JPH10177821A - Electric contact and its manufacture - Google Patents

Electric contact and its manufacture

Info

Publication number
JPH10177821A
JPH10177821A JP33936596A JP33936596A JPH10177821A JP H10177821 A JPH10177821 A JP H10177821A JP 33936596 A JP33936596 A JP 33936596A JP 33936596 A JP33936596 A JP 33936596A JP H10177821 A JPH10177821 A JP H10177821A
Authority
JP
Japan
Prior art keywords
less
layer
contact
surface layer
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33936596A
Other languages
Japanese (ja)
Inventor
Noboru Uenishi
昇 上西
Chihiro Takada
千尋 高田
Akinori Kobayashi
晄▲徳▼ 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33936596A priority Critical patent/JPH10177821A/en
Publication of JPH10177821A publication Critical patent/JPH10177821A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electric contact used for distribution circuit breaker rated at 10A or more or used for a leakage circuit breaker etc. SOLUTION: Within the range from 8μm to 80μm of an electric contact surface 5, a surface layer 1 is composed of a 0% to 6% cadmium(Cd), a 0.1% to 1.5% tin(Sn), a 0.15% to 1.2% nickel(Ni), and a less than 0.2% silver alloy for rest impure elements, while its inside of surface layer 1 is composed of a 14% to 19% cadmium(Cd), a 0.3% to 1.5% tin(Su,) a 0.22% to 1.2% nickel(Ni), and a less than 0.2% silver alloy for rest impure elements, which constitutes an inner layer 2, which has a double layer structure composed of the surface layer 1 and inner layer 2, and is desirable to have the micro Vicker's hardness with 45mHv to 125mHv for both surface layer 1 and inner layer 2. It is possible to produce the electric contact by the molding method of spraying the surface layer 1 or the molding method of and inner layer 2. It is possible to produce the electric contact by the molding method of sprying the surface layer 1 or evaporating the target material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、配電用遮断器,
漏電遮断器などに用いる電気接点に関する。
The present invention relates to a circuit breaker for power distribution,
The present invention relates to an electric contact used for an earth leakage breaker or the like.

【0002】[0002]

【従来の技術】一般に配電用遮断器、ノーヒューズブレ
ーカー、漏電遮断器、サーキットプロテクターや安全ブ
レーカーその他分電盤に用いられるブレーカー(以降こ
れらをまとめて単にブレ−カ−と言う)には電気接点が
使用されている。これらブレーカー用の電気接点として
は、Ag合金が広く使われている。このAg合金はAg
中にIn酸化物、Sn酸化物、Cd酸化物、Bi酸化
物、Co酸化物、Ni酸化物、Sb酸化物、Ca酸化物
などが分散した酸化物分散強化型合金であるのが普通で
ある。
2. Description of the Related Art In general, electrical contacts are provided for power distribution circuit breakers, no-fuse breakers, earth leakage breakers, circuit protectors, safety breakers, and other breakers used for distribution boards (hereinafter collectively referred to simply as breakers). Is used. Ag alloys are widely used as electrical contacts for these breakers. This Ag alloy is Ag
It is usually an oxide dispersion strengthened alloy in which In oxide, Sn oxide, Cd oxide, Bi oxide, Co oxide, Ni oxide, Sb oxide, Ca oxide and the like are dispersed. .

【0003】この電気接点に要求される特性としては、
耐溶着性、初期温度特性、過負荷試験後の温度特
性、耐久試験後の温度特性、遮断試験後の絶縁特性
などがある。ところがこれら特性の内で、いくつかは互
いに相反する特性の関係にある。例えば温度特性と耐溶
着特性とは互いにトレードオフの関係にあり、このため
温度特性を改善するには、耐溶着特性を犠牲にせねばな
らない。
[0003] The characteristics required of this electrical contact include:
There are welding resistance, initial temperature characteristics, temperature characteristics after an overload test, temperature characteristics after a durability test, insulation characteristics after a cutoff test, and the like. However, some of these characteristics have mutually opposite characteristics. For example, there is a trade-off relationship between the temperature characteristic and the welding resistance, and therefore, in order to improve the temperature characteristic, the welding resistance must be sacrificed.

【0004】これまでの電気接点は、これら全ての要求
特性について十分に満足する接点を選び出すことは上記
のトレードオフの関係上、不可能であった。
Until now, it has been impossible to select a contact that sufficiently satisfies all of these required characteristics due to the above trade-off.

【0005】なかでも、定格電流が200A用、400
A用を中心とした、100A以上のブレーカー用接点と
しては、温度特性(特に初期温度特性と過負荷試験後の
温度特性)と耐溶着特性の両立が困難であった。例えば
耐溶着特性が良くても、初期温度性能が悪くなり、初期
温度(低いほど良い)は高い値を示すか又は良い場合と
悪い場合が不定期に起こるいわゆるバラツキの大きい状
態になる事が多かった。
[0005] Above all, the rated current is 200 A, 400 A
For a breaker contact of 100 A or more, mainly for A, it was difficult to achieve both temperature characteristics (particularly initial temperature characteristics and temperature characteristics after an overload test) and welding resistance. For example, even if the welding resistance is good, the initial temperature performance is deteriorated, and the initial temperature (the lower the better) shows a high value, or the state where the good and bad cases occur irregularly occurs in a so-called large variation state. Was.

【0006】なお、特開昭62−97213号公報、特
開昭58−189913号公報等には、上、下に積層さ
れた2層構造の電気接点が開示されている。導電性の良
い材料と硬度の高い材料とによる2層構造、あるいは耐
消耗性と耐溶着性を有する導電体とアークの切れが良好
な導電体とによる2層構造を扱っている。
Japanese Unexamined Patent Publication Nos. 62-97213 and 58-189913 disclose an electric contact having a two-layer structure which is laminated on top and bottom. A two-layer structure composed of a material having good conductivity and a material having high hardness, or a two-layer structure composed of a conductor having wear resistance and welding resistance and a conductor having good arc breaking is handled.

【0007】[0007]

【発明が解決しようとする課題】前記〜の接点特性
のうちで、いくつかは互いに相反する特性の関係にあ
り、その全ての特性について良好な特性を合わせ持つ電
気接点を開発することは困難であった。特に本願がその
用途上使用することを推奨する定格電流が100A以
上、特に225A,400Aのブレーカー用の電気接点
では、耐溶着特性と温度特性(通電による温度上昇は小
さい程良い。)を両立させることが困難であった。
Some of the above-mentioned contact characteristics have mutually opposite characteristics, and it is difficult to develop an electric contact having good characteristics for all of the characteristics. there were. In particular, in the case of an electrical contact for a breaker with a rated current of 100 A or more, especially 225 A, 400 A, which the present application recommends to use for its application, both welding resistance and temperature characteristics (the smaller the temperature rise due to energization, the better). It was difficult.

【0008】その理由は、本来トレードオフの関係にあ
る特性の両方を満足させる電気接点の開発自体が難しい
とともに、それぞれ個々の要求特性を満足させるために
必要とされる理想的接点合金組成及び構造が解明されて
いなかったことにある。例えば、定格電流が225A用
の接点の場合に耐溶着性改良の為に必要な接点合金組成
と構造の組み合わせが如何にあるべきか、かつ初期温度
特性の向上に必要な接点合金組成と構造の組み合わせは
如何にあるべきか、又それは定格電流が50Aの場合の
最適組み合わせとどの様に異なるのかについての知見が
必ずしも明確でなかった。
[0008] The reason is that it is difficult to develop an electrical contact that satisfies both characteristics that are originally in a trade-off relationship, and that the ideal contact alloy composition and structure required to satisfy the individual required characteristics are required. Had not been elucidated. For example, in the case of a contact having a rated current of 225 A, how should a combination of a contact alloy composition and a structure necessary for improvement of welding resistance be, and a contact alloy composition and a structure required for improvement of initial temperature characteristics? It was not always clear how the combination should be and how it differs from the optimal combination when the rated current is 50A.

【0009】また、初期温度特性のために最適な接点合
金組成、構造と、耐溶着性のために最適な接点合金組
成、構造は異なるので、この異なる接点合金組成と構造
を同時に併せ持つのは困難である。さらに例え合わせ持
つ為に本願のごとき2層構造にした方法を採用したとし
ても、それらの最適の組み合わせ、例えば、どのような
接点合金組成を、どのような割合で、どのような状態
に、組み合わせるのかが不明であった。
Further, since the optimum contact alloy composition and structure for the initial temperature characteristic and the optimum contact alloy composition and structure for the welding resistance are different, it is difficult to have the different contact alloy composition and structure simultaneously. It is. Even if a two-layer method such as that of the present application is adopted to have the same combination, the most suitable combination thereof, for example, what kind of contact alloy composition, what ratio, and what state are combined It was unknown.

【0010】[0010]

【課題を解決するための手段】定格電流が100A以上
の遮断器(ブレーカー)に用いる電気接点の表面から8
μm以上80μm以下の表面層が、重量%でカドミウム
(Cd)が0%以上6%以下、スズ(Sn)が0.1%
以上1.5%以下、ニッケル(Ni)が0.15%以上
1.2%以下、残部が不純元素0.2%以下の銀合金
で、前記表面層の内側の内部層が、重量%でカドミウム
(Cd)が14%以上19%以下、スズ(Sn)が0.
3%以上1.5%以下、ニッケル(Ni)が0.22%
以上1.2%以下、残部が不純元素0.2%以下の銀合
金とで構成される2層構造を持ち、表面層及び内部層の
マイクロビッカース硬度が45mHv以上125mHv
以下であるものを用いる。
Means for Solving the Problems From the surface of an electric contact used for a circuit breaker (breaker) having a rated current of 100 A or more,
Cadmium (Cd) of 0% or more and 6% or less and tin (Sn) of 0.1% by weight%
1.5% or less, nickel (Ni) is 0.15% or more and 1.2% or less, and the balance is a silver alloy having an impurity element of 0.2% or less. Cadmium (Cd) is 14% or more and 19% or less, and tin (Sn) is 0.1% or more.
3% or more and 1.5% or less, nickel (Ni) 0.22%
It has a two-layered structure composed of a silver alloy of at least 1.2% and a balance of at least 0.2% of an impurity element, and the micro Vickers hardness of the surface layer and the inner layer is from 45 mHv to 125 mHv.
The following are used.

【0011】更に、 重量%でアンチモン(Sb)が0
%以上2%以下、カルシウム(Ca)が0%以上0.3
%以下、ビスマス(Bi)が0%以上1%以下、コバル
ト(Co)が0%以上0.5%以下、インジウム(I
n)が0%以上5%以下の銀合金を用いることも好まし
い。本願の電気接点の製造法では、溶射法、薄板の圧延
法、蒸着法、酸性溶液に浸漬洗浄後、合金元素の拡散焼
鈍する方法、熱間静水圧成形法(HIP)あるいは熱間
押出法の各種の方法で表面層を形成することができる。
Further, antimony (Sb) is 0% by weight.
% To 2%, calcium (Ca) is 0% to 0.3
%, Bismuth (Bi) is 0% or more and 1% or less, cobalt (Co) is 0% or more and 0.5% or less, and indium (I
It is also preferable to use a silver alloy in which n) is 0% or more and 5% or less. The method of manufacturing the electric contact of the present invention includes a spraying method, a rolling method of a thin plate, a vapor deposition method, a method of immersing and washing in an acidic solution, followed by diffusion annealing of alloy elements, hot isostatic pressing (HIP) or hot extrusion. The surface layer can be formed by various methods.

【0012】本願発明は電気接点の構造を2層構造と
し、表面層で温度特性の改善を行い、内部層で耐溶着特
性の改善を行うとともに、これら特性改善の2層構造に
適した接点合金組成を開示している。
According to the present invention, the electrical contact has a two-layer structure, the temperature characteristics are improved in the surface layer, the welding resistance is improved in the inner layer, and a contact alloy suitable for the two-layer structure with improved characteristics is provided. A composition is disclosed.

【0013】即ち表面層が温度特性を改善する効果があ
るので温度特性はこの表面層により改善される分だけ、
従来ならば温度特性を劣化させるような高いCd、S
n、Ni濃度においても良好な温度特性が得られる事を
発見したからである。このように本願では表面層で温度
特性を改善しつつ要求特性を満たしながら、一方では接
点合金組成を高いCd、Sn、Ni濃度に設定すること
により高い耐溶着特性を得ることに成功したものであ
る。
That is, since the surface layer has the effect of improving the temperature characteristic, the temperature characteristic is improved by the surface layer,
Conventionally, high Cd and S that degrade temperature characteristics
This is because it has been found that good temperature characteristics can be obtained even at n and Ni concentrations. As described above, in the present application, while achieving the required characteristics while improving the temperature characteristics in the surface layer, on the other hand, it has succeeded in obtaining high welding resistance by setting the contact alloy composition to a high Cd, Sn, and Ni concentration. is there.

【0014】つまり、2層構造だけでは本願発明は十分
な効果を発揮せず、また接点合金組成を本願発明の示す
組成範囲にするだけでも十分な効果を発揮することはで
きない。2層構造にしても接点合金組成を上記の範囲に
しなければ高い耐溶着特性は実現せず、一方接点合金組
成だけを本願発明の組成範囲にしても、2層構造としな
ければ優れた温度特性は実現しないのである。従って、
本願発明においては接点合金組成と2層構造の組み合わ
せは極めて重要で、改善すべき特性を相互に補填しあう
関係をもつものである。
In other words, the present invention cannot provide a sufficient effect only with the two-layer structure, and cannot provide a sufficient effect only by setting the contact alloy composition within the composition range indicated by the present invention. If the contact alloy composition is not in the above range even if it has a two-layer structure, high welding resistance cannot be realized unless the contact alloy composition alone has the composition range of the present invention. Does not happen. Therefore,
In the present invention, the combination of the contact alloy composition and the two-layer structure is extremely important, and has a relationship mutually complementing the characteristics to be improved.

【0015】[0015]

【発明の実施の形態】本願発明は定格電流が100A以
上、特に225A,400Aのブレーカーに適した接点
について、その理想的2層構造及び電気接点組成を検討
した結果を開示するものである。発明者は、225A用
接点として最適な接点合金組成と構造を探索した結果、
電気接点の構造を図1のように2層構造にすることが良
いことを見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention discloses the results of a study on the ideal two-layer structure and electrical contact composition of a contact suitable for a breaker having a rated current of 100 A or more, particularly 225 A, 400 A. The inventor has searched for an optimal contact alloy composition and structure for a contact for 225A, and as a result,
It has been found that the structure of the electric contact is preferably a two-layer structure as shown in FIG.

【0016】図1に於いて表面からAμmよりも内部
(深い部分)である内部層2に於いてはCdが14%以上
19%以下であり、Snが0.3%以上1.5%以下、
またNiが0.22%以上1.2%以下である。(%
は、重量%である。以下同じ。)更に望ましくは、Cd
が16%以上18%以下であり、Snが0.4%以上
1.4%以下、またNiが0.24%以上1.0%以下
であることが好ましい。
In FIG. 1, from the surface to the inside of A μm
In the inner layer 2 (deep portion), Cd is 14% or more and 19% or less, Sn is 0.3% or more and 1.5% or less,
Ni is 0.22% or more and 1.2% or less. (%
Is% by weight. same as below. ) More preferably, Cd
Is preferably 16% or more and 18% or less, Sn is preferably 0.4% or more and 1.4% or less, and Ni is preferably 0.24% or more and 1.0% or less.

【0017】一方表面からAμmより浅い部分である表
面層1はCdが0%以上6%以下、Snが0.1%以上
1.5%以下、またNiが0.15%以上1.2%以下
である。
On the other hand, in the surface layer 1 which is a portion shallower than A μm from the surface, Cd is 0% or more and 6% or less, Sn is 0.1% or more and 1.5% or less, and Ni is 0.15% or more and 1.2%. It is as follows.

【0018】Aの値は8〜80μmであるが、望ましく
は20〜60μmであることが好ましい。従って本願発
明に於いて述べるAμmより薄い表面層1とは、例えば
通常接点に施すようなメッキにおける表面から数μmよ
り薄い極表層の改質を指すのではない。Aの厚みが80
μmを越えると温度特性の一部が悪くなるほか、耐溶着
性能が悪くなるし、逆に8μmより薄い場合には本願の
示す効果が認めがたくなり温度特性が悪くなる。また2
0〜60μmでは最も温度特性と耐溶着特性とが共に良
好な値を示す事が、試作試験を繰り返した結果明らかに
なった。
The value of A is from 8 to 80 μm, preferably from 20 to 60 μm. Therefore, the surface layer 1 thinner than A μm described in the present invention does not refer to, for example, the modification of the surface layer thinner than a few μm from the surface in plating, which is usually applied to contacts. A thickness is 80
When the thickness exceeds μm, a part of the temperature characteristics is deteriorated, and the welding resistance is deteriorated. On the contrary, when the thickness is less than 8 μm, the effect shown in the present application is hardly recognized and the temperature characteristics are deteriorated. Also 2
As a result of repeating the trial production test, it was clarified that the temperature characteristics and the welding resistance characteristics exhibited the best values at 0 to 60 μm.

【0019】内部層2の接点合金組成について、Cdが
14%未満であると、耐溶着性が低くなり、18%を越
えるとCdが高くなるにつれて製造困難になり、18%
を越えると製造ができないわけではないにしても、凝集
と呼ばれる酸化物の堆積した部分が接点内部に発生しや
すく温度特性上好ましくないからである。Snが0.3
%未満であると耐溶着性が低く、1.5%を越えると、
温度特性の内、初期温度特性と過負荷試験後の温度特性
が劣化することが実験の結果明らかになった。Niに関
しては、0.22%未満であると耐溶着性が低く、1.
2%以上であると製造困難になりまた温度特性が悪くな
る。
With respect to the contact alloy composition of the inner layer 2, if the Cd is less than 14%, the welding resistance is lowered, and if it exceeds 18%, the production becomes more difficult as the Cd becomes higher.
This is because, if not more than that, the production cannot be performed, but a portion called an agglomeration where the oxide is deposited tends to be generated inside the contact, which is not preferable in terms of temperature characteristics. Sn is 0.3
%, The welding resistance is low, and if it exceeds 1.5%,
The experimental results showed that the initial temperature characteristics and the temperature characteristics after the overload test deteriorated among the temperature characteristics. Regarding Ni, if it is less than 0.22%, the welding resistance is low, and
If it is 2% or more, the production becomes difficult and the temperature characteristics deteriorate.

【0020】表面層1でも、Cdが6%を越えると温度
特性が劣化し、好ましくない。Snが0.1%未満であ
ると耐溶着性が低く、1.5%を越えると、温度特性の
うちで、初期温度特性と過負荷試験後の温度特性が劣化
することが実験の結果明らかになった。Niに関して
は、0.15%未満であると耐溶着性が低く、1.2%
以上であると温度特性が悪くなる。
In the surface layer 1, if Cd exceeds 6%, the temperature characteristics deteriorate, which is not preferable. Experimental results clearly show that when Sn is less than 0.1%, the welding resistance is low, and when Sn exceeds 1.5%, the initial temperature characteristics and the temperature characteristics after the overload test are deteriorated among the temperature characteristics. Became. Regarding Ni, if it is less than 0.15%, the welding resistance is low, and 1.2%
If it is more than the above, the temperature characteristics deteriorate.

【0021】内部層2のNiは0.22%以上1.2%
以下のなかでも、望ましくは0.25%以上0.6%以
下であることが好ましい。これは耐溶着性能の改善効果
が顕著になるのが0.25%以上であることを見出した
からである。また0.6%以下であることが温度特性の
ためには望ましい。
Ni of the inner layer 2 is 0.22% or more and 1.2% or more.
Among the following, it is desirable that it is desirably 0.25% or more and 0.6% or less. This is because it has been found that the effect of improving the welding resistance is remarkable at 0.25% or more. Also, it is desirable for the temperature characteristic to be 0.6% or less.

【0022】表面層1及び内部層2のSbは0%以上2
%以下、Caは0%以上0.3%以下、Biは0%以上
1%以下、Coは0%以上0.5%以下、Inは0%以
上5%以下の範囲が良い。これらの元素は耐溶着性や、
温度特性改善のためにあるが、基本的にCd、Sn、N
iの濃度が上記範囲にある限り、本願の意図する100
A以上のブレーカーに適した接点性能が期待できること
が分かった。
Sb of the surface layer 1 and the inner layer 2 is 0% or more and 2
% Or less, Ca is 0% or more and 0.3% or less, Bi is 0% or more and 1% or less, Co is 0% or more and 0.5% or less, and In is 0% or more and 5% or less. These elements can be used for
Cd, Sn, N
As long as the concentration of i is within the above range, the intended 100
It has been found that contact performance suitable for a breaker of A or more can be expected.

【0023】勿論、ブレーカーの性能評価に於ける規格
値(上述の温度や耐溶着性能の規格値)が緩和されれば、
例えばSnが0.3%以下や、1.5%以上の値であっ
ても使用に耐えない訳ではなく、0.3%以下や、1.
5%以上の値であっても使用可能ではあるが、ブレーカ
ーが安全上重要な装置であることや、実使用に於いてど
の様な製品でもバラツキが存在することを考慮にいれた
場合、やはり上記のSn範囲であることが望ましい。同
様のことはCd、Niについても当てはまる。
Of course, if the standard values in the performance evaluation of the breaker (the above-mentioned standard values of the temperature and the welding resistance) are relaxed,
For example, Sn having a value of 0.3% or less, or 1.5% or more does not mean that it is not usable, but 0.3% or less.
Although it can be used even if the value is 5% or more, if considering that the breaker is an important device for safety and that there are variations in any product in actual use, It is desirable to be in the above Sn range. The same applies to Cd and Ni.

【0024】電気接点の含有元素としては上記のごとき
元素であるが、これ以外の元素を微量に添加しても、本
願発明の示す2層構造にした場合に同様の効果が期待で
きることは容易に想像しうるところである。
The elements contained in the electric contact are the above-mentioned elements, but it is easy to expect that the same effect can be expected in the case of the two-layer structure shown in the present invention even if a small amount of other elements is added. It can be imagined.

【0025】電気接点の表面からAμmまでの表面層1
の組成はCdが0%以上6%以下、Snが0.1%以上
1.5%以下、またNiは0.15%以上1.2%以下
であるが、Cd,Sn,Niが前記の範囲にある限り、
Sbは0%以上2%以下、Caは0%以上0.3%以
下、Biは0%以上1%以下、Coは0%以上0.5%
以下、Inは0%以上5%以下のAg合金を用いても同
様の効果が得られることを確認した。例えば、Inは初
期温度特性を良くするが、この効果は、本願発明による
効果に準拠されるものである。
Surface layer 1 from the surface of the electrical contact to A μm
Has a Cd content of 0% or more and 6% or less, a Sn content of 0.1% or more and 1.5% or less, and a Ni content of 0.15% or more and 1.2% or less. As long as it is in the range
Sb is 0% to 2%, Ca is 0% to 0.3%, Bi is 0% to 1%, Co is 0% to 0.5%.
Hereinafter, it was confirmed that the same effect can be obtained even when an Ag alloy containing 0% or more and 5% or less of In is used. For example, In improves the initial temperature characteristics, but this effect is based on the effect of the present invention.

【0026】表面層1のSn、Ni、Sb、Ca,B
i,Co,In濃度は内部層2の濃度より必ずしも低く
なくても良い。 また、Auのごとき高価な元素を表面
部に用いる必要もない。なお、通常のAg系電気接点に
用いられるAg層(Cu台金との接合性を改善する目的
で接点面と反対側に配置される純Ag層で、本願が示す
表面層とは機能も配置する位置も異なる。)はあっても
良い。
Sn, Ni, Sb, Ca, B of the surface layer 1
The i, Co, and In concentrations do not necessarily have to be lower than the concentration of the inner layer 2. Further, it is not necessary to use an expensive element such as Au for the surface portion. In addition, an Ag layer used for a normal Ag-based electrical contact (a pure Ag layer disposed on the opposite side to the contact surface for the purpose of improving the bondability with the Cu base metal, and also having a function different from the surface layer described in the present application) The position to perform is also different.).

【0027】更に2層構造にする方法について調査した
結果、蒸着、減圧中での溶射、薄板の圧延張り合わせ、
酸洗いと焼鈍による元素の拡散均質化、薄板のHIP拡
散接合、押出による方法のどれを用いても電気接点の構
造と接点合金組成が本願発明の示す構造と接点合金組成
の範囲にある限り同様の効果が期待できる事を明らかに
した。実際には上記方法の組み合わせも考えられるが、
必ずしも性能上必要でなくコストの面からも実用的では
ない。
As a result of investigating a method of forming a two-layer structure, evaporation, thermal spraying under reduced pressure, rolling and bonding of thin plates,
Regardless of the method of diffusion homogenization of elements by pickling and annealing, HIP diffusion bonding of thin sheets, and the method of extrusion, the same applies as long as the structure of the electrical contact and the contact alloy composition are within the range of the structure and contact alloy composition indicated by the present invention. Clarified that the effect of can be expected. Actually, a combination of the above methods can be considered,
It is not always necessary for performance and is not practical in terms of cost.

【0028】このほかにも水素中での酸化物の還元や、
ミクロな溶接の方法も考えられ、上記と同様に接点の構
造と接点合金組成が本願の示す構造と接点合金組成の範
囲にある限り同様の効果が期待できるがコスト及び、大
量に品質の安定した製品を安価に作製するという観点か
ら量産性に欠け、また接合界面の清浄性を維持するとい
う面から必ずしも望ましくない。
In addition, reduction of oxides in hydrogen,
A micro welding method is also conceivable, and the same effect can be expected as long as the structure of the contact and the contact alloy composition are in the range of the structure and the contact alloy composition shown in the present application, but the cost and the quality are stable in a large amount. It is not desirable in terms of mass production from the viewpoint of manufacturing the product at low cost, and is not always desirable from the viewpoint of maintaining the cleanliness of the bonding interface.

【0029】また内部層の硬度と表面層の硬度には大き
な差がない方が望ましい。 これは、硬度差が大きい
と、張り合わせの際に良好な張り合わせ状態が実現しに
くいという結果が生じている。また、あまりに表面層が
硬いと接点同士が合わさった時に接触面積が小さくなる
ことが見出されている。さらに、内部層が表面層よりあ
まり硬いと接点の使用時に割れが入るので好ましくな
い。従って硬度は表面層・内部層共に、マイクロビッカ
ースで45〜125mHvである必要がある。
It is desirable that there is no large difference between the hardness of the inner layer and the hardness of the surface layer. This is because if the difference in hardness is large, it is difficult to realize a good bonding state during bonding. It has also been found that if the surface layer is too hard, the contact area will be small when the contacts come together. Further, if the inner layer is too hard than the surface layer, it is not preferable because cracks occur when the contact is used. Therefore, both the surface layer and the inner layer need to have a micro Vickers hardness of 45 to 125 mHv.

【0030】なお、本願は、硬度を管理することによ
り、初めて本願の意図する定格電流が100Aクラス以
上、より好ましくは200A以上のブレーカーに適した
接点を得る事ができる。従って、導電性の良い材料を第
2層(下層)にし、硬度の高い材料からなる層を第1層
(上層)とする特開昭62−97213号公報とは本質
的に異なり、更に同公報の様に第1層はAg−SnO2
やIn23系ではなく、第2層は純Agでもない。
In the present application, by controlling the hardness, it is possible to obtain, for the first time, a contact suitable for a breaker having a rated current of 100A class or more, more preferably 200A or more, intended by the present application. Therefore, it is substantially different from JP-A-62-97213, in which a material having good conductivity is used as the second layer (lower layer) and a layer made of a material having high hardness is used as the first layer (upper layer). The first layer is made of Ag-SnO 2
Instead of or In 2 O 3 system, the second layer nor pure Ag.

【0031】本願では定格電流が100A以上、中でも
200A以上の使用条件に於いて最もその効果を発揮す
る。例えば、定格電流が100Aでは220Vで50k
A、定格電流が225Aでは220Vで50kAの定格
遮断電流のブレーカーなどに使用したときに最もその効
果を発揮する接点を明らかにしているのであり、リレー
などの低い負荷の用途の接点を示したものではない。
In the present application, the effect is most exhibited under a use condition in which the rated current is 100 A or more, especially 200 A or more. For example, if the rated current is 100A, 50k at 220V
A. When the rated current is 225A, the contact that exerts its effect when used in a breaker with a rated breaking current of 50kA at 220V is clarified. is not.

【0032】また本願発明の示す第1層である表面層1
は主に温度特性の改善、また第2層である内部層2は耐
溶着性能の改善を図ったものである。従って例えば、特
開昭58−189913号公報の様に、第1層目を耐消
耗性と耐溶着性を有する導電体とし、第2層目を短絡電
流においてアークの切れが良好な導電体とする場合とは
明らかに異なるし、同公報の様に、第1層と第2層との
境界面に凹凸を形成する必要は本願の場合全くない。ま
た同公報の様に、第2層として銀−リチウム系、銀−イ
ンジウム系を用いていない点も異なる。
The surface layer 1 which is the first layer according to the present invention is
The main purpose is to improve the temperature characteristics, and to improve the welding resistance of the inner layer 2 as the second layer. Therefore, for example, as in Japanese Patent Application Laid-Open No. 58-189913, the first layer is made of a conductor having wear resistance and welding resistance, and the second layer is made of a conductor having a good arc break at short-circuit current. This is clearly different from the case of the present invention, and there is no need to form irregularities on the boundary surface between the first layer and the second layer as in the publication. Another difference is that no silver-lithium-based or silver-indium-based layer is used as the second layer as in the publication.

【0033】なお一般に内部酸化した接点には表面から
内部に向かっての緩やかな濃度勾配が一般に見られる
が、本願の2層構造は勿論この内部酸化に見られる一般
的な濃度勾配を示すものではなく、表面からAμmより
浅い部分は、内部との境界面における数μm幅の内部に
於ける連続的な組織、化学組成の変化はあっても、例え
ば光学顕微鏡などによる組織観察において、明らかに表
面部と内部とは異なる組織、組成の違いを示すものであ
る。
In general, a gradual concentration gradient from the surface toward the inside is generally observed at the contact which has been internally oxidized. However, the two-layer structure of the present invention, of course, does not exhibit the general concentration gradient observed in the internal oxidation. However, a portion shallower than A μm from the surface has a continuous structure within a few μm width at the boundary surface with the inside, and even though there is a change in chemical composition, the surface is clearly observed, for example, by an optical microscope. This shows the difference in the composition and composition between the part and the inside.

【0034】但し工業製品であり、またどの様な電気接
点においても接点合金組成や金属組織は多少の濃度勾配
や金属組織の変化は見られるものであるという意味から
は、内部層及び表面層のそれぞれに於いて、一般的な内
部酸化に見られる接点合金組成の濃度勾配はあってもか
まわない。濃度勾配に伴う硬度分布の勾配も、45〜1
25mHv(もしくは、80〜110mHvである)の
範囲であれば硬度分布の勾配があってもかまわない。
However, since it is an industrial product and the contact alloy composition and the metal structure of any electrical contact show a slight concentration gradient and a change in the metal structure, the internal layer and the surface layer are not changed. In each case, there may be a concentration gradient of the contact alloy composition found in general internal oxidation. The gradient of the hardness distribution accompanying the concentration gradient is also 45 to 1
If the hardness is in the range of 25 mHv (or 80 to 110 mHv), the hardness distribution may have a gradient.

【0035】また、Agメッキを接点表面に数μm施す
ことは知られているが、これはもちろん本願発明の意図
するものではない。本願発明でいう表面層1の厚みは表
面から8〜80μmであり、望ましくは20〜60μm
で、またこの表面層は純Agではなく、その他の合金元
素を含むものであって単なるAgメッキを意図している
ものではない。
It is known that Ag plating is applied to the contact surface by several μm, but this is not intended by the present invention. The thickness of the surface layer 1 referred to in the present invention is 8 to 80 μm from the surface, preferably 20 to 60 μm.
In addition, this surface layer is not pure Ag but contains other alloying elements, and is not intended for simple Ag plating.

【0036】また、ヒ゛ス形状の接点の製造工程において
銅台金とAg合金を接合するために炉中を通す熱処理を
行うことがある。この場合、Ag合金の表面にあるCd
が多少炉中に散逸してしまうことがあり、この為に表面
のCd濃度が多少低くなることがあるがこれも又本願の
意図するところでない。この様な炉中に散逸したために
発生するCd濃度の低い層は通常表面から10μm程度
であり、またこの様なビス型の接点が本願が有効にその
効果を発揮する定格電流が200A以上において用いら
れることは希である。定格電流が100Aであっても、
このビス型電気接点が一部に用いられることがあるが、
通常固定接点においてのみであり、定格電流が100A
以上の可動接点にビス型接点が用いられることは少な
い。
Further, in the manufacturing process of the gas-shaped contact, heat treatment may be performed in a furnace to join the copper base metal and the Ag alloy. In this case, Cd on the surface of the Ag alloy
May be slightly dissipated into the furnace, which may result in a somewhat lower Cd concentration on the surface, which is also not intended by the present application. The layer having a low Cd concentration generated due to the dissipation in such a furnace is usually about 10 μm from the surface, and such a screw-type contact is used at a rated current of 200 A or more at which the present invention effectively exerts its effect. Is rarely done. Even if the rated current is 100A,
This screw-type electrical contact is sometimes used,
Normally only for fixed contacts, rated current 100A
Screw type contacts are rarely used for the above movable contacts.

【0037】また、この炉中に通した場合に見られる極
表面のCd濃度の低下はSn濃度の低下を伴うことが多
いが、本願発明はこれとは異なりSn濃度は高いことか
らも、この炉中処理で得られる接点合金組成とは異なる
接点合金組成を提供するものである。
Further, the decrease in the Cd concentration on the extreme surface observed when the sample is passed through the furnace is often accompanied by a decrease in the Sn concentration. However, the present invention is different from this, and the Sn concentration is high. It is intended to provide a contact alloy composition different from the contact alloy composition obtained in the furnace treatment.

【0038】本願発明においては、Sbは0%以上2%
以下、Caは0%以上0.3%以下、Biは0%以上1
%以下、Coは0%以上0.5%以下、Inは0%以上
5%以下の範囲のAg合金であっても、特許請求の範囲
第1項記載の範囲に属する限りにおいて差し支えないの
と同様に、他の元素例えば通常0.001%以上5%以
下で添加されるCe、0.1%以上6.2%以下で添加
されるSb、0.01%以上5%以下で添加されるL
i、0.05%以上10%以下で添加されるSi、0.
01%以上0.5%以下で添加されるFe、0.05%
以上0.1%以下で添加されるPb、0.001%以上
5%以下で添加されるCr,Sr、0.5%以上5%以
下で添加されるTi、0.5%以上5%以下で添加され
るTe、0.5%以上5%以下で添加されるMn、0.
01%以上3%以下で添加されるAlF3、MgF2、C
rF3、CaF2、0.5%以上5%以下で添加されるZ
n、1%以上3%以下で添加されるGe、Ga、0.0
1%以上0.1%以下で添加されるMgを添加する事を
妨げるものではない。
In the present invention, Sb is 0% or more and 2% or more.
Hereinafter, Ca is 0% or more and 0.3% or less, and Bi is 0% or more and 1% or less.
% Or less, Co is 0% or more and 0.5% or less, and In is 0% or more and 5% or less even if it is an Ag alloy as long as it belongs to the scope of Claim 1. Similarly, other elements such as Ce usually added at 0.001% or more and 5% or less, Sb added at 0.1% or more and 6.2% or less, and 0.01% or more and 5% or less are added. L
i, Si added at 0.05% or more and 10% or less;
Fe added at not less than 01% and not more than 0.5%, 0.05%
Pb added at 0.1% or less, Cr and Sr added at 0.001% or more and 5% or less, Ti added at 0.5% or more and 5% or less, 0.5% or more and 5% or less , Te added at 0.5% to 5%, and Mn added at 0.5% to 5%.
AlF 3 , MgF 2 , C added at not less than 01% and not more than 3%
rF 3 , CaF 2 , Z added at 0.5% or more and 5% or less
n, Ge, Ga added at 1% or more and 3% or less, 0.0
It does not prevent the addition of Mg added at 1% or more and 0.1% or less.

【0039】これらの場合に於いても請求項1記載の範
囲に属する限りにおいては、請求項1に示した接点合金
組成組成、硬度、及び2層構造による効果として、これ
ら元素がない場合と同様の効果が期待できるからであ
る。逆に言うなら、本願は、本願が示す接点構造および
Cd,Sn,Niの接点合金組成の範囲で本願が示す効
果を損なわない程度に微量添加元素を添加することを禁
じるものではない。
In these cases, the effects of the contact alloy composition, hardness, and two-layer structure shown in claim 1 are the same as those without these elements, as long as they fall within the scope of claim 1. This is because the effect of can be expected. In other words, the present application does not prohibit the addition of a trace amount of an additive element to such an extent that the effect of the present application is not impaired within the range of the contact structure and the contact alloy composition of Cd, Sn, and Ni shown in the present application.

【0040】(実施例1) 縦8mm、横6mm、厚み
2.5mm及び縦6mm、横6mm、厚み2mmの一対
(図2の可動接点6と基台4の上に付着した固定接点7
に該当する。なお、図2(II)は、説明上、固定接点7
で示している。また図2(II)は、円形接点で図示して
いるが、角形接点等も同様に該当する。)の電気接点の
いずれも厚みの10%の純Ag層3付きとし、接点合金組
成が、表1、2(方法の欄に「プラズマ」との記載が、
該当する。表3〜6も同じ。)になるような接点の内部
層2を作製し、その表面(純Agとは反対側の面)に減圧
プラズマ溶射法にてAr+H2雰囲気中で表3、4の組
成の合金粉末を溶射した。
Example 1 A pair of 8 mm long, 6 mm wide, 2.5 mm thick and 6 mm long, 6 mm wide, 2 mm thick (the movable contact 6 and the fixed contact 7 attached to the base 4 in FIG.
Corresponds to. FIG. 2 (II) shows the fixed contact 7 for explanation.
Indicated by. Although FIG. 2 (II) shows a circular contact, a square contact or the like also applies. Each of the electrical contacts has a pure Ag layer 3 with a thickness of 10%, and the contact alloy composition is as shown in Tables 1 and 2 ("Plasma" in the column of "Method").
Applicable. Tables 3-6 are the same. ), And an alloy powder having a composition shown in Tables 3 and 4 was sprayed on the surface thereof (the surface opposite to the pure Ag) in an Ar + H 2 atmosphere by a reduced pressure plasma spraying method. .

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】原料にはプレアロイ粉末を用い、粉末粒径
はサブミクロンから2μmまでの粉末を用いた。フィー
ド用のキャリアーガスにはArを用いた。また溶射中に
は溶射ガンの先端を自動制御にて揺動させ均一溶射層に
よる表面層1の形成をはかるとともに、接点基材(サブ
ストレイトと称されることが多い。)になる接点の内部
層2と溶射層による表面層1の密着性を上げる目的で、
サブストレイトをプラズマ炎に曝して加熱後に溶射を行
った。
Prealloy powder was used as a raw material, and powder having a particle size of submicron to 2 μm was used. Ar was used as a carrier gas for the feed. During the thermal spraying, the tip of the thermal spraying gun is swung under automatic control to form the surface layer 1 by the uniform thermal spraying layer and to form the inside of the contact as a contact base material (often called a substrate). In order to increase the adhesion of the surface layer 1 by the layer 2 and the sprayed layer,
The substrate was exposed to a plasma flame and heated to perform thermal spraying.

【0046】その結果得た酸化後の接点の2層構造と硬
度は表5、6の通りである。これら接点を定格電流が1
00A以上の各種のブレーカーにて、220V、50k
Aの遮断電流にて遮断試験と、初期温度測定、過負荷試
験後の温度特性、耐久試験後の温度特性、短絡試験後の
温度特性を評価した。過負荷試験条件は定格電流の5倍
とし50回、耐久試験は定格電流にて5000回の試験
を行った。表5、6には試験結果を示した。なお、評価
結果は、評価ブレーカーによって異なるため、総合評価
を5〜1で示した。最も優れた結果を5、使用可能の下
限を3、最も劣る結果を1で示した。
Tables 5 and 6 show the resulting two-layer structure and hardness of the oxidized contact. The rated current of these contacts is 1
220V, 50k with various breakers over 00A
The breaking test, the initial temperature measurement, the temperature characteristics after the overload test, the temperature characteristics after the durability test, and the temperature characteristics after the short-circuit test were evaluated using the breaking current of A. The overload test condition was 5 times the rated current, and the test was performed 50 times, and the durability test was performed 5000 times at the rated current. Tables 5 and 6 show the test results. In addition, since the evaluation results differed depending on the evaluation breaker, the overall evaluation was shown as 5-1. The best result was indicated by 5, the lower limit of use was indicated by 3, and the worst result was indicated by 1.

【0047】[0047]

【表5】 [Table 5]

【0048】[0048]

【表6】 [Table 6]

【0049】(実施例2) 縦8mm、横6mm、厚み
2.5mm及び縦6mm、横6mm、厚み2mmの一対
の電気接点のいずれも厚みの10%の純Ag層付きと
し、接点合金組成が、表1、2(方法の欄に「蒸着」と
の記載が、該当する。表3〜6も同じ。)の接点合金組
成を有する電気接点の内部層2となる接点基材の表面
(純Agとは反対側の面)に、表3、4の接点合金組成を
有するターゲットを用いて、マグネトロンスパッター法
により蒸着を行った。基材の温度はSnの再蒸発を防止
するために200℃に保持し、Ar雰囲気の圧力は数t
orr〜数十torrに保った。
Example 2 Each of a pair of electrical contacts having a length of 8 mm, a width of 6 mm, a thickness of 2.5 mm and a length of 6 mm, a width of 6 mm, and a thickness of 2 mm was provided with a pure Ag layer having a thickness of 10%. , Tables 1 and 2 (the description of “deposition” in the column of “method” applies. The same applies to Tables 3 to 6). The surface of the contact base material to be the internal layer 2 of the electric contact having the contact alloy composition.
On the surface opposite to the pure Ag, vapor deposition was performed by a magnetron sputtering method using a target having a contact alloy composition shown in Tables 3 and 4. The temperature of the substrate is maintained at 200 ° C. to prevent re-evaporation of Sn, and the pressure of the Ar atmosphere is several t
orr to several tens torr.

【0050】また、基材である接点の内部層2と蒸着層
である表面層1との密着性を良くするために、予め接点
の内部層2の表面は高周波により発生したイオンにより
クリーニングを施した後蒸着を行った。そして内部酸化
したのち得た電気接点を、実施例1と同じ方法にて遮断
試験と、初期温度測定、過負荷試験後の温度特性、過負
荷試験後の温度特性、短絡試験後の温度特性を評価した
結果を硬度とともに表5、6に示した。
In order to improve the adhesion between the inner layer 2 of the contact as the base material and the surface layer 1 as the vapor deposition layer, the surface of the inner layer 2 of the contact is previously cleaned by ions generated by high frequency. After that, vapor deposition was performed. Then, the electrical contact obtained after the internal oxidation is subjected to a breaking test, an initial temperature measurement, a temperature characteristic after an overload test, a temperature characteristic after an overload test, and a temperature characteristic after a short circuit test in the same manner as in Example 1. Tables 5 and 6 show the evaluation results together with the hardness.

【0051】(実施例3) 接点合金組成が、表1、2
(方法の欄に「シート」との記載が、該当する。表3〜
6も同じ。)になるようなAg合金板を作製し、その上
面に表3、4の組成のAg合金箔をAr雰囲気中で60
0℃にて接合した。得られた2層合金板に、更に純Ag
層をAr雰囲気中で600℃にて加熱後圧延して、3層
合金板を作製し、これを打ち抜き加工してチップ状の縦
8mm、横6mm、厚み2.5mm及び縦6mm、横6
mm、厚み2mmの一対の電気接点を作製した。
Example 3 The contact alloy compositions were as shown in Tables 1 and 2.
(The description of "sheet" in the column of the method corresponds.
Same for 6. ) Is prepared, and an Ag alloy foil having the composition shown in Tables 3 and 4 is coated on the upper surface thereof in an Ar atmosphere for 60 hours.
Bonded at 0 ° C. Pure Ag is further added to the obtained two-layer alloy plate.
The layer was heated at 600 ° C. in an Ar atmosphere and then rolled to produce a three-layer alloy plate, which was punched out into a chip-shaped 8 mm long, 6 mm wide, 2.5 mm thick, 6 mm long, 6 mm wide.
A pair of electrical contacts having a thickness of 2 mm and a thickness of 2 mm were prepared.

【0052】そして内部酸化したのち得た接点を、実施
例1と同じにて遮断試験と、初期温度測定、過負荷試験
後の温度特性、過負荷試験後の温度特性、短絡試験後の
温度特性を評価した結果を硬度値とともに表5、6に示
す。
The contacts obtained after the internal oxidation were subjected to a breaking test, initial temperature measurement, temperature characteristics after an overload test, temperature characteristics after an overload test, and temperature characteristics after a short circuit test in the same manner as in Example 1. Are shown in Tables 5 and 6 together with the hardness value.

【0053】(実施例4) 接点合金組成が、表1、2
(方法の欄に「酸+焼」との記載が、該当する。表3〜
6も同じ。)になるような純Ag層付き酸化接点を作製
し、その外側部分を酸性溶液に浸け表面の汚れを除去し
ておいた後、焼鈍し合金元素の拡散を促した。これによ
り表3、4の組成の合金を接点表面に形成した。その結
果得た2層構造接点の構造と硬度を表5、6に示した。
Example 4 The contact alloy compositions were as shown in Tables 1 and 2.
(The description of "acid + baked" in the column of the method corresponds.
Same for 6. ), An oxidation contact with a pure Ag layer was prepared, and the outer portion was immersed in an acidic solution to remove stains on the surface, and then annealed to promote diffusion of alloy elements. Thus, alloys having the compositions shown in Tables 3 and 4 were formed on the contact surfaces. Tables 5 and 6 show the structure and hardness of the resulting two-layer structure contact.

【0054】そして内部酸化したのち得た接点を、実施
例1と同じ条件にて遮断試験と、初期温度測定、過負荷
試験後の温度特性、過負荷試験後の温度特性、短絡試験
後の温度特性を評価した。
The contacts obtained after internal oxidation were subjected to a breaking test under the same conditions as in Example 1, initial temperature measurement, temperature characteristics after an overload test, temperature characteristics after an overload test, and temperature after a short circuit test. The properties were evaluated.

【0055】(実施例5) 接点合金組成が、表1、2
(方法の欄に「HIP」との記載が、該当する。表3〜
6も同じ。)となるように板材を作製し、その表面に表
3,4の組成の板材を張り合わせ2枚の板が気密となる
ように接合面を溶接した。
(Example 5) The contact alloy compositions were as shown in Tables 1 and 2.
(The description of "HIP" in the column of the method corresponds.
Same for 6. ), A plate having the composition shown in Tables 3 and 4 was adhered to the surface of the plate, and the joining surfaces were welded so that the two plates were airtight.

【0056】その後700℃×1800Kg/cm2×
2hの条件でArガス中にて熱間静水圧成形(HIP)を
行い、この2層板に純Ag層を張り合わせて、得られた
板を圧延した後打ち抜いて、チップ状の縦8mm、横6
mm、厚み2.5mm及び縦6mm、横6mm、厚み2
mmの一対を作製した。そして内部酸化したのち得た接
点を、実施例1と同じ条件にて遮断試験と、初期温度測
定、過負荷試験後の温度特性、過負荷試験後の温度特
性、短絡試験後の温度特性を評価した。
Thereafter, 700 ° C. × 1800 Kg / cm 2 ×
Hot isostatic pressing (HIP) was performed in Ar gas under the condition of 2 h, a pure Ag layer was bonded to this two-layer plate, and the obtained plate was rolled and punched out to obtain a chip-shaped 8 mm long, horizontal chip. 6
mm, thickness 2.5mm, length 6mm, width 6mm, thickness 2
mm was made. Then, the contact obtained after internal oxidation is subjected to a breaking test under the same conditions as in Example 1, and an initial temperature measurement, a temperature characteristic after an overload test, a temperature characteristic after an overload test, and a temperature characteristic after a short circuit test are evaluated. did.

【0057】(実施例6) 接点合金組成が、表1、2
(方法の欄に「押出」との記載が、該当する。表3〜6
も同じ。)の粉末を酸化した後プレス成形にて円柱部材
を作製し、これとその周囲に表3、4の組成の粉末を酸
化した後プレス成形にて表1、2の部材と一体化させた
部材を作製し、一体化させたときの断面形状が直径80
mmの円になる直径80mm×長さ200mmの円柱ビ
レットを作製した。
Example 6 The contact alloy compositions were as shown in Tables 1 and 2.
(The description of "extrusion" in the column of the method is applicable. Tables 3 to 6
The same is true. ) The powder obtained by oxidizing the powder was prepared by press molding to form a cylindrical member, and the powder having the composition shown in Tables 3 and 4 was oxidized therearound and integrated with the members shown in Tables 1 and 2 by press molding. And the cross-sectional shape when integrated is 80 diameter.
A cylindrical billet having a diameter of 80 mm and a length of 200 mm was prepared.

【0058】その後800℃×2hの条件でAr雰囲気
中で加熱後、2つの穴を持つダイスで熱間押出加工を行
い板形状とした後、この2層板に板圧の10分の1の厚
みの純Ag層板を張り合わせて圧延し、得られた3層構
造の板から打ち抜いて、チップ状の縦8mm、横6m
m、厚み2.5mm及び縦6mm、横6mm、厚み2m
mの一対の電気接点を作製した。そして内部酸化したの
ち得た接点を、実施例1と同じ条件にて遮断試験と、初
期温度測定、過負荷試験後の温度特性、過負荷試験後の
温度特性、短絡試験後の温度特性を評価した。
Then, after heating in an Ar atmosphere at 800 ° C. × 2 h, hot extrusion was performed with a die having two holes to obtain a plate shape. A pure Ag layer plate having a thickness is laminated and rolled, and punched out of the obtained plate having a three-layer structure, into a chip-shaped 8 mm long and 6 m wide.
m, thickness 2.5mm, length 6mm, width 6mm, thickness 2m
m pair of electrical contacts were produced. Then, the contact obtained after internal oxidation is subjected to a breaking test under the same conditions as in Example 1, and an initial temperature measurement, a temperature characteristic after an overload test, a temperature characteristic after an overload test, and a temperature characteristic after a short circuit test are evaluated. did.

【0059】これら実施例1〜6の試験の結果は、比較
例とともに表1〜6に示している。すなわち、表2の比
較例は内部層の接点合金組成が本発明から外れているも
の、表4の比較例は表面層の接点合金組成が本発明から
外れているもの、表6比較例は初めの11個は表面層
(一部内部層を含む。)の接点合金組成が、次の6個は
内部層の接点合金組成が、次の3個は表面層厚み及び硬
度が、最後の比較例は評価の定格電流が本発明から外れ
ている。結果的に、本発明に示した電気接点は比較例に
比べて明らかに優れた温度特性と耐溶着特性を示した。
The results of the tests of Examples 1 to 6 are shown in Tables 1 to 6 together with Comparative Examples. That is, the comparative examples in Table 2 are those in which the contact alloy composition of the inner layer is out of the present invention, the comparative examples in Table 4 are those in which the contact alloy composition in the surface layer is out of the present invention, and the comparative examples in Table 6 are the first. No. 11 has the contact alloy composition of the surface layer (including some internal layers), the next six have the contact alloy composition of the internal layer, the next three have the thickness and hardness of the surface layer, and the last comparative example Indicates that the rated current of the evaluation deviates from the present invention. As a result, the electrical contacts according to the present invention showed clearly superior temperature characteristics and welding resistance as compared with the comparative example.

【0060】[0060]

【発明の効果】本願は、定格電流100A以上の電気接
点に用いるに適した構造(電気接点表面からAμmより
浅い層である表面層と、電気接点表面からAμmより深
い層である内部層)と接点合金組成(表面層の接点合金
組成と内部層の接点合金組成)及び硬度を明らかにする
ことにより、優れた温度性能(初期、過負荷試験後、耐
久試験後、及び短絡遮断試験後)と優れた耐溶着性能を
合わせ持つ電気接点を提供することができる。
The present invention relates to a structure suitable for an electric contact having a rated current of 100 A or more (a surface layer which is shallower than A μm from the surface of the electric contact and an inner layer which is deeper than A μm from the surface of the electric contact). By clarifying the contact alloy composition (contact layer alloy composition of the surface layer and contact layer alloy composition of the inner layer) and hardness, excellent temperature performance (initial, after overload test, after endurance test, and after short-circuit breaking test) and It is possible to provide an electric contact having excellent welding resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気接点の断面を示す図である。FIG. 1 is a diagram showing a cross section of an electric contact.

【図2】一対の電気接点(可動接点、固定接点)を示す
概念図である。
FIG. 2 is a conceptual diagram showing a pair of electric contacts (movable contact, fixed contact).

【符号の説明】 1:表面層 2:内部層 3:純Ag層 4:基台 5:電気接点表面 6:可動接点 7:固定接点[Description of Signs] 1: Surface layer 2: Internal layer 3: Pure Ag layer 4: Base 5: Electric contact surface 6: Movable contact 7: Fixed contact

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01H 11/04 H01H 11/04 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01H 11/04 H01H 11/04 B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 定格電流が100A以上の遮断器(ブレ
ーカー)に用いる電気接点であって、該電気接点表面か
ら8μm以上80μm以下の表面層が重量%でカドミウ
ム(Cd)が0%以上6%以下、スズ(Sn)が0.1
%以上1.5%以下、ニッケル(Ni)が0.15%以
上1.2%以下、残部が不純元素0.2%以下の銀合金
で構成され、前記表面層の内側の内部層が重量%でカド
ミウム(Cd)が14%以上19%以下、スズ(Sn)
が0.3%以上1.5%以下、ニッケル(Ni)が0.
22%以上1.2%以下、残部が不純元素0.2%以下
の銀合金とで構成される2層構造を持ち、前記表面層及
び内部層のマイクロビッカース硬度が45mHv以上1
25mHv以下であることを特徴とする電気接点。
1. An electrical contact for use in a circuit breaker (breaker) having a rated current of 100 A or more, wherein a surface layer of 8 μm to 80 μm from the surface of the electrical contact has a weight percentage of cadmium (Cd) of 0% to 6%. Hereinafter, tin (Sn) is 0.1
% To 1.5%, nickel (Ni) is 0.15% to 1.2%, and the balance is a silver alloy containing 0.2% or less of an impurity element. % Cadmium (Cd) is 14% or more and 19% or less, tin (Sn)
Is 0.3% or more and 1.5% or less, and nickel (Ni) is 0.1% or more.
It has a two-layer structure composed of a silver alloy of 22% or more and 1.2% or less, with the balance being an impurity element of 0.2% or less, and the surface layer and the inner layer have a micro Vickers hardness of 45 mHv or more and 1 or more.
An electrical contact, wherein the electrical contact is 25 mHv or less.
【請求項2】 前記不純物が0.2%以下の銀合金は、
重量%でアンチモン(Sb)が0%以上2%以下、カル
シウム(Ca)が0%以上0.3%以下、ビスマス(B
i)が0%以上1%以下、コバルト(Co)が0%以上
0.5%以下、インジウム(In)が0%以上5%以下
の銀合金であることを特徴とする請求項1記載の電気接
点。
2. A silver alloy containing 0.2% or less of impurities,
Antimony (Sb) is 0% or more and 2% or less, calcium (Ca) is 0% or more and 0.3% or less, bismuth (B
2. The silver alloy according to claim 1, wherein i) is 0% or more and 1% or less, cobalt (Co) is 0% or more and 0.5% or less, and indium (In) is 0% or more and 5% or less. Electrical contacts.
【請求項3】 溶射法で表面層を形成することを特徴と
する請求項1記載の電気接点の製造法。
3. The method according to claim 1, wherein the surface layer is formed by a thermal spraying method.
【請求項4】 薄板の圧延法で表面層を形成することを
特徴とする請求項1記載の電気接点の製造法。
4. The method according to claim 1, wherein the surface layer is formed by rolling a thin plate.
【請求項5】 蒸着法で表面層を形成することを特徴と
する請求項1記載の電気接点の製造法。
5. The method according to claim 1, wherein the surface layer is formed by a vapor deposition method.
【請求項6】 酸性溶液に浸漬洗浄後、合金元素の拡散
焼鈍で表面層を形成することを特徴とする請求項1記載
の電気接点の製造法。
6. The method for producing an electrical contact according to claim 1, wherein a surface layer is formed by immersion cleaning in an acidic solution and diffusion annealing of an alloy element.
【請求項7】 熱間静水圧成形法(HIP)で表面層を
形成することを特徴とする請求項1記載の電気接点の製
造法。
7. The method according to claim 1, wherein the surface layer is formed by hot isostatic pressing (HIP).
【請求項8】 熱間押出法で表面層を形成することを特
徴とする請求項1記載の電気接点の製造法。
8. The method according to claim 1, wherein the surface layer is formed by hot extrusion.
JP33936596A 1996-12-19 1996-12-19 Electric contact and its manufacture Pending JPH10177821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33936596A JPH10177821A (en) 1996-12-19 1996-12-19 Electric contact and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33936596A JPH10177821A (en) 1996-12-19 1996-12-19 Electric contact and its manufacture

Publications (1)

Publication Number Publication Date
JPH10177821A true JPH10177821A (en) 1998-06-30

Family

ID=18326785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33936596A Pending JPH10177821A (en) 1996-12-19 1996-12-19 Electric contact and its manufacture

Country Status (1)

Country Link
JP (1) JPH10177821A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075228A1 (en) * 2003-02-21 2004-09-02 Sumitomo Electric Industries, Ltd. Dc relay
CN102040148A (en) * 2010-12-15 2011-05-04 广州市镜华金属材料有限公司 Switch contact for elevator door lock
JP2013131411A (en) * 2011-12-21 2013-07-04 Tokuriki Honten Co Ltd Production method of electrical contact material and electrical contact material
CN115109963A (en) * 2022-06-29 2022-09-27 重庆科技学院 Silver bismuth copper alloy electrode of crystal oscillator and manufacturing process
CN115216665A (en) * 2022-06-29 2022-10-21 重庆科技学院 Crystal oscillator alloy electrode and process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075228A1 (en) * 2003-02-21 2004-09-02 Sumitomo Electric Industries, Ltd. Dc relay
US7145422B2 (en) 2003-02-21 2006-12-05 Sumitomo Electric Industries, Ltd. DC relay
CN102040148A (en) * 2010-12-15 2011-05-04 广州市镜华金属材料有限公司 Switch contact for elevator door lock
JP2013131411A (en) * 2011-12-21 2013-07-04 Tokuriki Honten Co Ltd Production method of electrical contact material and electrical contact material
CN115109963A (en) * 2022-06-29 2022-09-27 重庆科技学院 Silver bismuth copper alloy electrode of crystal oscillator and manufacturing process
CN115216665A (en) * 2022-06-29 2022-10-21 重庆科技学院 Crystal oscillator alloy electrode and process
CN115109963B (en) * 2022-06-29 2023-11-17 重庆科技学院 Silver bismuth copper alloy electrode of crystal oscillator and manufacturing process
CN115216665B (en) * 2022-06-29 2023-11-17 重庆科技学院 Crystal oscillator alloy electrode and process

Similar Documents

Publication Publication Date Title
US5160366A (en) Silver-metal oxide composite material and process for producing the same
EP1666617A1 (en) Electric contact and electrical equipment including the same
EP0508055B1 (en) Silver-base metal oxide material for electrical contacts
JPH10177821A (en) Electric contact and its manufacture
US5286441A (en) Silver-metal oxide composite material and process for producing the same
CN100378884C (en) Method for producing silver-oxide group electric contact material and its product
KR101552428B1 (en) Ag / HIGH OXIDE Ag ALLOY ELECTRIC CONTACT MATERIAL FOR CIRCUIT BREAKER
JP2003217375A (en) Electric contact and breaker using the same
JP2005036264A (en) Electrical contact and contact breaker using it
JPH10188710A (en) Electric contact and its manufacture
JPH0480100B2 (en)
JPH09259678A (en) Silver/oxide compound type electric contact material and manufacture thereof
JPH0463137B2 (en)
JPH0371522A (en) Electric contact material and manufacture thereof
JPH0142321B2 (en)
CN112899519A (en) Preparation method of silver-tin oxide composite board and contact
JP2884533B2 (en) Composite materials for electrical contacts
JPH0623418B2 (en) Silver-oxide contact material
JPH03215638A (en) Silver-oxides series contact material
JPH04314837A (en) Electrical contact material of silver oxide series
JPH03219031A (en) Contact material of silver-oxides series
JPS5925017B2 (en) Silver monoxide-based electrical contact materials
JPH08295967A (en) Silver-tin oxide composite material and its production
JPH03215637A (en) Contact material of oxide series
JPH04235236A (en) Electrical contact material of silver-oxide series

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A02 Decision of refusal

Effective date: 20070828

Free format text: JAPANESE INTERMEDIATE CODE: A02