JP2542603B2 - Abrasion resistance Al-Si-Mn sintered alloy - Google Patents

Abrasion resistance Al-Si-Mn sintered alloy

Info

Publication number
JP2542603B2
JP2542603B2 JP62013783A JP1378387A JP2542603B2 JP 2542603 B2 JP2542603 B2 JP 2542603B2 JP 62013783 A JP62013783 A JP 62013783A JP 1378387 A JP1378387 A JP 1378387A JP 2542603 B2 JP2542603 B2 JP 2542603B2
Authority
JP
Japan
Prior art keywords
alloy
sintered alloy
based sintered
weight
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62013783A
Other languages
Japanese (ja)
Other versions
JPS63183148A (en
Inventor
雄介 小谷
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62013783A priority Critical patent/JP2542603B2/en
Publication of JPS63183148A publication Critical patent/JPS63183148A/en
Application granted granted Critical
Publication of JP2542603B2 publication Critical patent/JP2542603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐摩耗性に優れたAl−Si−Mn系焼結合金に
関する。
TECHNICAL FIELD The present invention relates to an Al—Si—Mn-based sintered alloy having excellent wear resistance.

[従来の技術] 従来から耐摩耗性のアルミニウム合金としては、例え
ばアルミニウムハンドブック第3版12〜13頁(軽金属協
会刊)に記載されているように、Al合金の耐摩耗性を向
上させる効果が大きいケイ素(Si)を添加することによ
って、4032又はAC8AやAC9A等の各種のAl−Si系合金が溶
融鋳造法により製造されてきた。
[Prior Art] Conventionally, as an abrasion-resistant aluminum alloy, as described in, for example, Aluminum Handbook, 3rd edition, pages 12 to 13 (published by Japan Institute of Light Metals), an effect of improving the abrasion resistance of an Al alloy is obtained. Various Al-Si alloys such as 4032 or AC8A and AC9A have been manufactured by the melt casting method by adding large silicon (Si).

しかし、溶解鋳造法では高Si含有量のAl−Si系合金を
製造することは難しく、Siを12重量%以上添加すると粗
大な初晶Siが析出し、強度が著しく低下する欠点があっ
た。特に、小型、軽量で高性能化が望まれる現在におい
ては、この低い強度の改善が問題であった。
However, it is difficult to produce an Al-Si alloy having a high Si content by the melting and casting method, and if Si is added in an amount of 12% by weight or more, coarse primary crystal Si is precipitated, resulting in a significant decrease in strength. In particular, at the present time when small size, light weight, and high performance are desired, improvement of this low strength has been a problem.

そこで最近では、粉末冶金法を用いることによって、
高い強度を具えた耐摩耗性のAl−Si−Fe系焼結合金が開
発されている。即ち、所定の合金組成の金属溶湯をガス
アトマイズ法等の粉末製造技術により急速冷却して合金
粉末とし、この粉末を焼結して合金を製造する。この様
に102℃/sec以上の冷却速度で急速冷却すると合金粉末
中で初晶Siが微細化され且つ均一に分散されるので、従
来の溶解鋳造法に比べ高い強度が得られるものである。
Therefore, recently, by using the powder metallurgy method,
Abrasion resistant Al-Si-Fe based sintered alloys with high strength have been developed. That is, a molten metal having a predetermined alloy composition is rapidly cooled by a powder manufacturing technique such as a gas atomization method to obtain an alloy powder, and this powder is sintered to manufacture an alloy. In this way, when rapidly cooling at a cooling rate of 10 2 ° C / sec or more, primary crystal Si is refined and uniformly dispersed in the alloy powder, so that higher strength can be obtained as compared with the conventional melt casting method. .

しかし、かゝる粉末焼結法により製造したAl−Si−Fe
系焼結合金では、高い強度が得られるものの、その靭性
は極めて低く、シャルピー衝撃値で0.2〜0.5Kg−m/cm2
程度であった。
However, Al-Si-Fe produced by such powder sintering method
Although high strength can be obtained with the system sintered alloy, its toughness is extremely low and the Charpy impact value is 0.2 to 0.5 Kg-m / cm 2
It was about.

[発明が解決しようとする問題点] この様に、従来のAl−Si−Fe系焼結合金は高い強度を
有するものの、その靭性は極めて低く、大きな衝撃力が
加わる部材としては使用できない等の問題点があった。
[Problems to be Solved by the Invention] As described above, although the conventional Al-Si-Fe based sintered alloy has high strength, its toughness is extremely low and it cannot be used as a member to which a large impact force is applied. There was a problem.

本発明はかゝる従来の事情に鑑み、高強度であって且
つ優れた靭性を有する耐摩耗性のAl−Si系焼結合金を提
供することを目的とする。
In view of such conventional circumstances, it is an object of the present invention to provide a wear resistant Al-Si based sintered alloy having high strength and excellent toughness.

[問題点を解決するための手段] 本発明の耐摩耗性Al−Si系焼結合金は、12〜30重量%
のSiと、2〜5重量%のMnと各元素当り4重量%以下の
W,Co,Zr,Mo,V,Ti,Li,Ce及びHfからなる群から選ばれた
少なくとも1種の元素(但し、これらの元素とSi及びMn
との合計は40重量%を超えない)と、及び0.5〜8重量
%のCuと、0.1〜3重量%のMgと、残部のAlとからなる
耐摩耗性Al−Si−Mn系焼結合金である。
[Means for Solving Problems] The wear-resistant Al-Si based sintered alloy of the present invention is 12 to 30% by weight.
Si, 2-5 wt% Mn, and 4 wt% or less for each element
At least one element selected from the group consisting of W, Co, Zr, Mo, V, Ti, Li, Ce and Hf (however, these elements and Si and Mn
And the total is not more than 40% by weight), and 0.5 to 8% by weight of Cu, 0.1 to 3% by weight of Mg, and the balance of Al, the wear-resistant Al-Si-Mn-based sintered alloy. Is.

この耐摩耗性Al−Si−Mn系焼結合金の製造は、通常の
粉末冶金法によって行ない、その場合に金属溶湯は102
℃/sec以上の冷却速度で急速冷却する必要があることは
前記の通りである。
The production of wear resistant Al-Si-Mn-based sintered alloy is carried out by conventional powder metallurgy, metal melt is 10 2 if the
As described above, it is necessary to perform rapid cooling at a cooling rate of ° C / sec or more.

[作用] 本発明者等は、従来のAl−Si−Fe系焼結合金について
靭性低下の原因を調査した結果、靭性の低下は生成した
金属間化合物Al3Feに起因することが判った。
[Operation] As a result of investigating the cause of the decrease in toughness of the conventional Al-Si-Fe based sintered alloy, the present inventors have found that the decrease in toughness is due to the generated intermetallic compound Al 3 Fe.

そこで、本発明者等はAl−Si−Fe系焼結合金のFeをN
i,Mn,Co又はCr等の元素で置換することを検討した結
果、これらの元素のなかでMnが靭性の改善に最も有効で
あることを見出し、本発明を達成したものである。
Therefore, the present inventors have changed the Fe content of the Al--Si--Fe sintered alloy to N.
As a result of studying substitution with an element such as i, Mn, Co or Cr, it was found that among these elements, Mn is most effective in improving the toughness, and the present invention has been achieved.

本発明の耐摩耗性Al−Si−Mn系焼結合金において、Si
は耐摩耗性を向上させるが、12重量%未満ではこの効果
が十分ではなく、逆に30重量%を超えると強度の低下が
大きくなる。
In the wear resistant Al-Si-Mn based sintered alloy of the present invention, Si
Improves the wear resistance, but if it is less than 12% by weight, this effect is not sufficient, and conversely if it exceeds 30% by weight, the decrease in strength becomes large.

Mnは上記の如く、靭性の向上に有効であるが、2〜5
重量%の範囲外では室温における靭性の向上効果が不充
分である上に、Mnを増やすことは、見掛密度を高めるこ
ととなる。又、SiとMnの合計は40重量%以下が好まし
く、40重量%を超えると合金の塑性加工性が著しく低下
するからである。
Mn is effective in improving the toughness as described above, but it is 2 to 5
Outside the range of wt%, the effect of improving the toughness at room temperature is insufficient, and increasing Mn increases the apparent density. Further, the total amount of Si and Mn is preferably 40% by weight or less, and when it exceeds 40% by weight, the plastic workability of the alloy is remarkably reduced.

又、CuとMgは時効析出により強度を補強する為の時効
硬化性元素として添加するものであり、Cuが0.5〜8重
量%及びMgが0.1〜3重量%の範囲とすることにより、
合金のマトリックス硬度を上げ、強度を向上させると共
に耐摩耗性を改善できる。しかし、Cu及びMgの少なくと
も片方が上記の範囲より少ない場合には合金強度の向上
効果が小さく、又上記範囲を超える場合には合金の靭性
が低下する。
Further, Cu and Mg are added as age hardening elements for reinforcing the strength by aging precipitation, and by setting Cu in the range of 0.5 to 8% by weight and Mg in the range of 0.1 to 3% by weight,
The matrix hardness of the alloy can be increased, the strength can be improved, and the wear resistance can be improved. However, when at least one of Cu and Mg is less than the above range, the effect of improving the alloy strength is small, and when it exceeds the above range, the toughness of the alloy decreases.

更に、本発明の耐摩耗性Al−Si−Mn系焼結合金の強度
及び耐熱性を補強するために、必要に応じてW,Co,Zr,M
o,V,Ti,Li,Ce及びHfからなる群から選ばれた少なくとも
1種の元素を含有することができる。これらの元素は結
晶粒の微細化により合金強度を補強すると同時に、Alと
化合物を生成して合金の耐熱性を向上させる。但し、こ
れらの各元素は4重量%以下でなければならず、4重量
%を超えると合金の脆化をきたす。又、これらの元素を
含有する場合には、これらの元素と上記したSi及びMnの
合計が40重量%以下である必要がある。これらの元素と
Si及びMnとの合計が40重量%を超えると合金の塑性加工
性が著しく劣化するためである。
Furthermore, in order to reinforce the strength and heat resistance of the wear resistant Al-Si-Mn based sintered alloy of the present invention, W, Co, Zr, M are added as necessary.
It may contain at least one element selected from the group consisting of o, V, Ti, Li, Ce and Hf. These elements strengthen the alloy strength by refining the crystal grains, and at the same time, form a compound with Al to improve the heat resistance of the alloy. However, each of these elements must be 4% by weight or less, and if it exceeds 4% by weight, the alloy becomes brittle. When these elements are contained, the total of these elements and the above Si and Mn needs to be 40% by weight or less. With these elements
This is because if the total content of Si and Mn exceeds 40% by weight, the plastic workability of the alloy deteriorates significantly.

[実施例] ガスアトマイズ法により金属溶湯を急速冷却して、下
記第1表に示す各組成の合金粉末を夫々製造した。100
メッシュ以下の合金粉末を篩分けした後、各々について
450℃にて押出比20で粉末押出を行ない本発明の5種のA
l−Si−Mn系焼結合金を製造した。
[Example] The molten metal was rapidly cooled by the gas atomizing method to produce alloy powders having the respective compositions shown in Table 1 below. 100
After sieving the alloy powder below the mesh,
Powder extrusion was carried out at 450 ° C. and an extrusion ratio of 20.
An l-Si-Mn based sintered alloy was manufactured.

尚、比較例として第1表No.2,3,6〜11に示す従来の8
種のAl−Si−Fe系焼結合金を準備した。
As a comparative example, the conventional 8 shown in Table 1, Nos. 2, 3, 6 to 11
A kind of Al-Si-Fe based sintered alloy was prepared.

得られた各Al−Si−Mn系焼結合金を夫々引張試験用及
び衝撃試験用のテストピースに加工し、これを470℃で
2時間加熱後水中で急冷し、更に175℃で10時間の時効
処理を行なった。その後、各テストピースについて引張
試験及び5Kgシャルピー衝撃試験を実施した。比較例のA
l−Si−Fe系焼結合金のテストピースについても引張試
験及びシャルピー衝撃試験を行ない、これらの試験結果
を下記第2表に併せて示した。
Each of the obtained Al-Si-Mn based sintered alloys was processed into a test piece for tensile test and impact test, which was heated at 470 ° C for 2 hours and then rapidly cooled in water, and further at 175 ° C for 10 hours. Aged treatment was performed. Then, a tensile test and a 5 Kg Charpy impact test were performed on each test piece. Comparative example A
Tensile tests and Charpy impact tests were also performed on the test pieces of the l-Si-Fe based sintered alloy, and the test results are also shown in Table 2 below.

上記の結果から判るように、本発明のAl−Si−Mn系焼
結合金は従来のAl−Si−Fe系焼結合金と比較して同等又
はそれ以上の強度を有し、しかも約二倍以上の室温での
靭性を具えている。
As can be seen from the above results, the Al-Si-Mn-based sintered alloy of the present invention has a strength equal to or higher than that of the conventional Al-Si-Fe-based sintered alloy, and more than doubled. It has the above-mentioned toughness at room temperature.

[発明の効果] 本発明によれば、高強度であって且つ優れた靭性を有
する耐摩耗性Al−Si−Mn系焼結合金を提供できる。従っ
て、従来のAl−Si−Fe系焼結合金では構成できなかった
大きな衝撃力が加わるような部材にも軽量なアルミニウ
ム合金の適用が可能となった。
[Advantages of the Invention] According to the present invention, it is possible to provide a wear resistant Al-Si-Mn based sintered alloy having high strength and excellent toughness. Therefore, it becomes possible to apply a lightweight aluminum alloy to a member to which a large impact force is applied, which cannot be formed by the conventional Al-Si-Fe based sintered alloy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−13041(JP,A) 特開 昭62−7827(JP,A) 特開 昭62−10237(JP,A) 特開 昭63−11641(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-59-13041 (JP, A) JP-A-62-7827 (JP, A) JP-A-62-10237 (JP, A) JP-A-63- 11641 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】12〜30重量%のSiと、2重量%以上〜5重
量%未満のMnと、各元素当たり4重量%以下のW,Co,Zr,
Mo,V,Ti,Li,Ce及びHfからなる群から選ばれた少なくと
も1種の元素(但し、これらの元素とSi及びMnとの合計
は40重量%を越えない)と、0.5〜8重量%のCuと,0.1
〜3重量%のMgと、残部のAlとからなる急冷凝固したア
ルミニウム合金粉末を熱間押出により成形してなること
を特徴とする室温での高靭性をそなえた耐摩耗性Al−Si
−Mn系焼結合金。
1. Si of 12 to 30 wt%, Mn of 2 wt% to less than 5 wt%, and W, Co, Zr of 4 wt% or less for each element.
0.5-8 wt% with at least one element selected from the group consisting of Mo, V, Ti, Li, Ce and Hf (however, the sum of these elements and Si and Mn does not exceed 40 wt%) % Cu, 0.1
Wear-resistant Al-Si with high toughness at room temperature, characterized by being formed by hot extrusion of a rapidly solidified aluminum alloy powder consisting of ~ 3 wt% Mg and the balance Al
-Mn-based sintered alloy.
JP62013783A 1987-01-23 1987-01-23 Abrasion resistance Al-Si-Mn sintered alloy Expired - Fee Related JP2542603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013783A JP2542603B2 (en) 1987-01-23 1987-01-23 Abrasion resistance Al-Si-Mn sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013783A JP2542603B2 (en) 1987-01-23 1987-01-23 Abrasion resistance Al-Si-Mn sintered alloy

Publications (2)

Publication Number Publication Date
JPS63183148A JPS63183148A (en) 1988-07-28
JP2542603B2 true JP2542603B2 (en) 1996-10-09

Family

ID=11842846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013783A Expired - Fee Related JP2542603B2 (en) 1987-01-23 1987-01-23 Abrasion resistance Al-Si-Mn sintered alloy

Country Status (1)

Country Link
JP (1) JP2542603B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625782A (en) * 1991-04-12 1994-02-01 Hitachi Ltd High ductility aluminum sintered alloy and its manufacture as well as its application
CN102876936A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 Anticorrosion aluminum alloy
CN102876935A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 Wear-resistant aluminum alloy
CN103882268B (en) * 2014-02-25 2016-07-06 安徽祈艾特电子科技有限公司 A kind of triangle vavle aluminum alloy materials and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS627827A (en) * 1985-07-04 1987-01-14 Riken Corp Ball valve
JPS62224602A (en) * 1986-03-26 1987-10-02 Showa Denko Kk Production of sintered aluminum alloy forging
JPH0635602B2 (en) * 1986-06-04 1994-05-11 昭和電工株式会社 Manufacturing method of aluminum alloy sintered forgings

Also Published As

Publication number Publication date
JPS63183148A (en) 1988-07-28

Similar Documents

Publication Publication Date Title
JP3049767B2 (en) Ti alloy with excellent heat resistance
JP2730847B2 (en) Magnesium alloy for castings with excellent high temperature creep strength
WO2012026354A1 (en) Co-based alloy
JPS62112748A (en) Aluminum forging alloy
JP2001049371A (en) Al-Zn ALLOY EXCELLENT IN VIBRATION ABSORBING CAPACITY AND ITS PRODUCTION
EP0587186B1 (en) Aluminum-based alloy with high strength and heat resistance
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JP3076696B2 (en) α + β type titanium alloy
EP0558977B1 (en) High-strength, rapidly solidified alloy
JP2669525B2 (en) Chromium-containing aluminum alloy produced by rapid solidification route
JP3076697B2 (en) α + β type titanium alloy
JP2542603B2 (en) Abrasion resistance Al-Si-Mn sintered alloy
KR102285860B1 (en) Aluminium casting alloy with high toughness and method of there
JP7318284B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JP2868185B2 (en) Al lower 3 Ti type low density heat resistant intermetallic alloy
JP3865430B2 (en) Heat and wear resistant magnesium alloy
JP2005163100A (en) Heat resistant/high toughness aluminum alloy, its production method, and engine component
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
JP3504917B2 (en) Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members
JP3626507B2 (en) High strength and high ductility TiAl intermetallic compound
JP2711296B2 (en) Heat resistant aluminum alloy
JPS6244547A (en) Composite aluminum alloy material
JP3485961B2 (en) High strength aluminum base alloy
JPH073374A (en) Heat resistant magnesium alloy
JP2004269982A (en) High-strength low-alloyed titanium alloy and its production method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees