JP4102224B2 - High strength, high ductility β-type titanium alloy - Google Patents

High strength, high ductility β-type titanium alloy Download PDF

Info

Publication number
JP4102224B2
JP4102224B2 JP2003065490A JP2003065490A JP4102224B2 JP 4102224 B2 JP4102224 B2 JP 4102224B2 JP 2003065490 A JP2003065490 A JP 2003065490A JP 2003065490 A JP2003065490 A JP 2003065490A JP 4102224 B2 JP4102224 B2 JP 4102224B2
Authority
JP
Japan
Prior art keywords
strength
ductility
titanium alloy
type titanium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003065490A
Other languages
Japanese (ja)
Other versions
JP2004270009A (en
Inventor
公輔 小野
英人 大山
壮一郎 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003065490A priority Critical patent/JP4102224B2/en
Publication of JP2004270009A publication Critical patent/JP2004270009A/en
Application granted granted Critical
Publication of JP4102224B2 publication Critical patent/JP4102224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Golf Clubs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、改質されたβ型チタン合金に関し、より詳細には、汎用のβチタン合金はもとより、高強度化されたβ型チタン合金に比べても低コストで且つ強度・延性バランスの高められた高強度・高延性β型チタン合金に関するものである。
【0002】
【従来の技術】
チタン合金は、軽量且つ高強度で優れた耐食性を有していることから、航空機や自動車、船舶等の分野などを始めとして、鉄鋼材料に代わる構造材や外板材等としての実用化が積極的に進められており、また、ゴルフクラブヘッドや眼鏡フレーム等の素材としても広く実用化されている。
【0003】
チタン合金の中でもβ型チタン合金は、時効処理することで高強度が得られ易く、時効後の強度−延性バランスに優れたものであるが、最近では、需要者の更なる高強度志向に適合すべく、強度・延性バランスの一層の向上を期して、VやMoなどを強度向上元素として含有させる改質技術が提案されている(特許文献1,2など)。これらのうち、Ti−15V−3Cr−3Sn−3Al合金、Ti−15Mo−5Zr−3Al合金、Ti−13V−11Cr−3Al合金等などのβ型チタン合金は、時効処理することで高強度が得られ易く、時効処理後の強度−延性バランスが良好であることから、ギア等の動力伝達部材やゴルフクラブヘッドなどの素材としての需要も益々拡大する傾向が窺われる。そしてこれらのチタン合金では、現行のβ型チタン合金に対して更なる強度・延性バランスの向上を果たすべく、チタン合金素材中にVやMoなどの強度向上元素を多量含有させている。
【0004】
しかし、これらの特許文献に開示された改質技術では、高価な元素であるVやMo等を多量に配合しなければならず、素材コストが高騰するため汎用化を阻む大きな原因になっている。
【0005】
【特許文献1】
特開2000−256769号公報
【特許文献2】
特開2000−144286号公報
【0006】
【発明が解決しようとする課題】
本発明は上記のような事情に着目してなされたものであって、その目的は、素材コストの上昇を抑えて経済性を満たしつつ強度・延性バランスを一段と高め、安価で卓越した強度・延性バランスを有する高強度・高延性チタン合金を提供することにある。
【0007】
【課題を達成するための手段】
上記課題を解決することのできた本発明に係る強度・高延性β型チタン合金とは、
▲1▼V:4.0〜10%、Cr:6.0〜10%、Sn:2.0〜5.0%、Al:2.0〜4.5%
を含み、あるいは
▲2▼V:4.0〜10%、Cr:5.0〜9.0%、Fe:0.3〜3.5%、Sn:2.0〜5.0%、Al:2.0〜4.5%を含み、
残部がTiおよび不可避不純物からなるところに特徴を有している。
【0008】
【発明の実施の形態】
前掲の従来技術でも明らかにした様に、強度・延性バランスに優れたものとされている従来のβ型チタン合金の中でも、VやMoを多量配合したものは、例えばTi−15V−3Cr−3Sn−3Alの如き汎用のβ型チタン合金に比べると優れた強度−延性バランスを有している。しかしそれらのβ型チタン合金を得るには、VやMoの如き高価な合金元素を多量添加しなければならず、素材コストが高騰するため汎用性を欠く。
【0009】
そこで、コスト上昇を招く高価な合金元素の配合量を可及的に抑えつつ、比較的安価な合金元素との組合せで、汎用タイプのβ型チタン合金の強度−延性バランスを凌駕する物性を発揮し得るようなβ型チタン合金を開発すべく鋭意研究を進めてきた。その結果、以下に詳述する如く、高価な合金元素であるVやSnなどを最小限に抑えつつ、これらに加えて比較的安価な合金元素であるCr,Fe,Al等を適量含有させれば、上記本発明の目的が見事に達成できることを確認し、上記本発明に到達したものである。
【0010】
以下、本発明に係るβ型チタン合金を構成する合金元素の種類と各々の含有率を定めた理由を明確にする。
【0011】
V:4.0〜10%
Vは前掲の従来技術でも明らかにされている様に、チタン合金として優れた強度−延性バランスを与える上で極めて有用な元素であり、チタン合金中に10%程度以上含有させることによって物性を高めたものは幾つか知られている。事実、Vは優れた物性改善効果を有しており、その効果は10%を超えて配合することによって更に増進される。しかし本発明では、高価なV含量を極力抑えて低コスト化の目的を果たすため、上限を10%と定めている。低コスト化の観点からより好ましいのは8%以下である。なお、V添加によってもたらされる時効処理後の延性向上効果は本発明においても極めて重要であり、その効果を有効に発揮させるには4.0%以上含有させなければならず、好ましくは5.0%以上含有させることが望ましい。
【0012】
Sn:2.0〜5.0%
Snは、本発明合金を実用化するに際し、特に冷間加工後の時効処理によって高延性を得るために不可欠の元素であり、2.0%未満ではチタン合金相内にωδ相が出現し、冷間加工後の時効処理で延性劣化を引き起こす原因になる。よって2.0%以上、より好ましくは2.5%以上含有させることが望ましい。但し、SnはTiよりも高密度で高純度品は高価であるため、低コスト化を1つの目的とする本発明においては極力少なく抑えるのがよく、多くとも5.0%以下、好ましくは4.5%以下に抑えることが望ましい。
【0013】
Al:Alは時効処理後の強度を高めるのに欠くことのできない元素であり、2.0%以上含有させなければならず、好ましくは2.5%以上含有させることが望ましい。しかし、多過ぎると延性が低下して冷間加工性が損なわれるので、多くとも4.5%以下、より好ましくは4.0%以下に抑えるのがよい。
【0014】
Cr:6.0〜10%(Feと同時添加する際は5.0〜9.0%)
Crは、時効硬化を抑え過度の強度上昇を抑制して延性不足を回避するため、Fe無添加の場合は6.0%以上含有させねばならず、より好ましくは7.0%以上含有させることが望ましい。そして、Cr含量を多くするにつれて時効硬化は遅延する。しかし、当然のことながら時効時間を長くするにつれて時効硬化は進行するが、実際の製造において時効時間を過度に長くすることは、生産性を低下させるため実状にそぐわない。航空機部材等に適用されるβ型チタン合金に適用される通常の時効時間は8時間程度であり、この程度の時効時間で十分な強度を確保するには、Fe無添加の場合で10%程度が上限と考えられ、より好ましくは9.0%程度以下に抑えるべきである。
【0015】
なお、上記Crの好適配合量は、以下に示すFeを併用するか否かによっても変わり、適量のFeを併用する場合のCrの好ましい配合量は5.0%以上9.0%以下、より好ましくは6.0%以上8.0%以下である。
【0016】
Fe:0.3〜3.5%
FeはCrと同じ共析型のβ安定化元素であり、適量のCrを配合した場合は、Feを添加せずとも本発明の目的を達成できる。しかし、Crと共に適量のFeを併用すれば、強度−延性バランスを一段と高めることができるので好ましい。また、FeはCrに比べて非常に安価であるので、低コスト化のためにもCrの一部をFeに置き換えて使用することが望ましい。こうしたFeの添加効果は0.3%以上の添加で有効に発揮されるが、Fe含量が3.5%を超えると、Crと同様に時効を遅延して高強度化の障害になるので、3.5%を上限とする。より好ましくは3.0%以下に抑えるのがよい。
【0017】
上記の様にFeはCrと同じ共析型のβ安定化元素として作用するので、Feを配合する場合はCr含量を相対的に抑えるのがよく、Fe含量に応じて5.0%以上9.0%以下、より好ましくは6.0%以上8.0%以下の範囲に調整することが望ましい。
【0018】
上記成分組成の要件を満たす高強度・高延性チタン合金の溶製法や、鋳造・鍛造・熱延条件、時効熱処理(焼鈍)条件、脱スケール条件、冷間加工条件等は特に制限されず、公知のβ型チタン合金に適用される条件をそのまま、或いは要求特性に応じて適当に変更して適用すればよい。
【0019】
なお本発明合金においては、時効処理後の強度を更に高めるため、好ましくは20%以上、より好ましくは30%以上の冷間加工を加えることが望ましい。時効処理後の強度を高める上で好ましい時効処理法としては、450〜600℃で4〜12時間保持した後に空冷する方法が推奨される。
【0020】
また本発明に係る高強度・高延性チタン合金を用いた合金製品の形状にも一切制限がなく、板状、棒状、線状、管状などを始め、鋳造や鍛造などを利用して任意の形状に加工することができる。
【0021】
かくして得られる本発明のチタン合金は、高価な合金元素の配合量が抑えられているため、VやMoを多量配合した従来の高強度チタン合金に比べると相対的に安価に提供でき、また性能的にはそれらのβ型チタン合金を凌駕する卓越した強度−延性バランスを有しており、成形加工性が良好で且つ時効処理後は非常に高強度を有しているので、例えば航空機や船舶、自動車などの外板材や構造材、各種機械設備の構造材やギアなどの動力伝達部材など、更にはゴルフクラブヘッドや眼鏡フレームの素材などを始めとして、高度の加工性と強度特性の両特性が求められる用途に幅広く有効に活用できる。
【0022】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
【0023】
実施例1
小型の水冷型誘導溶解炉を使用し、下記表1に示す成分組成のチタン合金を溶製した後、25kgの鋳塊を製造する。得られた鋳塊を1100℃で2時間加熱した後、熱間鍛造により直径67mmの棒材とする。この棒材を直径62mmまで研削してから875℃で2時間加熱した後、直径12mmにまで熱間圧延する。次いで、ショットブラストと酸洗により表面のスケールを除去した後、30%の冷間伸線を加えることによって直径10mmの線材とし、この間の伸線加工性を調べる(○;30%の伸線加工を支障なく行える、×;30%の伸線加工で断線する)。得られた各線材について、下記の時効処理を加えた後、0.2%耐力と伸びを求め、表1に併記する結果を得た。
【0024】
[時効処理条件]
540℃で8時間保持した後に空冷。
【0025】
[物性試験法]
0.2%耐力(MPa):JIS Z 2241に準拠して測定、
伸び率(%):JIS Z 2241に準拠して測定。
【0026】
【表1】

Figure 0004102224
【0027】
表1より次の様に考えることができる。
【0028】
符号1〜14は本発明の規定要件を全て満たす実施例であり、優れた冷間加工性を示すと共に、時効処理後の強度(0.2%耐力)、伸び率ともに優れた値を示している。
【0029】
これらに対し符号15〜23は本発明で定める何れかの要件を欠く比較例であり、時効処理後の強度に優れたものは伸びが低くて破断しており、また、ある程度の伸びを有しているものは強度不足が否めない。また符号18は、Al含量が多過ぎるため延性が劣悪であり、30%の冷間伸線加工自体が不能となっている。
【0030】
符号24は、V含量の高い従来タイプのβ型チタン合金であり、V含量が多いため素材コストはかなり高くつく。しかも本発明の実施例合金に比べると強度、伸び共にやや低く、性能的にもやや劣ることが分る。
【0031】
【発明の効果】
本発明は以上の様に構成されており、チタン合金中に含まれる合金元素の種類と量を特定することによって、従来一般のβ型チタン合金はもとより、VやMoの如き高価な合金元素を多量含有する高強度β型Ti合金に比べても優れた強度−延性バランスを有し、コスト的にも安価に提供できる高強度・高延性β型チタン合金を提供し得ることになった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a modified β-type titanium alloy, and more specifically, a general-purpose β-titanium alloy as well as a high-strength β-type titanium alloy at a lower cost and a higher strength / ductility balance. The present invention relates to a high strength and high ductility β-type titanium alloy.
[0002]
[Prior art]
Titanium alloys are lightweight, high-strength, and have excellent corrosion resistance. Therefore, they are actively put into practical use as structural materials and skins to replace steel materials, including fields such as aircraft, automobiles, and ships. It is also widely used as a material for golf club heads, eyeglass frames and the like.
[0003]
Among titanium alloys, β-type titanium alloys are easy to obtain high strength by aging treatment, and have an excellent balance between strength and ductility after aging. Therefore, in order to further improve the balance between strength and ductility, there has been proposed a modification technique for containing V, Mo, or the like as a strength improving element (Patent Documents 1, 2, etc.). Among these, β-type titanium alloys such as Ti-15V-3Cr-3Sn-3Al alloy, Ti-15Mo-5Zr-3Al alloy, Ti-13V-11Cr-3Al alloy, etc. can obtain high strength by aging treatment. Since the strength-ductility balance after the aging treatment is good, the demand as a material for power transmission members such as gears and golf club heads tends to increase. In these titanium alloys, in order to further improve the balance of strength and ductility with respect to the current β-type titanium alloys, a large amount of strength improving elements such as V and Mo are contained in the titanium alloy material.
[0004]
However, in the reforming techniques disclosed in these patent documents, a large amount of expensive elements such as V and Mo have to be blended, which increases the material cost and is a major cause of hindering generalization. .
[0005]
[Patent Document 1]
JP 2000-256769 A [Patent Document 2]
Japanese Patent Laid-Open No. 2000-144286
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to further increase the balance between strength and ductility while suppressing the increase in material cost and satisfying the economy, and at low cost and excellent strength and ductility. The object is to provide a high strength and high ductility titanium alloy having a balance.
[0007]
[Means for achieving the object]
The strength and high ductility β-type titanium alloy according to the present invention, which has been able to solve the above problems,
(1) V: 4.0 to 10%, Cr: 6.0 to 10%, Sn: 2.0 to 5.0%, Al: 2.0 to 4.5%
Or (2) V: 4.0 to 10%, Cr: 5.0 to 9.0%, Fe: 0.3 to 3.5%, Sn: 2.0 to 5.0%, Al : 2.0-4.5% included,
It is characterized in that the balance consists of Ti and inevitable impurities.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As clarified in the above prior art, among the conventional β-type titanium alloys that are excellent in the balance between strength and ductility, those containing a large amount of V or Mo include, for example, Ti-15V-3Cr-3Sn. Compared to general-purpose β-type titanium alloys such as -3Al, it has an excellent strength-ductility balance. However, in order to obtain such β-type titanium alloys, a large amount of expensive alloy elements such as V and Mo must be added.
[0009]
Therefore, while suppressing the compounding amount of expensive alloy elements that cause an increase in cost as much as possible, in combination with relatively inexpensive alloy elements, it exhibits physical properties that exceed the strength-ductility balance of general-purpose β-type titanium alloys. Research has been conducted to develop a β-type titanium alloy that can be used. As a result, as described in detail below, an appropriate amount of relatively inexpensive alloy elements such as Cr, Fe, and Al can be contained in addition to these while minimizing expensive alloy elements such as V and Sn. In other words, it has been confirmed that the object of the present invention can be achieved brilliantly, and has reached the present invention.
[0010]
Hereinafter, the reasons for determining the types of alloy elements constituting the β-type titanium alloy according to the present invention and the respective content rates will be clarified.
[0011]
V: 4.0 to 10%
V is an extremely useful element for providing an excellent balance between strength and ductility as a titanium alloy, as has been clarified in the above-mentioned prior art, and the physical properties are improved by containing about 10% or more in the titanium alloy. Some are known. In fact, V has an excellent physical property improving effect, and the effect is further enhanced by adding more than 10%. However, in the present invention, the upper limit is set to 10% in order to suppress the expensive V content and minimize the cost. From the viewpoint of cost reduction, it is more preferably 8% or less. Note that the effect of improving ductility after aging treatment caused by the addition of V is extremely important in the present invention, and in order to exhibit the effect effectively, it must be contained by 4.0% or more, preferably 5.0. % Or more is desirable.
[0012]
Sn: 2.0-5.0%
Sn is an element indispensable for obtaining high ductility by aging treatment after cold working, especially when putting the alloy of the present invention into practical use. If it is less than 2.0%, an ωδ phase appears in the titanium alloy phase, It causes ductile deterioration in the aging treatment after cold working. Therefore, it is desirable to contain 2.0% or more, more preferably 2.5% or more. However, Sn is higher in density than Ti and high-purity products are expensive. Therefore, in the present invention aiming at cost reduction, it is preferable to suppress it as much as possible, at most 5.0% or less, preferably 4 It is desirable to keep it below 5%.
[0013]
Al: Al is an element indispensable for increasing the strength after the aging treatment, and must be contained at 2.0% or more, preferably 2.5% or more. However, if it is too much, the ductility is lowered and the cold workability is impaired, so it is preferable to keep it at most 4.5% or less, more preferably 4.0% or less.
[0014]
Cr: 6.0 to 10% (5.0 to 9.0% when added simultaneously with Fe)
In order to suppress age hardening and suppress an excessive increase in strength to avoid a lack of ductility, Cr must be contained in an amount of 6.0% or more, more preferably 7.0% or more. Is desirable. And age hardening is delayed as the Cr content is increased. However, as a matter of course, age hardening progresses as the aging time is increased, but excessively increasing the aging time in actual production is not suitable for the actual situation because it decreases productivity. The normal aging time applied to β-type titanium alloys applied to aircraft members and the like is about 8 hours, and in order to ensure sufficient strength with this aging time, about 10% in the case of no addition of Fe. Is considered to be the upper limit, and should preferably be suppressed to about 9.0% or less.
[0015]
In addition, the suitable compounding quantity of the said Cr changes also by whether it uses together Fe shown below, and the preferable compounding quantity of Cr in the case of using a suitable quantity of Fe together is 5.0% or more and 9.0% or less, more Preferably they are 6.0% or more and 8.0% or less.
[0016]
Fe: 0.3-3.5%
Fe is the same eutectoid β-stabilizing element as Cr, and when an appropriate amount of Cr is blended, the object of the present invention can be achieved without adding Fe. However, it is preferable to use an appropriate amount of Fe together with Cr since the strength-ductility balance can be further increased. Further, since Fe is very inexpensive compared with Cr, it is desirable to use a part of Cr by replacing it with Fe for cost reduction. Although the effect of addition of Fe is effectively exerted by addition of 0.3% or more, if the Fe content exceeds 3.5%, the aging is delayed as in the case of Cr, and it becomes an obstacle to high strength. The upper limit is 3.5%. More preferably, it should be suppressed to 3.0% or less.
[0017]
As described above, Fe acts as the same eutectoid β-stabilizing element as Cr. Therefore, when Fe is blended, the Cr content should be relatively suppressed, depending on the Fe content. It is desirable to adjust to a range of 0.0% or less, more preferably 6.0% or more and 8.0% or less.
[0018]
There are no particular limitations on the melting method, casting / forging / hot rolling conditions, aging heat treatment (annealing) conditions, descaling conditions, cold working conditions, etc. of the high strength / high ductility titanium alloy that satisfies the requirements of the above component composition, and is well known. The conditions applied to the β-type titanium alloy may be applied as they are or appropriately changed according to the required characteristics.
[0019]
In the alloy of the present invention, in order to further increase the strength after the aging treatment, it is preferable to add 20% or more, more preferably 30% or more of cold working. As a preferable aging treatment method for increasing the strength after the aging treatment, a method of air cooling after holding at 450 to 600 ° C. for 4 to 12 hours is recommended.
[0020]
Also, there is no limitation on the shape of the alloy product using the high strength / high ductility titanium alloy according to the present invention, and it can be any shape using casting, forging, etc., including plate, rod, wire, and tube. Can be processed.
[0021]
The titanium alloy of the present invention thus obtained can be provided at a relatively low cost as compared with conventional high-strength titanium alloys containing a large amount of V and Mo because the compounding amount of expensive alloy elements is suppressed. In particular, it has an excellent strength-ductility balance that surpasses those β-type titanium alloys, and has good formability and very high strength after aging treatment. In addition, materials such as exterior materials and structural materials for automobiles, structural materials for various mechanical equipment, power transmission members such as gears, and materials such as golf club heads and eyeglass frames, etc., both high workability and strength characteristics Can be used effectively for a wide range of applications.
[0022]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0023]
Example 1
Using a small water-cooled induction melting furnace, a titanium alloy having the composition shown in Table 1 below is melted, and then a 25 kg ingot is manufactured. The obtained ingot is heated at 1100 ° C. for 2 hours, and is then hot forged to obtain a rod having a diameter of 67 mm. The bar is ground to a diameter of 62 mm, heated at 875 ° C. for 2 hours, and then hot-rolled to a diameter of 12 mm. Next, the surface scale is removed by shot blasting and pickling, and then 30% cold wire drawing is performed to obtain a wire having a diameter of 10 mm, and the wire drawing workability during this period is examined (◯; 30% wire drawing) Can be performed without hindrance, x: Disconnected by 30% wire drawing). About each obtained wire, after adding the following aging treatment, 0.2% yield strength and elongation were calculated | required and the result written together in Table 1 was obtained.
[0024]
[Aging treatment conditions]
Air-cooled after holding at 540 ° C. for 8 hours.
[0025]
[Physical property testing method]
0.2% yield strength (MPa): measured according to JIS Z 2241,
Elongation rate (%): Measured according to JIS Z 2241.
[0026]
[Table 1]
Figure 0004102224
[0027]
From Table 1, it can be considered as follows.
[0028]
Reference numerals 1 to 14 are examples that satisfy all the requirements of the present invention, exhibiting excellent cold workability, and exhibiting excellent values of strength (0.2% yield strength) and elongation after aging treatment. Yes.
[0029]
On the other hand, reference numerals 15 to 23 are comparative examples lacking any of the requirements defined in the present invention, and those having excellent strength after aging treatment are low in elongation and fractured, and have a certain degree of elongation. The ones that can be denied cannot be denied strength. Moreover, since the code | symbol 18 has too much Al content, ductility is inferior and 30% of cold wire drawing itself is impossible.
[0030]
Reference numeral 24 denotes a conventional β-type titanium alloy having a high V content. Since the V content is high, the material cost is considerably high. Moreover, it can be seen that the strength and elongation are slightly lower than those of the example alloys of the present invention, and the performance is slightly inferior.
[0031]
【The invention's effect】
The present invention is configured as described above. By specifying the type and amount of alloy elements contained in the titanium alloy, not only conventional β-type titanium alloys but also expensive alloy elements such as V and Mo can be used. Compared to a high-strength β-type Ti alloy containing a large amount, a high-strength and high-ductility β-type titanium alloy that has an excellent strength-ductility balance and can be provided at low cost can be provided.

Claims (1)

V:4.0〜(質量%を意味する、以下同じ)、Cr:5.0〜9.0%、Fe:0.3〜3.5%、Sn:2.0〜5.0%、Al:2.0〜4.5%を含み、残部がTiおよび不可避不純物からなることを特徴とする高強度・高延性β型チタン合金。V: 4.0 to 8 % (meaning mass%, the same applies hereinafter) , Cr: 5.0 to 9.0%, Fe: 0.3 to 3.5%, Sn: 2.0 to 5.0 %, Al: 2.0 to 4.5%, the balance being Ti and inevitable impurities, a high strength and high ductility β-type titanium alloy.
JP2003065490A 2003-03-11 2003-03-11 High strength, high ductility β-type titanium alloy Expired - Fee Related JP4102224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065490A JP4102224B2 (en) 2003-03-11 2003-03-11 High strength, high ductility β-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065490A JP4102224B2 (en) 2003-03-11 2003-03-11 High strength, high ductility β-type titanium alloy

Publications (2)

Publication Number Publication Date
JP2004270009A JP2004270009A (en) 2004-09-30
JP4102224B2 true JP4102224B2 (en) 2008-06-18

Family

ID=33126497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065490A Expired - Fee Related JP4102224B2 (en) 2003-03-11 2003-03-11 High strength, high ductility β-type titanium alloy

Country Status (1)

Country Link
JP (1) JP4102224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130850B2 (en) * 2006-10-26 2013-01-30 新日鐵住金株式会社 β-type titanium alloy
JP5218897B2 (en) * 2008-06-30 2013-06-26 新日鐵住金株式会社 Titanium alloy

Also Published As

Publication number Publication date
JP2004270009A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US6630103B2 (en) Ultra-high-strength precipitation-hardenable stainless steel and strip made therefrom
US20090074606A1 (en) Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part
WO2009154161A1 (en) Heat-resistant austenitic alloy, heat-resistant pressure-resistant member comprising the alloy, and process for producing the same
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
KR101582271B1 (en) + type titanium alloy sheet with excellent cold rolling properties and cold handling properties and production method therefor
JP2009503257A (en) Corrosion resistance, cold formability, machinability high strength martensitic stainless steel
JP5796810B2 (en) Titanium alloy material with high strength and excellent cold rolling properties
JP5201202B2 (en) Titanium alloy for golf club face
JP2010275606A (en) Titanium alloy
JP5491882B2 (en) High strength titanium plate with excellent cold rolling properties
JP3297027B2 (en) High strength and high ductility α + β type titanium alloy
WO2013125039A1 (en) Titanium alloy for use in golf-club face
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
EP3196321B1 (en) Economically alloyed titanium alloy with predictable properties
JP4102224B2 (en) High strength, high ductility β-type titanium alloy
JP5476175B2 (en) Titanium coil with high strength and excellent strength stability
JPH0254417B2 (en)
JP2009270163A (en) Titanium alloy
JP2007231313A (en) beta-TYPE TITANIUM ALLOY
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JPH11117020A (en) Production of heat resistant parts
JP2005154850A (en) High strength beta-type titanium alloy
JP3977956B2 (en) High strength β-type Ti alloy with excellent cold workability
JP2004269982A (en) High-strength low-alloyed titanium alloy and its production method
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees