JPS62158838A - Silver-oxide type contact point material - Google Patents
Silver-oxide type contact point materialInfo
- Publication number
- JPS62158838A JPS62158838A JP60297852A JP29785285A JPS62158838A JP S62158838 A JPS62158838 A JP S62158838A JP 60297852 A JP60297852 A JP 60297852A JP 29785285 A JP29785285 A JP 29785285A JP S62158838 A JPS62158838 A JP S62158838A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- weight
- silver
- oxides
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
- H01H1/02372—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Contacts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は八gを主成分とし、その中に全屈酸化物を分散
した銀−酸化物系の接点材料に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a silver-oxide contact material containing 8g as a main component and having a total bending oxide dispersed therein.
(従来の技術)
従来、電気接点材料としては、いろいろなものが用いら
れているが、とりわけAg−Cdota点が広く使用さ
れている。(Prior Art) Conventionally, various materials have been used as electrical contact materials, but Ag-Cdota is particularly widely used.
AgにCdOをlθ%程度分散させた接点は、耐溶着性
、耐アーク性、耐消耗性、接触安定性などの諸種点特性
が優れているため各種スイッチ、コンタクタ−、ブレー
カ−など小から大電流領域まで広く用いられている。Contacts made by dispersing CdO in Ag at about lθ% have excellent properties such as welding resistance, arc resistance, wear resistance, and contact stability, so they are used in various switches, contactors, breakers, etc. from small to large. It is widely used up to the current range.
Ag−’ トIJンクスにCdOを分散させることレキ
、接点表面の清浄作用や溶着力の軽減などの電気的諸特
性を改善するものとして確かに効果的である。Dispersing CdO in Ag-' contacts is certainly effective in improving various electrical properties such as cleaning the contact surface and reducing welding force.
しかしこのような効果を充分果してさたのは特に交流回
路であり、極性の変化しない直流回路で使用したときは
一方の極から他方の極へ転移が起こり易くなり接触状態
が非常に不安定になる。However, this effect is particularly effective in AC circuits, and when used in DC circuits where the polarity does not change, transition from one pole to the other tends to occur, making the contact state extremely unstable. Become.
また、近時各産業分野における合理化、自動化は目覚ま
しい発達を遂げているが、これに伴ない装置に大型化、
複雑化する傾向にある一方、これら装この制御系はむし
ろ高い精密度を要求されるため、急速に電子化制御に移
行している。In addition, in recent years, rationalization and automation in various industrial fields have made remarkable progress, but as a result, equipment has become larger and larger.
While these devices tend to become more complex, control systems for these devices require high precision, so they are rapidly transitioning to electronic control.
電気回路の断続において、電子化された正確な制御番↓
制御角が一定となり、接点のONの時期とOFFの時期
がずれることなく常に一定の状態にコントロールされる
こととなり、この結東接点開閉時には疑似的な直流現象
が起こることにより、一方の極へから他方の極へ接点材
質が層状に維持し始め、接触安定性が著しく損なわれ、
時間の経過とともにその堆積物が欠落し急激な接点消耗
へと発展することとなる。Accurate computerized control number for disconnecting electrical circuits↓
The control angle becomes constant, and the ON timing and OFF timing of the contact are always controlled in a constant state without any deviation, and when this east contact opens and closes, a pseudo DC phenomenon occurs, so that the current flows to one pole. The contact material begins to maintain a layered structure from one pole to the other, significantly impairing contact stability.
As time passes, the deposits are lost, leading to rapid contact wear.
そこで、木顧人は、思考基盤は、′Fシ気接点の表面の
清浄作用やアークに対する諸現象、たとえば消弧作用な
どが添加する酸化物の物性特にその蒸気圧の温度特性に
最も関係が深いとする考え方に基づいて既に次のような
研究をすすめてきている。Therefore, Mokuto believed that the cleaning effect on the surface of the contact point and various phenomena against the arc, such as the arc-extinguishing effect, were most closely related to the physical properties of the added oxide, especially the temperature characteristics of its vapor pressure. Based on this deep idea, we have already conducted the following research.
即ち、当該蒸気圧に関し、約500〜1,500℃の温
度範囲でCdOの蒸気圧より高いSd酸化物に着目し、
これをAg中に分散させることによりAg−Cd0系の
ものと同等以上の接点表面清浄作用が発揮し得たことは
、特願昭48−61188(特公昭53−5863)に
明示の如く確認され、更にZn、Cu、Mn、Sn酸化
物を分散させた系においても特願昭48−120317
(特公昭55−8091 )で特に耐アーク消耗性、
耐溶着性に効果的なことを確認している。That is, with regard to the vapor pressure, focusing on Sd oxide, which has a vapor pressure higher than that of CdO in the temperature range of about 500 to 1,500°C,
It was confirmed in Japanese Patent Application No. 48-61188 (Japanese Patent Publication No. 53-5863) that by dispersing this in Ag, a contact surface cleaning effect equivalent to or better than that of the Ag-Cd0 system was achieved. Furthermore, in a system in which Zn, Cu, Mn, and Sn oxides are dispersed, Japanese Patent Application No. 120317/1986
(Special Publication No. 55-8091), especially arc wear resistance,
It has been confirmed that it is effective in improving welding resistance.
ところがこのAgにSb酸化物あるいはSb酸化物とZ
n、Cu、Mn、Sn 酸化物を分散させた電気接点材
料について種々な回路条件で試験を行ったところ前述の
ようなある条件下で接点を開閉するとどちらか一方の極
に接点材料が堆積し始め、その堆積物にアークが集中し
て異常消耗に発展することがわかった。However, this Ag contains Sb oxide or Sb oxide and Z.
Tests were conducted on electrical contact materials in which n, Cu, Mn, and Sn oxides were dispersed under various circuit conditions. As mentioned above, when the contacts were opened and closed under certain conditions, the contact material was deposited on one of the poles. Initially, it was found that arcs were concentrated in the deposits, leading to abnormal consumption.
(発明が解決しようとする問題点) そこで、上記の異常消耗につき、その原因を追求した。(Problem to be solved by the invention) Therefore, we investigated the cause of the abnormal wear and tear mentioned above.
ここで、通常電気接点を開閉すると、接点間には檄しい
アークが発生し、接点表面はかなりの高温にさらされる
。When electrical contacts are normally opened and closed, a dangerous arc is generated between the contacts, and the contact surfaces are exposed to considerably high temperatures.
このとき接点表面が、接点特性に有効な成分が逸散して
消耗するのであり、この際失われた効果的な成分が接点
内部から表層部へ間断なく補われるのが理想的な接点材
料といえる。At this time, the contact surface wears out as the effective components for the contact characteristics dissipate, and the ideal contact material is such that the effective components lost at this time are continuously replenished from the inside of the contact to the surface layer. I can say that.
ところで、前掲のAgAg−5b−Zn−Cu−系つい
ては、この効果的成分が順調に供給されないため前述の
ような現象が起こったものと考えられる。By the way, with respect to the AgAg-5b-Zn-Cu system mentioned above, it is thought that the above-mentioned phenomenon occurred because this effective component was not supplied smoothly.
これらについて詳細な検討を進めた結果接点内部から表
層への順調な有効成分の供給力はアークによる表層成分
の揮発によって促がされる・t!、に着目し酸化物のノ
入気圧と深い関係があると推定した。After conducting detailed studies on these issues, we found that the smooth supply of active ingredients from the inside of the contact to the surface layer is facilitated by the volatilization of the surface layer components due to the arc. , and estimated that there is a deep relationship with the inlet pressure of oxides.
そこでs+4化物のノ入気圧を基やとし、それより高い
蒸気圧を右する各種酸化物とSb酸化物とを共存した系
で実験を繰り返した結果、AgにSbとZn、C:u、
Mnの内一種と丁eの酸化物とを複合添加することによ
って有効成分の表層への供給が順調になり層状堆積防1
[に極めて大きい効果があることを見い出したものであ
り、本願第1の発明は、このようにすることで、トp々
な回路条件に適合し、しかも層状の堆積物や欠落などに
よる異常な消耗のない電気接点材料を提供しようとする
ものであり、第2発明では、さらに過当なFe、Ni
、Co酸化物を一種以上添加することで、さらにその特
性の向上を意図したものである。Therefore, based on the input pressure of the s+4 compound, we repeated experiments in a system in which Sb oxide and various oxides that have a higher vapor pressure coexisted.
By adding a combination of one of Mn and an oxide of Dye, the supply of effective ingredients to the surface layer is smooth and prevents layered deposition.
The first invention of the present application is adapted to various circuit conditions and also prevents abnormalities caused by layered deposits or missing parts. The second invention aims to provide an electrical contact material that does not wear out.
By adding one or more types of , Co oxides, it is intended to further improve the properties.
(問題点を解決するための手段)
本発明は上記の目的を達成するために、第1の発明では
、銀を主成分とし、これに金属成分が0.1〜6.2重
量%となるSb酸化物と、金属成分か0.05〜5重量
%となるCu、Zn、Mllの酸化物一種以上と更に金
属成分が0.01〜2重呈%Te@化物とが分散されて
いることを特徴とする銀−酸化物系の接点材料を提供し
ようとしており、さらに第2発【!1では、上記第1発
明に、0.01〜0.5重量%となるFe、Ni、Co
酸化物の一種以上をも分散させるようにしたことを特徴
とする銀−酸化物系の接点材料を提供しようとしている
。(Means for Solving the Problems) In order to achieve the above object, the present invention has a first invention in which silver is the main component, and the metal component is 0.1 to 6.2% by weight. Sb oxide, one or more oxides of Cu, Zn, Mll with a metal component of 0.05 to 5% by weight, and a Te@ oxide with a metal component of 0.01 to 2% by weight are dispersed. We are trying to provide a silver-oxide contact material that is characterized by In No. 1, Fe, Ni, Co, which is 0.01 to 0.5% by weight, is added to the first invention.
An object of the present invention is to provide a silver-oxide contact material characterized in that one or more types of oxides are also dispersed therein.
(実施例)
7に発明奢後記具体例を示して、さらに詳記すると、先
づこのような電気接点材料を製造するには既知のように
、焼結法によっても内部酸化υ:によってもよいが、溶
製内部酸化法ではSbとTeおよびSnを添加したAg
合金を酸化雰囲気中で高温に保持してその表面より酸素
を侵入させ、Sb、 Cu、Zn、 Mn、 Teその
他の元素を選択的に酸化するものであり、長時間該酸化
を続けることによりAgマトリックス中に当該酸化物を
分散せしめて電気接点材料を製するものである。(Example) 7 shows a specific example of the invention after the invention, and to explain in more detail, first of all, in order to manufacture such an electrical contact material, it is possible to use a sintering method or an internal oxidation process, as is known. However, in the melt internal oxidation method, Ag added with Sb, Te, and Sn
The alloy is held at high temperature in an oxidizing atmosphere to allow oxygen to penetrate from its surface to selectively oxidize Sb, Cu, Zn, Mn, Te, and other elements. By continuing the oxidation for a long time, Ag An electrical contact material is produced by dispersing the oxide in a matrix.
ここで、AgへのSbとTeとZn−Gu−Mnの添加
量の上限を夫々6.2重量%と2重量%および5重量%
に限定しなければならない理由は、 Ag−Sb合金の
α固溶体におけるSbの最大固溶限が、300℃で6.
2重量%であり、この添加量を超過するSbを添加した
場合には著しく加工性を阻害することとなり、量産的加
工が不能となるからでありAgに対し、Zr+−Cu−
にnの一種または二種以上の添加は30%程度の量でも
充分可能だが、上記の通り既にAgに最大6.2重量%
のSbを含んだ合金系に更にZn−Cu−Mnを添加す
る場合であると、Agへの固溶度が急に減少すると共に
一種または二種以上5重量%を越た添加であると展延性
が著しく低下し、所望形状までの加工が極めて困難とな
るからである。Here, the upper limits of the amounts of Sb, Te, and Zn-Gu-Mn added to Ag are 6.2% by weight, 2% by weight, and 5% by weight, respectively.
The reason why it must be limited to is that the maximum solid solubility limit of Sb in the alpha solid solution of Ag-Sb alloy is 6.
2% by weight, and if Sb is added in excess of this amount, the processability will be significantly inhibited, making mass production processing impossible.
It is possible to add one or more types of n to Ag in an amount of about 30%, but as mentioned above, a maximum of 6.2% by weight is already added to Ag.
When Zn-Cu-Mn is further added to the Sb-containing alloy system, the solid solubility in Ag suddenly decreases, and the addition of one or more of them in excess of 5% by weight will develop. This is because the ductility decreases significantly, making it extremely difficult to process it into a desired shape.
またTeの上限を上記の如く2重量%に限定した理由は
、TeのAgに対する溶解度が低いことに加え、これ以
上の添加では塑性加工が極めて困難なためである。Further, the reason why the upper limit of Te is limited to 2% by weight as described above is that, in addition to the low solubility of Te in Ag, adding more than this makes plastic working extremely difficult.
一方、Sb、丁e、Zn、Cu、llr+の添加量が夫
々0.1重量%、0.01重量%、0.05重量%未溝
の場合は後述する添加効果が得られない。On the other hand, when the amounts of Sb, Zn, Cu, and llr+ are 0.1% by weight, 0.01% by weight, and 0.05% by weight, respectively, the effects of addition described below cannot be obtained.
次に第2発明においてFe族元素の添加9を0.01〜
O−5重量%に限定した理由は、Agに対するFe族元
素の固溶度が0.5重量%を超えると急激に減少するた
めAgマトリック中に偏在、偏析して加工性を阻害し0
.01重量%未溝の添加では内部酸化組織の調整に対す
る効果が低いためである。Next, in the second invention, the addition 9 of Fe group elements is from 0.01 to
The reason for limiting the content to O-5% by weight is that when the solid solubility of Fe group elements in Ag exceeds 0.5% by weight, it rapidly decreases.
.. This is because the addition of 0.1% by weight of ungrooved steel has a low effect on adjusting the internal oxidation structure.
ここで具体例を示せば、99.5重与:%以上の純度を
有するSb、Te、Zn、Cu、MnおよびFe、Ni
、Coを原料とし下記(表)に示す組成合金を次の工
程で製作した。Here, specific examples include Sb, Te, Zn, Cu, Mn, Fe, and Ni having a purity of 99.5% or more.
, Co was used as a raw material and an alloy with the composition shown in the table below was manufactured in the following steps.
高周波誘導溶解炉で、溶解、鋳造したインゴットを熱間
鍛造表面切削後、その−面にAg板を熱圧着して、ろう
行用のAg層を形成する。An ingot that has been melted and cast in a high-frequency induction melting furnace is hot-forged to have its surface cut, and then an Ag plate is thermocompression bonded to the negative surface to form an Ag layer for soldering.
次に当該素材を冷間圧延して厚さ2ffi冨の板にした
後直径8+*mの円盤状に打抜き、これを720℃の酸
化雰囲気中でSb 、 Te 、およびFe、Ni 、
Coを内部酸化して夫々本発明合金((A)(B) )
を得た。Next, the material was cold-rolled into a plate with a thickness of 2ffi, punched into a disk shape with a diameter of 8+*m, and then processed with Sb, Te, Fe, Ni,
By internally oxidizing Co, the alloys of the present invention ((A) and (B)) were prepared.
I got it.
比較のためAg−10重量%Cd 、Ag−2Sb−I
Cu−ISn各重量%Ag−2重量%Te合金をつくり
実験に供した。For comparison, Ag-10wt%Cd, Ag-2Sb-I
Cu-ISn, Ag-2% by weight Te alloys were prepared and used for experiments.
接点試験は、接触抵抗とアーク消耗量および層状堆積の
傾向について、夫々ASTM接点試験機(AC200V
、50A) ドア −り消耗試験機(AC200V、l
0A)オよび重板スイッチによる実機テスl−(AC2
00V、35A)を行って評価したその結果が別表であ
る。Contact tests were conducted using an ASTM contact testing machine (AC200V) for contact resistance, arc consumption, and layered deposition tendency, respectively.
, 50A) Door wear tester (AC200V, l
0A) Actual machine test using O and heavy board switch l-(AC2
00V, 35A) and the evaluation results are shown in the attached table.
(発明の効果)
別表に示される如く、Ag−10Gdの層状堆積物1.
05mm:’ 、Ag−3Sd−2Sn0.82n+m
j、Ag−2Te1.85+++m3 に対し、本発明
になる(A) (B)合金は何れも0.1mm3以下の
極〈微小であり、SbとTeの複合添加が極めて効果的
であることを弘している。(Effect of the invention) As shown in the attached table, layered deposits of Ag-10Gd 1.
05mm:', Ag-3Sd-2Sn0.82n+m
j, Ag-2Te1.85+++m3, the alloys (A) and (B) according to the present invention are extremely small (less than 0.1 mm3), and it has been shown that the combined addition of Sb and Te is extremely effective. are doing.
しかし、これはAgに対するSbとTeの複合添加が条
件であり、Te酸化物のみの添加では層状堆積物防止に
対する効果が著しく低いことを念のため述べておく。However, this requires the combined addition of Sb and Te to Ag, and it should be noted that the addition of only Te oxide is extremely ineffective in preventing layered deposits.
また、アーク消耗量についても、本発明合金は何れも低
く、アークに対する1耐消耗性即ち消弧特性にも効果的
に作用している。In addition, all of the alloys of the present invention have a low amount of arc wear, and have an effective effect on arc wear resistance, that is, arc extinguishing properties.
さらに、第■族元素のFe、Ni、(:aの一種または
二種以上の添加は、Agマトリックス中に析出するSb
とTeの酸化物とZn、Cu、Nn酸化物の一種以上を
均一に分散せしむると共に結晶粒をa、m化する効果が
ある。Furthermore, the addition of one or more of the group Ⅰ elements Fe, Ni, and
This has the effect of uniformly dispersing the oxides of Te and one or more of the oxides of Zn, Cu, and Nn, and making the crystal grains a and m.
Claims (2)
2重量%となるSb酸化物と、金属成分が0.05〜5
重量%となるCu、Zn、Mnの酸化物一種以上と更に
金属成分が0.01〜2重量%Te酸化物とが分散され
ていることを特徴とする銀−酸化物系の接点材料。(1) The main component is silver, and the metal component is 0.1 to 6.
2% by weight of Sb oxide and 0.05 to 5% of the metal component.
A silver-oxide contact material characterized in that at least one oxide of Cu, Zn, or Mn is dispersed in the amount of 0.01 to 2% by weight of Te oxide as a metal component.
2重量%となるSb酸化物と、金属成分が0.05〜5
重量%となるCu、Zn、Mnの酸化物一種以上と、金
属成分が0.01〜2重量%Te酸化物と、さらに金属
成分として0.01〜0.5重量%となるFe、Ni、
Co酸化物の一種以上とが分散されていることを特徴と
する銀−酸化物系の接点材料。(2) The main component is silver, and the metal component is 0.1 to 6.
2% by weight of Sb oxide and 0.05 to 5% of the metal component.
One or more oxides of Cu, Zn, Mn as a weight%, Te oxide as a metal component of 0.01 to 2% by weight, Fe, Ni, as a metal component of 0.01 to 0.5% by weight,
A silver-oxide contact material characterized in that at least one type of Co oxide is dispersed therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60297852A JPS62158838A (en) | 1985-12-30 | 1985-12-30 | Silver-oxide type contact point material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60297852A JPS62158838A (en) | 1985-12-30 | 1985-12-30 | Silver-oxide type contact point material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62158838A true JPS62158838A (en) | 1987-07-14 |
JPH0463137B2 JPH0463137B2 (en) | 1992-10-08 |
Family
ID=17851983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60297852A Granted JPS62158838A (en) | 1985-12-30 | 1985-12-30 | Silver-oxide type contact point material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62158838A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03219032A (en) * | 1990-01-22 | 1991-09-26 | Tokuriki Honten Co Ltd | Contact material of silver-oxides series |
CN105728714A (en) * | 2014-12-12 | 2016-07-06 | 施耐德电气工业公司 | Preparation method of silver-metal oxide electrical contact materials as well as device and application thereof |
CN105798319A (en) * | 2014-12-31 | 2016-07-27 | 施耐德电气工业公司 | Preparation method and device for silver-tungsten electrical contact material as well as electrical contact material and electrical contact |
CN112805415A (en) * | 2018-10-03 | 2021-05-14 | 朗姆研究公司 | Apparatus for inert anode plating tank |
-
1985
- 1985-12-30 JP JP60297852A patent/JPS62158838A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03219032A (en) * | 1990-01-22 | 1991-09-26 | Tokuriki Honten Co Ltd | Contact material of silver-oxides series |
CN105728714A (en) * | 2014-12-12 | 2016-07-06 | 施耐德电气工业公司 | Preparation method of silver-metal oxide electrical contact materials as well as device and application thereof |
CN105728714B (en) * | 2014-12-12 | 2018-12-04 | 施耐德电气工业公司 | Preparation method, device and the application of silver-metallic oxide electrical contact material |
CN105798319A (en) * | 2014-12-31 | 2016-07-27 | 施耐德电气工业公司 | Preparation method and device for silver-tungsten electrical contact material as well as electrical contact material and electrical contact |
CN112805415A (en) * | 2018-10-03 | 2021-05-14 | 朗姆研究公司 | Apparatus for inert anode plating tank |
Also Published As
Publication number | Publication date |
---|---|
JPH0463137B2 (en) | 1992-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62158838A (en) | Silver-oxide type contact point material | |
JPS62158839A (en) | Silver-oxide type contact point material | |
CN102304640A (en) | Silver-base rare-earth alloy material and preparation method and application thereof | |
US2161574A (en) | Silver alloy | |
JP4947850B2 (en) | Method for producing Ag-oxide based electrical contact material | |
JPS6369934A (en) | Cupprous metal alloy especially suitable for constitution of electronic parts | |
JPH03219031A (en) | Contact material of silver-oxides series | |
JPH03215638A (en) | Silver-oxides series contact material | |
JPH03219032A (en) | Contact material of silver-oxides series | |
JPH03215637A (en) | Contact material of oxide series | |
JPH03215639A (en) | Silver-oxides series contact material | |
JPH03215640A (en) | Silver-oxides series contact material | |
JPS62151537A (en) | Contact point material of silver oxide series | |
JPS6128733B2 (en) | ||
JPS62151536A (en) | Contact point material of silver oxide series | |
US2944892A (en) | Silver alloys | |
JPH03215641A (en) | Silver-oxides series contact material | |
JPH01165733A (en) | High strength and high electric conductive copper alloy | |
JPH10177821A (en) | Electric contact and its manufacture | |
US2142673A (en) | Brazing solder | |
JPS62130128A (en) | Electrode wire for wire cut electric discharge machining | |
JPS6284924A (en) | Electrode wire and its manufacture wire electric discharge machining | |
JPH04210438A (en) | Continuous casting mold material made of high strength cu alloy | |
JP2511019B2 (en) | Contact material for vacuum valve | |
JPH04285137A (en) | Spring constituted of beryllium copper alloy and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |