JPH0238651B2 - - Google Patents

Info

Publication number
JPH0238651B2
JPH0238651B2 JP61095628A JP9562886A JPH0238651B2 JP H0238651 B2 JPH0238651 B2 JP H0238651B2 JP 61095628 A JP61095628 A JP 61095628A JP 9562886 A JP9562886 A JP 9562886A JP H0238651 B2 JPH0238651 B2 JP H0238651B2
Authority
JP
Japan
Prior art keywords
wear
wear resistance
alloy
content
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61095628A
Other languages
Japanese (ja)
Other versions
JPS62250138A (en
Inventor
Kenki Minamoto
Mitsuhiro Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9562886A priority Critical patent/JPS62250138A/en
Publication of JPS62250138A publication Critical patent/JPS62250138A/en
Publication of JPH0238651B2 publication Critical patent/JPH0238651B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Mechanical Operated Clutches (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は熱間圧延性に優れた耐摩耗性銅合金に
関し、さらに詳しくは、苛酷な摺動条件下におい
て使用される機器材料、例えば、自動車のトラン
スミツシヨン機構に使用されるシンクロナイザー
リング用として、優れた耐摩耗性を有する銅合金
に関するものである。 [従来技術] 自動車用シンクロナイザーリングのように高苛
重、高速度における厳しい摩擦環境下において使
用される材料としては、高力黄銅にSiを含有させ
たMn−Si系の金属間化合物を分散させた材料が
知られている。 しかしながら、最近になつて、作動油の低粘度
化傾向に対応してさらに耐摩耗性を向上させるた
め、本発明者等は、先に高力黄銅にMn−Si系、
Fe−Si系金属間化合物の他Fe−Mn−Si系3元化
合物を析出させた銅合金(特願昭59−031136号)
を提案している。 そして、この合金は素地組織にFe、Mn、Siな
どの含有元素により、金属間化合物の析出により
耐摩耗性向上の効果は、金属間化合物のもつ物性
とともに、その形状、量、大きさ及び分布状態に
密接に関係し、微細な化合物が均一に析出しない
と安定した対摩耗性が得られない。 また、金属間化合物の析出粒子の大きさが
200μmを越えると切削性や合金の靭性が著しく
低下する。 また、対摩耗性の向上のため上述の金属間化合
物の他にCu−ZnにAlを含有させて母相を硬くし
て強化しているが、Al含有量を増加させると、
母相にβ相およびγ相が析出して合金の靭性が低
下する。 [発明が解決しようとする問題点] 本発明者等は上記に説明したような従来技術の
問題点を解決するために鋭意研究をおこない、検
討を重ねた結果、さきに提案した銅合金に対し
て、溶解鋳造後に熱間加工を行うことにより、金
属間化合物を素地に微細に、かつ、均一に析出分
散させ、熱間加工性を改善し、さらに、靭性を向
上させた熱間加工性に優れた耐摩耗性銅合金を開
発してのである。 [問題点を解決するための手段] 本発明に係る熱間圧延性に優れた耐摩耗性銅合
金の特徴とするところは、 Zn10〜30wt%、Al2wt%を越え5wt%未満、 Mn0.5〜5wt%、Fe0.5〜3wt%、 Si0.5〜3wt% を含有し、かつ、 Fe−Mn−Si系三元化合物1〜11% を含有し、この化合物のFe/Si、Mn/Siの重量
比がそれぞれ0.3〜10であり、残部Cu及び不可避
不純物からなることにある。 本発明に係る熱間加工性に優れた耐摩耗性銅合
金について以下詳細に説明する。 まず、本発明に係る熱間加工性に優れた耐摩耗
性銅合金の含有成分および成分割合について説明
する。 Znは耐摩耗性および耐衝撃性を付与する元素
であり、母相がα相単相では耐摩耗性が劣化し、
β相単相では脆くなり耐摩耗性の他に靭性をも要
求される場合には、α+β相が望まれ、この観点
からZnの含有量は他の含有元素のZn当量に鑑み
Zn含有量は0.5〜30wt%とする。 AlはZnと同様に母相強化に対して有効な元素
であるが、AlのZn当量が6と高いため、Al含有
量が多くなるとγ相が析出し熱間加工性を悪くす
る。そして、含有量が2wt%末満ではAlの効果が
得られず、また、5wt%を越えて含有されると悪
い影響がある。よつて、Al含有量は2wt%を越え
5wt%未満とする。 MnとFeはSiと化合してMn5Si3やFe3Si等の金
属間化合物の他にFe−Mn−Si系3元化合物を形
成し、Mn5Si3やFe3Siを単独に含むよりも耐摩耗
性に優れており、また、Fe−Mn−Si系3元化合
物のFe/Si、Mn/Siの重量比は0.3〜10とし、か
つ、含有量が1〜11wt%とすることにより、耐
摩耗性が優れていることが分かつた。従つて、
Fe、Mnの含有量が0.5wt%未満ではこの効果が
少なく、また、Feが3wt%、Mnが5wt%を越え
て含有されるとその効果は飽和してしまい、それ
以上含有させると金属間化合物の粒子の大きさが
粗大化し、合金の靭性が低下する。よつて、Fe
含有量は0.5〜3wt%、Mn含有量は0.5〜5wt%と
する。 Siは金属間化合物を形成するのに必要な量を越
える場合は、一部母相に固溶し、母相強度を改善
する効果があるが、含有量が0.5wt%未満ではこ
のような効果は少なく、また、3wt%を越えて含
有されると、SiはZn当量が10と非常に高いので、
母相がβ相になり、合金の靭性が低下する。よつ
て、Si含有量は0.5wt%〜3wt%とする。 また、上記の含有成分の他に、溶解鋳造後熱間
加工率50%以上で加工することにより、金属間化
合物の粒子の大きさを200μm以下にし、耐摩耗
性および合金の靭性を向上させる。よつて、よつ
て、熱間加工率は50%以上とする。 [実施例] 本発明の熱間加工性に優れた耐摩耗性銅合金の
実施例について説明する。 実施例 1 Zn17.28wt%、Al3.93wt%、 Fe1.46wt%、Mn3.24wt%、Si1.28wt%、 Cu残部の合金を高周波溶解炉において溶解し、
溶解後金型に鋳込んで60mmt×60mmw×140mml
の鋳塊を作成した。この鋳塊を55mmまで面作し、
熱間圧延により厚さ41.3mm(加工率25%)、33.0
mm(加工率40%)、27.5mm(加工率50%)、22.2mm
(加工率60%)、11.0%(加工率80%)の厚さまで
仕上げた。 次に、これらの試料から5mm×5mm×20mmlの
試料を切り出し樹脂に埋め込み後、#1000エメリ
ーペーパーおよびバフ研摩後、画像解析装置によ
り金属間化合物の粒子の大きさとその分布を調査
した。 その結果を第1図に示す。熱間加工はA0%、
B25%、C40%、D50%、E60%、F80%である。
なお、E、F、Gは本発明、A、B、Cは比較材
である。 この結果から熱間加工率が50%以上の場合は、
金属間化合物の粒子が微細なものが多く成つてい
る。 また、同一板材から、8mmt×25mmw×50mml
の試験片を作成し、#1000エメリーペーパーで研
摩後大越式摩耗試験機による摩耗試験を行い比摩
耗量を算出した。 摩耗試験条件 相手材 :SZM21浸炭焼入れ 摩擦距離 :400m 最終荷重 :3.2Kg 摩耗速度 :2.37m/s 第1表に摩耗試験結果を示すが、熱間加工率が
50%以上の場合は、それ以上の場合に比べて耐摩
耗性は同等以上の性能を示していることがわか
る。 さらに、同一板材から圧延方向に直角な方向か
らシヤルピー衝撃試験(JIS4号)を作成した。 第1表にシヤルピー衝撃試験結果を示す。熱間
加工率が50%以上になると衝撃値は高くなつてい
る。
[Industrial Application Field] The present invention relates to a wear-resistant copper alloy with excellent hot rolling properties, and more specifically, to equipment materials used under severe sliding conditions, such as automobile transmission mechanisms. This invention relates to a copper alloy with excellent wear resistance for use in synchronizer rings. [Prior art] As a material used in a harsh friction environment at high loads and high speeds, such as synchronizer rings for automobiles, high-strength brass containing Mn-Si intermetallic compounds containing Si is dispersed. The materials used are known. However, recently, in order to further improve the wear resistance in response to the trend toward lower viscosity of hydraulic oil, the present inventors first developed Mn-Si based material for high-strength brass.
Copper alloy with precipitated Fe-Mn-Si ternary compounds in addition to Fe-Si intermetallic compounds (Japanese Patent Application No. 59-031136)
is proposed. This alloy has elements such as Fe, Mn, and Si in its base structure, and the effect of improving wear resistance due to the precipitation of intermetallic compounds is due to the physical properties of the intermetallic compounds as well as their shape, amount, size, and distribution. Closely related to the condition, stable wear resistance cannot be obtained unless fine compounds precipitate uniformly. In addition, the size of precipitated particles of intermetallic compounds is
If it exceeds 200 μm, the machinability and toughness of the alloy will decrease significantly. In addition to the above-mentioned intermetallic compounds, Cu-Zn also contains Al to harden and strengthen the matrix to improve wear resistance.
β phase and γ phase precipitate in the matrix, reducing the toughness of the alloy. [Problems to be Solved by the Invention] In order to solve the problems of the prior art as explained above, the present inventors conducted intensive research and after repeated consideration, By performing hot working after melting and casting, intermetallic compounds are finely and uniformly precipitated and dispersed in the base material, improving hot workability, and further improving hot workability with improved toughness. We have developed a copper alloy with excellent wear resistance. [Means for Solving the Problems] The features of the wear-resistant copper alloy with excellent hot rollability according to the present invention are as follows: Zn 10 to 30 wt%, Al greater than 2 wt% and less than 5 wt%, Mn 0.5 to 30 wt%. 5wt%, Fe0.5-3wt%, Si0.5-3wt%, and also contains 1-11% of Fe-Mn-Si ternary compound, and the Fe/Si, Mn/Si of this compound is The weight ratio is between 0.3 and 10, and the remainder consists of Cu and unavoidable impurities. The wear-resistant copper alloy with excellent hot workability according to the present invention will be described in detail below. First, the components and component ratios of the wear-resistant copper alloy with excellent hot workability according to the present invention will be explained. Zn is an element that imparts wear resistance and impact resistance, and if the matrix is a single alpha phase, wear resistance deteriorates.
A single β phase becomes brittle, and if toughness in addition to wear resistance is required, an α+β phase is desired.From this point of view, the Zn content should be determined based on the Zn equivalent of other contained elements.
Zn content shall be 0.5-30wt%. Al, like Zn, is an effective element for strengthening the matrix, but since the Zn equivalent of Al is as high as 6, when the Al content increases, γ phase precipitates, impairing hot workability. If the content is less than 2wt%, the effect of Al cannot be obtained, and if the content exceeds 5wt%, it will have a bad effect. Therefore, the Al content exceeds 2wt%.
Less than 5wt%. Mn and Fe combine with Si to form intermetallic compounds such as Mn 5 Si 3 and Fe 3 Si, as well as Fe-Mn-Si ternary compounds, which contain Mn 5 Si 3 and Fe 3 Si alone. In addition, the weight ratio of Fe/Si and Mn/Si in the Fe-Mn-Si ternary compound should be 0.3 to 10, and the content should be 1 to 11 wt%. It was found that the wear resistance was excellent. Therefore,
If the content of Fe and Mn is less than 0.5wt%, this effect will be small, and if Fe and Mn are contained in excess of 3wt% and 5wt%, the effect will be saturated, and if the content exceeds 3wt%, the effect will be saturated. The particle size of the compound becomes coarser and the toughness of the alloy decreases. Yotsute, Fe
The content is 0.5 to 3 wt%, and the Mn content is 0.5 to 5 wt%. When Si exceeds the amount necessary to form an intermetallic compound, it partially dissolves in the matrix and has the effect of improving the strength of the matrix, but if the content is less than 0.5wt%, this effect does not occur. Si is small, and if it is contained in excess of 3wt%, Si has a very high Zn equivalent of 10.
The parent phase becomes β phase, and the toughness of the alloy decreases. Therefore, the Si content is set to 0.5wt% to 3wt%. In addition to the above-mentioned components, by processing at a hot working rate of 50% or more after melting and casting, the particle size of the intermetallic compound is reduced to 200 μm or less, and the wear resistance and toughness of the alloy are improved. Therefore, the hot working rate should be 50% or more. [Example] Examples of the wear-resistant copper alloy with excellent hot workability of the present invention will be described. Example 1 An alloy containing 17.28wt% Zn, 3.93wt% Al, 1.46wt% Fe, 3.24wt% Mn, 1.28wt% Si, and the balance Cu was melted in a high-frequency melting furnace,
After melting, cast into a mold and make 60mmt x 60mmw x 140mml.
An ingot was created. This ingot is faceted to 55mm,
Thickness: 41.3mm (processing rate: 25%), 33.0mm by hot rolling
mm (processing rate 40%), 27.5mm (processing rate 50%), 22.2mm
(processing rate: 60%) and finished to a thickness of 11.0% (processing rate: 80%). Next, samples of 5 mm x 5 mm x 20 mml were cut out from these samples, embedded in resin, buffed with #1000 emery paper, and then the size and distribution of intermetallic compound particles were investigated using an image analyzer. The results are shown in FIG. Hot processing is A0%,
B25%, C40%, D50%, E60%, F80%.
Note that E, F, and G are materials of the present invention, and A, B, and C are comparative materials. From this result, if the hot working rate is 50% or more,
Many of the intermetallic compound particles are fine. Also, from the same board material, 8mmt x 25mmw x 50mml
A test piece was prepared, polished with #1000 emery paper, and then subjected to an abrasion test using an Okoshi type abrasion tester to calculate the specific wear amount. Wear test conditions Compatible material: SZM21 carburized and quenched Friction distance: 400m Final load: 3.2Kg Wear rate: 2.37m/s Table 1 shows the wear test results.
It can be seen that when it is 50% or more, the wear resistance is equivalent to or better than when it is more than 50%. In addition, a Charpy impact test (JIS No. 4) was performed on the same plate from the direction perpendicular to the rolling direction. Table 1 shows the results of the Charpy impact test. When the hot working rate is 50% or more, the impact value becomes high.

【表】 実施例 2 第2表に示す含有成分および成分割合の高周波
溶解炉で溶解し、溶解後金型に鋳込んで60mmt×
60mmw×140mlの鋳塊を作成した。 この鋳塊を55mmまで面削し、熱間圧延により厚
さ22.0mm(加工率60%)まで仕上げた。 次に、この板から圧延方向に直角な方向からシ
ヤルピー衝撃試験片(JIS4号)を作成した。 試験結果を第3表に示す。 この第3表から明らかであるが、本発明に係る
合金は比較合金に比べ衝撃値が著しく高くなつて
いる。 また、同一板材を実施例1と同様にして摩耗試
験を行つた。 第2図に摩耗試験結果を示すが、本発明に係る
合金(1、2、3)は比較合金(4、5、6)に
比べて、同等以上の耐摩耗性を示していることが
わかる。
[Table] Example 2 Melt in a high-frequency melting furnace with the ingredients and ingredient ratios shown in Table 2, and after melting, cast into a mold to produce 60mmt×
A 60 mmw x 140 ml ingot was created. This ingot was face milled to 55 mm and hot rolled to a thickness of 22.0 mm (processing rate 60%). Next, a Charpy impact test piece (JIS No. 4) was prepared from this plate in a direction perpendicular to the rolling direction. The test results are shown in Table 3. As is clear from Table 3, the impact value of the alloy according to the present invention is significantly higher than that of the comparative alloy. Further, the same plate material was subjected to an abrasion test in the same manner as in Example 1. Figure 2 shows the wear test results, and it can be seen that the alloys (1, 2, 3) according to the present invention have the same or higher wear resistance than the comparative alloys (4, 5, 6). .

【表】【table】

【表】【table】

【表】 [発明の効果] 以上詳細に説明したように、本発明に係る熱間
圧延性に優れた耐摩耗性銅合金は上記の構成であ
るから、耐摩耗性に優れ、かつ、耐衝撃性にも優
れ、自動車等のシンクロナイザーリング用の材料
として、好適な材料である。
[Table] [Effects of the Invention] As explained in detail above, the wear-resistant copper alloy with excellent hot rollability according to the present invention has the above structure, and therefore has excellent wear resistance and impact resistance. It has excellent properties and is suitable as a material for synchronizer rings in automobiles, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る耐摩耗性銅合金の熱間加
工性の違いにより1cm2に対して析出した金属間化
合の大きさの割合を示す図、第2図は摩擦速度と
比摩耗量の関係を示す図である。
Figure 1 shows the ratio of the size of intermetallic compounds precipitated per cm 2 due to differences in hot workability of the wear-resistant copper alloy according to the present invention, and Figure 2 shows the friction speed and specific wear amount. FIG.

Claims (1)

【特許請求の範囲】 1 Zn10〜30wt%、Al2wt%を越え5wt%未満、 Mn0.5〜5wt%、Fe0.5〜3wt%、 Si0.5〜3wt% を含有し、かつ、 Fe−Mn−Si系三元化合物1〜11% を含有し、この化合物のFe/Si、Mn/Siの重量
比がそれぞれ0.3〜10であり、残部Cu及び不可避
不純物からなることを特徴とする熱間圧延性に優
れた耐摩耗性銅合金。
[Claims] 1 Contains 10 to 30 wt% Zn, more than 2 wt% Al and less than 5 wt%, 0.5 to 5 wt% Mn, 0.5 to 3 wt% Fe, and 0.5 to 3 wt% Si, and Fe-Mn- Hot rolling property characterized by containing 1 to 11% of a Si-based ternary compound, the weight ratios of Fe/Si and Mn/Si of this compound being 0.3 to 10, respectively, and the balance consisting of Cu and inevitable impurities. Copper alloy with excellent wear resistance.
JP9562886A 1986-04-24 1986-04-24 Wear-resistant copper alloy excellent in hot rollability Granted JPS62250138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9562886A JPS62250138A (en) 1986-04-24 1986-04-24 Wear-resistant copper alloy excellent in hot rollability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9562886A JPS62250138A (en) 1986-04-24 1986-04-24 Wear-resistant copper alloy excellent in hot rollability

Publications (2)

Publication Number Publication Date
JPS62250138A JPS62250138A (en) 1987-10-31
JPH0238651B2 true JPH0238651B2 (en) 1990-08-31

Family

ID=14142786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9562886A Granted JPS62250138A (en) 1986-04-24 1986-04-24 Wear-resistant copper alloy excellent in hot rollability

Country Status (1)

Country Link
JP (1) JPS62250138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540962U (en) * 1991-11-06 1993-06-01 センサーテクノス株式会社 Bar code display

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910009871B1 (en) * 1987-03-24 1991-12-03 미쯔비시마테리얼 가부시기가이샤 Cu-alloy ring
EP0411882B1 (en) * 1989-07-31 1995-03-22 Toyota Jidosha Kabushiki Kaisha Dispersion strengthened copper-base alloy for overlay
DE102005015467C5 (en) 2005-04-04 2024-02-29 Diehl Brass Solutions Stiftung & Co. Kg Using a copper-zinc alloy
JP5342882B2 (en) * 2009-01-06 2013-11-13 オイレス工業株式会社 High strength brass alloy for sliding member and sliding member
CN102899527A (en) * 2012-10-25 2013-01-30 绍兴文理学院 High-intensity wear-resistant complicated aluminum brass
DE102013004383B4 (en) * 2013-03-12 2015-06-03 Diehl Metall Stiftung & Co. Kg Use of a copper-zinc alloy
DE102015003687A1 (en) * 2015-03-24 2016-09-29 Diehl Metall Stiftung & Co. Kg Copper-zinc alloy and its use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174843A (en) * 1984-02-21 1985-09-09 Kobe Steel Ltd Wear resistant copper alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174843A (en) * 1984-02-21 1985-09-09 Kobe Steel Ltd Wear resistant copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540962U (en) * 1991-11-06 1993-06-01 センサーテクノス株式会社 Bar code display

Also Published As

Publication number Publication date
JPS62250138A (en) 1987-10-31

Similar Documents

Publication Publication Date Title
JPH0480105B2 (en)
JPH0238651B2 (en)
US5925315A (en) Aluminum alloy with improved tribological characteristics
US7128792B2 (en) Sterling silver manganese alloy compositions
JPS6257700B2 (en)
JPH0534410B2 (en)
WO1994004712A1 (en) Lead-free copper base alloys
JPS6086237A (en) Cu-alloy for slide member
US2038136A (en) Copper-selenium alloys
EP0964069A1 (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
JPH07252583A (en) Spheroidal graphite cast iron for crank shaft
JPH01239A (en) Wear-resistant Cu alloy with high strength and toughness
JPH0237418B2 (en)
JPH07116537B2 (en) Wear resistant Cu alloy with high strength and toughness
JPH0757899B2 (en) Wear resistant copper alloy
JPS62222039A (en) Aluminum alloy excellent in wear resistance and extrudability
US2974035A (en) Nodular graphite steel
KR960005232B1 (en) Cu-al alloy composition
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JPH05345939A (en) White copper alloy
JPS63286552A (en) High-phosphorus cast-iron brake shoe for vehicle
JPH03291343A (en) Wear-resistant copper alloy
JPS63183148A (en) Wear resistant al-si-mn sintered alloy
JPH032340A (en) Wear resistant aluminum bronze
JPH06212320A (en) High perfrmance al alloy material and its prduction