JPS63183148A - Wear resistant al-si-mn sintered alloy - Google Patents

Wear resistant al-si-mn sintered alloy

Info

Publication number
JPS63183148A
JPS63183148A JP1378387A JP1378387A JPS63183148A JP S63183148 A JPS63183148 A JP S63183148A JP 1378387 A JP1378387 A JP 1378387A JP 1378387 A JP1378387 A JP 1378387A JP S63183148 A JPS63183148 A JP S63183148A
Authority
JP
Japan
Prior art keywords
weight
alloy
sintered alloy
based sintered
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1378387A
Other languages
Japanese (ja)
Other versions
JP2542603B2 (en
Inventor
Yusuke Kotani
雄介 小谷
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62013783A priority Critical patent/JP2542603B2/en
Publication of JPS63183148A publication Critical patent/JPS63183148A/en
Application granted granted Critical
Publication of JP2542603B2 publication Critical patent/JP2542603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a wear resistant Al-Si-Mn sintered alloy having high strength and excellent toughness by preparing an alloy consisting of specific ratios of Al, Si, Mn, Cu and Mg. CONSTITUTION:The Al-Si-Mn sintered alloy contg., by weight, 12-30% Si, 2-15% Mn (The total of Si and Mn does not exceed 40%.), 0.5-8% Cu, 0.1-3% Mg, and at least one or more kinds of elements selected from the group consisting of <=4%, per each element, W, Cr, Co, Zr, Mo, V, Ti, Li, Ce and Hf (The total of these elements with Si and Mn does not exceed 40%.) and the balance consisting of Al is produced by an ordinary powder metallurgical method. At the same time, the molten metal is required to quench at the cooling ratio of about >=10<2>C deg./sec.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐摩耗性に優れたAl−Si−Mn系焼結合
金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an Al-Si-Mn based sintered alloy having excellent wear resistance.

〔従来の技術〕[Conventional technology]

従来から耐摩耗性のアルミニウム合金としては、例えば
アルミニウムハンドブック第3 版12〜13頁(軽金
属協会刊)に記載されているように、A!合金の耐摩耗
性を向上させる効果が大きいケイ素(Si)を添加する
ことによって、4032又はAC8AやAC9A等の各
種のAl−8i系合金が溶解鋳造法により製造されてき
た。
Conventionally, as wear-resistant aluminum alloys, A! Various Al-8i alloys such as 4032, AC8A, and AC9A have been manufactured by melting and casting by adding silicon (Si), which has a large effect on improving the wear resistance of the alloy.

しかし、溶解鋳造法では高Si含有量のA4−Si系合
金を製造することは難しく、Siを12重量%以上添添
加ると粗大な初晶S1が析出し、弾車が著しく低下する
欠点があった。特に、小型、軽量で高性能化が望まれる
現在においては、この低い強度の改善が問題であった。
However, it is difficult to produce an A4-Si alloy with a high Si content using the melt casting method, and if Si is added in an amount of 12% by weight or more, coarse primary crystals S1 will precipitate, resulting in a significant drop in bullet performance. there were. Particularly in today's world where small size, light weight, and high performance are desired, improving this low strength has been a problem.

そこで最近では、粉末冶金法を用いることによって、高
い強度を具えた耐摩耗性のAl−Si−Fe系焼結合金
が開発されている。即ち、所定の合金組成の金属溶湯を
ガスアトマイズ法等の粉末製造技術により急速冷却して
合金粉末とし、この粉末を焼結して合金を製造する。こ
の様に102rjsec以上の冷却速度で急速冷却する
と、合金粉末中で初晶S1が微細化され且つ均一に分散
されるので、従来の溶解鋳造法に比べ高い強度が得られ
るものである。
Therefore, recently, a wear-resistant Al-Si-Fe based sintered alloy with high strength has been developed by using a powder metallurgy method. That is, a molten metal having a predetermined alloy composition is rapidly cooled to an alloy powder using a powder production technique such as a gas atomization method, and this powder is sintered to produce an alloy. Rapid cooling at a cooling rate of 102 rjsec or more in this manner makes the primary crystals S1 fine and uniformly dispersed in the alloy powder, resulting in higher strength compared to conventional melt casting methods.

しかし、か\る粉末焼結法により製造したAt−31−
Fe系焼結合金では、高い強度が得られるものの、その
靭性は極めて低く、シャルピー衝撃値で0、2〜0.5
 kg−m膚程度でアッタ。
However, At-31- manufactured by the powder sintering method
Fe-based sintered alloys have high strength, but their toughness is extremely low, with a Charpy impact value of 0.2 to 0.5.
Atta at about kg-m skin level.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様に、従来のA4−5i−Fe系焼結合金は高い強
度を有するものの、その靭性は極めて低く、大きな衝撃
力が加わる部材としては使用できない等の問題点があっ
た。
As described above, although the conventional A4-5i-Fe-based sintered alloy has high strength, its toughness is extremely low, and there have been problems in that it cannot be used as a member to which a large impact force is applied.

本発明はか\る従来の事情に鑑み、高強度であって且つ
優れた靭性を有する耐摩耗性のA4−Si、系焼結合金
を提供することを目的とする。
In view of the conventional circumstances, the present invention aims to provide a wear-resistant A4-Si based sintered alloy that has high strength and excellent toughness.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の耐摩耗性1−Si系焼結合金は、12〜30重
量%のSiと、2〜15重量%のMn (但し、Siと
Mnの合計は40重量%を超えない)と、必要に応じて
各元素当り4重量%以下のW、、 Orz 00%Zr
、M(+、V、 Ti、Ll、Ce及びHfからなる群
から選ばれた少なくとも一種の元素(但し、この場合に
は、これらの元素とSi及びMnとの合計は40重量%
を超えない)と、及び0.5〜8重量%のCuと、0.
1〜3重量%のMgと、残部のAlとからなる耐摩耗性
AlAl−Si−系焼結合金である。
The wear-resistant 1-Si-based sintered alloy of the present invention contains 12 to 30% by weight of Si, 2 to 15% by weight of Mn (however, the total of Si and Mn does not exceed 40% by weight), and Up to 4% by weight of W for each element depending on the 00% Zr
, M(+, V, Ti, Ll, Ce, and Hf) (However, in this case, the total of these elements and Si and Mn is 40% by weight.
), and 0.5-8% by weight of Cu, and 0.5-8% by weight of Cu.
It is a wear-resistant AlAl-Si-based sintered alloy consisting of 1 to 3% by weight of Mg and the remainder Al.

この耐摩耗性AlAl−Si−系焼結合金の製造は、通
常の粉末冶金法によって行ない、その場合に金属溶湯は
102r/sea以上の冷却速度で急速冷却する必要が
あることは前記の通りである。
This wear-resistant AlAl-Si-based sintered alloy is produced by the usual powder metallurgy method, and as mentioned above, the molten metal needs to be rapidly cooled at a cooling rate of 102 r/sea or more. be.

(作用〕 本発明者等は、従来(p Al−Si−Fe系焼結合金
について靭性低下の原因を調査した結果、靭性の低下は
生成した金属間化合物AI Feに起因することが判っ
た。
(Function) As a result of investigating the cause of the decrease in toughness of conventional (p Al-Si-Fe based sintered alloys), the present inventors found that the decrease in toughness was caused by the generated intermetallic compound AI Fe.

そこで、本発明者等はAl−Si−Fe系焼結合金のF
eをN1、Mn、(:!0又はCr等の元素で置換する
ことを検討した結果、これらの元素のなかでMnが靭性
の改善に最も有効であることを見出し、本発明を達成し
たものである。
Therefore, the present inventors have investigated the F of Al-Si-Fe based sintered alloy.
As a result of considering replacing e with elements such as N1, Mn, (:!0, or Cr), it was found that among these elements, Mn was the most effective for improving toughness, and the present invention was achieved. It is.

本発明の耐摩耗性A7−Si−Mn系焼結合金において
、Siは耐摩耗性を向上させるが、12重量%未満では
この効果が十分ではなく、逆に30重量%を超えると強
度の低下が大きくミる。
In the wear-resistant A7-Si-Mn sintered alloy of the present invention, Si improves the wear resistance, but if it is less than 12% by weight, this effect is not sufficient, and if it exceeds 30% by weight, the strength decreases. is greatly missed.

Mnは上記の如く靭性の向上に有効であるが、2〜15
重量%の範囲外では靭性の向上効果が不充分である。又
、slとMnの合計は40重量%以下が好ましく、40
重量%を超えると合金の塑性加工性が著しく低下するが
らである。
Mn is effective in improving toughness as mentioned above, but Mn is 2 to 15
Outside the range of weight %, the effect of improving toughness is insufficient. Further, the total of sl and Mn is preferably 40% by weight or less, and 40% by weight or less.
If it exceeds the weight percentage, the plastic workability of the alloy will be significantly reduced.

又、CuとMgは時効析出により強度を補強する為の時
効硬化性元素として添加するものであり、Cuが0.5
〜8重量%及びMgが0.1〜3重量%の範囲とするこ
とにより、合金のマトリックス硬度を上げ、強度を向上
させると共に耐摩耗性を改善できる。しかし、cu及び
Mgの少なくとも片方が上記の範囲より少ない場合には
合金強度の向上効果が小さく、又上記範囲を超える場合
には合金の靭性が低下する。
Further, Cu and Mg are added as age hardening elements to reinforce strength through aging precipitation, and Cu is 0.5
-8% by weight and Mg in the range of 0.1 to 3% by weight, it is possible to increase the matrix hardness of the alloy, improve the strength, and improve the wear resistance. However, when at least one of Cu and Mg is less than the above range, the effect of improving the alloy strength is small, and when it exceeds the above range, the toughness of the alloy is reduced.

更に、本発明の耐摩耗性AlAl−5i−系焼結合金の
強度及び耐熱性を補強するために、必要に応じてW、 
CrCrSC01Zr1、VSTi、Li、Oe及びH
fからなる群から選ばれた少なくとも一種の元素を含有
することができる。これらの元素は結晶粒の微細化によ
り合金強度を補強すると同時に、Alと化合物を生成し
て合金の耐熱性を向上させる。但し、これらの各元素は
4重量%以下でなければならず、4重量%を超えると合
金の脆化をきたす。
Furthermore, in order to reinforce the strength and heat resistance of the wear-resistant AlAl-5i-based sintered alloy of the present invention, W,
CrCrSC01Zr1, VSTi, Li, Oe and H
It can contain at least one element selected from the group consisting of f. These elements strengthen the alloy strength by making the crystal grains finer, and at the same time form compounds with Al to improve the heat resistance of the alloy. However, the content of each of these elements must be 4% by weight or less, and if the content exceeds 4% by weight, the alloy will become brittle.

又、これらの元素を含有する場合には、これらの元素と
上記したSi及びMnの合計が40重量%以下である必
要がある。これらの元素とSi及びMnとの合計が40
重量%を超えると合金の塑性加工性が著しく劣化するた
めである。
Further, when these elements are contained, the total of these elements and the above-mentioned Si and Mn must be 40% by weight or less. The total of these elements, Si and Mn is 40
This is because if the content exceeds % by weight, the plastic workability of the alloy will be significantly deteriorated.

〔実施例〕〔Example〕

ガスアトマイズ法により金属溶湯を急速冷却して、下記
第1表に示す各組成の合金粉末を夫々製造した。100
メツシユ以下の合金粉末を篩分けした後、各々について
450Cにて押出比2oで粉末押出を行ない本発明の6
種のA4A4−8i−系焼結合金を製造した。
The molten metal was rapidly cooled by a gas atomization method to produce alloy powders having the respective compositions shown in Table 1 below. 100
After sieving the alloy powders having a mesh size or less, each powder was extruded at 450C and an extrusion ratio of 2o.
A seed A4A4-8i-based sintered alloy was produced.

尚、比較例として第1表黒7〜9に示す従来の3種のA
l−Si−Fe系焼結合金を準備した。
As comparative examples, three conventional A
A l-Si-Fe based sintered alloy was prepared.

I   AI−1Al−17Si−3,5Cu−IMg
−1,5M。
I AI-1Al-17Si-3,5Cu-IMg
-1.5M.

2   AI−2051−8Mn−3,50u−IMg
−IW3   AI−2051−5Mn−3,50u−
1Mg4   A4−2A4−20Si−5,5Cu−
IMg−2Zr5   Al−2Al−20Si−5,
5Cu−IMg−2W6   Al−2Al−25Si
−5,50u−IMg−IOr7     AI−17
Si−5Fe 8     AI−20Si−5Fe 9     Al−20Si−8Fe (註)試料屋7〜9は比較例である。
2 AI-2051-8Mn-3,50u-IMg
-IW3 AI-2051-5Mn-3,50u-
1Mg4 A4-2A4-20Si-5,5Cu-
IMg-2Zr5 Al-2Al-20Si-5,
5Cu-IMg-2W6 Al-2Al-25Si
-5,50u-IMg-IOr7 AI-17
Si-5Fe 8 AI-20Si-5Fe 9 Al-20Si-8Fe (Note) Sample stores 7 to 9 are comparative examples.

得られた各AlAl−5i−系焼結合金を夫々引張試験
用及び衝撃試験用のテストピースに加工し、これを47
0Cで2時間加熱後水中で急冷し、更に175Cで10
時間の時効処理を行なった。その後、各テストピースに
ついて引張試験及び5kgシャルピー衝撃試験を実施し
た。比較例のAl−8i−Fe系焼結合金のテストピー
スについても引張試験及びシャルピー衝撃試験を行ない
、これらの試験結果を下記第2表に併せて示した。
Each of the obtained AlAl-5i-based sintered alloys was processed into test pieces for tensile tests and impact tests, respectively.
After heating at 0C for 2 hours, quenching in water and further heating at 175C for 10
A time-limiting process was carried out. Thereafter, each test piece was subjected to a tensile test and a 5 kg Charpy impact test. A tensile test and a Charpy impact test were also conducted on the test piece of the Al-8i-Fe based sintered alloy of the comparative example, and the test results are also shown in Table 2 below.

1    49     1.1 2    46     0.68 3    46     0.84 4    48     0.92 5    52     0.98 6    48     0.72 7    46     0.38 8    45     0.32 9    43     0.2) (註)試料屋7〜9は比較例である。1 49 1.1 2 46 0.68 3 46 0.84 4 48 0.92 5 52 0.98 6 48 0.72 7 46 0.38 8 45 0.32 9 43 0.2) (Note) Sample shops 7 to 9 are comparative examples.

上記の結、果から判るように、本発明のAlAl−5i
−系焼結合金は従来のAl−Si−Fe系焼結合金と比
較して同等又はそれ以上の強度を有し、しかも約二倍以
上の靭性を具えている。
As can be seen from the above results, AlAl-5i of the present invention
- type sintered alloy has strength equal to or higher than that of conventional Al-Si-Fe type sintered alloy, and has about twice or more toughness.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高強度であって且つ優れた靭性を有す
る耐摩耗性AlAl−Si−系焼結合金を提供できる。
According to the present invention, a wear-resistant AlAl-Si-based sintered alloy having high strength and excellent toughness can be provided.

従って、従来のAl−Si−Fe系焼結合金では構成で
きなかった大きな衝撃力が加わるような部材にも軽量な
アルミニウム合金の適用が可能となった。
Therefore, it has become possible to apply lightweight aluminum alloys to members to which large impact forces are applied, which could not be constructed using conventional Al-Si-Fe based sintered alloys.

手続補正書(自発) 昭和62年10月16日 昭和62 年 特 許 II第第01378彎3、 補
正をする者 事件との関係 特許出願人 住 所  大阪市東区北浜5丁目15番地氏 名(名称
)(2 1 3)住友電気工業株式会社4、代理人 住 所  東京都新宿区新宿1丁目12−156、 補
正により増加する発明の数 (1)明細書の第7頁、第1行〜第14行を下記の通り
に変更する。
Procedural amendment (voluntary) October 16, 1988 Patent II No. 01378-3, Relationship to the case of the person making the amendment Patent applicant Address 5-15 Kitahama, Higashi-ku, Osaka Name (Name) ) (2 1 3) Sumitomo Electric Industries, Ltd. 4, Agent address: 1-12-156 Shinjuku, Shinjuku-ku, Tokyo Number of inventions increased by amendment (1) Page 7, lines 1 to 1 of the specification Change line 14 as shown below.

「尚、比較例として第1表屋7〜12に示す従来の6種
のA4−Si−Fe系焼結合金を準備した。
``Incidentally, as comparative examples, six types of conventional A4-Si-Fe-based sintered alloys shown in the first table 7 to 12 were prepared.

第  1  表 I  A4−1A4−17Si−3,5(!u−IMg
−1.5M。
Table 1 A4-1A4-17Si-3,5(!u-IMg
-1.5M.

2  Al−2Al−20Si−8,5Cu−IMg−
IW3  Al−2Al−20Si−5,5C!u−I
Mg、 4  A)−20Si−5Mn−3,50u−
IMg−2Zr5  Al−2Al−20Si−5,5
Cu−IMg−2W5  A4−2A4−25Si−5
,50u−IMg−IOr7  Al−17Si−5F
e 8  A4−20Si−5Fe 9  A4−20Si−8Fe 10  A4−17Si−3Fe−3,5C!u−IM
gll  Al−20Si−5Fe−3,50u−1M
g12  A4−26Si−8Fe−3,50u−IM
g(註)試料罵7〜12は比較例である。   」(2
)明細書の第8頁、第4行〜第15行を下記の通り変更
する。
2 Al-2Al-20Si-8,5Cu-IMg-
IW3 Al-2Al-20Si-5,5C! u-I
Mg, 4A)-20Si-5Mn-3,50u-
IMg-2Zr5 Al-2Al-20Si-5,5
Cu-IMg-2W5 A4-2A4-25Si-5
,50u-IMg-IOr7 Al-17Si-5F
e 8 A4-20Si-5Fe 9 A4-20Si-8Fe 10 A4-17Si-3Fe-3,5C! u-IM
gll Al-20Si-5Fe-3,50u-1M
g12 A4-26Si-8Fe-3,50u-IM
(Note) Samples 7 to 12 are comparative examples. ”(2
) Page 8, lines 4 to 15 of the specification are changed as follows.

[第  2  表 1  49  1.1 2  46  0.68 3  46  0.84 4  48  0.92 5  、52  0.98 6  48  0.72 7  46  0.38 8  45  0.32 9  43  0.2) 1O510,27 11490,25 12530,18[Table 2 1 49 1.1 2 46 0.68 3 46 0.84 4 48 0.92 5, 52 0.98 6 48 0.72 7 46 0.38 8 45 0.32 9 43 0.2) 1O510,27 11490,25 12530,18

Claims (2)

【特許請求の範囲】[Claims] (1) 12〜30重量%のSiと、2〜15重量%の
Mn(但し、SiとMnの合計は40重量%を超えない
)と、0.5〜8重量%のCuと、0.1〜3重量%の
Mgと、残部のAlとからなる耐摩耗性Al−Si−M
n系焼結合金。
(1) 12 to 30% by weight of Si, 2 to 15% by weight of Mn (however, the total of Si and Mn does not exceed 40% by weight), 0.5 to 8% by weight of Cu, and 0.5 to 8% by weight of Cu; Wear-resistant Al-Si-M consisting of 1 to 3% by weight of Mg and the balance Al
N-based sintered alloy.
(2) 12〜30重量%のSiと、2〜15重量%の
Mnと、各元素当り4重量%以下のW、Cr、Co、Z
r、Mo、V、Ti、Li、Ce及びHfからなる群か
ら選ばれた少なくとも一種の元素(但し、これらの元素
とSi及びMnとの合計は40重量%を超えない)と、
0.5〜8重量%のCuと、0.1〜3重量%のMgと
、残部のAlとからなる耐摩耗性Al−Si−Mn系焼
結合金。
(2) 12 to 30% by weight of Si, 2 to 15% by weight of Mn, and 4% by weight or less of W, Cr, Co, and Z for each element.
At least one element selected from the group consisting of r, Mo, V, Ti, Li, Ce, and Hf (however, the total of these elements and Si and Mn does not exceed 40% by weight),
A wear-resistant Al-Si-Mn based sintered alloy consisting of 0.5 to 8% by weight of Cu, 0.1 to 3% by weight of Mg, and the balance Al.
JP62013783A 1987-01-23 1987-01-23 Abrasion resistance Al-Si-Mn sintered alloy Expired - Fee Related JP2542603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013783A JP2542603B2 (en) 1987-01-23 1987-01-23 Abrasion resistance Al-Si-Mn sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013783A JP2542603B2 (en) 1987-01-23 1987-01-23 Abrasion resistance Al-Si-Mn sintered alloy

Publications (2)

Publication Number Publication Date
JPS63183148A true JPS63183148A (en) 1988-07-28
JP2542603B2 JP2542603B2 (en) 1996-10-09

Family

ID=11842846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013783A Expired - Fee Related JP2542603B2 (en) 1987-01-23 1987-01-23 Abrasion resistance Al-Si-Mn sintered alloy

Country Status (1)

Country Link
JP (1) JP2542603B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508426A2 (en) * 1991-04-12 1992-10-14 Hitachi, Ltd. Highly ductile sintered aluminum alloy, method for production thereof and use thereof
CN102876935A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 Wear-resistant aluminum alloy
CN102876936A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 Anticorrosion aluminum alloy
CN103882268A (en) * 2014-02-25 2014-06-25 安徽祈艾特电子科技有限公司 Aluminum alloy material for triangular valves and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS627827A (en) * 1985-07-04 1987-01-14 Riken Corp Ball valve
JPS62224602A (en) * 1986-03-26 1987-10-02 Showa Denko Kk Production of sintered aluminum alloy forging
JPS62287026A (en) * 1986-06-04 1987-12-12 Showa Denko Kk Manufacture of aluminum-alloy sintered and forged product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS627827A (en) * 1985-07-04 1987-01-14 Riken Corp Ball valve
JPS62224602A (en) * 1986-03-26 1987-10-02 Showa Denko Kk Production of sintered aluminum alloy forging
JPS62287026A (en) * 1986-06-04 1987-12-12 Showa Denko Kk Manufacture of aluminum-alloy sintered and forged product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508426A2 (en) * 1991-04-12 1992-10-14 Hitachi, Ltd. Highly ductile sintered aluminum alloy, method for production thereof and use thereof
US5387272A (en) * 1991-04-12 1995-02-07 Hitachi, Ltd. Highly ductile sintered aluminum alloy, method for production thereof and use thereof
CN102876935A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 Wear-resistant aluminum alloy
CN102876936A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 Anticorrosion aluminum alloy
CN103882268A (en) * 2014-02-25 2014-06-25 安徽祈艾特电子科技有限公司 Aluminum alloy material for triangular valves and preparation method thereof

Also Published As

Publication number Publication date
JP2542603B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
AU627965B2 (en) Oxidation resistant low expansion superalloys
JP2730847B2 (en) Magnesium alloy for castings with excellent high temperature creep strength
US7815850B2 (en) High-strength nanostructured alloys
JPS63157831A (en) Heat-resisting aluminum alloy
JPH07268528A (en) High strength aluminum-based alloy
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
EP0312966A2 (en) Alloys containing gamma prime phase and process for forming same
EP0558977B1 (en) High-strength, rapidly solidified alloy
US5714018A (en) High-strength and high-toughness aluminum-based alloy
JPS6179742A (en) Heat resistant alloy
JP3076697B2 (en) α + β type titanium alloy
JPS60114545A (en) Wear resistant copper alloy
US5169463A (en) Alloys containing gamma prime phase and particles and process for forming same
CA2249835A1 (en) Hot working high-chromium alloy
JPS63183148A (en) Wear resistant al-si-mn sintered alloy
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP2711296B2 (en) Heat resistant aluminum alloy
CA1073708A (en) Oxidation resistant iron base alloys
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JPH0762199B2 (en) A1-based alloy
JPH04341537A (en) Aluminum alloy having high strength and wear resistance and excellent in cold forgeability
JPS61183439A (en) Wear resistant sintered hard alloy having superior oxidation resistance
JP3485961B2 (en) High strength aluminum base alloy
JPH01239A (en) Wear-resistant Cu alloy with high strength and toughness
JPH02194142A (en) Al-base alloy powder for sintering

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees