐力値を実現できる。 Since nickel is completely dissolved in copper, it can be alloyed by adding an arbitrary amount in the Cu—Zn—Ni system. Therefore, in the present invention, there is no upper limit in particular about the addition amount of nickel. The addition of nickel has a special effect of increasing only the proof stress value, and a proof stress value exceeding 300 MPa can be realized with an addition amount of 1% by mass.
 合金部材の実用上の見地からすれば、引張強度よりも耐力値の方が重要であることは言うまでも無い。本発明にとっての最大の効果は6/4黄銅に所定量のクロムを含有させたことにあるが、ニッケルをさらに添加することによってより多くの利点が得られる。クロムは高融点であるがゆえに、微量であっても添加させることが容易ではない。これを克服する手法として、冶金学における熱平衡状態を利用することを既に説明した。クロムとニッケルの効果を同時に発現させるためには、当然両方の元素を添加することになる。この場合の添加方法として、より容易な方法がある。すなわち、クロムのみを添加するためには、前述したようなプロセスを取ることになるが、同時にニッケルも添加するためには、母合金に最初からクロムとニッケルが含まれていることが好ましい。 From the practical point of view of the alloy members, it goes without saying that the proof stress is more important than the tensile strength. The greatest effect of the present invention is the inclusion of a predetermined amount of chromium in 6/4 brass, but the addition of more nickel provides more advantages. Since chromium has a high melting point, it is not easy to add even trace amounts. The use of thermal equilibrium in metallurgy has already been described as a means of overcoming this. Naturally, both elements should be added to simultaneously exhibit the effects of chromium and nickel. There is an easier method as an addition method in this case. That is, in order to add only chromium, the process described above is to be taken, but in order to add also nickel at the same time, it is preferable that the mother alloy initially contains chromium and nickel.
 ニッケルクロム合金は市販されており、合金化することでその融点は下がり、1345℃になる。この合金と銅とを高周波炉を使って溶解することは可能である。ニッケルとクロムとの混合比は1:1になるが、銅-クロム母合金を使って製造するよりもはるかに容易に溶湯を作ることができる。この方法を使ってニッケルを添加することを実施するならば、ニッケル添加量の好ましい上限値は、クロムと同じく、2.4質量%となる。 Nickel-chromium alloys are commercially available and their melting point is lowered to 1345 ° C. by alloying. It is possible to melt this alloy and copper using a high frequency furnace. Although the mixing ratio of nickel to chromium is 1: 1, the melt can be made much easier than manufacturing using a copper-chromium master alloy. If it is carried out to add nickel using this method, the preferable upper limit of the amount of added nickel is 2.4% by mass like chromium.
 ニッケルとクロムの母合金での混合比率を変えることにより、ニッケル添加量を増やすことが可能である。母合金でクロム添加量を増やすことは急激に融点を高めてしまうので、粉末製造の難易度が上がるが、ニッケルの比率を上げても融点はあまり上がらず、ニッケルの融点を超えることは無い。従って、ニッケルリッチの粉末を作ることは可能であり、ニッケルの添加量を増やすことは可能である。ニッケルの添加量の上限値については特に制限されないが、黄銅としての特性を損なわない範囲として、5質量%以下の添加に留めておくのが望ましい。ニッケルの含有量をこの範囲にしておけば、所望の機械的特性を持った合金を作ることが可能であり、広い応用範囲に適用可能となる。 It is possible to increase the amount of nickel added by changing the mixing ratio of nickel and chromium in the mother alloy. Since increasing the chromium content in the mother alloy rapidly increases the melting point, the difficulty of powder production is increased, but even if the ratio of nickel is increased, the melting point does not increase much and does not exceed the melting point of nickel. Therefore, it is possible to make a nickel-rich powder, and it is possible to increase the amount of nickel added. The upper limit of the amount of addition of nickel is not particularly limited, but it is desirable to keep the addition of 5% by mass or less as a range that does not impair the characteristics as brass. If the content of nickel is in this range, it is possible to make an alloy having desired mechanical properties, and it becomes applicable to a wide range of application.
 その他の添加元素に関しては、概ね数%程度、少なくとも0.1%以上で添加効果を発現する。各種元素の適量、組合せについては、求める機械的性質によって異なってくる。強度向上の観点から見れば、ジルコニウムは結晶粒微細化効果を発現するので、0.1%の添加でも十分にその効果が認められ、ホールペッチの経験則から明確な強化元素であるといえる。 With respect to the other additive elements, the additive effect is exhibited at about several percent, at least 0.1% or more. The appropriate amounts and combinations of various elements differ depending on the mechanical properties to be obtained. From the viewpoint of improving the strength, zirconium exhibits a grain refining effect, so even if it is added at 0.1%, its effect is sufficiently recognized, and it can be said from the hole-pitch's rule of thumb that it is a clear strengthening element.
 チタンやアルミニウムなどは、固溶強化により母相の強度を上げるので、1%以下の微量添加でもその効果を発現する。 Titanium, aluminum and the like increase the strength of the matrix by solid solution strengthening, and therefore the addition of a small amount of 1% or less exerts the effect.
 シリコンは、通常、分散強化に用いられる元素であり、3%程度の添加が適量である。しかしながら、他の元素との兼ね合いから、添加が必ずしも強化につながらない場合もある。特に、本発明の合金系では、クロムの析出サイトとシリコンの分散サイトとが同一箇所になってしまうと、強化効果が得られなくなる。従って、クロムの添加量によってシリコンの添加量は制限される関係にあり、クロムとシリコンとを合わせて3%以下にするのが好適といえる。 Silicon is usually an element used for dispersion strengthening, and addition of about 3% is an appropriate amount. However, due to the balance with other elements, addition may not always lead to strengthening. In particular, in the alloy system of the present invention, if the chromium precipitation site and the silicon dispersion site are at the same location, the strengthening effect can not be obtained. Therefore, the addition amount of silicon is in a relation of being limited by the addition amount of chromium, and it can be said that the total amount of chromium and silicon is 3% or less.
 スズは、0.3%程度で固溶して強化元素としての効果を発現するが、添加量を増やすとγ相が出現するため、脆化の原因となり、多量添加は好ましくなく、0.1%~0.5%の範囲が好適といえる。 Tin forms a solid solution at about 0.3% to exhibit the effect as a strengthening element, but when the addition amount is increased, a γ phase appears, which causes embrittlement, and a large amount addition is not preferable, 0.1 It can be said that the range of% to 0.5% is preferable.
 [粉末の作製]
 Cu-40%Znの黄銅素材より、水アトマイズ法によって、Cr無添加の黄銅粉末、0.5質量%Cr添加の黄銅粉末、および1.0質量%Cr添加の黄銅粉末を作製した。粉末の化学組成を表1に示し、粉末の外観のSEM(Scanning Electron Microscope)写真を図1に示す。図1の(a)はCrを添加していない6/4黄銅合金粉末を示し、(b)は0.5質量%Crを添加した6/4黄銅合金粉末を示し、(c)は1.0質量%Crを添加した6/4黄銅合金粉末を示す。
[Preparation of powder]
From a Cu-40% Zn brass material, a Cr additive-free brass powder, a 0.5 wt% Cr-added brass powder, and a 1.0 wt% Cr-added brass powder were prepared by a water atomizing method. The chemical composition of the powder is shown in Table 1, and a SEM (Scanning Electron Microscope) photograph of the appearance of the powder is shown in FIG. (A) of FIG. 1 shows 6/4 brass alloy powder which does not add Cr, (b) shows 6/4 brass alloy powder which added 0.5 mass% Cr, (c) is 1. The 6/4 brass alloy powder which added 0 mass% Cr is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製した粉末のX線回折結果を図2に示す。Cr無添加の黄銅合金粉末および0.5質量%Crを添加した黄銅合金粉末では、β相のみが検出された。1.0質量%Crを添加した黄銅合金粉末では、α相とβ相の2相が検出された。6/4黄銅組成の場合、液相から固液相線を越えるとβ相になり、急冷凝固粉末は一般的にα変態せずに冷却される。1.0質量%Cr添加の黄銅合金粉末を詳細に調査した結果、α相粉末とβ相粉末の混合状態であった。アトマイズの過程で個々の粉末に冷却速度差が生じ、α変態した粉末が生成したものと考えられる。なお、Crは微細粒子として存在するため、X線回折では明瞭な回折ピークは検出されなかった。 The X-ray-diffraction result of the produced powder is shown in FIG. Only the β phase was detected in the Cr-free brass alloy powder and the brass alloy powder to which 0.5% by mass of Cr was added. In the brass alloy powder to which 1.0 mass% of Cr was added, two phases of α phase and β phase were detected. In the case of the 6/4 brass composition, when the liquid phase is crossed the solid-liquid line, it becomes a β phase, and the rapidly solidified powder is generally cooled without α transformation. As a result of investigating in detail the brass alloy powder of 1.0 mass% Cr addition, it was a mixed state of alpha phase powder and beta phase powder. It is considered that a difference in cooling rate occurs in the individual powders in the process of atomization, and an α-transformed powder is formed. In addition, since Cr exists as fine particles, a clear diffraction peak was not detected in X-ray diffraction.
 [1.0質量%Cr添加の黄銅合金粉末の押出]
 水アトマイズ法で作製された組成59%Cu-40%Zn-1%Crの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of 1.0 mass% Cr-added brass alloy powder]
A powder of composition 59% Cu-40% Zn-1% Cr prepared by a water atomizing method was pressed at 600 MPa to make a billet for extrusion. The billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were set to four types of 650 ° C., 700 ° C., 750 ° C. and 780 ° C. The billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
 棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果を表2に示す。 A tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、ビレットを650℃の温度に加熱して押出したものが、最大引張強度および0.2%耐力値において高い数値を示した。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。 As apparent from the results in Table 2, the billet was heated to a temperature of 650 ° C. and extruded showed high values in maximum tensile strength and 0.2% proof stress value. These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
 [0.5質量%Cr添加の黄銅合金粉末の押出]
 水アトマイズ法で作製された組成59.5%Cu-40%Zn-0.5%Crの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of brass alloy powder with 0.5 mass% Cr added]
A powder of composition 59.5% Cu-40% Zn-0.5% Cr prepared by a water atomizing method was pressed at 600 MPa to make a billet for extrusion. The billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were set to four types of 650 ° C., 700 ° C., 750 ° C. and 780 ° C. The billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
 棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果を表3に示す。 A tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から明らかなように、ビレットを650℃の温度に加熱して押出したものが、最大引張強度および0.2%耐力値において高い数値を示した。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。 As apparent from the results in Table 3, the billet heated at a temperature of 650 ° C. and extruded showed high values in maximum tensile strength and 0.2% proof stress value. These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
 また、表2の結果と比較すればわかるように、0.2%耐力値に関しては、0.5%Cr添加のものと、1.0%Cr添加のものとでほぼ同じ値を示した。従って、添加するクロム量が少なくても耐力値は維持されることが認められた。しかし、最大引張強度はクロム量が少なくなると低下している。このことは、耐力値が強制固溶したクロム量によって決まるのに対し、最大引張応力は余剰なクロムが粒界に析出することによって加工硬化度が上昇していることの裏付けとなっている。 Further, as understood from comparison with the results in Table 2, regarding the 0.2% proof stress value, the values of 0.5% Cr addition and 1.0% Cr addition showed substantially the same value. Therefore, it was found that the proof stress is maintained even if the amount of chromium added is small. However, the maximum tensile strength decreases as the amount of chromium decreases. While this shows that the proof stress value is determined by the amount of chromium which is forced to form a solid solution, the maximum tensile stress supports the increase of the degree of work hardening due to the precipitation of excess chromium at grain boundaries.
 [1.0質量%Ni添加の黄銅合金粉末の押出]
 水アトマイズ法で作製された組成59%Cu-40%Zn-1.0%Niの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of 1.0% by mass Ni-added brass alloy powder]
A powder of composition 59% Cu-40% Zn-1.0% Ni prepared by a water atomizing method was pressed at 600 MPa to make a billet for extrusion. The billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were set to four types of 650 ° C., 700 ° C., 750 ° C. and 780 ° C. The billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
 棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果、ビレットを650℃で加熱して押出したものは、その0.2%耐力値が311MPaで、最大引張強度が479MPaであった。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。 A tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength. As a result, the one obtained by heating and extruding the billet at 650 ° C. had a 0.2% proof stress value of 311 MPa and a maximum tensile strength of 479 MPa. These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
 [0.7質量%Mn添加の黄銅合金粉末の押出]
 水アトマイズ法で作製された組成59%Cu-40%Zn-0.7%%Mnの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
Extrusion of 0.7 mass% Mn-added brass alloy powder
A powder of composition 59% Cu-40% Zn-0.7 %% Mn prepared by a water atomizing method was pressed at 600 MPa to make a billet for extrusion. The billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were set to four types of 650 ° C., 700 ° C., 750 ° C. and 780 ° C. The billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
 棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果、ビレットを650℃で加熱して押出したものは、その0.2%耐力値が291MPaで、最大引張強度が503MPaであった。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。 A tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength. As a result, the one obtained by heating and extruding the billet at 650 ° C. had a 0.2% proof stress value of 291 MPa and a maximum tensile strength of 503 MPa. These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
 [Cr無添加の黄銅合金粉末の押出]
 水アトマイズ法で作製された組成60%Cu-40%Znの粉末を600MPaで圧粉して押出用ビレットとした。このビレットを電気炉で加熱して押出加工を行なった。加熱用電気炉の温度条件を、650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of Cr-free brass alloy powder]
A powder of composition 60% Cu-40% Zn prepared by a water atomizing method was compressed at 600 MPa to be a billet for extrusion. The billet was heated in an electric furnace and extruded. The temperature conditions of the electric furnace for heating were set to four types of 650 ° C., 700 ° C., 750 ° C. and 780 ° C. The billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
 棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行い、0.2%耐力値および最大引張強度を測定した。その結果を表4に示す。 A tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm was cut out of the bar and subjected to a tensile test to measure a 0.2% proof stress value and a maximum tensile strength. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から明らかなように、ビレットを650℃の温度に加熱して押出したものが、最大引張強度および0.2%耐力値において高い数値を示した。加熱温度を上げていくと、これらの機械的強度は低下する傾向にあった。従って、押出前のビレットの加熱温度は、650℃以下が望ましい。 As apparent from the results in Table 4, the billet heated at a temperature of 650 ° C. and extruded showed high values in maximum tensile strength and 0.2% proof stress. These mechanical strengths tended to decrease as the heating temperature was raised. Therefore, as for the heating temperature of the billet before extrusion, 650 degrees C or less is desirable.
 [Cr無添加の黄銅合金の溶製材ビレットの押出]
 組成60%Cu-40%Znの溶製材ビレットを電気炉で加熱して押出加工を行なった。加熱電気炉の温度条件を650℃、700℃、750℃、780℃の4種類とした。ビレットを、押出機によって押出速度3mm/s、押出比37の条件で加工し、棒材を得た。
[Extrusion of billet of molten material of brass alloy without addition of Cr]
The ingot billet of composition 60% Cu-40% Zn was heated in an electric furnace for extrusion processing. The temperature conditions of the heating electric furnace were four kinds of 650 ° C., 700 ° C., 750 ° C. and 780 ° C. The billet was processed by an extruder at an extrusion speed of 3 mm / s and an extrusion ratio of 37 to obtain a bar.
 棒材から評点間距離10mm、胴回り3mmの引張試験片を切り出して、引張試験を行なった。その結果、ビレットを650℃で加熱して押出したものは、その0.2%耐力値が226MPaで、最大引張強度が442MPaであった。 A tensile test was carried out by cutting a tensile test specimen having a distance between scores of 10 mm and a waist circumference of 3 mm from the bar. As a result, the one obtained by heating and extruding the billet at 650 ° C. had a 0.2% proof stress value of 226 MPa and a maximum tensile strength of 442 MPa.
 [最大引張強度および0.2%耐力値の比較]
 各種ビレットを650℃の温度に加熱して押出加工した黄銅合金押出材の最大引張強度および0.2%耐力値を比較し、それを表5に示した。また、押出材の応力-ひずみ曲線を図3に示す。比較したビレットは、Cr無添加の黄銅合金の溶製ビレット、Cr無添加の黄銅合金圧粉体ビレット、0.5%Cr添加の黄銅合金圧粉体ビレット、1.0%Cr添加の黄銅合金圧粉体ビレットの4種類である。
[Comparison of maximum tensile strength and 0.2% proof stress value]
The maximum tensile strength and the 0.2% proof stress value of extruded brass alloys extruded by heating various billets to a temperature of 650 ° C. were compared and are shown in Table 5. Also, the stress-strain curve of the extruded material is shown in FIG. The billets compared were a molten billet of a brass alloy with no addition of Cr, a brass alloy green compact billet without a Cr addition, a brass alloy green compact billet with 0.5% Cr addition, a brass alloy with a 1.0% Cr addition There are four types of powder billets.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図3および表5から、次のことを理解できる。まず、Cr無添加の黄銅合金ビレットの2種類を比較すると、溶製ビレットよりも圧粉体ビレットの方が、最大引張強度および0.2%耐力値の両者において高い数値を示している。具体的には、圧粉体ビレットにすることによって、最大引張強度が5.4%向上し、0.2%耐力値が20.7%向上している。この点からだけでも、粉末冶金法の優位性は明らかである。 From FIG. 3 and Table 5, the following can be understood. First, comparing two types of the Cr-free brass alloy billet, the powder billet exhibits higher numerical values in both of the maximum tensile strength and the 0.2% proof stress value than the molten billet. Specifically, by using a green compact billet, the maximum tensile strength is improved by 5.4%, and the 0.2% proof stress value is improved by 20.7%. From this point of view alone, the superiority of powder metallurgy is clear.
 さらにクロムを1.0質量%添加した圧粉体ビレットと、Cr無添加の溶製ビレットとを比較すると、1.0質量%のCrを添加した圧粉体ビレットの押出材は、その最大引張強度が27.8%向上し、0.2%耐力値が40.2%向上している。0.2%耐力値が大きく向上しているのは、強制固溶しているクロムによる固溶強化であると考えられる。 Further, comparing a green compact billet to which 1.0% by mass of chromium is added and a molten billet to which Cr is not added, the extruded material of the green compact billet to which 1.0 mass% of Cr is added has the maximum tension The strength is improved by 27.8%, and the 0.2% proof stress value is improved by 40.2%. It is considered that the fact that the 0.2% proof stress value is greatly improved is the solid solution strengthening by the forced-solid solution chromium.
 また、Cr無添加の圧粉体ビレットに比較して、Cr添加の圧粉体ビレットの最大引張強度が大きく向上していることが認められる。これは、粉末製造工程の凝固過程において、固溶しきれなかったクロムが結晶粒界で濃化することによってクロムの粒界偏析が起こり、100nm~500nm程度の直径を持った球状の析出物が主に粒界三重点や粒界上に存在していることが原因として考えられる。こうした微細析出物は、塑性変形時の粒界すべりに対して大きな抵抗力として働き、結果として高い加工硬化度を示した。 In addition, it is recognized that the maximum tensile strength of the powder billet added with Cr is greatly improved as compared to the powder billet with no addition of Cr. This is because, during the solidification process of the powder production process, chromium which did not form a solid solution is concentrated at grain boundaries to cause segregation of chromium at grain boundaries, resulting in spherical precipitates having a diameter of about 100 nm to 500 nm. It is considered that the cause is mainly existing at grain boundary triple points and grain boundaries. Such fine precipitates act as a large resistance to grain boundary sliding during plastic deformation, and as a result, exhibit a high degree of work hardening.
 [組織観察結果]
 ビレットの加熱温度を650℃にして押出加工した押出材の光学顕微鏡による組織観察結果を図4に示す。図4の(a)は1質量%Cr添加の黄銅合金圧粉体ビレットの押出材、(b)は0.5質量%Cr添加の黄銅合金圧粉体ビレットの押出材、(c)はCr無添加の黄銅合金圧粉体ビレットの押出材、(d)はCr無添加の黄銅合金溶製ビレットの押出材を示す。
[Organization observation result]
The structure observation result by an optical microscope of the extruded material extruded at a heating temperature of 650 ° C. for the billet is shown in FIG. (A) of FIG. 4 is an extruded material of a brass alloy green compact billet added with 1 mass% Cr, (b) is an extruded material of a brass alloy green compact billet added with 0.5 mass% Cr, (c) is Cr. An extruded material of the additive-free brass alloy green compact billet, (d) shows an extruded material of the additive-free billet brass alloy infused with Cr.
 図4の写真を比較観察すれば明らかなように、溶製ビレット押出材に比べて、圧粉体ビレット押出材はより微細な結晶粒を有している。黄銅合金溶製ビレット押出材の場合、結晶粒サイズは3~10μmであるのに対し、Cr無添加の黄銅合金圧粉体ビレット押出材の結晶粒サイズは1~6μmと微細になっている。また、Cr添加の黄銅合金圧粉体ビレット押出材になると、結晶粒サイズがサブミクロン~5μmと更なる微細化が進行していることが認められる。 As apparent from comparison and observation of the photograph of FIG. 4, the powder billet extruded material has finer crystal grains as compared with the molten billet extruded material. In the case of a billet extruded material made of brass alloy melt, the grain size is 3 to 10 μm, whereas the grain size of a brass alloy compacted billet extruded material with no Cr added is as fine as 1 to 6 μm. Further, in the case of using a Cr-added brass alloy green compact billet extruded material, it is recognized that the grain size is progressing to further submicron to 5 μm.
 結晶粒微細化に伴い、耐力値はホールペッチ(Hall-Petch)の経験則に従って増加した。Cr添加材の組織には、黒点状の1μm以下の微細な析出物が結晶粒界に観察された。EDS分析を行なった結果、これらの析出物はCrであることを同定した。 With grain refinement, the resistance value increased according to Hall-Petch's rule of thumb. In the structure of the Cr additive, fine precipitates of 1 μm or less in the form of black dots were observed at grain boundaries. As a result of EDS analysis, it was identified that these precipitates were Cr.
 図5は、1質量%Cr添加の黄銅合金圧粉体ビレットの押出材のSEM像を示している。 FIG. 5 shows an SEM image of an extruded material of a 1% by mass Cr-added brass alloy green compact billet.
 なお、以上の説明では、黄銅合金粉末または黄銅合金粉末押出材を中心に記載したが、本発明は、黄銅合金部材にも適用可能である。すなわち、黄銅合金部材は、α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5~5.0質量%含有し、さらにニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含む。 In the above description, the brass alloy powder or brass alloy powder extruded material is mainly described, but the present invention is also applicable to a brass alloy member. That is, the brass alloy member has a brass composition composed of a mixed phase of α phase and β phase, contains 0.5 to 5.0% by mass of chromium, and further, nickel, manganese, zirconium, vanadium, titanium, silicon, It contains at least one element selected from the group consisting of aluminum and tin.
 [降伏応力(YS)の増大]
 クロムを添加することによって黄銅合金部材の降伏応力が増大することが認められるが、この降伏応力増大に寄与するのは、クロムのうち、特に、黄銅の母相中に固溶して分散するクロム成分である。組織解析の結果を利用し、析出物を定量化することで添加したクロムの量から母相中に固溶したクロムの量を算出した。
[Increase in yield stress (YS)]
It is recognized that the addition of chromium increases the yield stress of the brass alloy member, and the contribution to the increase of the yield stress is, among the chromium, chromium which is dispersed and dispersed in the matrix of brass in particular. It is an ingredient. Using the result of the structure analysis, the amount of chromium dissolved in the matrix was calculated from the amount of chromium added by quantifying the precipitates.
 クロム無添加の黄銅合金部材の降伏応力とクロム添加の黄銅合金部材の降伏応力との差を縦軸で表し、母相中に固溶したクロム成分の濃度(%)を横軸に表したのが図6である。クロム固溶量が0.22%のとき降伏応力の増加量は34MPaで、クロム固溶量が0.35%のとき降伏応力の増加量は54MPaであった。このように、黄銅の母相中に固溶するクロムの濃度に比例して降伏応力が増大していることが認められた。 The difference between the yield stress of the chromium-free brass alloy member and the yield stress of the chromium-added brass alloy member is represented on the vertical axis, and the concentration (%) of the chromium component in solid solution in the matrix is represented on the horizontal axis. Is FIG. The increase in yield stress was 34 MPa when the solid solution amount of chromium was 0.22%, and the increase amount of yield stress was 54 MPa when the solid solution amount of chromium was 0.35%. Thus, it was found that the yield stress increased in proportion to the concentration of chromium in solid solution in the matrix of brass.
 [黒鉛粒子添加による快削性の向上]
 粉末押出による黄銅合金押出材の作製においては、黒鉛粒子を添加することにより、鉛フリーにして環境への悪影響を抑制することができる。一般の黄銅に対して黒鉛を添加することは過去になされたことがあるが、クロムを添加して強度を向上させた黄銅合金に対して黒鉛を添加した前例は無い。そこで、クロム添加により強度を向上させた黄銅への黒鉛添加を行い、切削性の向上を試みた。
[Improvement of machinability by addition of graphite particles]
In the production of a brass alloy extruded material by powder extrusion, it is possible to make it lead-free and suppress an adverse effect on the environment by adding graphite particles. Although the addition of graphite to general brass has been made in the past, there is no precedent to the addition of graphite to a brass alloy whose strength has been improved by the addition of chromium. Therefore, we tried to improve the machinability by adding graphite to brass whose strength was improved by chromium addition.
 使用した黒鉛粒子の平均粒子径は5μmであった。水アトマイズ法で作製したクロム含有黄銅粉末と、黒鉛粒子とを機械的撹拌法で混合した。この混合粉末を前述の方法と同様に圧粉体ビレットとし、熱間押出加工を施して棒材を得た。添加する黒鉛粒子の量としては、クロム含有黄銅合金粉末に対して0.5重量%、0.75重量%および1.0重量%の3種類とした。 The average particle size of the graphite particles used was 5 μm. The chromium-containing brass powder produced by the water atomizing method and the graphite particles were mixed by a mechanical stirring method. This mixed powder was made into a powder compact billet in the same manner as the above-mentioned method, and subjected to hot extrusion processing to obtain a bar. The amount of graphite particles to be added was three types of 0.5 wt%, 0.75 wt% and 1.0 wt% with respect to the chromium-containing brass alloy powder.
 図7は、黒鉛粒子添加量と切削性との関係を示す図である。クロム含有黄銅合金粉末に黒鉛粒子を添加して押出加工すれば、切削性が飛躍的に向上することが認められた。切削性の評価は、ドリルによる貫通試験の試験時間を計測することで行った。試験片は5cmの長さに切断した丸棒であり、これにドリル径4.5mmで貫通試験を行った。ドリルには1.3kgfの荷重を与え、主軸回転数を900rpmとした。10回の試験を行い、貫通に要する時間を平均したものを図7のグラフに表示した。 FIG. 7 is a graph showing the relationship between the amount of graphite particles added and the machinability. It was found that when the graphite particles were added to the chromium-containing brass alloy powder and extrusion processing was performed, the machinability was dramatically improved. Evaluation of machinability was performed by measuring the test time of the penetration test by a drill. The test piece was a round bar cut to a length of 5 cm, which was subjected to a penetration test with a drill diameter of 4.5 mm. A load of 1.3 kgf was applied to the drill, and the spindle rotational speed was 900 rpm. Ten tests were conducted, and the time required for penetration was averaged and displayed in the graph of FIG.
 黒鉛を全く添加していない試験片では、180秒以上の切削を行ってもドリルは全く貫通しなかった。ドリルの切削進行が止まっているように見られたため、180秒で貫通しないものに関してはそこで試験を中止することにした。 In the test piece to which no graphite was added, the drill did not penetrate at all even when cutting for 180 seconds or more. As the cutting progress of the drill appeared to stop, we decided to stop the test there for those that did not penetrate in 180 seconds.
 黒鉛添加量と、ドリル貫通に要する時間との関係を調べた。0.5%クロム含有黄銅合金では、黒鉛無添加の場合に180秒以上であったものが、0.5%の黒鉛添加量で平均28秒の時間でドリルが貫通した。0.75%以上の黒鉛添加量では、貫通時間が20秒以下となり、切削性の飛躍的な向上が認められた。したがって、0.5%クロム含有黄銅合金の場合においては、0.75%以上の黒鉛添加が切削性を大幅に向上させるのに好適な条件であるということができる。 The relationship between the amount of graphite added and the time required for drill penetration was investigated. In the 0.5% chromium-containing brass alloy, the drill penetrated in a time of an average of 28 seconds at a graphite addition amount of 0.5%, though it was 180 seconds or more when no graphite was added. When the amount of graphite added was 0.75% or more, the penetration time was 20 seconds or less, and a drastic improvement in the machinability was observed. Therefore, in the case of a 0.5% chromium-containing brass alloy, it can be said that the addition of 0.75% or more of graphite is a condition suitable for greatly improving the machinability.
 1.0%クロム含有黄銅合金では、黒鉛を0.5%添加しても貫通時間は180秒以上であった。黒鉛添加量を0.75%に増加させると、平均38秒でドリルが貫通した。また、黒鉛添加量を1.0%にすると、貫通時間は20秒以下となった。したがって、1.0%クロム含有黄銅合金の場合においては、1.0%以上の黒鉛添加が切削性を大幅に向上させるのに好適な条件であるということができる。 In the 1.0% chromium-containing brass alloy, the penetration time was 180 seconds or more even when 0.5% of graphite was added. The drill penetration occurred in an average of 38 seconds as the graphite loading was increased to 0.75%. In addition, when the amount of graphite added was 1.0%, the penetration time was 20 seconds or less. Therefore, in the case of a 1.0% chromium-containing brass alloy, it can be said that the addition of 1.0% or more of graphite is a suitable condition for greatly improving the machinability.
 [低速押出による強度の向上]
 本発明者らは、クロム含有黄銅合金の押出速度を制御することで、より高強度の材料が得られることを見出した。高強度材を得るための押出条件としては、低温での押出が効果的であるが、さらに押出速度を低速にすることにより、より強度を向上させることができる。実測値を記載すると、1.0%クロム含有黄銅合金の場合、通常の押出速度(ラム速度3mm/s)で押出を行ったときの耐力値は317MPaで、最大引張強度は565MPaであったが、この押出速度を十分の一(ラム速度0.3mm/s)に減じて押出加工を行ったところ、耐力値は467MPaまで向上し、最大引張強度は632MPaまで向上した。
[Strength improvement by low speed extrusion]
The present inventors have found that by controlling the extrusion rate of the chromium-containing brass alloy, a higher strength material can be obtained. As extrusion conditions for obtaining high strength materials, extrusion at low temperature is effective, but by further reducing the extrusion speed, the strength can be further improved. In the case of a 1.0% chromium-containing brass alloy, the proof stress value is 317MPa and the maximum tensile strength is 565MPa when extruded at a normal extrusion speed (ram speed 3 mm / s). When extrusion was carried out by reducing the extrusion speed to one tenth (ram speed 0.3 mm / s), the yield strength was improved to 467 MPa and the maximum tensile strength was improved to 632 MPa.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same or equivalent scope of the present invention.
 本発明は、優れた機械的特性を有する6/4黄銅合金部材の製造に有利に利用され得る。 The present invention can be advantageously utilized in the manufacture of 6/4 brass alloy members having excellent mechanical properties.

Claims (17)

  1. α相とβ相の混合相からなる黄銅組成を有する黄銅合金粉末であって、
     クロムを0.5~5.0質量%含有し、
     前記クロムは、黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む、黄銅合金粉末。
    It is a brass alloy powder having a brass composition consisting of a mixed phase of α phase and β phase,
    Containing 0.5 to 5.0% by mass of chromium,
    The above-mentioned chromium is a brass alloy powder including a component which is solid-solved in a matrix phase of brass and a component which is precipitated in crystal grain boundaries.
  2. 前記黄銅の母相中に固溶する成分は、母相中に固溶して分散する成分と、母相中に析出物として分散する成分とを含む、請求項1に記載の黄銅合金粉末。 The brass alloy powder according to claim 1, wherein the component dissolved in solid solution in the matrix of brass includes a component dispersed in solid solution in the matrix and dispersed therein, and a component dispersed as precipitate in the matrix.
  3. 前記クロムの含有量は、1.0~2.4質量%である、請求項1に記載の黄銅合金粉末。 The brass alloy powder according to claim 1, wherein the content of the chromium is 1.0 to 2.4% by mass.
  4. 前記粉末中に、ニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含む、請求項1に記載の黄銅合金粉末。 The brass alloy powder according to claim 1, wherein the powder contains at least one element selected from the group consisting of nickel, manganese, zirconium, vanadium, titanium, silicon, aluminum and tin.
  5. 前記粉末は、急冷凝固粉末である、請求項1に記載の黄銅合金粉末。 The brass alloy powder according to claim 1, wherein the powder is a rapidly solidified powder.
  6. 前記急冷凝固粉末は、水アトマイズ法によって急冷凝固させた粉末である、請求項5に記載の黄銅合金粉末。 The brass alloy powder according to claim 5, wherein the rapidly solidified powder is a powder which is rapidly solidified by a water atomizing method.
  7. α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5~5.0質量%含有し、前記クロムが黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む黄銅合金粉末の集合体を押出加工することによって得られる、黄銅合金押出材。 It has a brass composition consisting of a mixed phase of α phase and β phase, contains 0.5 to 5.0% by mass of chromium, and the above-mentioned component of chromium forms a solid solution in the matrix of brass and precipitates at grain boundaries An extruded material of brass alloy obtained by extruding an assembly of brass alloy powder containing the following components.
  8. 0.2%耐力値が300MPa以上である、請求項7に記載の黄銅合金押出材。 The brass alloy extruded material according to claim 7, having a 0.2% proof stress value of 300 MPa or more.
  9. 引張強度が500MPa以上である、請求項7に記載の黄銅合金押出材。 The brass alloy extruded material according to claim 7, having a tensile strength of 500 MPa or more.
  10. 前記黄銅合金粉末に対して0.2~2.0重量%の黒鉛粒子を添加して混合した後に、この混合粉末集合体を押出加工することによって得られる、請求項7に記載の黄銅合金押出材。 The brass alloy extrusion according to claim 7, obtained by extruding the mixed powder aggregate after adding and mixing 0.2 to 2.0 wt% of graphite particles with respect to the brass alloy powder. Material.
  11. 前記添加黒鉛粒子の粒子径は、1μm~100μmの範囲内にある、請求項10に記載の黄銅合金押出材。 The brass alloy extruded material according to claim 10, wherein a particle diameter of the additive graphite particles is in a range of 1 μm to 100 μm.
  12. α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5~5.0質量%含有し、さらにニッケル、マンガン、ジルコニウム、バナジウム、チタン、シリコン、アルミニウムおよびスズからなる群から選ばれた少なくとも一つの元素を含み、前記クロムが黄銅の母相中に固溶する成分と、結晶粒界に析出する成分とを含む、黄銅合金部材。 It has a brass composition consisting of a mixed phase of α phase and β phase, contains 0.5 to 5.0% by mass of chromium, and further comprises nickel, manganese, zirconium, vanadium, titanium, silicon, aluminum, and tin A brass alloy member containing at least one selected element, a component in which the chromium is solid-solved in a matrix of brass, and a component precipitated in crystal grain boundaries.
  13. 黒鉛粒子をさらに含む、請求項12に記載の黄銅合金部材。 The brass alloy member according to claim 12, further comprising graphite particles.
  14. α相とβ相の混合相からなる黄銅組成を有し、クロムを0.5~5.0質量%含有する黄銅合金粉末を急冷凝固法によって作製する工程と、
     前記急冷凝固した黄銅合金粉末の集合体を押出加工する工程とを備える、黄銅合金押出材の製造方法。
    producing a brass alloy powder having a brass composition consisting of a mixed phase of α phase and β phase and containing 0.5 to 5.0% by mass of chromium by a rapid solidification method;
    And extruding the assembly of the rapidly solidified brass alloy powder.
  15. 前記急冷凝固法は、水アトマイズ法である、請求項14に記載の黄銅合金押出材の製造方法。 The method for producing a brass alloy extruded material according to claim 14, wherein the rapid solidification method is a water atomization method.
  16. 前記押出加工時の加熱温度は650℃以下である、請求項14に記載の黄銅合金押出材の製造方法。 The method for producing a brass alloy extruded material according to claim 14, wherein the heating temperature at the time of the extrusion processing is 650 ° C or less.
  17. 前記押出加工に先立ち、前記黄銅合金粉末に対して0.2~2.0重量%の黒鉛粒子を添加して混合する工程を備える、請求項14に記載の黄銅合金押出材の製造方法。
     
     
    The method for producing a brass alloy extruded material according to claim 14, comprising the step of adding and mixing 0.2 to 2.0% by weight of graphite particles with respect to the brass alloy powder prior to the extrusion processing.

PCT/JP2009/058142 2008-05-07 2009-04-24 Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material WO2009136552A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980116310.7A CN102016089B (en) 2008-05-07 2009-04-24 Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
EP09742676.1A EP2275582A4 (en) 2008-05-07 2009-04-24 Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
JP2010511043A JP5376604B2 (en) 2008-05-07 2009-04-24 Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof
US12/991,259 US20110056591A1 (en) 2008-05-07 2009-04-24 Brass alloy powder, brass alloy extruded material, and method for producing the brass alloy extruded material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-121475 2008-05-07
JP2008121475 2008-05-07

Publications (1)

Publication Number Publication Date
WO2009136552A1 true WO2009136552A1 (en) 2009-11-12

Family

ID=41264607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058142 WO2009136552A1 (en) 2008-05-07 2009-04-24 Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material

Country Status (5)

Country Link
US (1) US20110056591A1 (en)
EP (1) EP2275582A4 (en)
JP (1) JP5376604B2 (en)
CN (1) CN102016089B (en)
WO (1) WO2009136552A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBS20130119A1 (en) * 2013-08-02 2015-02-03 Almag Spa COPPER ALLOY INCLUDING GRAPHITE
KR20210137589A (en) * 2016-05-18 2021-11-17 알마그 에스.피.에이. A method for manufacturing a lead-free or low lead content brass billet and billet thus obtained

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442119B2 (en) * 2010-07-05 2014-03-12 Ykk株式会社 Fastener element and fastener element manufacturing method
KR101284495B1 (en) * 2011-04-29 2013-07-16 성기철 Wire electrode for electro discharge machining and thesame methode
CN103627930B (en) * 2013-11-25 2015-11-25 宁波博威合金材料股份有限公司 A kind of high-ductility Cutting free zinc alloy
JP6030186B1 (en) 2015-05-13 2016-11-24 株式会社ダイヘン Copper alloy powder, manufacturing method of layered object, and layered object
US11440094B2 (en) 2018-03-13 2022-09-13 Mueller Industries, Inc. Powder metallurgy process for making lead free brass alloys
US11459639B2 (en) 2018-03-13 2022-10-04 Mueller Industries, Inc. Powder metallurgy process for making lead free brass alloys
IT202000004480A1 (en) * 2020-03-03 2021-09-03 A L M A G S P A Azienda Lavorazioni Metallurgiche E Affini Gnutti PROCESS FOR OBTAINING A BRASS BILLET WITH A REDUCED LEAD CONTENT AND BILLET SO OBTAINED
CN111621667A (en) * 2020-06-30 2020-09-04 兰州理工大学 Copper-titanium alloy and preparation method thereof
CN112458334A (en) * 2020-11-27 2021-03-09 台州正兴阀门有限公司 Low-lead free-cutting copper alloy for casting faucet body and manufacturing method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026634A (en) * 1983-07-22 1985-02-09 Furukawa Electric Co Ltd:The Electrode wire for wire electric spark machining
JPS6213549A (en) * 1985-07-10 1987-01-22 Hitachi Ltd Wear-resisting copper alloy
JPS6284924A (en) * 1985-10-09 1987-04-18 Furukawa Electric Co Ltd:The Electrode wire and its manufacture wire electric discharge machining
JPS63157825A (en) * 1986-09-08 1988-06-30 Oiles Ind Co Ltd Wear resistant copper alloy
JPH029835A (en) 1988-03-11 1990-01-12 Kuraray Co Ltd Preparation of bicyclohumulenone
JPH02250203A (en) * 1989-03-23 1990-10-08 Furukawa Electric Co Ltd:The Copper alloy fiber and copper alloy fiber bundle to be added to conductive plastic
JPH07118777A (en) * 1993-10-21 1995-05-09 Taiho Kogyo Co Ltd Sliding member
JPH07197110A (en) * 1993-11-29 1995-08-01 Nikko Rika Kk Production of spherical raney copper alloy for catalyst and production of copper catalyst
JPH0853725A (en) * 1994-08-10 1996-02-27 Taiho Kogyo Co Ltd Copper-base sliding material and its surface treatment
WO1998010106A1 (en) 1996-09-09 1998-03-12 Toto Ltd. Copper alloy and method of manufacturing same
JPH10168433A (en) 1996-12-12 1998-06-23 Kounosuke Tsunoda Snow-thawing antifreeze material and snow-thawing antifreeze coating material, sheet, tile, panel, exterior material, roofing material, road and defroster containing the same
JPH10168533A (en) 1996-12-09 1998-06-23 Mitsui Mining & Smelting Co Ltd High strength heat resistant zinc alloy and molded goods
JP2000309835A (en) 1998-12-22 2000-11-07 Toto Ltd Brass material, production of brass material and method for working brass material
JP2006124835A (en) 2004-10-22 2006-05-18 Outokumpu Copper Prod Oy Precipitation hardening type copper based alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1680046A (en) * 1924-01-30 1928-08-07 Victor O Homerberg Method of treating copper alloys and improved product
US2373158A (en) * 1943-12-28 1945-04-10 Wulff John Brass powders
US3802852A (en) * 1972-01-11 1974-04-09 Toyota Motor Co Ltd Sintered alloys having wear resistance at high temperature comprising a sintered femo-c alloy skeleton infiltrated with cu or pb base alloys or sb
NL7714494A (en) * 1977-12-28 1979-07-02 Leuven Res & Dev Vzw METHOD FOR MAKING SOLID BODIES FROM COPPER-ZINC ALUMINUM ALLOYS
CN1007734B (en) * 1985-11-27 1990-04-25 北京有色金属研究总院 Spray coating materials for combined layers
DE4201065C2 (en) * 1992-01-17 1994-12-08 Wieland Werke Ag Application of the spray compacting process to improve the bending fatigue strength of semi-finished products made of copper alloys
JP4190570B2 (en) * 2005-07-28 2008-12-03 サンエツ金属株式会社 Lead-free free-cutting copper alloy extruded material

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026634A (en) * 1983-07-22 1985-02-09 Furukawa Electric Co Ltd:The Electrode wire for wire electric spark machining
JPS6213549A (en) * 1985-07-10 1987-01-22 Hitachi Ltd Wear-resisting copper alloy
JPS6284924A (en) * 1985-10-09 1987-04-18 Furukawa Electric Co Ltd:The Electrode wire and its manufacture wire electric discharge machining
JPS63157825A (en) * 1986-09-08 1988-06-30 Oiles Ind Co Ltd Wear resistant copper alloy
JPH029835A (en) 1988-03-11 1990-01-12 Kuraray Co Ltd Preparation of bicyclohumulenone
JPH02250203A (en) * 1989-03-23 1990-10-08 Furukawa Electric Co Ltd:The Copper alloy fiber and copper alloy fiber bundle to be added to conductive plastic
JPH07118777A (en) * 1993-10-21 1995-05-09 Taiho Kogyo Co Ltd Sliding member
JPH07197110A (en) * 1993-11-29 1995-08-01 Nikko Rika Kk Production of spherical raney copper alloy for catalyst and production of copper catalyst
JPH0853725A (en) * 1994-08-10 1996-02-27 Taiho Kogyo Co Ltd Copper-base sliding material and its surface treatment
WO1998010106A1 (en) 1996-09-09 1998-03-12 Toto Ltd. Copper alloy and method of manufacturing same
JPH10168533A (en) 1996-12-09 1998-06-23 Mitsui Mining & Smelting Co Ltd High strength heat resistant zinc alloy and molded goods
JPH10168433A (en) 1996-12-12 1998-06-23 Kounosuke Tsunoda Snow-thawing antifreeze material and snow-thawing antifreeze coating material, sheet, tile, panel, exterior material, roofing material, road and defroster containing the same
JP2000309835A (en) 1998-12-22 2000-11-07 Toto Ltd Brass material, production of brass material and method for working brass material
JP2006124835A (en) 2004-10-22 2006-05-18 Outokumpu Copper Prod Oy Precipitation hardening type copper based alloy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATSUYOSHI KONDOH ET AL.: "Characteristics of Completely Leadless Free-Cutting Brass Alloy by Powder Process", COLLECTED ABSTRACTS OF 46TH TECHNOLOGY CONFERENCE OF JAPAN COPPER AND BRASS ASSOCIATION, 2006, pages 153 - 154
See also references of EP2275582A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBS20130119A1 (en) * 2013-08-02 2015-02-03 Almag Spa COPPER ALLOY INCLUDING GRAPHITE
KR20210137589A (en) * 2016-05-18 2021-11-17 알마그 에스.피.에이. A method for manufacturing a lead-free or low lead content brass billet and billet thus obtained
JP2021185265A (en) * 2016-05-18 2021-12-09 アルマグ・ソシエタ・ペル・アチオニAlmag S.P.A. Method for producing lead-free or low lead content brass billet and billet obtained thereby
KR102399101B1 (en) * 2016-05-18 2022-05-17 알마그 에스.피.에이. A method for manufacturing a lead-free or low lead content brass billet and billet thus obtained

Also Published As

Publication number Publication date
JPWO2009136552A1 (en) 2011-09-08
CN102016089A (en) 2011-04-13
EP2275582A4 (en) 2014-08-20
JP5376604B2 (en) 2013-12-25
US20110056591A1 (en) 2011-03-10
CN102016089B (en) 2012-08-22
EP2275582A1 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
WO2009136552A1 (en) Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
JP5326114B2 (en) High strength copper alloy
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
El-Daly et al. Microstructural modifications and properties of SiC nanoparticles-reinforced Sn–3.0 Ag–0.5 Cu solder alloy
EP2350330B1 (en) Magnesium alloys containing rare earths
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
WO2006016631A1 (en) Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
JP5546196B2 (en) Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
EP4083244A1 (en) Heat-resistant powdered aluminium material
WO2013115593A1 (en) Machining magnesium alloy capable of being heat treated at high temperature
JP4764094B2 (en) Heat-resistant Al-based alloy
JP2021507088A (en) Aluminum alloy for additive technology
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
Abdelaziz et al. Microstructure and mechanical properties of tin-bismuth solder alloy reinforced by antimony oxide nanoparticles
CN105132739A (en) Lead-free brass alloy and preparing method of lead-free brass alloy
JPH05311359A (en) High strength aluminum base alloy and its composite solidified material
JP3485961B2 (en) High strength aluminum base alloy
CN109161740A (en) A kind of automobile structure 6 line aluminium alloys and preparation method
WO2007094300A1 (en) Aluminum bronze alloy as raw material for semi-molten alloy casting
CN102952984B (en) A kind of wrought magnesium alloys and preparation method thereof
Atapek et al. On the properties of cast and powder metallurgical Cu–6Ni-1.5 Si-0.15 Al (wt.%) alloy
KR100435325B1 (en) High Strength and Heat Resistant Mg-Zn Alloy and Its Preparation Method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116310.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511043

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009742676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12991259

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE