JP2004269982A - High-strength low-alloyed titanium alloy and its production method - Google Patents

High-strength low-alloyed titanium alloy and its production method Download PDF

Info

Publication number
JP2004269982A
JP2004269982A JP2003063717A JP2003063717A JP2004269982A JP 2004269982 A JP2004269982 A JP 2004269982A JP 2003063717 A JP2003063717 A JP 2003063717A JP 2003063717 A JP2003063717 A JP 2003063717A JP 2004269982 A JP2004269982 A JP 2004269982A
Authority
JP
Japan
Prior art keywords
strength
alloy
low
titanium alloy
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063717A
Other languages
Japanese (ja)
Inventor
Akihiro Suzuki
昭弘 鈴木
Hisao Kamiya
久夫 神谷
Hiroyuki Horimura
弘幸 堀村
Kousuke Doi
航介 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003063717A priority Critical patent/JP2004269982A/en
Priority to IT000144A priority patent/ITTO20040144A1/en
Priority to US10/795,401 priority patent/US20040244888A1/en
Priority to CN200410028255.5A priority patent/CN1247807C/en
Publication of JP2004269982A publication Critical patent/JP2004269982A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength low-alloyed titanium alloy having a tensile strength of ≥750 MPa, and a production method which can produce such a titanium alloy using an inexpensive, low-quality sponge titanium as a raw material. <P>SOLUTION: The high-strength low-alloyed titanium alloy has an alloy composition comprising 0.2-0.8% O, 0.01-0.15% C, 0.01-0.07% N, 0.3-1.0% Fe and the balance substantially being Ti. When producing this, the low-quality Ti sponge containing ≥0.01% N and ≥0.2% Fe is used as a part of the raw material as sources of N and Fe components. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、高い強度が要求される各種の構造材の材料とする高強度低合金チタン合金とその製造方法に関する。
【0002】
【従来の技術】
めがねフレーム、ゴルフクラブのヘッド、あるいは自動車エンジン部品たとえばバルブリテーナなどの部品は、軽量であるとともに高い強度を有することが要求される。純Tiは耐食性がよいため、これまで化学工業を中心に耐食性を要求される用途に向けられてきたが、Tiに含有されるO量やFe量を適切に制御することによって、強度を高めることができる。そこで、このような高強度Tiに関し、JISでは、引張強さのレベルに応じて1種ないし4種の規格が定められている。
【0003】
最近では、純Tiに近いものでも、N量を高めて高強度化をはかった、高強度低合金チタンが開発されている。しかし、Nの添加は、チタン中の代表的なLDI(低密度介在物)であるTiNを生成する懸念があり、したがって添加技術に制約があって、N量制御の高強度チタンは、必ずしも安価に製造できる材料ではない。
【0004】
既知の技術のうち代表的なものを挙げれば、対水素脆化性のよい高張力チタンとして、Fe:0.25〜1.0%およびO:0.45〜1.0%を含有し、C:0.1%以下、H:0.015%以下、N:0.07%以下で残部が実質的にTiであるものが、知られている(特開昭52−115713)。
【0005】
磁気ディスク基板としてのチタン合金には、Mo,Ni,Co,CrおよびFeの1種または2種以上:0.2〜1.0%に加えて、O+2N+0.75C:0.03〜0.5%を含有し、残部が実質的にTiである合金組成が開示されている(特開平3−267334)。
【0006】
鋳造用の高強度チタン合金としては、Fe:0.3〜3.5%,O:0.05〜0.95%,Cr:0〜0.5%,Al:0〜3.5%,V:0〜3%,C:0〜0.3%,Si:0〜0.2%,Mn:0〜0.1%,Ni:0〜0.3%およびN:0〜0.2%を含有し、残部がTiおよび不可避的不純物からなるものが提案されている(特開平11−36029)。
【0007】
チタン合金を廉価に製造するためには、原料として低級スポンジチタンを使用することができれば有利である。ところが、低級スポンジチタンは不純物が多いとして、これまでは鉄鋼添加用にしか使用されていなかった。しかし、その不純物を調べてみると、チタンの強度を高めるのに利用できる成分が多く、その他の成分も、それらの量がある限度を超えない限り、チタン合金の物性に実質的な影響を与えないことがわかった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、安価な低級スポンジチタンを原料として使用することが可能であって、かつ、むしろ低級スポンジチタン中の不純物を利用して、O、C、NおよびFeの含有量を適切に制御することにより、低合金であるが高強度で、引張り強さにして750MPa以上を実現したチタン合金と、その製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の高強度低合金チタン合金は、Oを0.2〜0.8%,Cを0.01〜0.15%,Nを0.01〜0.07%およびFeを0.3〜1.0%含有し、残部が実質上Tiである合金組成を有し、引張強さが750MPa以上であることを特徴とする。
【0010】
本発明の高強度低合金チタン合金の製造方法は、原料の少なくとも一部に、N:0.01%以上およびFe:0.2%以上を含有する低級スポンジTiを使用して、上記のN成分およびFe成分の源とすることを特徴とする。
【0011】
【発明の実施形態】
本発明の高強度低合金チタン合金は、ベース金属であるTiに加わった形で存在する上記の合金成分、すなわちO、C、NおよびFeだけでなく、CrおよびNiの1種または2種を、Feの含有量との合計が、Fe%+Cr%+Ni%:1.2%以下となるように含有することができる。この場合は、上記の合金成分およびCrおよび(または)Ni成分が、0.5≦O%+2N%+0.9C%+0.1(Fe%+Cr%+Ni%)≦1.0%の関係を満足することが必要である。
【0012】
本発明の高強度低合金チタン合金を構成する合金成分のはたらきと、組成範囲を上記のように定めた理由を以下に説明する。Tiは、軽量で高強度の構造材を構成するために、ベース金属として選択したことはもちろんである。
【0013】
O:0.2〜0.8%、好ましくは0.4%〜0.7%
OはTiを高強度化するのに有効な元素であり、強度を確保するため、少なくとも0.2%を添加する。添加量の増大に伴って強度も増大するが、脆くなるため、0.8%以下の添加に止める。好ましい添加量範囲は、0.4%〜0.7%である。
【0014】
C:0.01〜0.15%、好ましくは0.05〜0.10%
Cは、OおよびNと同様に、引張強さを高める成分であり、この効果を得るために、0.01%またはそれ以上を添加する。しかし、多量に添加すると、Tiとの化合物TiCを生成し、疲労強度を低下させるから、最大0.15%までの添加量から選択する。Cの添加効果を確保するとともに、TiCの生成は避けるという点から好ましい添加量は、0.05〜0.10%である。
【0015】
N:0.01〜0.07%、好ましくは0.02〜0.05%
Nは強度を高める成分であり、その作用はO以上に顕著であるが、前述したように、Cと同様にTiと結合してTiNを形成し、これが塑性加工の際にワレを誘発したり、疲労強度を低下させたりするため、JISの定める限度内の量、すなわち0.07%以下を添加する。前記のように、低級スポンジチタンを原料にすると、Nは必ず含有されており、0.01%より低くすることは、実際上困難である。好適な範囲は、0.02〜0.05%である。
【0016】
Fe:0.3〜1.0%、好ましくは0.5%〜1.0%
Feは、強度を高めるとともにβ相を形成して延性の改善にも寄与する成分である。とくに、延性を改善する効果を確実にするため、0.3%以上の添加が必要である。一方、Feは偏析しやすい元素であり、多量に添加すると特性のバラツキが生じる懸念があるため、1.0%以内の添加量を選ぶ。鉄鋼添加用の低級スポンジチタンは、通常0.2〜2.0%、平均値としては0.5%のFeを含有しており、これを使用することによって、0.3〜1.0%のFeを存在させることが容易である。好ましい添加量は、0.5%〜1.0%である。
【0017】
Fe%+Cr%+Ni%:1.2%以下
NiとCrとは、低級スポンジチタン中に含まれていて、これを原料にすると不可避的に入ってくる可能性がある。とりたてて存在意義のある成分ではなく、かつ、多量の存在は靱延性を損なうから、Fe量とあわせて規制する。
【0018】
O%+2N%+0.9C%+0.1(Fe%+Cr%+Ni%):1.0%以下(O+N+C)は、高強度化に役立つが、多量の存在は(Fe+Cr+Ni)とともに、靱延性にとって有害である。そこで、両者をあわせて規制する。各成分の含有量に付した係数は、靱延性に対する影響の大小に従って決定した。
【0019】
本発明の高強度低合金チタン合金は、合金組成が上記の基本的態様のものであれ、変更態様のものであれ、それを材料とする部品の製造に当たって、600〜900℃の温度域で、鍛錬比3以上の仕上げ成形を行なうことが好ましい。それにより、粒子サイズが30μm以下の微細粒状組織が得られ、高い延性が実現する。鍛錬比3以上は、α相を粒状化して延性向上の効果を得る上で、必要な条件である。仕上げ成形の温度は、600℃に達しない低温では製品にキズが生じることが防げず、一方、900℃を超える高温になると、結晶粒が粗大化して、延性向上を望めなくなる。
【0020】
上記の条件で行なう仕上げ成形には、それに続いて、650〜900℃で焼鈍を施すことが、いっそう好ましい。それにより、組織の粒状化が促進されて、延性向上の効果が高まる。焼鈍温度が650℃未満では十分な効果が得られず、900℃超過では結晶粒が粗大化して、やはり延性向上を期待できなくなる。
【0021】
【発明の効果】
本発明の高強度低合金チタン合金は、上記の合金組成を選択したことにより、引張強さが750MPa以上の高い強度を示す。これはJISに定められた4種のチタン棒の強度を超える高いレベルであって、チタン合金の用途を拡大する物である。このチタン合金は、鉄鋼添加用にしか使用されていなかった安価な低級スポンジチタンを原料とすることができ、むしろその中に含まれる不純物(Fe:0.2%以上、N:0.01%以上)を積極的に利用するものであって、チタン合金の製造コストが、本発明により大幅に低減可能になった。
【0022】
【実施例】
プラズマスカル炉を使用して表1のチタン合金を溶製した。No.1,2,3−1,4,5および6−1が実施例であり、No.3−2,6−2および7が比較例である。溶製に当り、各合金の組成によって異なるが、原料のうち50〜100%に低級スポンジチタンを利用した。それぞれのチタン合金を、直径100mm、重量8kgのインゴットに鋳造した。各インゴットを鍛伸し、1000℃で直径50mmとし、さらに表1に示した温度で、直径20mmの丸棒とした。その後、750℃に2時間加熱−空冷の焼鈍を施した。これらのサンプルから、平行部直径6.5mm、評点間距離25mmの試験片を用意し、引張特性を調べた。結果を、表1にあわせて示す。
【0023】

Figure 2004269982
[0001]
[Industrial applications]
The present invention relates to a high-strength low-alloy titanium alloy used as a material for various structural materials requiring high strength and a method for producing the same.
[0002]
[Prior art]
Parts such as eyeglass frames, golf club heads, or automobile engine parts such as valve retainers are required to be lightweight and have high strength. Since pure Ti has good corrosion resistance, it has been used for applications requiring corrosion resistance mainly in the chemical industry, but it is necessary to increase the strength by appropriately controlling the amount of O and Fe contained in Ti. Can be. Therefore, regarding such high-strength Ti, JIS defines one to four types of standards according to the level of tensile strength.
[0003]
Recently, high-strength, low-alloy titanium has been developed, which is high in strength by increasing the amount of N even for pure Ti. However, there is a concern that the addition of N may generate TiN, which is a typical LDI (low-density inclusion) in titanium. Therefore, the addition technology is restricted, and high-strength titanium with N content control is not necessarily inexpensive. It is not a material that can be manufactured.
[0004]
Typical examples of the known techniques include Fe: 0.25 to 1.0% and O: 0.45 to 1.0% as high-tensile titanium having good hydrogen embrittlement resistance. It is known that C: 0.1% or less, H: 0.015% or less, N: 0.07% or less, and the balance is substantially Ti (JP-A-52-115713).
[0005]
Titanium alloys as magnetic disk substrates include one or more of Mo, Ni, Co, Cr and Fe: 0.2 to 1.0%, and O + 2N + 0.75C: 0.03 to 0.5%. %, With the balance being substantially Ti (JP-A-3-267334).
[0006]
As a high-strength titanium alloy for casting, Fe: 0.3 to 3.5%, O: 0.05 to 0.95%, Cr: 0 to 0.5%, Al: 0 to 3.5%, V: 0 to 3%, C: 0 to 0.3%, Si: 0 to 0.2%, Mn: 0 to 0.1%, Ni: 0 to 0.3%, and N: 0 to 0.2% %, With the balance being composed of Ti and unavoidable impurities (JP-A-11-36029).
[0007]
In order to produce a titanium alloy at low cost, it is advantageous if low-grade sponge titanium can be used as a raw material. However, since low-grade titanium sponge has many impurities, it has been used only for adding steel. However, when examining the impurities, there are many components that can be used to increase the strength of titanium, and other components have a substantial effect on the physical properties of titanium alloys unless their amounts exceed a certain limit. I knew it wasn't.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to make it possible to use inexpensive low-grade titanium sponge as a raw material, and to appropriately adjust the contents of O, C, N and Fe by utilizing impurities in the low-grade titanium sponge. It is an object of the present invention to provide a titanium alloy which is a low alloy but has a high strength and a tensile strength of 750 MPa or more by controlling, and a method for producing the same.
[0009]
[Means for Solving the Problems]
The high-strength, low-alloy titanium alloy of the present invention contains 0.2 to 0.8% O, 0.01 to 0.15% C, 0.01 to 0.07% N, and 0.3 to 0.3% Fe. It has an alloy composition containing 1.0% and the balance substantially Ti, and has a tensile strength of 750 MPa or more.
[0010]
The method for producing a high-strength low-alloy titanium alloy according to the present invention uses the low-grade sponge Ti containing at least 0.01% of N and at least 0.2% of Fe as at least a part of the raw material. And a source of the Fe component.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The high-strength low-alloy titanium alloy of the present invention contains one or two of Cr and Ni as well as the above-mentioned alloy components existing in a form added to the base metal Ti, that is, O, C, N and Fe. , Fe, and the total content of Fe% + Cr% + Ni%: 1.2% or less. In this case, the above alloy component and Cr and / or Ni component satisfy the relationship of 0.5 ≦ O% + 2N% + 0.9C% + 0.1 (Fe% + Cr% + Ni%) ≦ 1.0%. It is necessary to.
[0012]
The function of the alloy components constituting the high-strength low-alloy titanium alloy of the present invention and the reason why the composition range is determined as described above will be described below. Of course, Ti was selected as a base metal in order to constitute a lightweight and high-strength structural material.
[0013]
O: 0.2-0.8%, preferably 0.4% -0.7%
O is an element effective for increasing the strength of Ti, and at least 0.2% is added to secure the strength. Although the strength increases as the amount of addition increases, it becomes brittle, so the addition is limited to 0.8% or less. A preferable addition amount range is 0.4% to 0.7%.
[0014]
C: 0.01 to 0.15%, preferably 0.05 to 0.10%
C, like O and N, is a component that increases the tensile strength. To obtain this effect, 0.01% or more is added. However, if a large amount is added, a compound TiC with Ti is generated and the fatigue strength is reduced. Therefore, the addition amount is selected from a maximum of 0.15%. The preferable addition amount is 0.05 to 0.10% from the viewpoint of securing the effect of adding C and avoiding the generation of TiC.
[0015]
N: 0.01 to 0.07%, preferably 0.02 to 0.05%
N is a component that increases the strength, and its effect is more remarkable than O, but as described above, it combines with Ti to form TiN similarly to C, and this induces cracking during plastic working. In order to reduce the fatigue strength, an amount within the limit specified by JIS, that is, 0.07% or less is added. As described above, when low-grade sponge titanium is used as a raw material, N is always contained, and it is practically difficult to lower the content to less than 0.01%. A preferred range is from 0.02 to 0.05%.
[0016]
Fe: 0.3 to 1.0%, preferably 0.5% to 1.0%
Fe is a component that increases the strength and also forms a β phase and contributes to the improvement of ductility. In particular, in order to ensure the effect of improving ductility, it is necessary to add 0.3% or more. On the other hand, Fe is an element that is easily segregated, and there is a concern that characteristics may vary when added in a large amount. Therefore, an addition amount of 1.0% or less is selected. Low-grade sponge titanium for steel addition usually contains 0.2 to 2.0% of Fe, and an average value of 0.5% of Fe. By using this, 0.3 to 1.0% of Fe is used. Is easy to be present. A preferable addition amount is 0.5% to 1.0%.
[0017]
Fe% + Cr% + Ni%: 1.2% or less Ni and Cr are contained in low-grade titanium sponge, and if they are used as raw materials, they may inevitably enter. Since it is not a component having a significant presence, and the presence of a large amount impairs toughness and ductility, it is regulated together with the amount of Fe.
[0018]
O% + 2N% + 0.9C% + 0.1 (Fe% + Cr% + Ni%): 1.0% or less (O + N + C) is useful for strengthening, but a large amount is harmful to ductility together with (Fe + Cr + Ni). It is. Therefore, both are regulated together. The coefficient assigned to the content of each component was determined according to the magnitude of the effect on toughness and ductility.
[0019]
Regarding the high-strength low-alloy titanium alloy of the present invention, regardless of whether the alloy composition is of the above-described basic mode or a modified mode, in manufacturing a part using the same, in a temperature range of 600 to 900 ° C, It is preferable to perform finish forming with a forging ratio of 3 or more. Thereby, a fine granular structure having a particle size of 30 μm or less is obtained, and high ductility is realized. A forging ratio of 3 or more is a necessary condition for granulating the α phase to obtain an effect of improving ductility. If the temperature of the finish molding does not reach 600 ° C., the product cannot be prevented from being flawed. On the other hand, if the temperature is higher than 900 ° C., the crystal grains become coarse and improvement in ductility cannot be expected.
[0020]
It is more preferable to perform annealing at 650 to 900 ° C. subsequently to the finish forming performed under the above conditions. Thereby, the granulation of the structure is promoted, and the effect of improving the ductility is enhanced. If the annealing temperature is lower than 650 ° C., a sufficient effect cannot be obtained. If the annealing temperature is higher than 900 ° C., the crystal grains become coarse, so that improvement in ductility cannot be expected.
[0021]
【The invention's effect】
The high-strength low-alloy titanium alloy of the present invention exhibits high tensile strength of 750 MPa or more by selecting the above alloy composition. This is a high level exceeding the strength of the four types of titanium bars specified in JIS, and expands the use of titanium alloys. This titanium alloy can be made of inexpensive low-grade sponge titanium, which has been used only for the addition of steel, but rather contains impurities (Fe: 0.2% or more, N: 0.01%). ) Is positively utilized, and the present invention has made it possible to significantly reduce the production cost of a titanium alloy.
[0022]
【Example】
The titanium alloys shown in Table 1 were melted using a plasma skull furnace. No. Nos. 1, 2, 3-1, 4, 5, and 6-1 are Examples, and 3-2 * , 6-2 * and 7 * are comparative examples. In melting, lower sponge titanium was used for 50 to 100% of the raw materials, depending on the composition of each alloy. Each titanium alloy was cast into an ingot having a diameter of 100 mm and a weight of 8 kg. Each ingot was forged and drawn to a diameter of 50 mm at 1000 ° C., and was further made into a round bar having a diameter of 20 mm at the temperature shown in Table 1. Thereafter, annealing for heating and air cooling at 750 ° C. for 2 hours was performed. From these samples, test pieces having a parallel portion diameter of 6.5 mm and a distance between evaluation points of 25 mm were prepared, and the tensile properties were examined. The results are shown in Table 1.
[0023]
Figure 2004269982

Claims (5)

Oを0.2〜0.8%,Cを0.01〜0.15%,Nを0.01〜0.07%およびFeを0.3〜1.0%含有し、残部が実質上Tiからなる合金組成を有し、引張強さが750MPa以上であることを特徴とする高強度低合金チタン合金。0.2-0.8% of O, 0.01-0.15% of C, 0.01-0.07% of N and 0.3-1.0% of Fe, with the balance being substantially A high-strength low-alloy titanium alloy having an alloy composition of Ti and having a tensile strength of 750 MPa or more. 請求項1に規定した合金成分に加えて、CrおよびNiの1種または2種を、Feの含有量との合計が、Fe%+Cr%+Ni%:1.2%以下となるように含有し、かつ、O%+2N%+0.9C%+0.1(Fe%+Cr%+Ni%):1.0%以下の関係を満足する合金組成を有することを特徴とする高強度低合金チタン合金。In addition to the alloy components defined in claim 1, one or two types of Cr and Ni are contained such that the sum of the content of Fe and the content of Fe becomes 1.2% or less: Fe% + Cr% + Ni%. A high-strength, low-alloy titanium alloy characterized by having an alloy composition satisfying a relationship of O% + 2N% + 0.9C% + 0.1 (Fe% + Cr% + Ni%): 1.0% or less. 請求項1または2の高強度低合金チタン合金を製造する方法であって、原料の少なくとも一部に、N:0.01%以上およびFe:0.2%以上を含有する低級スポンジTiを使用して、上記のN成分およびFe成分の源とすることを特徴とする製造方法。3. The method for producing a high-strength low-alloy titanium alloy according to claim 1 or 2, wherein a low-grade sponge Ti containing at least 0.01% of N and at least 0.2% of Fe is used as at least a part of the raw material. And a source of the N component and the Fe component. 請求項1または2の高強度低合金チタン合金に、600〜900℃の温度域で、鍛錬比3以上の仕上げ成形を行なうことを特徴とする高延性の高強度低合金チタン合金の製造方法。A method of producing a high-strength, low-strength, low-alloy titanium alloy, comprising subjecting the high-strength, low-alloy titanium alloy of claim 1 or 2 to finish forming with a forging ratio of 3 or more in a temperature range of 600 to 900 ° C. 請求項1または2の高強度低合金チタン合金に、鍛錬比3以上の仕上げ成形を行なったのち、650〜900℃で焼鈍を施すことを特徴とする請求項4に記載した高延性の高強度低合金チタン合金の製造方法。The high-strength, high-strength steel according to claim 4, wherein the high-strength low-alloy titanium alloy according to claim 1 or 2 is subjected to finish forming at a forging ratio of 3 or more and then annealed at 650 to 900 ° C. Manufacturing method of low alloy titanium alloy.
JP2003063717A 2003-03-10 2003-03-10 High-strength low-alloyed titanium alloy and its production method Pending JP2004269982A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003063717A JP2004269982A (en) 2003-03-10 2003-03-10 High-strength low-alloyed titanium alloy and its production method
IT000144A ITTO20040144A1 (en) 2003-03-10 2004-03-08 HIGH STRENGTH AND LOW ALLOY TITANIUM ALLOY AND PROCESS FOR ITS PRODUCTION
US10/795,401 US20040244888A1 (en) 2003-03-10 2004-03-09 High-strength low-alloy titanium alloy and production method for same
CN200410028255.5A CN1247807C (en) 2003-03-10 2004-03-10 High-strength low alloy titanium alloy and produicng method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063717A JP2004269982A (en) 2003-03-10 2003-03-10 High-strength low-alloyed titanium alloy and its production method

Publications (1)

Publication Number Publication Date
JP2004269982A true JP2004269982A (en) 2004-09-30

Family

ID=33125229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063717A Pending JP2004269982A (en) 2003-03-10 2003-03-10 High-strength low-alloyed titanium alloy and its production method

Country Status (4)

Country Link
US (1) US20040244888A1 (en)
JP (1) JP2004269982A (en)
CN (1) CN1247807C (en)
IT (1) ITTO20040144A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050828A1 (en) * 2006-10-26 2008-05-02 Sumitomo Metal Industries, Ltd. Titanium alloy
JP2017526822A (en) * 2014-07-08 2017-09-14 ウォルター、ディートマーWOLTER, Dietmar Titanium alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320832B2 (en) * 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US7387578B2 (en) 2004-12-17 2008-06-17 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
CN104801932A (en) * 2015-04-21 2015-07-29 常熟锐钛金属制品有限公司 Production method of high-heat strong titanium pipe
CN114411004B (en) * 2022-01-28 2023-01-31 西安稀有金属材料研究院有限公司 Preparation method of low-cost titanium alloy for ocean engineering pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252747A (en) * 1987-12-23 1989-10-09 Nippon Steel Corp High strength titanium material having excellent ductility and its manufacture
WO1996033292A1 (en) * 1995-04-21 1996-10-24 Nippon Steel Corporation High-strength, high-ductility titanium alloy and process for preparing the same
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JPH09154854A (en) * 1995-12-01 1997-06-17 Injietsukusu:Kk Dental treatment instrument
JPH1136029A (en) * 1997-05-21 1999-02-09 Sumitomo Metal Ind Ltd High strength titanium alloy casting product
JP2001089821A (en) * 1999-09-22 2001-04-03 Sumitomo Metal Ind Ltd Titanium alloy having high strength and high ductility and excellent in high temperature atmospheric oxidation resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252747A (en) * 1987-12-23 1989-10-09 Nippon Steel Corp High strength titanium material having excellent ductility and its manufacture
WO1996033292A1 (en) * 1995-04-21 1996-10-24 Nippon Steel Corporation High-strength, high-ductility titanium alloy and process for preparing the same
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JPH09154854A (en) * 1995-12-01 1997-06-17 Injietsukusu:Kk Dental treatment instrument
JPH1136029A (en) * 1997-05-21 1999-02-09 Sumitomo Metal Ind Ltd High strength titanium alloy casting product
JP2001089821A (en) * 1999-09-22 2001-04-03 Sumitomo Metal Ind Ltd Titanium alloy having high strength and high ductility and excellent in high temperature atmospheric oxidation resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050828A1 (en) * 2006-10-26 2008-05-02 Sumitomo Metal Industries, Ltd. Titanium alloy
JP2017526822A (en) * 2014-07-08 2017-09-14 ウォルター、ディートマーWOLTER, Dietmar Titanium alloy

Also Published As

Publication number Publication date
CN1530454A (en) 2004-09-22
ITTO20040144A1 (en) 2004-06-08
CN1247807C (en) 2006-03-29
US20040244888A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
EP2890823B1 (en) Cobalt alloys
US20090068053A1 (en) High strength and high ductility magnesium alloy and its preparation method
Li et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
KR101418775B1 (en) Beta type titanium alloy with low elastic modulus and high strength
US20090074606A1 (en) Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part
JP7022703B2 (en) Cold-rolled and annealed steel sheets, their manufacturing methods, and their use for the manufacture of automobile parts of such steels.
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
WO2012026354A1 (en) Co-based alloy
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
JPS62112748A (en) Aluminum forging alloy
JP3308090B2 (en) Fe-based super heat-resistant alloy
TW201413011A (en) Precipitation strengthening type martensite steel and method for fabricating the same
JP5712560B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP2004269982A (en) High-strength low-alloyed titanium alloy and its production method
JP2008115413A (en) High-strength and high-toughness aluminum alloy superior in heat resistance, and manufacturing method therefor
JPH0770676A (en) Alpha+beta type titanium alloy
JP2007231313A (en) beta-TYPE TITANIUM ALLOY
JP7318284B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JP4044305B2 (en) Iron-based high rigidity material and manufacturing method thereof
TWI440492B (en) Alloy for a golf club
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JPH05125473A (en) Composite solidified material of aluminum-based alloy and production thereof
JP2542603B2 (en) Abrasion resistance Al-Si-Mn sintered alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030