US20040244888A1 - High-strength low-alloy titanium alloy and production method for same - Google Patents

High-strength low-alloy titanium alloy and production method for same Download PDF

Info

Publication number
US20040244888A1
US20040244888A1 US10/795,401 US79540104A US2004244888A1 US 20040244888 A1 US20040244888 A1 US 20040244888A1 US 79540104 A US79540104 A US 79540104A US 2004244888 A1 US2004244888 A1 US 2004244888A1
Authority
US
United States
Prior art keywords
alloy
titanium alloy
low
strength low
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/795,401
Inventor
Hiroyuki Horimura
Kosuke Doi
Akihiro Suzuki
Hisao Kamiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Assigned to HONDA MOTOR CO., LTD. reassignment HONDA MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOI, KOSUKE, HORIMURA, HIROYUKI, KAMIYA, HISAO, SUZUKI, AKIHIRO
Publication of US20040244888A1 publication Critical patent/US20040244888A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the present invention relates to a high-strength low-allow titanium alloy for use in forming various types of structural materials that require high strength, and a production method therefor.
  • Spectacle frames, golf club heads and automotive engine members such as a valve retainer are required to be not only light in weight but also high in strength. Since pure titanium is excellent in corrosion resistance, it has been used in applications mostly in the chemical industry which require corrosion resistance. Strength thereof can be enhanced by appropriately controlling an amount of O or Fe contained in Ti. With regard to such high-strength titanium, the specifications of from a first type to a fourth type are defined by JIS in accordance with the levels of tensile strength.
  • a high-tensile titanium excellent in hydrogen embrittlement resistance comprising Fe of from 0.25 to 1.0%, O of from 0.45 to 1.0%, C of 0.1% or less, H of 0.015% or less, N of 0.07% or less, and the balance being substantially Ti is disclosed in JP-A No. 52-115713.
  • a titanium alloy as a magnetic disk substrate an alloy composition comprising from 0.2 to 1.0% of at least one element of Mo, Ni, Co, Cr and Fe, and further comprising from 0.03 to 0.5% of 0+2N+0.75C and the balances being substantially Ti is disclosed in JP-A No.3-267334.
  • a high-strength titanium alloy for casting which comprises Fe of from 0.3 to 3.5%, O of from 0.05 to 0.95%, Cr of from 0 to 0.5%, Al of from 0 to 3.5%, V of from 0 to 3%, C of from 0 to 0.3%, Si of from 0 to 0.2%, Mn of from 0 to 0.1%, Ni of from 0 to 0.3, N of from 0 to 0.2% and the balance being Ti and unavoidable impurities is disclosed in JP-A No. 11-36029.
  • An object of the present invention is to provide a titanium alloy which can use a low-priced low-grade sponge titanium as a raw material. Further, although being a low alloy, the titanium alloy has a high strength and has realized 750 MPa or more in terms of tensile strength by actively utilizing impurities present in the low-grade sponge titanium such that the contents of O, C, N and Fe are appropriately controlled.
  • a high-strength low-alloy titanium alloy according to the present invention comprises O of from 0.2 to 0.8%, C of from 0.01 to 0.15%, N of from 0.01 to 0.07%, Fe of from 0.3 to 1.0% and the balance being substantially Ti and, also, has a tensile strength of 750 MPa or more.
  • a method for producing the high-strerigth low-alloy titanium alloy according to the present invention is characterized by using a low-grade sponge Ti comprising N of 0.01% or more and Fe of 0.2% or more in at least a portion of raw materials to allow it to be a source of the aforementioned Ni and Fe components.
  • a high-strength low-alloy titanium alloy according to the present invention can contain not only the aforementioned alloy components which are present in a state of being added to a base metal Ti, namely, O, C, N and Fe, but also at least one element of Cr and Ni such that an entire content thereof inclusive of that of Fe comes to be Fe %+Cr %+Ni %:1.2% or less. On this occasion, it is necessary that the aforementioned alloy components and the Cr and/or Ni component satisfy a relation of 0.5 ⁇ 0%+2N %+0.9C%+0.1(Fe %+Cr %+Ni %) ⁇ 1.0%.
  • O is an effective element for enhancing strength of Ti and is added in an amount of at least 0.2% in order to secure the strength. As the amount of O to be added is increased, the strength thereof is of course increased but Ti tends to be brittle; therefore, such additional amount is restricted to be 0.8% or less. The additional amount thereof is preferably in the range of from 0.4% to 0.7%.
  • C from 0.01 to 0.15%; preferably from 0.05 to 0.10%
  • C Being same as in O and N, C is a component for enhancing tensile strength. In order to obtain such effect, C is added in an amount of 0.01% or more. But, when it is added in a large amount, TiC which is a compound between C and Ti is generated to decrease fatigue strength. Therefore, the amount of C to be added is selected from amounts of at most 0.15%. From the standpoint of securing an additional effect of C and preventing the generation of TiC, the amount of C to be added is preferably in the range of from 0.05 to 0.10%.
  • N from 0.01 to 0.07%; preferably from 0.02 to 0.05%
  • N is a component for enhancing strength. A function thereof is more remarkable than that of O. Since, in a same manner as in C as described above, N forms TiN by combining with Ti which invites a crack or decrease fatigue strength at the time of performing a plastic treatment, N is added within a limit defined by JIS, namely, in an amount of 0.07% or less. As described above, when the low-grade sponge Ti is used as a raw material, N is assuredly contained therein and it is practically difficult to allow it to be less than 0.01%. N is preferably in the range of from 0.02 to 0.05%.
  • Fe from 0.3 to 1.0%; preferably from 0.5% to 1.0%
  • Fe is a component for not only enhancing strength but also contributing to improvement of ductility by forming a ⁇ -phase. Particularly, in order to secure an effect of improving the ductility, it is necessary to add Fe in an amount of 0.3% or more. On the other hand, Fe is an element which easily segregates. When it is added in a large amount, there is a fear of generating a fluctuation in characteristics. Therefore, an additional amount thereof is selected such that it falls within 1.0%.
  • a low-grade sponge titanium for addition to steel contains Fe of ordinarily from 0.2 to 2.0% with an average of 0.5% and, by using this sponge titanium, Fe of from 0.3 to 1.0% can easily be contained. A preferable addition amount thereof is from 0.5% to 1.0%.
  • Ni and Cr are contained in the low-grade sponge titanium and, when the sponge titanium is used as a raw material, there is a possibility that they are unavoidably introduced. Since they have no specific meaning of presence and, when they are present in a large amount, a tough ductile property is impaired; therefore, contents thereof are controlled totally with the content of Fe.
  • (O+N+C) as a whole is useful for enhancing strength.
  • (O+N+C) is present in a large amount, the presence thereof, together with the presence of (Fe+Cr+Ni), is detrimental to the tough ductile property. Therefore, both presences are controlled. Factors attached to contents of respective components were determined in accordance with the magnitude of influence to the tough ductile property.
  • the high-strength low-alloy titanium alloy according to the present invention is preferably subjected to finish forming at a forging ratio of 3 or more in the temperature range of from 600 to 900° C.
  • finish forming a fine grain structure in which a grain size is 30 ⁇ m or less can be obtained, thereby realizing a high ductility.
  • the forging ratio of 3 or more is a necessary condition for granulating an a-phase to obtain an effect of the enhancement of the ductility.
  • a temperature of the finish forming when it is as low as less than 600° C., a flaw can not be prevented from being generated on the product; on the other hand, when it is as high as over 900° C., a crystal grain becomes coarse and large and, then, the enhancement of the ductility can not be expected.
  • annealing is more preferably performed at a temperature of from 650 to 900° C.
  • a temperature of from 650 to 900° C By performing this annealing, granulation of the structure of the titanium alloy is promoted, thereby enhancing the effect of the ductility.
  • an annealing temperature is less than 650° C., a sufficient effect cannot be obtained, while, when it is over 900° C., the crystal grain becomes coarse and large and, then, the enhancement of the ductility cannot be expected.
  • the high-strength low-alloy titanium alloy according to the present invention exhibits a high strength such that tensile strength is 750 MPa or more.
  • This value is of a high level which is over the strength of the fourth type of the titanium bar defined by JIS and expands an area of applications of the titanium alloy.
  • This titanium alloy can utilize a low-priced low-grade sponge titanium which has been only used as an addition to steel as a raw material and, rather, actively makes use of impurities (Fe: 0.2% or more; N: 0.01% or more) contained therein. As a result, it has become possible that a production cost of the titanium alloy is substantially reduced by the present invention.
  • Titanium alloys as shown in Table 1 were produced by melting by means of a plasma skull furnace. Nos. 1, 2, 3-1, 4, 5, and 6-1 are Examples while Nos. 3-2*, 6-2*, and 7* are Comparative Examples. At the time of such production by melting, compositions of respective alloys were different from one another, but a low-grade sponge titanium was used in 50 to 100% of raw materials. Respective titanium alloys were forged into ingots each having a diameter of 100 mm and a weight of 8 kg. Each ingot was extended while being forged at 1000° C. so as to have a diameter of 50 mm and, then, further worked at a temperature shown in Table 1 so as to obtain a round bar having a diameter of 20 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

To provide a titanium alloy which is a high-strength low-alloy with a 750 MPa or more in terms of tensile strength. A production method is capable of producing the titanium alloy by using a low-priced, low-grade sponge titanium as a raw material. This high-strength low-alloy titanium alloy has an alloy composition containing O of from 0.2 to 0.8%, C of from 0.01 to 0.15%, N of from 0.01 to 0.07%, Fe of from 0.3 to 1.0% and the balance being substantially Ti. At the time of production, a low-grade sponge Ti containing N of 0.01% or more and Fe of 0.2% or more is used in at least a portion of raw materials to allow it to be a source of the aforementioned Ni and Fe components.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority under 35 USC 119 to Japanese Patent Application No. 2003-063717 filed on Mar. 10, 2003 the entire contents thereof is hereby incorporated by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Application [0002]
  • The present invention relates to a high-strength low-allow titanium alloy for use in forming various types of structural materials that require high strength, and a production method therefor. [0003]
  • 2. Description of Background Art [0004]
  • Spectacle frames, golf club heads and automotive engine members such as a valve retainer are required to be not only light in weight but also high in strength. Since pure titanium is excellent in corrosion resistance, it has been used in applications mostly in the chemical industry which require corrosion resistance. Strength thereof can be enhanced by appropriately controlling an amount of O or Fe contained in Ti. With regard to such high-strength titanium, the specifications of from a first type to a fourth type are defined by JIS in accordance with the levels of tensile strength. [0005]
  • Recently, a high-strength low-alloy titanium alloy has been developed which attempts to enhance the strength by increasing the N content therein, although being close to pure titanium. However, there is a fear of generating TiN which is a representative LDI (low density inclusion) in titanium by an addition of N. Therefore, there is a restriction which requires the use of addition technology. A high-strength titanium in which the N amount is controlled can not always be a material that can be produced at a low cost. [0006]
  • To mention representative technologies among known technologies, a high-tensile titanium excellent in hydrogen embrittlement resistance comprising Fe of from 0.25 to 1.0%, O of from 0.45 to 1.0%, C of 0.1% or less, H of 0.015% or less, N of 0.07% or less, and the balance being substantially Ti is disclosed in JP-A No. 52-115713. [0007]
  • As for a titanium alloy as a magnetic disk substrate, an alloy composition comprising from 0.2 to 1.0% of at least one element of Mo, Ni, Co, Cr and Fe, and further comprising from 0.03 to 0.5% of 0+2N+0.75C and the balances being substantially Ti is disclosed in JP-A No.3-267334. [0008]
  • A high-strength titanium alloy for casting which comprises Fe of from 0.3 to 3.5%, O of from 0.05 to 0.95%, Cr of from 0 to 0.5%, Al of from 0 to 3.5%, V of from 0 to 3%, C of from 0 to 0.3%, Si of from 0 to 0.2%, Mn of from 0 to 0.1%, Ni of from 0 to 0.3, N of from 0 to 0.2% and the balance being Ti and unavoidable impurities is disclosed in JP-A No. 11-36029. [0009]
  • It is advantageous to produce a titanium alloy at a low cost when a low-grade sponge titanium can be used as a raw material. However, the low-grade sponge titanium has only been used as an additive to steel due to a large amount of impurities therein. Nevertheless, when the impurities arre examined, it was found that there are many components which can be utilized for enhancing strength of titanium. Also, other components do not give any substantial influence on physical properties of the titanium alloy unless amounts thereof do not go over a given limit. [0010]
  • SUMMARY AND OBJECTS OF THE INVENTION
  • An object of the present invention is to provide a titanium alloy which can use a low-priced low-grade sponge titanium as a raw material. Further, although being a low alloy, the titanium alloy has a high strength and has realized 750 MPa or more in terms of tensile strength by actively utilizing impurities present in the low-grade sponge titanium such that the contents of O, C, N and Fe are appropriately controlled. [0011]
  • A high-strength low-alloy titanium alloy according to the present invention comprises O of from 0.2 to 0.8%, C of from 0.01 to 0.15%, N of from 0.01 to 0.07%, Fe of from 0.3 to 1.0% and the balance being substantially Ti and, also, has a tensile strength of 750 MPa or more. [0012]
  • A method for producing the high-strerigth low-alloy titanium alloy according to the present invention is characterized by using a low-grade sponge Ti comprising N of 0.01% or more and Fe of 0.2% or more in at least a portion of raw materials to allow it to be a source of the aforementioned Ni and Fe components. [0013]
  • Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.[0014]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A high-strength low-alloy titanium alloy according to the present invention can contain not only the aforementioned alloy components which are present in a state of being added to a base metal Ti, namely, O, C, N and Fe, but also at least one element of Cr and Ni such that an entire content thereof inclusive of that of Fe comes to be Fe %+Cr %+Ni %:1.2% or less. On this occasion, it is necessary that the aforementioned alloy components and the Cr and/or Ni component satisfy a relation of 0.5≦0%+2N %+0.9C%+0.1(Fe %+Cr %+Ni %)≦1.0%. [0015]
  • A function of alloy components which constitute the high-strength low-alloy titanium alloy according to the present invention and a reason why composition ranges are defined as described above are described below. It goes without saying that, since Ti is light in weight and constitutes a structural material having high strength, Ti was selected as a base metal. [0016]
  • O: from 0.2 to 0.8%; preferably from 0.4% to 0.7% [0017]
  • O is an effective element for enhancing strength of Ti and is added in an amount of at least 0.2% in order to secure the strength. As the amount of O to be added is increased, the strength thereof is of course increased but Ti tends to be brittle; therefore, such additional amount is restricted to be 0.8% or less. The additional amount thereof is preferably in the range of from 0.4% to 0.7%. [0018]
  • C: from 0.01 to 0.15%; preferably from 0.05 to 0.10% [0019]
  • Being same as in O and N, C is a component for enhancing tensile strength. In order to obtain such effect, C is added in an amount of 0.01% or more. But, when it is added in a large amount, TiC which is a compound between C and Ti is generated to decrease fatigue strength. Therefore, the amount of C to be added is selected from amounts of at most 0.15%. From the standpoint of securing an additional effect of C and preventing the generation of TiC, the amount of C to be added is preferably in the range of from 0.05 to 0.10%. [0020]
  • N: from 0.01 to 0.07%; preferably from 0.02 to 0.05% [0021]
  • N is a component for enhancing strength. A function thereof is more remarkable than that of O. Since, in a same manner as in C as described above, N forms TiN by combining with Ti which invites a crack or decrease fatigue strength at the time of performing a plastic treatment, N is added within a limit defined by JIS, namely, in an amount of 0.07% or less. As described above, when the low-grade sponge Ti is used as a raw material, N is assuredly contained therein and it is practically difficult to allow it to be less than 0.01%. N is preferably in the range of from 0.02 to 0.05%. [0022]
  • Fe: from 0.3 to 1.0%; preferably from 0.5% to 1.0% [0023]
  • Fe is a component for not only enhancing strength but also contributing to improvement of ductility by forming a β-phase. Particularly, in order to secure an effect of improving the ductility, it is necessary to add Fe in an amount of 0.3% or more. On the other hand, Fe is an element which easily segregates. When it is added in a large amount, there is a fear of generating a fluctuation in characteristics. Therefore, an additional amount thereof is selected such that it falls within 1.0%. A low-grade sponge titanium for addition to steel contains Fe of ordinarily from 0.2 to 2.0% with an average of 0.5% and, by using this sponge titanium, Fe of from 0.3 to 1.0% can easily be contained. A preferable addition amount thereof is from 0.5% to 1.0%. [0024]
  • Fe %+Cr %+Ni %:1.2% or less [0025]
  • Ni and Cr are contained in the low-grade sponge titanium and, when the sponge titanium is used as a raw material, there is a possibility that they are unavoidably introduced. Since they have no specific meaning of presence and, when they are present in a large amount, a tough ductile property is impaired; therefore, contents thereof are controlled totally with the content of Fe. [0026]
  • 0%+2N %+0.9C%+0.1(Fe %+Cr %+Ni %): 1.0% or less [0027]
  • (O+N+C) as a whole is useful for enhancing strength. However, when (O+N+C) is present in a large amount, the presence thereof, together with the presence of (Fe+Cr+Ni), is detrimental to the tough ductile property. Therefore, both presences are controlled. Factors attached to contents of respective components were determined in accordance with the magnitude of influence to the tough ductile property. [0028]
  • The high-strength low-alloy titanium alloy according to the present invention is preferably subjected to finish forming at a forging ratio of 3 or more in the temperature range of from 600 to 900° C. When a product is produced from the titanium alloy, whichever the alloy composition thereof may be, the above-described basic aspect or a modified aspect are used. By performing this finish forming, a fine grain structure in which a grain size is 30 μm or less can be obtained, thereby realizing a high ductility. The forging ratio of 3 or more is a necessary condition for granulating an a-phase to obtain an effect of the enhancement of the ductility. In regard to a temperature of the finish forming, when it is as low as less than 600° C., a flaw can not be prevented from being generated on the product; on the other hand, when it is as high as over 900° C., a crystal grain becomes coarse and large and, then, the enhancement of the ductility can not be expected. [0029]
  • Succeeding to the finish forming under the aforementioned conditions, annealing is more preferably performed at a temperature of from 650 to 900° C. By performing this annealing, granulation of the structure of the titanium alloy is promoted, thereby enhancing the effect of the ductility. When an annealing temperature is less than 650° C., a sufficient effect cannot be obtained, while, when it is over 900° C., the crystal grain becomes coarse and large and, then, the enhancement of the ductility cannot be expected. [0030]
  • Due to a selection of the aforementioned alloy composition, the high-strength low-alloy titanium alloy according to the present invention exhibits a high strength such that tensile strength is 750 MPa or more. This value is of a high level which is over the strength of the fourth type of the titanium bar defined by JIS and expands an area of applications of the titanium alloy. This titanium alloy can utilize a low-priced low-grade sponge titanium which has been only used as an addition to steel as a raw material and, rather, actively makes use of impurities (Fe: 0.2% or more; N: 0.01% or more) contained therein. As a result, it has become possible that a production cost of the titanium alloy is substantially reduced by the present invention. [0031]
  • EXAMPLES
  • Titanium alloys as shown in Table 1 were produced by melting by means of a plasma skull furnace. Nos. 1, 2, 3-1, 4, 5, and 6-1 are Examples while Nos. 3-2*, 6-2*, and 7* are Comparative Examples. At the time of such production by melting, compositions of respective alloys were different from one another, but a low-grade sponge titanium was used in 50 to 100% of raw materials. Respective titanium alloys were forged into ingots each having a diameter of 100 mm and a weight of 8 kg. Each ingot was extended while being forged at 1000° C. so as to have a diameter of 50 mm and, then, further worked at a temperature shown in Table 1 so as to obtain a round bar having a diameter of 20 mm. Thereafter, the thus-obtained round bar was subjected to annealing of heating-cooling for 2 hours at 750° C. From the resultant sample, a test piece having a diameter in a straight portion of 6.5 mm and a distance between evaluation points of 25 mm was prepared and, then, the tensile characteristics thereof were examined. The results are shown in Table 1 all together. [0032]
  • The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims. [0033]
    TABLE 1
    Alloy Composition(weight %; balance: Ti) and Tensile Strength
    Alloy composition Finish forming Tensile strength Elongation
    No. O N C Fe Cr Ni Formula 1 Formula 2 temperature (° C.) (MPa) (%)
    1 0.25 0.06 0.03 0.78 0.21 0.12 1.11 0.51 850 753 23.5
    2 0.44 0.03 0.06 0.62 0.02 0.01 0.65 0.62 850 830 20.3
    3-1 0.67 0.02 0.03 0.55 0.55 0.79 850 970 13.2
    3-2* 0.67 0.02 0.03 0.55 0.55 0.79 1000 958 5.1
    4 0.78 0.03 0.08 0.39 0.39 0.95 850 1052 10.9
    5 0.45 0.03 0.12 0.55 0.01 0.01 0.57 0.68 850 872 18.5
    6-1 0.44 0.04 0.07 0.43 0.11 0.05 0.59 0.64 850 860 17.2
    6-2* 0.44 0.04 0.07 0.43 0.11 0.05 0.59 0.64 1000 870 7.3
    7* 0.14 0.01 0.01 0.04 0.04 0.17 850 450 33.2

Claims (14)

What is claimed is:
1. A high-strength low-alloy titanium alloy composition comprising O of from 0.2 to 0.8%, C of from 0.01 to 0.15%, N of from 0.01 to 0.07%, Fe of from 0.3 to 1.0% and the balance being substantially Ti and, also, having a tensile strength of 750 MPa or more.
2. The high-strength low-alloy titanium alloy composition according to claim 1, and further comprising at least one of Cr and Ni such that an entire content inclusive of Fe comes to be Fe %+Cr %+Ni %:1.2% or less, and satisfying a relation of O %+2N %+0.9%+0.1(Fe %+Cr %+Ni %): 1.0% or less.
3. A method for producing a high-strength low-alloy titanium alloy composition comprising:
selecting O of from 0.2 to 0.8%;
selecting C of from 0.01 to 0.15%;
selecting N of from 0.01 to 0.07%;
selecting Fe of from 0.3 to 1.0%; and
providing a balance being substantially Ti for forming a high-strength low-alloy titanium alloy with a tensile strength of 750 MPa or more.
4. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 3, wherein the Ti is a low-grade sponge Ti containing N of 0.01% or more and Fe of 0.2% or more in at least a portion of raw materials to allow it to be a source of Ni and the aforementioned Fe components.
5. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 1, and further including the steps of:
selecting at least one of Cr and Ni such that an entire content inclusive of Fe comes to be Fe %+Cr %+Ni %:1.2% or less, and satisfying a relation of O %+2N %+0.9%+0.1 (Fe %+Cr %+Ni %):1.0% or less.
6. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 5, wherein the Ti is a low-grade sponge Ti containing N of 0.01% or more and Fe of 0.2% or more in at least a portion of raw materials to allow it to be a source of the aforementioned Ni and Fe components.
7. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 3, and including the step of subjecting the titanium alloy to finish forming at a forging ratio of 3 or more in the temperature range of from 600 to 900° C.
8. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 4, and including the step of subjecting the titanium alloy to finish forming at a forging ratio of 3 or more in the temperature range of from 600 to 900° C.
9. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 5, and including the step of subjecting the titanium alloy to finish forming at a forging ratio of 3 or more in the temperature range of from 600 to 900° C.
10. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 6, and including the step of subjecting the titanium alloy to finish forming at a forging ratio of 3 or more in the temperature range of from 600 to 900° C.
11. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 3, and including the steps of:
subjecting the titanium alloy to finish forming at a forging ratio of 3 or more; and
annealing in the temperature range of from 650 to 900° C.
12. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 4, and including the steps of:
subjecting the titanium alloy to finish forming at a forging ratio of 3 or more; and
annealing in the temperature range of from 650 to 900° C.
13. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 5, and including the steps of:
subjecting the titanium alloy to finish forming at a forging ratio of 3 or more; and
annealing in the temperature range of from 650 to 900° C.
14. The method for producing the high-strength low-alloy titanium alloy as set forth in claim 6, and including the steps of:
subjecting the titanium alloy to finish forming at a forging ratio of 3 or more; and
annealing in the temperature range of from 650 to 900° C.
US10/795,401 2003-03-10 2004-03-09 High-strength low-alloy titanium alloy and production method for same Abandoned US20040244888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003063717A JP2004269982A (en) 2003-03-10 2003-03-10 High-strength low-alloyed titanium alloy and its production method
JP2003-063717 2003-03-10

Publications (1)

Publication Number Publication Date
US20040244888A1 true US20040244888A1 (en) 2004-12-09

Family

ID=33125229

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/795,401 Abandoned US20040244888A1 (en) 2003-03-10 2004-03-09 High-strength low-alloy titanium alloy and production method for same

Country Status (4)

Country Link
US (1) US20040244888A1 (en)
JP (1) JP2004269982A (en)
CN (1) CN1247807C (en)
IT (1) ITTO20040144A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135281A1 (en) * 2004-12-17 2006-06-22 Integran Technologies, Inc. Strong, lightweight article containing a fine-grained metallic layer
US20070281176A1 (en) * 2004-12-17 2007-12-06 Integtan Technologies, Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
WO2016004918A1 (en) * 2014-07-08 2016-01-14 Technische Universität Braunschweig Titanium alloy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106323A (en) * 2006-10-26 2008-05-08 Sumitomo Metal Ind Ltd Titanium alloy
CN104801932A (en) * 2015-04-21 2015-07-29 常熟锐钛金属制品有限公司 Production method of high-heat strong titanium pipe
CN114411004B (en) * 2022-01-28 2023-01-31 西安稀有金属材料研究院有限公司 Preparation method of low-cost titanium alloy for ocean engineering pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063211A (en) * 1995-04-21 2000-05-16 Nippon Steel Corporation High strength, high ductility titanium-alloy and process for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252747A (en) * 1987-12-23 1989-10-09 Nippon Steel Corp High strength titanium material having excellent ductility and its manufacture
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JP3408683B2 (en) * 1995-12-01 2003-05-19 株式会社インジェックス Dental instruments
JPH1136029A (en) * 1997-05-21 1999-02-09 Sumitomo Metal Ind Ltd High strength titanium alloy casting product
JP2001089821A (en) * 1999-09-22 2001-04-03 Sumitomo Metal Ind Ltd Titanium alloy having high strength and high ductility and excellent in high temperature atmospheric oxidation resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063211A (en) * 1995-04-21 2000-05-16 Nippon Steel Corporation High strength, high ductility titanium-alloy and process for producing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135281A1 (en) * 2004-12-17 2006-06-22 Integran Technologies, Inc. Strong, lightweight article containing a fine-grained metallic layer
WO2006066010A2 (en) * 2004-12-17 2006-06-22 Powermetal Technologies Inc Sports articles formed using nanostructured materials
US20060160636A1 (en) * 2004-12-17 2006-07-20 Gino Palumbo Sports articles formed using nanostructured materials
WO2006066010A3 (en) * 2004-12-17 2006-10-19 Powermetal Technologies Inc Sports articles formed using nanostructured materials
US20070281176A1 (en) * 2004-12-17 2007-12-06 Integtan Technologies, Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US7320832B2 (en) 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US20080119307A1 (en) * 2004-12-17 2008-05-22 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US7387578B2 (en) 2004-12-17 2008-06-17 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US7591745B2 (en) 2004-12-17 2009-09-22 Integran Technologies, Inc. Strong, lightweight article containing a fine-grained metallic layer
US20100028714A1 (en) * 2004-12-17 2010-02-04 Integran Technologies, Inc. Fine-Grained Metallic Coatings Having the Coefficient of Thermal Expansion Matched to the One of the Substrate
US7771289B2 (en) 2004-12-17 2010-08-10 Integran Technologies, Inc. Sports articles formed using nanostructured materials
US7803072B2 (en) 2004-12-17 2010-09-28 Integran Technologies Inc. Strong, lightweight article, containing a fine-grained metallic layer
US7824774B2 (en) 2004-12-17 2010-11-02 Integran Technologies, Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US20110003171A1 (en) * 2004-12-17 2011-01-06 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US20110014488A1 (en) * 2004-12-17 2011-01-20 Integran Technologies, Inc. Fine-Grained Metallic Coatings Having the Coeficient of Thermal Expansion Matched to the One of the Substrate
US7910224B2 (en) 2004-12-17 2011-03-22 Integran Technologies, Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US20110143159A1 (en) * 2004-12-17 2011-06-16 Integran Technologies, Inc. Fine-Grained Metallic Coatings Having The Coeficient Of Thermal Expansion Matched To One Of The Substrate
US8025979B2 (en) 2004-12-17 2011-09-27 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US8129034B2 (en) 2004-12-17 2012-03-06 Integran Technologies, Inc. Fine-grained metallic coatings having the coeficient of thermal expansion matched to one of the substrate
WO2016004918A1 (en) * 2014-07-08 2016-01-14 Technische Universität Braunschweig Titanium alloy
US20170314099A1 (en) * 2014-07-08 2017-11-02 Dietmar Wolter Titanium alloy
RU2722300C2 (en) * 2014-07-08 2020-05-28 Дитмар Вольтер Titanium alloy
US10767244B2 (en) * 2014-07-08 2020-09-08 Dietmar Wolter Titanium alloy

Also Published As

Publication number Publication date
CN1530454A (en) 2004-09-22
JP2004269982A (en) 2004-09-30
ITTO20040144A1 (en) 2004-06-08
CN1247807C (en) 2006-03-29

Similar Documents

Publication Publication Date Title
US9045806B2 (en) Hardened martensitic steel having a low or zero content of cobalt, method for producing a component from this steel, and component obtained in this manner
EP2880189B1 (en) A process for producing hot-rolled steel strip and a steel strip produced therewith
US20070125456A1 (en) High strength spring steel wire with excellent coiling properties and hydrogen embrittlement resistance
US20140294665A1 (en) Cu-Ni-Zn-Mn Alloy
JPS6411105B2 (en)
US20120000580A1 (en) Corrosion-Resistant Austenitic Steel
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JP7190216B2 (en) Method of heat treating high strength steel and products obtained therefrom
JP3308090B2 (en) Fe-based super heat-resistant alloy
EP2420585B1 (en) Low-specific gravity steel for forging having excellent machinability
US20180274066A1 (en) Nodular cast alloy
JP3498504B2 (en) High ductility type high tensile cold rolled steel sheet and galvanized steel sheet
JPH0545660B2 (en)
JP6798557B2 (en) steel
US4060411A (en) Precipitation-hardenable, nitrided aluminum alloys and nitrided mother alloys therefor
US20040244888A1 (en) High-strength low-alloy titanium alloy and production method for same
JP2756031B2 (en) High strength spring steel
US4830826A (en) Process of manufacturing high-strength high-elasticity aluminum alloys
US5073338A (en) High strength steel bolts
KR101008820B1 (en) Heat-treatment Hardening Steel-sheet having Excellent Low-temperature impact toughnss, and method for producing the same
CA2400286A1 (en) Bar product, cylinder rods, hydraulic cylinders, and method for manufacturing
JP2000017374A (en) Age hardening type high strength bainitic steel and its production
JP2003313635A (en) Hot work tool steel with high toughness
EP4186991A1 (en) Steel sheet having excellent formability and strain hardening rate
EP4033001A1 (en) Steel sheet having excellent uniform elongation and strain hardening rate, and method for producing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORIMURA, HIROYUKI;DOI, KOSUKE;SUZUKI, AKIHIRO;AND OTHERS;REEL/FRAME:015650/0177

Effective date: 20040628

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION