JPS6284924A - Electrode wire and its manufacture wire electric discharge machining - Google Patents

Electrode wire and its manufacture wire electric discharge machining

Info

Publication number
JPS6284924A
JPS6284924A JP22379485A JP22379485A JPS6284924A JP S6284924 A JPS6284924 A JP S6284924A JP 22379485 A JP22379485 A JP 22379485A JP 22379485 A JP22379485 A JP 22379485A JP S6284924 A JPS6284924 A JP S6284924A
Authority
JP
Japan
Prior art keywords
wire
heating
present
machining
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22379485A
Other languages
Japanese (ja)
Other versions
JPH0724977B2 (en
Inventor
Michio Okuno
奥野 道雄
Hitoshi Shiyou
仁 尚
Minoru Ishikawa
実 石川
Masanori Saito
正紀 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60223794A priority Critical patent/JPH0724977B2/en
Publication of JPS6284924A publication Critical patent/JPS6284924A/en
Publication of JPH0724977B2 publication Critical patent/JPH0724977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve machining speed and spark stability and prevent short circuit by constituting an electrode wire with 20-40% of Zn, 0.1-5.0% of one ore more ingredients from among Al, Ga, Cr and Mn, and the rest of Cu and inevitable impurities. CONSTITUTION:A special yellow steel wire constituted with 20-40% of Zn by weight, 0.1-5% of one or more ingredients from among Al, Ga, Mn and Cr by weight and the rest of Cu and inevitable impurities, during the wire drawing process, is energized and heated in a nonoxidizing atmosphere while running the wire at lest one pass. By making the energized heating through an energized heating device consisting of one ore more heating zones to meet condition, 10<=SIGMAIkVk/D<2>S; with Ik as current in each zone, Vk applied voltage, D wire diameter, and S running speed; machining speed can be improved due to formation of a high Zn concentration layer near the wire surface, spark can be stabilized due to formation of a high concentration metal oxide layer of the additive ingredients, and the prevension of short circuit becomes possible.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、ワイヤ放電加工機に広(使用される電極線に
関し、黄銅系合金に特殊元素の添加とその製造方法によ
って放電加工性改善をなしたものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to wire electrical discharge machines (with regard to electrode wires used, the electrical discharge machinability is improved by adding special elements to brass alloys and the manufacturing method thereof). It is.

ワイヤ放電加工とは、通常り。05〜0.35mmmの
電極線を走行させつつ被加工物との間に加工液を介しつ
つパルス状の放電を発生させ、該放電エネルギーによっ
て被加工物を溶融し、加工液及び電嘩線、被加工物など
の瞬間的な気化爆発力によって溶融物を除去するもので
、特に複雑で精密な形状の被加工物例えばプレス金型の
製作加工などに広(用いられている。
Wire electrical discharge machining is usually called wire electrical discharge machining. While running an electrode wire of 0.05 to 0.35 mm, a pulsed discharge is generated with machining fluid interposed between it and the workpiece, and the workpiece is melted by the discharge energy, and the machining fluid and electric wire, It removes molten material by instantaneous vaporization explosive force from the workpiece, etc., and is widely used in the production of workpieces with complex and precise shapes, such as press molds.

このワイヤ放電加工では、被加工物の表面状態がよく、
放電安定で断線が少なく、加工速度の速いことなどの放
電加工性が要求されている。
In this wire electric discharge machining, the surface condition of the workpiece is good,
Electric discharge machinability is required, such as stable discharge, less disconnection, and high machining speed.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来はこのワイヤ放電加工用電極線として(ま純銅線が
使用されていたが、引張り強さが低いので放電加工時に
張力をあまり大きくかけられないために電翫線の振動を
抑えろことができず、従って加工精度が悪(なり、又断
線し易く、更に、Cu自体の放電加工性も十分ではな(
、加工速度も遅いなどの諸欠点があった。そのためモリ
ブデン線やタングステン線等の精密加工用高強度線が用
いられたり、又一般の加工用には65/35黄銅線を代
表とする黄銅電極線が広く使用されるようになっている
。黄銅電極線は純銅線に比して約2倍以上の引張り強さ
があり、かつその合金成分のZnの存在は気化爆発力が
向上し、被加工物溶融部を効率よく除去でき、加工速度
の向上と被加工物への付着物減少が実現できるという長
所を有している。
Conventionally, pure copper wire was used as the electrode wire for wire electrical discharge machining, but due to its low tensile strength, it was not possible to apply too much tension during electrical discharge machining, and it was not possible to suppress the vibration of the electrical wire. Therefore, the machining accuracy is poor (and the wire is easily broken), and furthermore, the electric discharge machinability of Cu itself is not sufficient (
However, there were various drawbacks such as slow processing speed. For this reason, high-strength wires for precision processing such as molybdenum wires and tungsten wires are used, and brass electrode wires such as 65/35 brass wires are widely used for general processing. Brass electrode wire has more than twice the tensile strength of pure copper wire, and the presence of Zn, an alloying component, improves the vaporization explosive force, which allows the molten part of the workpiece to be removed efficiently and increases the processing speed. It has the advantage of improving the process and reducing deposits on the workpiece.

然し、近年ワイヤ放電加工装置の面での電源やテーブル
送り機構の改良及び無人運転の実現などに伴ってワイヤ
放電加工のランニングコスト、加工品質に対して目が向
けられるようになり電極線に対する放電加工性の向上の
要望が高まっている。特に放電安定性の向上は加工精度
と無人運転実現に対して重要なことであって、現在量も
広(使用されている黄銅の電極線では必ずしも充分とは
言えず改良が望まれていた。
However, in recent years, with the improvement of the power supply and table feeding mechanism of wire electric discharge machining equipment, and the realization of unmanned operation, attention has been paid to the running cost and machining quality of wire electric discharge machining, and the electric discharge to the electrode wire has become more important. Demand for improved workability is increasing. In particular, improving discharge stability is important for machining accuracy and realizing unmanned operation, and the currently available brass electrode wires are not necessarily sufficient, so improvements have been desired.

黄銅(Cu−Zn合金)のZnのような蒸気圧の高い金
属を用いると被加工物溶融部を効率よ(除去でき、加工
速度が向上して加工ランニングコストが低減することや
仕上り表面状態がよくなることなどに加えて、金属酸化
物の如き電気絶縁耐圧の大きい被覆層を設けることによ
って放電が安定して短絡しに((なり、サーボ機構で制
御されたテーブル送りも順調になり加工速度が向上する
ことに着目し、Cu −Zn合金に限定された添加元素
の配合と限定された製造方法を施すことによって上記の
要望を満たすことを本発明の目的とした。
When using a metal with high vapor pressure, such as Zn in brass (Cu-Zn alloy), the molten part of the workpiece can be removed efficiently, increasing the machining speed, reducing machining running costs, and improving the finished surface condition. In addition, by providing a coating layer with a high electrical insulation voltage such as a metal oxide, the discharge becomes stable and short circuits are prevented ((), and the table feed controlled by the servo mechanism becomes smooth and the machining speed increases. The purpose of the present invention is to satisfy the above-mentioned needs by adding limited additive elements to the Cu-Zn alloy and using a limited manufacturing method.

〔発明の構成とその作用〕[Structure of the invention and its effects]

本発明は、Cu −Zn合金に、AI 、 Ga 、 
Mn 、 Crなどの金属を添加した特殊黄銅合金の線
材を伸線する過程で、高温で短時間の通電加熱を施す製
造方法によって、Z0元素を熱拡散によって線材表層部
に拡散固着させ高濃度Zn層を生成させ、且つ線材表層
部にAI 、 Ga 、 Mn 、 Crなどの酸化物
即ちAl2O3゜Ga2O3,MnO2,CrO3(7
)層を生成させて、短絡のない放電安定性と被加工物へ
の付着物の減少とをもたらし、延いては加工速度の向上
をはかったものである。つまり高温でZnが拡散する現
象を利用し、黄銅線の表層部に高濃度Zn層を生成させ
ると共に、表面に酸化物を形成し易く、且つ放電安定性
良好な元素、即ちAI 、 Ga 、 Mn 、 Cr
なとの添加によって放電加工性を向上させたものである
The present invention provides Cu-Zn alloy with AI, Ga,
In the process of drawing a special brass alloy wire containing metals such as Mn and Cr, the Z0 element is diffused and fixed to the surface layer of the wire by thermal diffusion, resulting in a high concentration of Zn. oxides such as AI, Ga, Mn, Cr, etc., namely Al2O3°Ga2O3, MnO2, CrO3 (7
) layer to provide short-circuit-free discharge stability and a reduction in deposits on the workpiece, which in turn aims to improve the machining speed. In other words, by utilizing the phenomenon of Zn diffusion at high temperatures, a high concentration Zn layer is generated on the surface layer of the brass wire, and elements that easily form oxides on the surface and have good discharge stability, such as AI, Ga, and Mn, are used. , Cr
The electrical discharge machinability has been improved by adding .

即ち本発明は、Zn20〜40 wt%とAI 、 (
3a 、 Mn 。
That is, in the present invention, 20 to 40 wt% of Zn and AI, (
3a, Mn.

Crのうち1種又は2種以上を合計で0.1〜5 wt
%(以後組成成分のwt%は襲で表わす)と、残部Cu
及び不可避な不純物からなる特殊黄銅線を線引工程にお
いて、少(も1回以上ワイヤを走行させつつ非酸化雰囲
気中で通電加熱するような製造方法をとることを特徴と
したものである。
A total of 0.1 to 5 wt of one or more types of Cr
% (hereinafter, the wt% of the composition components is expressed in terms of weight) and the balance Cu
In the drawing process, a special brass wire containing unavoidable impurities is heated with electricity in a non-oxidizing atmosphere while running the wire at least once.

その通電加熱の条件は、1個又は複数個の加熱ゾーンを
備えた通電加熱装置において、各加熱ゾーンの通電電流
1k(アムペア)、印加電圧■k(ボルト)、ワイヤの
直径D (mm)、走行速度S(mAnりとしたとき4
5を越えない範囲で10≦ΣIkV、、/1)” Sを
満たすことを特徴としている。この条件範囲内で製造し
たとき、電極線の表面近傍の元素濃度分布は第2図に示
すような形態となり、高濃度Zn層の生成により加工速
度が向上し、被加工物への付着物が減少し、更に高濃度
金属酸化物層の生成により安定放電が実現できる。
The conditions for the electrical heating are as follows: In an electrical heating device equipped with one or more heating zones, the electrical current of each heating zone is 1 k (ampere), the applied voltage is k (volts), the diameter of the wire is D (mm), Traveling speed S (mAn) 4
It is characterized by satisfying 10≦ΣIkV, /1)''S within a range not exceeding 5. When manufactured within this condition range, the element concentration distribution near the surface of the electrode wire is as shown in Figure 2. The formation of a high concentration Zn layer improves the machining speed, reduces deposits on the workpiece, and furthermore, the formation of a high concentration metal oxide layer makes it possible to realize stable discharge.

ここで、AI 、 Ga 、 I’i4n 、 Crを
添加元素として選んだのは、それらが酸化し易い金属で
、表層部に酸化物を容易に形成する為であり、Ag 、
 Niでは酸化物形成が期待できず、放電不安定となり
、Sn 、 Geでは脱亜鉛現象を促進し、表面にZn
の涸渇領域(depleted −zone)を生成し
加工速度を低下せしめるなどの現象が知見されたからで
ある。
Here, AI, Ga, I'i4n, and Cr were selected as additive elements because they are metals that are easily oxidized and easily form oxides on the surface layer.
With Ni, oxide formation cannot be expected and the discharge becomes unstable, while with Sn and Ge, the dezincing phenomenon is promoted and Zn is formed on the surface.
This is because it has been discovered that a depleted zone is created, which reduces the machining speed.

Zn量については、Znを20〜40チとしたのは、2
0−未満ではワイヤ自身のZn量の不足を本発明による
製造方法によっても補い切れず、通常用いられている6
5/35黄銅線以上の加工速度を達成できないからであ
る。40係を越えると細径化の伸線加工性が極度に低下
し、非能率的な操業になる。
Regarding the amount of Zn, setting Zn to 20 to 40
If the Zn content is less than 0-, the lack of Zn in the wire itself cannot be compensated for even by the manufacturing method of the present invention, and the normally used 6
This is because a processing speed higher than 5/35 brass wire cannot be achieved. If the ratio exceeds 40, the wire drawability for diameter reduction will be extremely reduced, resulting in inefficient operation.

AI 、 Ga 、 Mn 、 Crの中から1種又は
2種以上の合計を0.1〜5.0係としたのは、0.1
係未満では添加元素の効果が小さく放電加工性の向上て
つながらないためであり、50係を越えると伸線加工性
が極度に低下し、非能率的な操業シこなろからである。
The sum of one or more of AI, Ga, Mn, and Cr with a coefficient of 0.1 to 5.0 is 0.1
This is because when the ratio is less than 50, the effect of the added element is small and the electrical discharge machinability is not improved, and when it exceeds 50, the wire drawability is extremely reduced, resulting in inefficient operation.

又通電加熱を利用したのは高温で短時間加熱できるため
であり、従来の加熱炉では昇温、冷却に多くの時間を要
し、非能率であると同時に高温での脱亜鉛現象を促進し
てしまうからである。更に通電加熱条件を45を越えな
い範囲で10≦ΣI■ysとしたのは10以下では十分
な高濃度Zn層と金属酸化物層が生成せず加工速度など
の放電加工性が向上しな(・からである。45を越えろ
と脱即鉛が進行して表7jA部のZn濃度が低下して加
工速度が低下するからである。
In addition, electric heating is used because it can heat at high temperatures for a short time, whereas conventional heating furnaces require a lot of time to heat up and cool down, which is inefficient and at the same time promotes the dezincing phenomenon at high temperatures. This is because Furthermore, the electric heating conditions were set to 10≦ΣI■ys within the range of not exceeding 45, because if it is less than 10, a sufficiently high concentration Zn layer and metal oxide layer will not be formed and the electrical discharge machinability such as machining speed will not improve ( This is because if the value exceeds 45, lead removal progresses, the Zn concentration in the A part of Table 7j decreases, and the processing speed decreases.

〔実施 汐り 〕[Implemented Shioiri]

実施例(1) 黒鉛ルツボと高周波溶解炉を用いてCuを溶解し、湯面
を木炭粉末で覆った状態でZnを添加した後、AI 、
 (3a 、 Mn 、 Crを夫夫添加して第1表の
N[L1〜嵐16に示すような本発明による組成成分の
16種類の鋳塊をつくった。鋳塊は25mm角、長さ3
00mmでありその表面を一面当り2.5 mm面削し
た後、熱間圧延によって8 mm l K した後ダイ
ス曳伸線によって2.0 mm lの線材にした。次に
、第1図圧示すような通電加熱装置4を備えられた連続
伸線機ろでこの線材2を0.9 mm lの線材5に伸
線し、通電加熱を施した。通電加熱装置4は予熱ゾーン
7と加熱ゾーン8で電圧が印加され、その時の印加電圧
は両ゾーン共に等しく線材5の長さ即ち抵抗値の違いに
よって電流値が異なってくる。又加熱ゾーン8は線材5
の必要以上の酸化を防ぐ為に水蒸気が充満されている。
Example (1) After melting Cu using a graphite crucible and a high-frequency melting furnace and adding Zn with the hot water surface covered with charcoal powder, AI,
(3a), Mn, and Cr were added to produce 16 types of ingots with compositions according to the present invention as shown in Table 1, N[L1 to Arashi 16.The ingots were 25 mm square and 3 in length.
00 mm, and the surface was milled by 2.5 mm per side, hot rolled to 8 mm l K, and drawn into a wire rod of 2.0 mm l by die drawing. Next, this wire rod 2 was drawn into a wire rod 5 of 0.9 mm l using a continuous wire drawing machine equipped with an electric heating device 4 as shown in Figure 1, and subjected to electric heating. A voltage is applied to the energization heating device 4 in the preheating zone 7 and the heating zone 8, and the applied voltage is the same in both zones, and the current value differs depending on the length of the wire 5, that is, the resistance value. Also, the heating zone 8 is the wire rod 5
It is filled with water vapor to prevent unnecessary oxidation.

線速を500 mzQ 、 600mAtm + 90
0 m/7として印加電圧を種々変えて加熱した時の加
熱条件を第1表に併記した。ここで工!は予熱電流、■
2は加熱電流である。このように高温短時間の通電加熱
を施された0、 9 mm lの線材は添加元素の酸化
物特有のにぷい光沢をしていた。
Linear speed: 500 mzQ, 600mAtm + 90
Table 1 also shows the heating conditions when heating was performed with various applied voltages set at 0 m/7. Engineering here! is the preheating current, ■
2 is a heating current. The 0.9 mml wire that was subjected to high-temperature, short-time electrical heating in this manner had a bright luster characteristic of the oxide of the additive element.

次にこれら0.9 mm 96の線材を別の連続伸線機
によって0.2 mmダに伸線し本発明による実施例の
ti線とした。
Next, these 0.9 mm 96 wire rods were drawn to 0.2 mm diameter using another continuous wire drawing machine to obtain a Ti wire according to an embodiment of the present invention.

尚比較例として、組成成分が本発明によらない合金の中
での3種類(隘14.嵐15.隘16)は0.2 mt
nφの線材を上記実施例と同じ製造方法のもとにつくり
、他の3種類(N1117 、 Ni118 、 i’
h19)は伸線加工が困難で0゜2 mmダにはなりに
くかった。
As a comparative example, three types of alloys whose compositional components are not according to the present invention (14, 15, and 16) were 0.2 mt.
A wire rod of nφ was made using the same manufacturing method as in the above example, and other three types (N1117, Ni118, i'
h19) was difficult to wire-draw and difficult to reach a diameter of 0°2 mm.

更に他の比較例として組成成分は本発明によるも通電加
熱が本発明の条件によらないもの即ち猶20、N112
!lは通電加熱条件は10以下で歯21゜Nh22は4
5以上のものの4種類を0.2 mm lの線材につく
った。又比較例隘24としてZn量の多い黄銅線の線材
をつくろうとしたがβ相のため伸線が困難であった。
Furthermore, as another comparative example, although the composition is according to the present invention, the current heating is not according to the conditions of the present invention, that is, 20 and N112.
! l is current heating condition is 10 or less, tooth 21°Nh22 is 4
Four types of wires with a rating of 5 or higher were made into 0.2 mm l wire rods. Further, as Comparative Example No. 24, an attempt was made to make a brass wire with a large amount of Zn, but it was difficult to draw the wire due to the β phase.

又従来例として、従来電極線として使用されている65
/35黄銅線と純銅線を0.9 mm lで400°C
×1時間加熱後0.2 mm 96に伸線し、従来例の
電甑線克25及び述26とした。
Also, as a conventional example, 65, which is conventionally used as an electrode wire,
/35 brass wire and pure copper wire at 0.9 mm l at 400°C
After heating for 1 hour, the wires were drawn to 0.2 mm 96 to obtain conventional electric wires 25 and 26.

上述のようにしてつ(られた0、 2 mm lの電極
線を放電加工機に装着して、被加工物として30mm厚
さの5KD−11を第2表に示すような放電加工条件の
もとに直線切断した。
The electrode wire of 0.2 mm l formed as described above was installed in an electrical discharge machine, and a 30 mm thick 5KD-11 workpiece was machined under the electrical discharge machining conditions shown in Table 2. Cut in a straight line.

第2表 加工結果を第1表に併記した。第1表の加工速度比とは
65/35黄銅線猶25の加工速度を100としその比
で表わし、放電安定性は加工速度のばらつきの大きさ、
短絡のし易さなどの総合的評価で、良をOlや一良を△
、不良をXで表わした。
Table 2 Processing results are also listed in Table 1. The machining speed ratio in Table 1 is expressed as the ratio, taking the machining speed of 65/35 brass wire 25 as 100, and the discharge stability is the magnitude of the variation in machining speed,
Comprehensive evaluation of ease of short circuit, etc., rated good as Ol and Kazuki as △
, defects are indicated by an X.

第1表の加工結果によれば、本発明の実施例による気1
〜NcL1′5は、いずれも従来例嵐25及び嵐26に
比べて加工速度は優れ、放電安定性もまさっている。こ
れに対して比較例の述14.洩15は加工速度が劣って
いる。これはZn量が本発明によるよりも少ないので本
発明による通電加熱によってもなお表層部のZn濃度が
十分に高(なり得なかっだからである。隘16は加工速
度は劣っていないが放電安定性は劣っている。これはZ
n量は少くないが添加元素山の1が本発明による量より
も少いから金属酸化物の生成が不充分であったからであ
る。遅17.述18 、遅19は伸線加工が困難だった
ので0.2 mml線材につくらなかった。添加元素の
合計が5チを越えたものであったからである。I’1k
L20及び隘26は加工速度、放電安定性共に優れてい
ない。両者は組成成分は本発明によるも通電加熱条件が
本発明による範囲以下なので通電加熱が不充分となり表
面層への酸化物とZnの拡散析出が不足だったからであ
る。N121,22は加工速度、放電安定性共に著るし
く劣っている。
According to the processing results in Table 1, the temperature 1 according to the embodiment of the present invention is
-NcL1'5 are both superior in machining speed and discharge stability compared to conventional examples Arashi 25 and Arashi 26. In contrast, Comparative Example 14. The machining speed of leak 15 is poor. This is because the Zn content is smaller than that according to the present invention, so even with the current heating according to the present invention, the Zn concentration in the surface layer part cannot be sufficiently high. is inferior.This is Z
This is because, although the amount of n was not small, the amount of one of the added elements was smaller than the amount according to the present invention, so the formation of metal oxide was insufficient. Late 17. 18 and 19 were difficult to draw, so they were not made into 0.2 mm wire rods. This is because the total number of added elements exceeded 5. I'1k
L20 and A26 are not excellent in both machining speed and discharge stability. This is because although the compositions of both were according to the present invention, the current heating conditions were below the range according to the present invention, so the current heating was insufficient and the diffusion and precipitation of oxides and Zn into the surface layer was insufficient. N121 and 22 are significantly inferior in both machining speed and discharge stability.

通電加熱が過剰で脱Zn現象を起したためである。This is because the Zn removal phenomenon occurred due to excessive electrical heating.

表面が赤つぼ(なっていた。The surface had turned into a red pot.

実施例(2) 実施例(1)で0.9 mm gで通電加熱を施したと
ころ迄つ(つた本発明による組成成分の線材のうち5種
類(実施例(1)のl’VkL1.宛4.隘8.隘11
.隘25)を撰んで第1図の通電加熱装置付き連続伸線
機で0.2 mm lに伸線し本発明による通電加熱条
件のもとに加熱した。このようにしてつ(られた実施例
(2)の10種類の電極線(第6表の宛1〜宛10)を
実施例(1)の場合と同じ(放電加工実験を行った。
Example (2) Five types of wire rods having the composition according to the present invention (l'VkL1. 4. No. 8. No. 11
.. 25) was selected and drawn into a wire of 0.2 mm l using a continuous wire drawing machine equipped with an electrical heating device shown in FIG. 1, and heated under the electrical heating conditions according to the present invention. The 10 types of electrode wires (1 to 10 in Table 6) of Example (2) thus produced were subjected to the same electrical discharge machining experiment as in Example (1).

尚比較例として組成成分と0.9 m’lでの通電加熱
共に本発明によったが0.2 mmダでの通電加熱が本
発明によらなかったもの(第3表のl’h11+I’h
12)と、0.2 mm lでの通電加熱は本発明によ
ったが組成成分が本発明によらなかったもの(第6表の
述13.l’%14)と、組成成分は本発明によるが0
.9 mm l 、 0.2 mm 96での通電加熱
が共に本発明によらなかったもの(第6表の隘15)と
、組成成分と0.2 mm lでの通電加熱は本発明に
よるが0、9 mm lでの通電加熱が本発明によらな
かったもの(第6表の嵐16)の計6種@(第6表の隨
11〜NCL16)の0.2 mm lの電極線をつく
り、実施例に準じて加工試験を行った。
As a comparative example, the composition and the current heating at 0.9 m'l were both according to the present invention, but the current heating at 0.2 mm da was not according to the present invention (l'h11+I' in Table 3). h
12), and one in which the electrical heating at 0.2 mm l was according to the present invention, but the compositional components were not according to the present invention (Table 6, 13.l'%14), and the compositional components were according to the present invention. Depends on 0
.. The current heating at 9 mm l and 0.2 mm 96 are both not according to the present invention (box 15 in Table 6), and the composition component and the current heating at 0.2 mm l are according to the present invention but 0. , 0.2 mm l electrode wires of 6 types @ (numbers 11 to NCL16 in Table 6) that were not subjected to electrical heating at 9 mm l according to the present invention (Arashi 16 in Table 6) were made. A processing test was conducted according to the example.

又従来例として、実施例(1)の657s 5黄銅線を
500°Cに加熱した3m長のパイプに線速100即動
で走行させて加熱したものを実施例と同じく放電加工試
験を行った。
Also, as a conventional example, the 657s 5 brass wire of Example (1) was heated to 500°C and heated by running it at a linear speed of 100 instant motion on a 3 m long pipe, and the same electric discharge machining test as in the example was conducted. .

以上の実施例、比較例、従来例の放電加工試験結果を第
3表に併記した。なお通電加熱時の線速は800卯龜、
1000町物、1200rrM−の6条件で行った。第
5表によれば本発明による組成成分を有し、且つその通
電加熱の条件に従って、製造工程中の0.9 mm l
のときと0.2 mm lのときにワイヤを走行させつ
つ通電加熱したもの(実施例嵐・1〜10)の結果は従
来例の宛17に比べて〜1ずれも加工速度放電安定性共
に優れている。即ち2回の通電加熱のうち少くも1回が
本発明による条件に従っていればよかったのである。例
えば猶1は0.9 mm 96時の通電加熱、宛9及び
心10は0.2mm 1時の通電加熱のみ本発明の条件
に従い、他は条件が10以下の範囲外である。なお通電
加熱条件は0.9 mm lと0.2 mm lとの2
回の和ではない。
The electrical discharge machining test results of the above examples, comparative examples, and conventional examples are also listed in Table 3. The linear speed during electrical heating is 800 mm.
The experiment was conducted under 6 conditions: 1000 town products and 1200 rrM-. According to Table 5, according to the composition according to the present invention and according to the conditions of electrical heating, 0.9 mm l during the manufacturing process.
The results obtained when the wire was run and heated with electricity at 0.2 mm l and 0.2 mm l (Example Arashi 1 to 10) showed a difference of ~1 in both machining speed and discharge stability compared to the conventional example 17. Are better. In other words, it is sufficient that at least one of the two electrical heating operations complies with the conditions according to the present invention. For example, No. 1 is 0.9 mm and 96 o'clock energization heating, and 0.2 mm and core 10 are 0.2 mm. Only the energization heating at 1 o'clock conforms to the conditions of the present invention, and the other conditions are outside the range of 10 or less. The current heating conditions are 0.9 mm l and 0.2 mm l.
It's not the sum of times.

例えば猶2はその和は32.5+24.6=57.1で
条件外であるが、その時々の条件即ち第1回目の62.
5と第2回目の24,6とが条件内であればよいのであ
る。
For example, the sum of 2 times is 32.5 + 24.6 = 57.1, which is outside the condition, but the condition at the time is 62.
5 and the second 24 and 6 are within the conditions.

比較例の隘11とN12とは0.2 +nm 1時の、
述16はo、 9 mm 96時の通電加熱がいずれも
条件外の過剰であったために脱Znを生じ加工速度、放
電安定性共に著るしく低下していた。即ち1回でも条件
が45を越えて範囲外の通電加熱をしたときは他の通電
加熱は条件内であっても放電加工結果は低下する。然し
10以下のものは他の通電加熱で10以上にしてやれば
良い。又Nl113は放電安定性は良いが加工速度が従
来例述17に比べて梢劣っている。組成成分のZn量が
本発明によるものより少ないからである。NcL14と
NQ 15とは放電安定性が良(ない。前者は黄銅への
添加元素慟の量が本発明による量よりも少なかったから
であり、後者は通電加熱条件が0.9 mmO、0,2
mmgのときの2回共に本発明の条件外にあったからで
ある。
Comparative example No. 11 and N12 are 0.2 + nm 1 o'clock,
In the case of Example 16, since the electrical heating at the time of 0 and 9 mm 96 was excessive beyond the conditions, Zn removal occurred and both the machining speed and discharge stability were significantly reduced. That is, if the condition exceeds 45 and current heating is performed outside the range even once, the electrical discharge machining result will deteriorate even if other current heating conditions are within the range. However, if the value is less than 10, it may be made to be more than 10 by other electrical heating. Further, although Nl113 has good discharge stability, the machining speed is inferior to that of conventional example No. 17. This is because the amount of Zn in the composition is smaller than that according to the present invention. NcL14 and NQ15 have good discharge stability.The former is because the amount of added element to the brass was smaller than the amount according to the present invention, and the latter has electric heating conditions of 0.9 mmO, 0.2
This is because both times when using mmg were outside the conditions of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電極線を製造できる連続伸線付き
通電加熱装置の概要図である。 第2図は電極線の表面から深さによるCu 、 Zn 
。 各添加元素の濃度の変化を示す図である。 1:サプライ    2:ワイヤ 6:伸線機     4:通電加熱装置5:ワイヤ  
   6:スプラー 7:予熱ゾーン   8:加熱ゾーン 9:冷却ゾーン 〔効果〕 上述したように、本発明によれば、放電加工に実質的に
寄与する電極線の表面層のか濃度を高めて加工速度を向
上でき、AI 、 Ga 、 Mn 、 Crなどの酸
化物の表面への析出により安定した放電と短絡防止が可
能となり、工業的な規模で能率的に生産できワイヤ放電
加工業界に寄与するところ大である。 第2図
FIG. 1 is a schematic diagram of an electrical heating device with continuous wire drawing capable of manufacturing electrode wires according to the present invention. Figure 2 shows the relationship between Cu and Zn depending on the depth from the surface of the electrode wire.
. FIG. 3 is a diagram showing changes in the concentration of each additive element. 1: Supply 2: Wire 6: Wire drawing machine 4: Current heating device 5: Wire
6: Sprayer 7: Preheating zone 8: Heating zone 9: Cooling zone [Effect] As described above, according to the present invention, the machining speed is increased by increasing the concentration of the surface layer of the electrode wire that substantially contributes to electrical discharge machining. The precipitation of oxides such as AI, Ga, Mn, and Cr on the surface enables stable discharge and prevention of short circuits, which can be efficiently produced on an industrial scale and greatly contributes to the wire electrical discharge machining industry. be. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)組成成分がZn20〜40wt%と、Al、Ga
、Cr、Mnの中から1種又は2種以上を合計で0.1
〜5.0wt%と、残部Cu及び不可避な不純分からな
るワイヤ放電加工用電極線。
(1) Composition of Zn20-40wt%, Al, Ga
, Cr, and Mn, with a total of 0.1 of one or two or more of them.
An electrode wire for wire electrical discharge machining consisting of ~5.0 wt%, the remainder being Cu and unavoidable impurities.
(2)上記の組成成分を有する線材の製造工程に於いて
、線材を走行させつつ、ΣI_kV_k/D^2Sが4
5を越えない範囲で、少なくとも1回以上下式の条件で
通電加熱することを特徴とするワイヤ放電加工用電極線
の製造方法。 10≦(ΣI_kV_k)/D^2S 但しI_k:各加熱ゾーンでの通電電流(アンペア)V
_k:各加熱ゾーンでの印加電圧(ボルト)D:線径(
mm) S:線速(m/mm)
(2) In the manufacturing process of the wire rod having the above composition, while running the wire rod, ΣI_kV_k/D^2S is 4
A method for producing an electrode wire for wire electrical discharge machining, characterized by carrying out electrical heating at least once under the conditions of the following formula within a range not exceeding 5. 10≦(ΣI_kV_k)/D^2S However, I_k: Current flowing in each heating zone (ampere) V
_k: Applied voltage (volts) in each heating zone D: Wire diameter (
mm) S: Linear speed (m/mm)
JP60223794A 1985-10-09 1985-10-09 Method for manufacturing electrode wire for wire electric discharge machining Expired - Fee Related JPH0724977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60223794A JPH0724977B2 (en) 1985-10-09 1985-10-09 Method for manufacturing electrode wire for wire electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223794A JPH0724977B2 (en) 1985-10-09 1985-10-09 Method for manufacturing electrode wire for wire electric discharge machining

Publications (2)

Publication Number Publication Date
JPS6284924A true JPS6284924A (en) 1987-04-18
JPH0724977B2 JPH0724977B2 (en) 1995-03-22

Family

ID=16803818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223794A Expired - Fee Related JPH0724977B2 (en) 1985-10-09 1985-10-09 Method for manufacturing electrode wire for wire electric discharge machining

Country Status (1)

Country Link
JP (1) JPH0724977B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176707A (en) * 1994-12-27 1996-07-09 Sumitomo Electric Ind Ltd Electrode wire for wire electric discharge machining
WO2009136552A1 (en) * 2008-05-07 2009-11-12 独立行政法人科学技術振興機構 Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
KR101041358B1 (en) 2008-10-16 2011-06-14 주식회사 풍국 Manufacturing method of Brass wire for electrical discharge machining

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785948A (en) * 1980-11-14 1982-05-28 Furukawa Electric Co Ltd:The Electrode wire for wire-cut electric spark machining
JPS59159955A (en) * 1983-03-02 1984-09-10 Furukawa Electric Co Ltd:The Electrode wire for wire electric spark machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785948A (en) * 1980-11-14 1982-05-28 Furukawa Electric Co Ltd:The Electrode wire for wire-cut electric spark machining
JPS59159955A (en) * 1983-03-02 1984-09-10 Furukawa Electric Co Ltd:The Electrode wire for wire electric spark machining

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176707A (en) * 1994-12-27 1996-07-09 Sumitomo Electric Ind Ltd Electrode wire for wire electric discharge machining
WO2009136552A1 (en) * 2008-05-07 2009-11-12 独立行政法人科学技術振興機構 Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
JP5376604B2 (en) * 2008-05-07 2013-12-25 独立行政法人科学技術振興機構 Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof
KR101041358B1 (en) 2008-10-16 2011-06-14 주식회사 풍국 Manufacturing method of Brass wire for electrical discharge machining

Also Published As

Publication number Publication date
JPH0724977B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
CN100469923C (en) High temperature copper alloy for lead frame and its making process
CN100425717C (en) Copper alloy for lead-wire frame and its production
JP2501275B2 (en) Copper alloy with both conductivity and strength
JPH01127228A (en) Manufacture of electric discharge machining electrode and electric discharge machining electrode
CN101439429B (en) Electrode wire for slow-travel wire spark erosion fabrication and preparation method thereof
JPS6284924A (en) Electrode wire and its manufacture wire electric discharge machining
JPS6143418B2 (en)
CN111394606B (en) Gold-based high-resistance alloy, alloy material and preparation method thereof
KR20000059365A (en) Cu-Zn-Al, Sr, Ti, B alloys for EDM(Energy Discharge Machine) wire and its manufacturing method
CN102978431B (en) Method for manufacturing copper-iron alloy used for lead frame
JPS6366892B2 (en)
JP3521511B2 (en) Trolley wire
KR100537693B1 (en) Fe- base heat-resistant alloy having improved the high temperature oxidation resistance and the method of making the same
JPS62158839A (en) Silver-oxide type contact point material
JP7120389B1 (en) Copper alloy plastic working materials, copper alloy wire rods, parts for electronic and electrical equipment, terminals
CN102978430B (en) Method for manufacturing lead frame
JPS62158838A (en) Silver-oxide type contact point material
JPS5916947A (en) Manufacture of thin amorphous alloy strip useful as iron core
CN102983081B (en) Manufacturing method of semiconductor device composed of integrated circuit
CN102983082B (en) Method of manufacturing integrated circuit
CN102978432B (en) Lead support used for semiconductor devices
KR20230031229A (en) Copper alloy plastic processed materials, copper alloy wire rods, parts for electronic and electrical devices, terminals
CN116926435A (en) Free-cutting low-expansion alloy and production method thereof
JPH01263238A (en) High strength and high electric conductive copper alloy
JPH02179857A (en) Electrode wire for wire electric discharge machining

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees