US20090074606A1 - Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part - Google Patents

Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part Download PDF

Info

Publication number
US20090074606A1
US20090074606A1 US12/232,198 US23219808A US2009074606A1 US 20090074606 A1 US20090074606 A1 US 20090074606A1 US 23219808 A US23219808 A US 23219808A US 2009074606 A1 US2009074606 A1 US 2009074606A1
Authority
US
United States
Prior art keywords
low density
titanium alloy
density titanium
mass
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/232,198
Inventor
Michiharu Ogawa
Toshiharu Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Assigned to DAIDO TOKUSHUKO KABUSHIKI KAISHA reassignment DAIDO TOKUSHUKO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NODA, TOSHIHARU, OGAWA, MICHIHARU
Publication of US20090074606A1 publication Critical patent/US20090074606A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials

Definitions

  • the present invention relates to a low density titanium alloy, a golf club head, and a process for producing a low density titanium alloy part, more specifically, to a low density titanium alloy having high specific strength and excellent in hot workability, a golf club head using the low density titanium alloy, and a process for producing a low density titanium alloy part using the low density titanium alloy.
  • the ⁇ + ⁇ type alloy is a well-balanced material as being excellent in strength, specific strength, heat processability, workability, corrosion resistance, and the like, and therefore it has heretofore been used mainly as an aerospace material. Furthermore, the ⁇ + ⁇ type alloy has heretofore been used as an automobile material, a mechanical structure part material, a general civilian goods material, and the like. Particularly, a Ti-6Al-4V alloy among the ⁇ + ⁇ type alloys has widely been used as a general purpose high tensile titanium alloy, and about 80% of whole the Ti alloy consumption is occupied with the Ti-6Al-4V alloy consumption.
  • the Ti-6Al-4V alloy entails a high cost since it contains V which is expensive. Further, although the Ti alloys are generally high in specific strength, further reduction in cost and further improvement in specific strength has been in demand for certain applications such as application in golf club head.
  • Patent Reference 1 discloses an ⁇ + ⁇ type Ti alloy containing, in terms of mass %, 5.5% to 7.0% of Al, 0.5% to 4.0% of Fe, 0.5% or less of O, and a remainder being Ti and inevitable impurities.
  • Patent Reference 1 discloses that:
  • Patent Reference 2 discloses that:
  • Patent Reference 3 discloses a high strength Ti alloy contaihing, in terms of mass %, 5.50% to 7.00% of Al, 0.50% to 4.00% of Fe, 0.02% to 0.10% of N, 0.05% to 0.40% of O, and a remainder being Ti and inevitable impurities.
  • Patent Reference 3 discloses that:
  • Patent Reference 1 Japanese Patent No. 3306878
  • Patent Reference 2 JP-A-2001-115221
  • Patent Reference 3 JP-A-2004-10963
  • Ti-6Al-1Fe alloy is being used as a low density titanium alloy for golf club heads.
  • the effect of the Ti-6Al-1Fe alloy for the achievement of low density is weaker than that of a Ti-6Al-4V alloy that is the representative titanium alloy.
  • An object of the invention is to provide a low density titanium alloy having higher specific strength as compared to the Ti-6Al-4V alloy, excellent in hot workability, and reduced in cost; a golf club head using the low density titanium alloy; and a low density titanium alloy part using the low density titanium alloy.
  • the present invention relates to the following items 1 to 32.
  • a low density titanium alloy comprising:
  • the low density titanium alloy according to item 1 which has a specific strength of 205 or more.
  • the low density titanium alloy according to item 2 which has a specific strength of 205 or more.
  • the low density titanium alloy according to item 3 which has a specific strength of 205 or more.
  • the low density titanium alloy according to item 4 which has a specific strength of 205 or more.
  • the low density titanium alloy according to item 6 which has a specific strength of 205 or more.
  • the low density titanium alloy according to item 7 which has a specific strength of 205 or more.
  • the low density titanium alloy according to item 8 which has a specific strength of 205 or more.
  • the low density titanium alloy according to item 1 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 2 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 3 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 4 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 5 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 6 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 7 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 8 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 9 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 10 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 11 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 12 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 13 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 14 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 15 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the low density titanium alloy according to item 16 which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • the present invention also relates to a golf club head containing the above-mentioned low density titanium alloy.
  • the present invention also relates to a process for producing a low density titanium alloy part, the process including: blending raw materials so as to obtain the above-mentioned low density titanium alloy, followed by melting and casting the raw materials to thereby obtain an ingot; and heating the ingot to a temperature which is ⁇ transus temperature or higher and is 1200° C. or lower, followed by forging or rolling the ingot to thereby complete a rough processing step.
  • the increase in Al content generally entails deterioration of hot workability.
  • Fe is contained in the alloy as a principal addition element, it is possible to reduce a cost by using the inexpensive raw materials and reducing the amount of expensive V.
  • the low density titanium alloy according to the invention is usable for various structure parts, parts for anti-corrosion, and the like that are used for golf club heads, chemical industrial apparatuses, electric appliances, aerospace appliances, airplanes, boats and ships, wheeled vehicles, medical equipments, condensers, heat exchangers, desalination apparatuses, and the like.
  • a low density titanium alloy according to the invention contains following elements with a remainder being Ti and inevitable impurities.
  • Types of addition elements, component ratios thereof, and reasons for limitation are as follows.
  • Al is the element that achieves solution hardening of an ⁇ -phase of the alloy. Further, since Al is lighter than Ti, Al acts for reducing density of the alloy (i.e. for achieving high specific strength). In order to attain such effects, an Al content may preferably be 7.1 mass % or more.
  • the Al content when the Al content is excessive, an intermetallic compound Ti 3 Al is precipitated to cause embrittlement of the alloy. Therefore, the Al content may preferable by 10.0 mass % or less.
  • a Fe content may preferably be 0.1 mass % or more.
  • the Fe content may preferably be 3.0 mass % or less.
  • an O content may preferably be 0.01 mass % or more.
  • the O content when the O content is excessive, rigidity is increased to deteriorate ductibility. Therefore, the O content may preferably be 0.3 mass % or less.
  • N has an effect of strengthening the ⁇ -phase as being dissolved into the ⁇ -phase.
  • the N content may preferably be 0.5 mass % or less.
  • C has an effect of strengthening the ⁇ -phase as being dissolved into the ⁇ -phase.
  • the C content may preferably be 0.5 mass % or less.
  • the low density titanium alloy according to the invention may further contain one or more of elements described below.
  • V has an effect of stabilizing a ⁇ -phase.
  • a V content may preferably be 0.01 mass % or more.
  • the V content when the V content is excessive, a specific gravity is increased. Therefore, the V content may preferably be 2.0 mass % or less.
  • a pure metal or a Ti-6Al-4V alloy scrap may be used as a V source in the production of the alloy.
  • Each of Cr, Ni and Mo has an effect of stabilizing the ⁇ -phase.
  • a content of these elements is excessive, a specific gravity is increased. Therefore, a sole or total amount of at least one element selected from the group consisting of Cr, Ni and Mo may preferably be 2.0 mass % or less.
  • each of B and Si has an effect of fining grains.
  • each of a B content and a Si content may preferably be 0.01 mass % or more.
  • each of the B content and the Si content may preferably be 0.3 mass % or less.
  • B and Si may be added solely or both of them may be added simultaneously.
  • the increase in Al content generally entails deterioration of hot workability.
  • the low density titanium alloy according to the invention contains Fe as the principal addition element, it is possible to use, as a raw material, an inexpensive sponge titanium containing Fe as impurity. Further, by adding Fe, it is possible to reduce the amount of expensive V to be used. Therefore, it is possible to reduce a cost of the low density titanium alloy.
  • the low density titanium alloy according to the invention has high specific strength and is excellent in hot workability, it is possible to obtain, for example, a golf club head, that is inexpensive, light-weight, and high in repulsion by using the low density titanium alloy.
  • a process for producing a low density titanium alloy part according to the invention includes a melting/casting step, a rough processing step, a finish processing step, and an annealing step.
  • the melting/casting step is a step of blending raw materials so as to obtain the low density titanium alloy of the invention, followed by melting and casting the raw materials.
  • the low density titanium alloy according to the invention contains Fe as the essential element, it is possible to use, as a Ti source, not only a high purity sponge titanium but also a low purity sponge titanium containing 0.1 to 2.0 mass % of Fe or a Ti-6Al-4V alloy scrap. Therefore, it is possible to reduce a cost for the titanium alloy part.
  • the melting/casting of the blended materials is not particularly limited, and it is possible to employ a conventional method.
  • the rough processing step is a step of heating an ingot, which is obtained by blending the raw materials so as to obtain the low density titanium alloy according to the invention followed by melting and casting the raw materials, to a temperature which is ⁇ transus temperature ( ⁇ transforming point) or higher and is 1200° C. or lower, followed by forging or rolling the ingot.
  • the processing temperature in the rough processing may preferably be the ⁇ transus temperature or higher at which only the ⁇ -phase remains.
  • the processing temperature in the rough processing may preferably be 1200° C. or less.
  • the finish processing step is a step of performing a finish-forging or finish-rolling of the low density titanium alloy forged or rolled in the rough processing step after heating the alloy to a temperature which is 600° C. or higher and is less than the ⁇ transus temperature.
  • the finish processing step is performed according to the necessity.
  • the processing temperature in the finish processing step may preferably be 600° C. or more.
  • the processing temperature in the finish processing step may preferably be less than ⁇ transus temperature.
  • the annealing step is a step of annealing the low density titanium alloy forged or rolled in the finish processing step.
  • the annealing step is performed according to the necessity.
  • the annealing is performed for the purpose of eliminating a strain after the finish processing step.
  • Annealing conditions are not particularly limited, and optimum conditions may be selected depending on the alloy composition.
  • Raw materials were weighed so as to achieve predetermined compositions, and titanium alloy ingots each having a mass of 6 kg and a diameter of 100 mm were produced through melting using a plasma skull furnace. Shown in Table 1 are chemical compositions of the thus-obtained ingots.
  • each of the ingots was heated to 1000° C., and a round bar having a diameter of 20 mm was obtained by hot forging. Further, a heat treatment at 750° C. for 2 h under an air cooling (AC) was performed. From the round bar after the heat treatment, a No. 3 tensile test piece (diameter: 6.35 mm, evaluation distance: 25 mm) defined in ASTM E8 was prepared.
  • a high-temperature high-speed tensile test was performed at 1000° C. to measure flow stress and reduction of area at 1000° C.
  • a tensile test was performed using an insutoron type tensile test at a crosshead speed of 5 ⁇ 10 ⁇ 5 m/s machine to measure tensile strength.
  • a specific gravity of each of the tensile test pieces was measured by employing a water-impregnation method. Specific strength was calculated from the detected specific gravity and tensile strength.
  • Manufacturability was evaluated in terms of reduction of area at 1000° C. Those having reduction of area at 1000° C. of 40% or more is evaluated as “good”, and those having reduction of area at 1000° C. of less than 40% is evaluated as “poor”.
  • Comparative Examples 1 to 3 are remarkably poor in manufacturability due to the high content of Al. Particularly, it was impossible to measure the flow stress and reduction of area of Comparative Examples 2 and 3 having the Al content exceeding 11 mass %. Comparative Example 4 having the Fe content exceeding 3.0 mass % has poor manufacturability though it has high tensile strength and specific strength. Comparative Example 5 (Ti-4Al-6V alloy) has good manufacturability, but it has low tensile strength and specific strength.
  • each of Examples 1 to 40 has high tensile strength and specific strength due to the appropriate content of Al. Furthermore, each of Examples 1 to 40 also has good hot workability due to the adjustment of the Fe content and the O content and the optional addition of the small amount of V, as well as the relatively increased Al content.

Abstract

The present invention relates to a low density titanium alloy, containing: 7.1 to 10.0 mass % of Al; 0.1 to 3.0 mass % of Fe; 0.01 to 0.3 mass % of O; 0.5 mass % or less of N; 0.5 mass % or less of C; and a remainder being Ti and inevitable impurities; a golf club head using the alloy; and a production method for a low density titanium alloy part using the alloy. The alloy of the invention may further contain 0.01 to 2.0 mass % of V. The alloy of the invention has higher specific strength as compared to the Ti-6Al-4V alloy, is excellent in hot workability, and is reduced in cost.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a low density titanium alloy, a golf club head, and a process for producing a low density titanium alloy part, more specifically, to a low density titanium alloy having high specific strength and excellent in hot workability, a golf club head using the low density titanium alloy, and a process for producing a low density titanium alloy part using the low density titanium alloy.
  • BACKGROUND OF THE INVENTION
  • Practical titanium alloys are broadly classified into:
  • (1) an α type alloy formed of an α-phase (low temperature phase) of a hexagonal closed packed lattice;
  • (2) a β type alloy formed of a β-phase (high temperature phase) of a body-centered cubic crystal; and
  • (3) an α+β type alloy having a mixed structure of the α-phase and the β-phase.
  • Among the above, the α+β type alloy is a well-balanced material as being excellent in strength, specific strength, heat processability, workability, corrosion resistance, and the like, and therefore it has heretofore been used mainly as an aerospace material. Furthermore, the α+β type alloy has heretofore been used as an automobile material, a mechanical structure part material, a general civilian goods material, and the like. Particularly, a Ti-6Al-4V alloy among the α+β type alloys has widely been used as a general purpose high tensile titanium alloy, and about 80% of whole the Ti alloy consumption is occupied with the Ti-6Al-4V alloy consumption.
  • However, the Ti-6Al-4V alloy entails a high cost since it contains V which is expensive. Further, although the Ti alloys are generally high in specific strength, further reduction in cost and further improvement in specific strength has been in demand for certain applications such as application in golf club head.
  • In order to solve the above problems, various proposals have heretofore been made.
  • For instance, Patent Reference 1 discloses an α+β type Ti alloy containing, in terms of mass %, 5.5% to 7.0% of Al, 0.5% to 4.0% of Fe, 0.5% or less of O, and a remainder being Ti and inevitable impurities.
  • The Patent Reference 1 discloses that:
  • (1) it is possible to impart mechanical property equal to or better than the conventional Ti-6Al-4V alloy by using Fe in place of V and mixing Fe at a predetermined ratio, and
  • (2) it is possible to produce the Ti alloy at an industrially low cost since Fe is less expensive than V.
  • Patent Reference 2 discloses a high strength Ti alloy containing, in terms of mass %, 5.00% to 7.00% of Al, 1.00 to 3.50% of V, more than 0.40% but 1.00% or less of Fe, 0.20% to 0.50% of O, 0.05% or less of C, 0.05% or less of N, and a remainder being substantially Ti, in which a V equivalent (=V %+4.2Fe %) is 3.00% to 5.50%.
  • The Patent Reference 2 discloses that:
  • (1) it is possible to achieve strength that is higher than or equal to the Ti-6Al-4V alloy by substituting a portion of V of Ti-6Al-4V by Fe and maintaining the V equivalent within the predetermined range; and
  • (2) it is possible to produce a high strength Ti alloy at a low cost since it is possible to use, as a raw material, an inexpensive sponge titanium containing Fe as impurity.
  • Further, Patent Reference 3 discloses a high strength Ti alloy contaihing, in terms of mass %, 5.50% to 7.00% of Al, 0.50% to 4.00% of Fe, 0.02% to 0.10% of N, 0.05% to 0.40% of O, and a remainder being Ti and inevitable impurities.
  • The Patent Reference 3 discloses that:
  • (1) it is possible to achieve strength that is higher than or equal to the Ti-6Al-4V alloy by substituting V of Ti-6Al-4V by Fe and adding the appropriate amount of N; and
  • (2) it is possible to produce a high strength Ti alloy at a low cost since it is possible to use, as a raw material, an inexpensive sponge titanium containing Fe as impurity.
  • Patent Reference 1: Japanese Patent No. 3306878
  • Patent Reference 2: JP-A-2001-115221
  • Patent Reference 3: JP-A-2004-10963
  • SUMMARY OF THE INVENTION
  • In recent years, there has been an increasing demand for achievement of a lower density of a golf club head among golf equipment manufacturers. Therefore, Ti-6Al-1Fe alloy is being used as a low density titanium alloy for golf club heads.
  • However, the effect of the Ti-6Al-1Fe alloy for the achievement of low density is weaker than that of a Ti-6Al-4V alloy that is the representative titanium alloy.
  • An increase in content of Al which is a light element is effective for the achievement of low density. However, a simple increase in Al content entails a reduction in hot workability.
  • An object of the invention is to provide a low density titanium alloy having higher specific strength as compared to the Ti-6Al-4V alloy, excellent in hot workability, and reduced in cost; a golf club head using the low density titanium alloy; and a low density titanium alloy part using the low density titanium alloy.
  • In order to attain the above-described object, the present invention relates to the following items 1 to 32.
  • 1. A low density titanium alloy, comprising:
  • 7.1 to 10.0 mass % of Al;
  • 0.1 to 3.0 mass % of Fe;
  • 0.01 to 0.3 mass % of O;
  • 0.5 mass % or less of N;
  • 0.5 mass % or less of C; and
  • a remainder being Ti and inevitable impurities.
  • 2. The low density titanium alloy according to item 1, further comprising:
  • 0.01 to 2.0 mass % of V.
  • 3. The low density titanium alloy according to item 1, further comprising:
  • 2.0 mass % or less of at least one element selected from the group consisting of Cr, Ni, and Mo.
  • 4. The low density titanium alloy according to item 2, further comprising:
  • 2.0 mass % or less of at least one element selected from the group consisting of Cr, Ni, and Mo.
  • 5. The low density titanium alloy according to item 1, further comprising:
  • at least one of
  • 0.01 to 0.3 mass % of B, and
  • 0.01 to 0.3 mass % of Si.
  • 6. The low density titanium alloy according to item 2, further comprising:
  • at least one of
  • 0.01 to 0.3 mass % of B, and
  • 0.01 to 0.3 mass % of Si.
  • 7. The low density titanium alloy according to item 3, further comprising:
  • at least one of
  • 0.01 to 0.3 mass % of B, and
  • 0.01 to 0.3 mass % of Si.
  • 8. The low density titanium alloy according to item 4, further comprising:
  • at least one of
  • 0.01 to 0.3 mass % of B, and
  • 0.01 to 0.3 mass % of Si.
  • 9. The low density titanium alloy according to item 1, which has a specific strength of 205 or more.
  • 10. The low density titanium alloy according to item 2, which has a specific strength of 205 or more.
  • 11. The low density titanium alloy according to item 3, which has a specific strength of 205 or more.
  • 12. The low density titanium alloy according to item 4, which has a specific strength of 205 or more.
  • 13. The low density titanium alloy according to item 5, which has a specific strength of 205 or more,
  • 14. The low density titanium alloy according to item 6, which has a specific strength of 205 or more.
  • 15. The low density titanium alloy according to item 7, which has a specific strength of 205 or more.
  • 16. The low density titanium alloy according to item 8, which has a specific strength of 205 or more.
  • 17. The low density titanium alloy according to item 1, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 18. The low density titanium alloy according to item 2, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 19. The low density titanium alloy according to item 3, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 20. The low density titanium alloy according to item 4, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 21. The low density titanium alloy according to item 5, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 22. The low density titanium alloy according to item 6, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 23. The low density titanium alloy according to item 7, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 24. The low density titanium alloy according to item 8, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 25. The low density titanium alloy according to item 9, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 26. The low density titanium alloy according to item 10, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 27. The low density titanium alloy according to item 11, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 28. The low density titanium alloy according to item 12, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 29. The low density titanium alloy according to item 13, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 30. The low density titanium alloy according to item 14, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 31. The low density titanium alloy according to item 15, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • 32. The low density titanium alloy according to item 16, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
  • Furthermore, the present invention also relates to a golf club head containing the above-mentioned low density titanium alloy.
  • In addition, the present invention also relates to a process for producing a low density titanium alloy part, the process including: blending raw materials so as to obtain the above-mentioned low density titanium alloy, followed by melting and casting the raw materials to thereby obtain an ingot; and heating the ingot to a temperature which is β transus temperature or higher and is 1200° C. or lower, followed by forging or rolling the ingot to thereby complete a rough processing step.
  • In the α+β type low density titanium alloy, it is possible to reduce density of the alloy by increasing an Al content.
  • On the other hand, the increase in Al content generally entails deterioration of hot workability. However, it is possible to improve the hot workability while ensuring the low density by optimizing a Fe content and an O content and optionally further adding a very small amount of V, as well as increasing the Al content.
  • Further, since Fe is contained in the alloy as a principal addition element, it is possible to reduce a cost by using the inexpensive raw materials and reducing the amount of expensive V.
  • The low density titanium alloy according to the invention is usable for various structure parts, parts for anti-corrosion, and the like that are used for golf club heads, chemical industrial apparatuses, electric appliances, aerospace appliances, airplanes, boats and ships, wheeled vehicles, medical equipments, condensers, heat exchangers, desalination apparatuses, and the like.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, one embodiment of the invention will be described in detail.
  • Herein, in the present specification, all the percentages defined by mass are the same as those defined by weight.
  • 1. Low Density Titanium Alloy
  • A low density titanium alloy according to the invention contains following elements with a remainder being Ti and inevitable impurities. Types of addition elements, component ratios thereof, and reasons for limitation are as follows.
  • (1) 7.1≦Al≦10.0 Mass %
  • Al is the element that achieves solution hardening of an α-phase of the alloy. Further, since Al is lighter than Ti, Al acts for reducing density of the alloy (i.e. for achieving high specific strength). In order to attain such effects, an Al content may preferably be 7.1 mass % or more.
  • On the other hand, when the Al content is excessive, an intermetallic compound Ti3Al is precipitated to cause embrittlement of the alloy. Therefore, the Al content may preferable by 10.0 mass % or less.
  • (2) 0.1≦Fe≦3.0 Mass %
  • Fe has an effect of stabilizing a β-phase. In order to attain such effect, a Fe content may preferably be 0.1 mass % or more.
  • On the other hand, although strength is increased along with an increase in Fe content, rigidity is increased when the Fe content is excessive. Therefore, the Fe content may preferably be 3.0 mass % or less.
  • (3) 0.01≦O≦0.3 Mass %
  • O has an effect of strengthening the α-phase as being dissolved into the α-phase. In order to attain such effect, an O content may preferably be 0.01 mass % or more.
  • On the other hand, when the O content is excessive, rigidity is increased to deteriorate ductibility. Therefore, the O content may preferably be 0.3 mass % or less.
  • (4) N≦0.5 Mass %
  • Similar to O, N has an effect of strengthening the α-phase as being dissolved into the α-phase. On the other hand, when a N content is excessive, an inclusion such as TiN is formed, and the low density inclusion becomes the cause of fatigue breaking to reduce fatigue strength. Therefore, the N content may preferably be 0.5 mass % or less.
  • (5) C≦0.5 Mass %
  • Similar to O and N, C has an effect of strengthening the α-phase as being dissolved into the α-phase. On the other hand, when a C content is excessive, carbonate is formed to deteriorate hot workability. Therefore, the C content may preferably be 0.5 mass % or less.
  • The low density titanium alloy according to the invention may further contain one or more of elements described below.
  • (6) 0.01≦V≦2.0 Mass %
  • Similar to Fe, V has an effect of stabilizing a β-phase. In order to attain such effect, a V content may preferably be 0.01 mass % or more.
  • On the other hand, when the V content is excessive, a specific gravity is increased. Therefore, the V content may preferably be 2.0 mass % or less.
  • In this regard, a pure metal or a Ti-6Al-4V alloy scrap may be used as a V source in the production of the alloy.
  • (7) At Least One of Cr, Ni and Mo≦2.0 Mass %
  • Each of Cr, Ni and Mo has an effect of stabilizing the β-phase. On the other hand, when a content of these elements is excessive, a specific gravity is increased. Therefore, a sole or total amount of at least one element selected from the group consisting of Cr, Ni and Mo may preferably be 2.0 mass % or less.
  • (8) 0.01≦B≦0.3 Mass % (9) 0.01≦Si≦0.3 Mass %
  • Each of B and Si has an effect of fining grains. In order to attain such effect, each of a B content and a Si content may preferably be 0.01 mass % or more.
  • On the other hand, when the contents of these elements are increased, crude boride and silicide are deposited to deteriorate fatigue strength. Therefore, each of the B content and the Si content may preferably be 0.3 mass % or less. In this regard, B and Si may be added solely or both of them may be added simultaneously.
  • 2. Actions of Low Density Titanium Alloy
  • In the α+β type low density titanium alloy, it is possible to reduce density of the alloy by increasing the Al content.
  • On the other hand, the increase in Al content generally entails deterioration of hot workability. However, it is possible to improve the hot workability while ensuring the low density by optimizing a Fe content and an O content and optionally further adding a very small amount of V, as well as increasing the Al content.
  • Therefore, by optimizing contents of the addition elements, it is possible to obtain:
  • (1) a low density titanium alloy having a specific strength of 205 or more;
  • (2) a low density titanium alloy having a reduction of area at 1000° C. of 40% or more, and/or
  • (3) a low density titanium alloy having a flow stress at 1000° C. of 200 MPa or less.
  • Since the low density titanium alloy according to the invention contains Fe as the principal addition element, it is possible to use, as a raw material, an inexpensive sponge titanium containing Fe as impurity. Further, by adding Fe, it is possible to reduce the amount of expensive V to be used. Therefore, it is possible to reduce a cost of the low density titanium alloy.
  • Furthermore, since the low density titanium alloy according to the invention has high specific strength and is excellent in hot workability, it is possible to obtain, for example, a golf club head, that is inexpensive, light-weight, and high in repulsion by using the low density titanium alloy.
  • 3. Process for Producing Low Density Titanium Alloy Part
  • A process for producing a low density titanium alloy part according to the invention includes a melting/casting step, a rough processing step, a finish processing step, and an annealing step.
  • 3.1. Melting/Casting Step
  • The melting/casting step is a step of blending raw materials so as to obtain the low density titanium alloy of the invention, followed by melting and casting the raw materials.
  • Since the low density titanium alloy according to the invention contains Fe as the essential element, it is possible to use, as a Ti source, not only a high purity sponge titanium but also a low purity sponge titanium containing 0.1 to 2.0 mass % of Fe or a Ti-6Al-4V alloy scrap. Therefore, it is possible to reduce a cost for the titanium alloy part.
  • The melting/casting of the blended materials is not particularly limited, and it is possible to employ a conventional method.
  • 3.2. Rough Processing Step
  • The rough processing step is a step of heating an ingot, which is obtained by blending the raw materials so as to obtain the low density titanium alloy according to the invention followed by melting and casting the raw materials, to a temperature which is β transus temperature (β transforming point) or higher and is 1200° C. or lower, followed by forging or rolling the ingot.
  • When the processing temperature is too low, the α-phase remains to cause cracking and creasing. Therefore, the processing temperature in the rough processing may preferably be the β transus temperature or higher at which only the β-phase remains.
  • On the other hand, when the processing temperature is too high, crystal grains tend to be coarsened. Therefore, the processing temperature in the rough processing may preferably be 1200° C. or less.
  • 3.3. Finish Processing Step
  • The finish processing step is a step of performing a finish-forging or finish-rolling of the low density titanium alloy forged or rolled in the rough processing step after heating the alloy to a temperature which is 600° C. or higher and is less than the β transus temperature. The finish processing step is performed according to the necessity.
  • When the finish processing step is performed at a relatively low temperature, grains are fined to achieve high strength. However, when the processing temperature is too low, flow stress is increased to make the processing difficult. Therefore, the processing temperature in the finish processing step may preferably be 600° C. or more.
  • On the other hand, when the processing temperature is too high, grains tend to be coarsened due to recrystallization. Therefore, the processing temperature in the finish processing step may preferably be less than β transus temperature.
  • 3.4. Annealing Step
  • The annealing step is a step of annealing the low density titanium alloy forged or rolled in the finish processing step. The annealing step is performed according to the necessity.
  • The annealing is performed for the purpose of eliminating a strain after the finish processing step. Annealing conditions are not particularly limited, and optimum conditions may be selected depending on the alloy composition.
  • EXAMPLES Examples 1 to 40 and Comparative Examples 1 to 5 1. Preparation of Samples
  • Raw materials were weighed so as to achieve predetermined compositions, and titanium alloy ingots each having a mass of 6 kg and a diameter of 100 mm were produced through melting using a plasma skull furnace. Shown in Table 1 are chemical compositions of the thus-obtained ingots.
  • From each of the ingots, a test piece for high-temperature high-speed tensile test was cut out.
  • Additionally, each of the ingots was heated to 1000° C., and a round bar having a diameter of 20 mm was obtained by hot forging. Further, a heat treatment at 750° C. for 2 h under an air cooling (AC) was performed. From the round bar after the heat treatment, a No. 3 tensile test piece (diameter: 6.35 mm, evaluation distance: 25 mm) defined in ASTM E8 was prepared.
  • TABLE 1
    Composition (mass %)
    Al Fe V O N C Others
    Ex. 1 7.2 0.1 0.07 0.01 0.01
    Ex. 2 9.9 0.2 0.09 0.02 0.01
    Ex. 3 8.1 0.8 0.14 0.01 0.01
    Ex. 4 7.9 2.8 0.16 0.02 0.02
    Ex. 5 7.1 0.5 0.27 0.01 0.01
    Ex. 6 7.1 0.1 0.01 0.08 0.01 0.02
    Ex. 7 7.5 0.2 0.02 0.05 0.02 0.01
    Ex. 8 8.2 0.2 0.02 0.07 0.01 0.01
    Ex. 9 8.5 0.2 0.02 0.09 0.02 0.01
    Ex. 10 8.7 0.2 0.01 0.10 0.01 0.02
    Ex. 11 9.0 0.1 0.01 0.08 0.02 0.01
    Ex. 12 9.2 0.2 0.02 0.07 0.01 0.02
    Ex. 13 9.5 0.2 0.02 0.06 0.01 0.01
    Ex. 14 9.7 0.2 0.01 0.10 0.01 0.01
    Ex. 15 9.9 0.2 0.01 0.10 0.02 0.01
    Ex. 16 10.0 0.2 0.01 0.09 0.01 0.02
    Ex. 17 8.2 0.8 0.02 0.15 0.01 0.01
    Ex. 18 8.3 1.2 0.01 0.16 0.01 0.01
    Ex. 19 8.0 1.5 0.02 0.14 0.01 0.02
    Ex. 20 9.0 2.0 0.01 0.13 0.01 0.01
    Ex. 21 8.8 2.2 0.01 0.15 0.02 0.01
    Ex. 22 8.0 2.8 0.02 0.16 0.02 0.02
    Ex. 23 7.8 3.0 0.01 0.17 0.01 0.02
    Ex. 24 8.2 0.8 1.00 0.14 0.02 0.01
    Ex. 25 8.0 1.0 1.20 0.15 0.01 0.02
    Ex. 26 8.2 1.2 1.50 0.16 0.01 0.01
    Ex. 27 8.5 0.9 1.80 0.15 0.01 0.01
    Ex. 28 8.2 1.1 2.00 0.14 0.01 0.02
    Ex. 29 7.1 0.5 0.02 0.21 0.01 0.01
    Ex. 30 7.2 0.5 0.01 0.28 0.01 0.02
    Ex. 31 7.1 0.5 0.02 0.13 0.30 0.01
    Ex. 32 7.5 0.4 0.03 0.15 0.50 0.01
    Ex. 33 7.2 0.4 0.02 0.13 0.01 0.10
    Ex. 34 7.1 0.5 0.02 0.11 0.01 0.40
    Ex. 35 7.5 0.4 0.03 0.02 0.01 0.01 Cr: 0.4, Ni: 0.1,
    Mo: 0.2
    Ex. 36 7.4 0.3 0.02 0.02 0.01 0.02 Cr: 0.2, Ni: 0.1,
    Mo: 0.5
    Ex. 37 7.1 0.5 0.02 0.01 0.01 0.01 B: 0.08
    Ex. 38 7.5 0.4 0.03 0.02 0.01 0.02 B: 0.15
    Ex. 39 7.2 0.3 0.03 0.02 0.01 0.03 Si: 0.02
    Ex. 40 7.6 0.5 0.02 0.03 0.02 0.01 Si: 0.10
    Comp. Ex. 1 10.5 1.0 0.03 0.15 0.01 0.02
    Comp. Ex. 2 11.9 1.2 0.02 0.11 0.01 0.01
    Comp. Ex. 3 13.0 1.3 0.03 0.15 0.01 0.01
    Comp. Ex. 4 8.5 5.0 0.01 0.25 0.01 0.02
    Comp. Ex. 5 6.0 4.00 0.12 0.03 0.01
  • 2. Test Method
  • 2.1. High-Temperature High-Speed Tensile Test
  • A high-temperature high-speed tensile test was performed at 1000° C. to measure flow stress and reduction of area at 1000° C.
  • 2.2. Tensile Test
  • A tensile test was performed using an insutoron type tensile test at a crosshead speed of 5×10−5 m/s machine to measure tensile strength.
  • 2.3. Specific Strength
  • A specific gravity of each of the tensile test pieces was measured by employing a water-impregnation method. Specific strength was calculated from the detected specific gravity and tensile strength.
  • 2.4. Manufacturability
  • Manufacturability was evaluated in terms of reduction of area at 1000° C. Those having reduction of area at 1000° C. of 40% or more is evaluated as “good”, and those having reduction of area at 1000° C. of less than 40% is evaluated as “poor”.
  • 3. Results
  • Shown in Table 2 are test results. Comparative Examples 1 to 3 are remarkably poor in manufacturability due to the high content of Al. Particularly, it was impossible to measure the flow stress and reduction of area of Comparative Examples 2 and 3 having the Al content exceeding 11 mass %. Comparative Example 4 having the Fe content exceeding 3.0 mass % has poor manufacturability though it has high tensile strength and specific strength. Comparative Example 5 (Ti-4Al-6V alloy) has good manufacturability, but it has low tensile strength and specific strength.
  • In contrast, each of Examples 1 to 40 has high tensile strength and specific strength due to the appropriate content of Al. Furthermore, each of Examples 1 to 40 also has good hot workability due to the adjustment of the Fe content and the O content and the optional addition of the small amount of V, as well as the relatively increased Al content.
  • TABLE 2
    High-Temperature
    High-Speed
    Tensile Test (1000° C.)
    Flow Reduction Tensile
    stress of Strength Specific
    (MPa) area (%) (MPa) Strength Manufacturability
    Ex. 1 127 91 1040 238 good
    Ex. 2 148 73 1215 281 good
    Ex. 3 141 80 1155 264 good
    Ex. 4 152 69 1245 280 good
    Ex. 5 150 71 1230 281 good
    Ex. 6 127 91 1040 238 good
    Ex. 7 130 89 1065 244 good
    Ex. 8 133 87 1090 250 good
    Ex. 9 135 85 1100 253 good
    Ex. 10 137 83 1125 259 good
    Ex. 11 140 81 1150 265 good
    Ex. 12 142 79 1165 269 good
    Ex. 13 144 77 1180 272 good
    Ex. 14 146 75 1200 277 good
    Ex. 15 148 73 1215 281 good
    Ex. 16 150 70 1230 285 good
    Ex. 17 141 80 1155 264 good
    Ex. 18 143 78 1175 268 good
    Ex. 19 145 75 1190 270 good
    Ex. 20 147 73 1205 274 good
    Ex. 21 150 71 1230 279 good
    Ex. 22 152 69 1245 280 good
    Ex. 23 155 66 1270 285 good
    Ex. 24 142 79 1170 267 good
    Ex. 25 144 77 1175 267 good
    Ex. 26 145 75 1180 268 good
    Ex. 27 147 73 1190 271 good
    Ex. 28 148 74 1200 272 good
    Ex. 29 145 75 1190 272 good
    Ex. 30 150 71 1230 281 good
    Ex. 31 152 69 1245 284 good
    Ex. 32 155 66 1270 290 good
    Ex. 33 135 85 1110 254 good
    Ex. 34 138 82 1130 258 good
    Ex. 35 139 82 1140 259 good
    Ex. 36 137 83 1125 255 good
    Ex. 37 139 83 1140 260 good
    Ex. 38 141 80 1155 264 good
    Ex. 39 138 82 1130 258 good
    Ex. 40 140 80 1150 263 good
    Comp. 295 15 1350 311 poor
    Ex. 1
    Comp. impossible impossible poor
    Ex. 2 to measure to measure
    Comp. impossible impossible poor
    Ex. 3 to measure to measure
    Comp. 205 38 1300 289 poor
    Ex. 4
    Comp. 110 98  900 202 good
    Ex. 5
  • While the present invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
  • The present application is based on Japanese Patent Application No. 2007-239713 filed on Sep. 14, 2007 and Japanese Patent Application No. 2008-231619 filed on Sep. 10, 2008, the contents thereof being incorporated herein by reference.

Claims (32)

1. A low density titanium alloy, comprising:
7.1 to 10.0 mass % of Al;
0.1 to 3.0 mass % of Fe;
0.01 to 0.3 mass % of O;
0.5 mass % or less of N;
0.5 mass % or less of C; and
a remainder being Ti and inevitable impurities.
2. The low density titanium alloy according to claim 1, further comprising:
0.01 to 2.0 mass % of V.
3. The low density titanium alloy according to claim 1, further comprising;
2.0 mass % or less of at least one element selected from the group consisting of Cr, Ni, and Mo.
4. The low density titanium alloy according to claim 2, further comprising:
2.0 mass % or less of at least one element selected from the group consisting of Cr, Ni, and Mo.
5. The low density titanium alloy according to claim 1, further comprising:
at least one of
0.01 to 0.3 mass % of B, and
0.01 to 0.3 mass % of Si.
6. The low density titanium alloy according to claim 2, further comprising:
at least one of 0.01 to 0.3 mass % of B, and 0.01 to 0.3 mass % of Si.
7. The low density titanium alloy according to claim 3, further comprising:
at least one of
0.01 to 0.3 mass % of B, and
0.01 to 0.3 mass % of Si.
8. The low density titanium alloy according to claim 4, further comprising:
at least one of
0.01 to 0.3 mass % of B, and
0.01 to 0.3 mass % of Si.
9. The low density titanium alloy according to claim 1, which has a specific strength of 205 or more.
10. The low density titanium alloy according to claim 2, which has a specific strength of 205 or more.
11. The low density titanium alloy according to claim 3, which has a specific strength of 205 or more.
12. The low density titanium alloy according to claim 4, which has a specific strength of 205 or more.
13. The low density titanium alloy according to claim 5, which has a specific strength of 205 or more.
14. The low density titanium alloy according to claim 6, which has a specific strength of 205 or more.
15. The low density titanium alloy according to claim 7, which has a specific strength of 205 or more.
16. The low density titanium alloy according to claim 8, which has a specific strength of 205 or more.
17. The low density titanium alloy according to claim 1, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
18. The low density titanium alloy according to claim 2, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
19. The low density titanium alloy according to claim 3, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
20. The low density titanium alloy according to claim 4, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
21. The low density titanium alloy according to claim 5, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
22. The low density titanium alloy according to claim 6, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
23. The low density titanium alloy according to claim 7, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
24. The low density titanium alloy according to claim 8, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
25. The low density titanium alloy according to claim 9, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
26. The low density titanium alloy according to claim 10, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
27. The low density titanium alloy according to claim 11, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
28. The low density titanium alloy according to claim 12, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
29. The low density titanium alloy according to claim 13, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
30. The low density titanium alloy according to claim 14, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
31. The low density titanium alloy according to claim 15, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
32. The low density titanium alloy according to claim 16, which has a reduction of area at 1000° C. of 40% or more and a flow stress at 1000° C. of 200 MPa or less.
US12/232,198 2007-09-14 2008-09-12 Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part Abandoned US20090074606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007239713 2007-09-14
JP2007-239713 2007-09-14

Publications (1)

Publication Number Publication Date
US20090074606A1 true US20090074606A1 (en) 2009-03-19

Family

ID=40454673

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/232,198 Abandoned US20090074606A1 (en) 2007-09-14 2008-09-12 Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part

Country Status (3)

Country Link
US (1) US20090074606A1 (en)
JP (1) JP5287062B2 (en)
CN (1) CN101386932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512046A (en) * 2015-12-22 2019-05-09 ストック カンパニー“チェペトスキー メカニカル プラント” Method of manufacturing bar from titanium alloy
US10870040B2 (en) 2014-02-18 2020-12-22 Karsten Manufacturing Corporation Method of forming golf club head assembly
EP3628754A4 (en) * 2017-08-28 2021-04-07 Nippon Steel Corporation Titanium alloy member

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605546B2 (en) * 2009-04-27 2014-10-15 国立大学法人九州工業大学 α + β type titanium alloy, method for producing the same, and method for producing titanium alloy material
CN101899590A (en) * 2010-07-29 2010-12-01 江苏佳哲钛合金材料科技有限公司 Titanium-aluminum-iron alloy
US9850564B2 (en) * 2011-02-24 2017-12-26 Nippon Steel & Sumitomo Metal Corporation High-strength α+β titanium alloy hot-rolled sheet excellent in cold coil handling property and process for producing the same
CN104060123A (en) * 2013-03-19 2014-09-24 复盛应用科技股份有限公司 Golf club head alloy and method for making golf club head from alloy
CN103740980B (en) * 2014-01-16 2016-01-20 张霞 A kind of high tenacity titanium aluminium alloy sheet and preparation method thereof
US9452488B2 (en) * 2014-02-18 2016-09-27 Karsten Manufacturing Corporation Method of forming golf club head assembly
JP6014183B2 (en) * 2015-02-12 2016-10-25 復盛應用科技股▲分▼有限公司 Manufacturing method of golf club head
WO2016134029A1 (en) * 2015-02-17 2016-08-25 Karsten Manufacturing Corporation Method of forming golf club head assembly
CN109234567A (en) * 2017-07-10 2019-01-18 复盛应用科技股份有限公司 Golf club alloy and the method that glof club head is manufactured with the alloy
JP6570774B2 (en) * 2017-08-28 2019-09-04 日本製鉄株式会社 Watch parts
CN107904441B (en) * 2017-11-28 2020-05-05 杭州杭联汽车连杆有限公司 Titanium alloy and preparation method thereof
JP6741171B1 (en) * 2019-06-26 2020-08-19 日本製鉄株式会社 Titanium alloy plate and golf club head
KR102245612B1 (en) * 2019-07-02 2021-04-30 한국재료연구원 Ti-Al-Fe-Sn TITANIUM ALLOYS WITH EXCELLENT MECHANICAL PROPERTIES AND LOW COST
CN112251631A (en) * 2019-07-03 2021-01-22 大田精密工业股份有限公司 Titanium alloy casting material and method for producing same
CN110863125A (en) * 2019-11-28 2020-03-06 江阴市万里锻件有限公司 Alloy for precisely machining lathe tool and preparation method thereof
TWI704235B (en) * 2020-01-09 2020-09-11 明安國際企業股份有限公司 Composition alloy of golf club head
US20220186342A1 (en) * 2020-12-11 2022-06-16 Kabushiki Kaisha Toyota Jidoshokki Non-magnetic member and method for producing the non-magnetic member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249168A (en) * 1990-02-28 1991-11-07 Suzuki Motor Corp Surface modifying method for ti alloy
JPH0441636A (en) * 1990-06-07 1992-02-12 Daido Steel Co Ltd Member for molten metal of pure al or al alloy
US6001495A (en) * 1997-08-04 1999-12-14 Oregon Metallurgical Corporation High modulus, low-cost, weldable, castable titanium alloy and articles thereof
JP4493029B2 (en) * 2005-09-21 2010-06-30 株式会社神戸製鋼所 Α-β type titanium alloy with excellent machinability and hot workability
JP4493028B2 (en) * 2005-09-21 2010-06-30 株式会社神戸製鋼所 Α-β type titanium alloy with excellent machinability and hot workability
JP4981369B2 (en) * 2005-09-23 2012-07-18 泰富 陳 Low density alloy for golf club head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10870040B2 (en) 2014-02-18 2020-12-22 Karsten Manufacturing Corporation Method of forming golf club head assembly
US11752400B2 (en) 2014-02-18 2023-09-12 Karsten Manufacturing Corporation Method of forming golf club head assembly
JP2019512046A (en) * 2015-12-22 2019-05-09 ストック カンパニー“チェペトスキー メカニカル プラント” Method of manufacturing bar from titanium alloy
EP3628754A4 (en) * 2017-08-28 2021-04-07 Nippon Steel Corporation Titanium alloy member
US11015233B2 (en) 2017-08-28 2021-05-25 Nippon Steel Corporation Titanium alloy part

Also Published As

Publication number Publication date
CN101386932A (en) 2009-03-18
JP5287062B2 (en) 2013-09-11
JP2009084690A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US20090074606A1 (en) Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part
JP6104164B2 (en) High strength and ductile alpha / beta titanium alloy
CA2861163C (en) Titanium alloy with improved properties
US20200071807A1 (en) Light-weight, high-strength, and high-elasticity titanium alloy and implementation method thereof
US20070212251A1 (en) High Strength AlphaType Titanuim Alloy
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JP2010007166A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
JP5201202B2 (en) Titanium alloy for golf club face
JP2010275606A (en) Titanium alloy
US9884229B2 (en) Titanium alloy for golf club face
KR101536402B1 (en) Titanium alloy product having high strength and excellent cold rolling property
JP5491882B2 (en) High strength titanium plate with excellent cold rolling properties
WO2013125039A1 (en) Titanium alloy for use in golf-club face
EP3196321B1 (en) Economically alloyed titanium alloy with predictable properties
CN111575559A (en) Corrosion-resistant 6-series aluminum alloy
JP2007239030A (en) Alpha plus beta type titanium alloy with high specific strength, and its manufacturing method
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP2001152268A (en) High strength titanium alloy
JP4263987B2 (en) High-strength β-type titanium alloy
JP5476175B2 (en) Titanium coil with high strength and excellent strength stability
JP4102224B2 (en) High strength, high ductility β-type titanium alloy
JP6405626B2 (en) β-type titanium alloy, titanium product using the same, β-type titanium alloy manufacturing method, and titanium product manufacturing method
TWI450979B (en) The golf club face is made of titanium alloy (2)
JP2002235133A (en) beta TYPE TITANIUM ALLOY
JP5533352B2 (en) β-type titanium alloy

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIDO TOKUSHUKO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OGAWA, MICHIHARU;NODA, TOSHIHARU;REEL/FRAME:021597/0815

Effective date: 20080908

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION