JP3977956B2 - High strength β-type Ti alloy with excellent cold workability - Google Patents

High strength β-type Ti alloy with excellent cold workability Download PDF

Info

Publication number
JP3977956B2
JP3977956B2 JP06525899A JP6525899A JP3977956B2 JP 3977956 B2 JP3977956 B2 JP 3977956B2 JP 06525899 A JP06525899 A JP 06525899A JP 6525899 A JP6525899 A JP 6525899A JP 3977956 B2 JP3977956 B2 JP 3977956B2
Authority
JP
Japan
Prior art keywords
strength
titanium alloy
alloy
type
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06525899A
Other languages
Japanese (ja)
Other versions
JP2000256769A (en
Inventor
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP06525899A priority Critical patent/JP3977956B2/en
Publication of JP2000256769A publication Critical patent/JP2000256769A/en
Application granted granted Critical
Publication of JP3977956B2 publication Critical patent/JP3977956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、優れた冷間加工性を有すると共に、時効処理後の強度−延性バランスに優れた新規な高強度β型チタン合金に関するものである。
【0002】
【従来の技術】
現在実用化されている代表的なβ型Ti合金は、Ti−15V−3Cr−3Sn−3Alであり、この合金はコイル製造によって比較的安価に薄板状に加工することができることから、例えばチタンゴルフクラブのヘッド材料等して広く実用化されている。しかしながら、該汎用チタン合金の時効処理後の強度特性(強度と延性のバランス)は必ずしも満足し得るものとは言えず、冷間加工の可能な最低限の延性(伸び率で5%程度)を確保することの必要上、強度は120kgf/mm2程度に止まっており、高強度チタン合金としての実用性を更に高め、或いは新規応用分野を開拓していくには、現状の延性を留保しつつ一層の高強度化を実現することが望まれる。
【0003】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、冷間加工の可能な延性を有しつつ、強度の一段と高められた新規なβ型チタン合金を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る高強度β型Ti合金とは、質量%で、V:11〜16%、Cr:2.0〜4.5%、Sn:2.0〜4.0%、Al:2.5〜4.5%、Mo:0.5〜2%を含有するところに特徴を有しており、このチタン合金は、その優れた加工性と高い強度特性を活かし、例えばゴルフクラブのヘッド材料などとして有効に活用できる。
【0005】
【発明の実施の形態】
上記の様に本発明では、冷間加工の可能な延性を確保しつつその強度が一段と高められたβ型チタン合金を提供するもので、具体的にはTi中に含有させる合金元素の種類と各含有率を規定したところに特徴を有しており、含有元素の種類と含有率範囲を定めた理由は下記の通りである。
【0006】
V:11〜16%
Vは全率固溶型のβ相安定化元素として冷間加工性を高めるのに欠くことのできない元素であり、11%未満では冷間加工によりマルテンサイト変態を起こす不安定なβ相となり、冷間加工時に割れを起こす原因になる。一方、V量が多くなり過ぎると時効硬化性能が低下し、満足のいく強度が得られなくなるので、16%以下に抑えなければならない。冷間加工性と時効硬化特性の兼ね合いを考慮してより好ましいV含有量の下限は12%、より好ましい上限は14%である。
【0007】
Cr:2.0〜4.5%
Crは共析反応型の元素であり、β相を安定化し冷間加工性を確保するうえで欠くことのできない元素であり、2.0%未満ではそれらの作用が有効に発揮されなくなる。しかし、多過ぎるとβ相が安定になり過ぎて時効硬化性能が低下し強度不足になるので4.5%以下に抑えなければならない。冷間加工性と時効硬化性能を加味してより好ましいCr含有率の下限は2.5%、より好ましい上限は4.0%である。
【0008】
Sn:2.0〜4.0%
Snは、β相を安定化すると共に、時効処理後の強度を高めるのに重要な元素であり、2.0%未満ではそれらの効果が不足気味となって強度不足となる。しかし多過ぎると、拡散速度が遅くなりかえって時効硬化能を低下させるので4.0%以下に抑えなければならない。Sn含有量のより好ましい下限は2.5%、より好ましい上限は3.5%である。
【0009】
Al:2.5〜4.5%
Alは固溶強化元素であって、高強度化に欠くことのできない元素であり、本発明で意図するレベルの強度を確保するには2.5%以上含有させなければならない。しかし多過ぎるとβ相の延性が低下し、冷間加工性が損なわれるので、4.5%以下に抑えなければならない。強度と冷間加工性の兼ね合いを考慮してより好ましいAl含有量の下限は3.0%、より好ましい上限は4.0%である。
【0010】
Mo:0.5〜2%
Moは、適量添加することにより強度−延性バランスを高める作用を有しており、その効果を有効に発揮させるには0.5%以上、より好ましくは0.75%以上含有させなければならない。しかし、Mo量が多くなり過ぎると時効硬化性能が低下し高強度化の目的が達成できなくなるので、2%以下、より好ましくは1.5%以下に抑えるべきである。
【0011】
本発明にかかるチタン合金における必須の合金元素は上記の5種であり、残部は実質的にTiであるが、他のβ安定化元素であるFe等を少量含有させることも有効である。本発明のチタン合金に許容される不可避不純物元素としては、たとえばO,N,H等があり、これらの不可避不純物は、上記本発明チタン合金の特性を阻害しない限り微量含まれていても構わない。
【0012】
既存のβ型チタン合金の中で代表的なのは、前述の如くTi−15V−3Cr−3Sn−3Al合金であるが、該β型チタン合金の強度は、時効熱処理後の抗張力で高いものでも1200MPaまでであり、コイル製造の可能な5%レベル以上の伸び率を維持しつつ1200MPaを超える高レベルの抗張力を有するものは知られていない。
【0013】
ところが上記本発明の規定要件を満たすβ型チタン合金は、後記実施例でも明らかにする如く5%以上の伸び率を有しつつ、時効処理後の抗張力で1200MPa以上の高い値を示し、こうした優れた強度・延性バランスによって優れた加工性の下で高強度のチタン合金製品を得ることが可能となる。
【0014】
即ち本発明のβ型チタン合金は、高延性で冷間加工性に優れたものであり、冷間での圧延加工、鍛造加工、プレス加工等によって容易に加工することができる。
【0015】
尚、本発明に係るβ型チタン合金の鋳造・鍛造・熱延条件、時効熱処理(焼鈍)条件、脱スケール条件、冷間加工条件等は特に制限されず、公知のβ型チタン合金に適用される条件をそのまま、或いは要求特性に応じて適当に変更して適用すればよい。
【0016】
上記の様に本発明のβ型チタン合金は、冷間加工に必要な適度の延性を有しつつ高い強度を有しているので、チタン合金が本来備えている優れた比強度や耐食性などを有効に活かしつつ、冷間加工によって様々の製品に加工することができ、例えばチタンゴルフクラブのヘッド材料を始め、板ばねや釣り具等の素材として有効に活用できる。
【0017】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受ける訳ではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0018】
実施例
表1に示す成分組成のチタン合金をインダクトスカル溶解法によって溶製し、80mmt×130mmw×260mmL(約12kg)の鋳塊を得る。これを1000℃(β温度域)加熱で40mmtに鍛造した後、脱スケールと疵取りを兼ねて周囲を約2mm切削することにより熱間圧延素材とし、これを1000℃に再加熱してから熱間圧延し、厚さ4.4mmの熱延板を得た。
【0019】
得られた各熱延板を800℃で30分間焼鈍した後、ショットブラスト・酸洗処理を施して厚さ4mmにまで脱スケールし、長手方向冷延(4mm→2.8mm)および800℃×5分間の焼鈍を行なって、厚さ8mmの冷延焼鈍板を得た。
【0020】
得られた各冷延焼鈍板について、480℃および510℃で8時間の時効熱処理を施してから引張試験を行なった。結果は表1に示す通りであり、この表より次の様に考察できる。
【0021】
No.1〜4は本発明の規定要件を全て満たす実施例であり、5%レベル以上の伸び率を有しつつ抗張力は1200MPaレベル以上の高い値を有しており、強度・延びバランスの非常に優れたものであることが分かる。
【0022】
これらに対しNo.5,6は従来材、No.7〜16は本発明で定めるいずれかの要件を欠く比較例であり、下記の様に延性不足であるか或いは抗張力が低くて強度・延びバランスが不十分であり、本発明の目的にそぐわない。
【0023】
No.7,8,9,10:VまたはCrの含有量が規定範囲を外れる比較例であり、これらの元素量が不足するものは冷延性が悪く、また多すぎる場合は時効処理後の強度が低い。No.11はSnの含有率が不足する比較例で、時効処理後の延性が悪く、No.12は逆にSn量が多過ぎる比較例で、冷延性は良好であるものの時効処理後の強度が低く、本発明の要求レベルに達していない。
【0024】
No.13,14はAl含有量が規定範囲を外れる比較例であり、Al不足のNo.13では、冷延性は良好であるものの時効処理後の強度が低く、Al過剰のNo.14では冷延性が劣悪である。更にNo.15はMo量が不足する比較例で、強度・延性は従来材(No.5,6)と殆ど変わらない。またNo.16はMo量が多過ぎる比較例であり、時効処理後の強度が不足している。
【0025】
【表1】

Figure 0003977956
【0026】
【発明の効果】
本発明は以上の様に構成されており、β型チタン合金中のV,Cr,Sn,Al,Moの各含有量を規定することによって、冷間加工の可能な延性を有すると共に、焼鈍後の強度で1200MPaレベル以上の高い抗張力を有する強度・延びバランスの卓越したβ型チタン合金を提供し得ることになった。そしてこのβ型チタン合金は、その優れた延性と強度、更にはチタン合金が本来有している高い比強度や耐食性を活かし、チタンゴルフクラブのヘッド材料等として有効に活用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel high-strength β-type titanium alloy having excellent cold workability and excellent strength-ductility balance after aging treatment.
[0002]
[Prior art]
A typical β-type Ti alloy that is currently in practical use is Ti-15V-3Cr-3Sn-3Al, and this alloy can be processed into a thin plate at a relatively low cost by coil manufacture. Widely used as club head material. However, it cannot be said that the strength characteristics (balance between strength and ductility) of the general-purpose titanium alloy after aging treatment are always satisfactory, and the minimum ductility that can be cold worked (about 5% in elongation). The strength is limited to about 120kgf / mm 2 because of the need to secure it. To further enhance the practicality as a high-strength titanium alloy or to develop new application fields, the current ductility is retained. It is desired to achieve higher strength.
[0003]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-described circumstances, and its object is to provide a novel β-type titanium alloy having a ductility capable of cold working and further enhanced strength. There is.
[0004]
[Means for Solving the Problems]
The high-strength β-type Ti alloy according to the present invention that has solved the above problems is mass%, V: 11 to 16%, Cr: 2.0 to 4.5%, Sn: 2.0 to 4 0.0%, Al: 2.5-4.5%, and Mo: 0.5-2%. This titanium alloy has excellent workability and high strength characteristics. For example, it can be effectively used as a head material of a golf club.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the present invention provides a β-type titanium alloy whose strength is further enhanced while ensuring ductility capable of cold working, and specifically, the types of alloy elements contained in Ti and Each content rate is specified, and the reason for determining the type of content element and the content range is as follows.
[0006]
V: 11-16%
V is an element indispensable for improving the cold workability as a β-phase stabilizing element of a solid solution type, and if it is less than 11%, it becomes an unstable β phase that causes martensitic transformation by cold work, Causes cracking during cold working. On the other hand, if the amount of V is too large, the age hardening performance is lowered and satisfactory strength cannot be obtained, so it must be suppressed to 16% or less. In consideration of the balance between cold workability and age-hardening characteristics, the more preferable lower limit of the V content is 12%, and the more preferable upper limit is 14%.
[0007]
Cr: 2.0 to 4.5%
Cr is a eutectoid reaction type element, an element indispensable for stabilizing the β phase and ensuring the cold workability, and if it is less than 2.0%, these functions are not effectively exhibited. However, if the amount is too large, the β phase becomes too stable, age hardening performance decreases and the strength becomes insufficient, so it must be suppressed to 4.5% or less. In consideration of cold workability and age-hardening performance, the more preferable lower limit of the Cr content is 2.5%, and the more preferable upper limit is 4.0%.
[0008]
Sn: 2.0-4.0%
Sn is an important element for stabilizing the β phase and increasing the strength after the aging treatment, and if it is less than 2.0%, these effects tend to be insufficient and the strength becomes insufficient. However, if the amount is too large, the diffusion rate may slow down and age-hardening ability is lowered, so it must be suppressed to 4.0% or less. A more preferable lower limit of the Sn content is 2.5%, and a more preferable upper limit is 3.5%.
[0009]
Al: 2.5-4.5%
Al is a solid solution strengthening element and is an element indispensable for increasing the strength. In order to ensure the strength of the intended level in the present invention, it must be contained in an amount of 2.5% or more. However, if it is too much, the ductility of the β phase is lowered and the cold workability is impaired, so it must be suppressed to 4.5% or less. Considering the balance between strength and cold workability, the more preferable lower limit of the Al content is 3.0%, and the more preferable upper limit is 4.0%.
[0010]
Mo: 0.5-2%
Mo has the effect of increasing the strength-ductility balance when added in an appropriate amount, and in order to exert its effect effectively, it must be contained by 0.5% or more, more preferably 0.75% or more. However, if the amount of Mo becomes too large, the age hardening performance decreases and the purpose of increasing the strength cannot be achieved, so it should be suppressed to 2% or less, more preferably 1.5% or less.
[0011]
The essential alloy elements in the titanium alloy according to the present invention are the above-mentioned five types, and the balance is substantially Ti, but it is also effective to contain a small amount of other β-stabilizing elements such as Fe. Examples of the inevitable impurity elements allowed in the titanium alloy of the present invention include O, N, and H. These inevitable impurities may be contained in a trace amount as long as the characteristics of the titanium alloy of the present invention are not impaired. .
[0012]
The typical β-type titanium alloy is the Ti-15V-3Cr-3Sn-3Al alloy as described above, but the strength of the β-type titanium alloy is up to 1200 MPa even if the strength after aging heat treatment is high. Nothing is known that has a high level of tensile strength exceeding 1200 MPa while maintaining an elongation of 5% or more that is possible for coil manufacture.
[0013]
However, the β-type titanium alloy that satisfies the prescribed requirements of the present invention has an elongation of 5% or more as will be apparent from the following examples, and exhibits a high value of 1200 MPa or more in the tensile strength after aging treatment. High strength titanium alloy products can be obtained with excellent workability due to the balance between strength and ductility.
[0014]
That is, the β-type titanium alloy of the present invention has high ductility and excellent cold workability, and can be easily processed by cold rolling, forging, pressing and the like.
[0015]
Incidentally, the casting, forging, hot rolling conditions, aging heat treatment (annealing) conditions, descaling conditions, cold working conditions, etc. of the β-type titanium alloy according to the present invention are not particularly limited, and are applied to known β-type titanium alloys. The conditions may be applied as they are or appropriately changed according to the required characteristics.
[0016]
As described above, since the β-type titanium alloy of the present invention has high strength while having appropriate ductility necessary for cold working, the excellent specific strength, corrosion resistance, etc. inherent to the titanium alloy are obtained. While being effectively utilized, it can be processed into various products by cold working. For example, it can be effectively utilized as a material for a head material of a titanium golf club, a leaf spring, a fishing tool and the like.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the purpose described above and below. Any of these may be included in the technical scope of the present invention.
[0018]
EXAMPLE A titanium alloy having the composition shown in Table 1 is melted by an induct skull melting method to obtain an ingot of 80 mm t × 130 mm w × 260 mm L (about 12 kg). After forging this to 40mm t by heating at 1000 ° C (β temperature range), it is made a hot rolled material by cutting around 2mm for both descaling and scraping, and this is reheated to 1000 ° C. Hot rolling was performed to obtain a hot-rolled sheet having a thickness of 4.4 mm.
[0019]
Each of the obtained hot-rolled sheets was annealed at 800 ° C. for 30 minutes, then subjected to shot blasting / pickling treatment, descaling to a thickness of 4 mm, cold rolling in the longitudinal direction (4 mm → 2.8 mm), and 800 ° C. × Annealing was performed for 5 minutes to obtain a cold-rolled annealed plate having a thickness of 8 mm.
[0020]
Each of the obtained cold-rolled annealed plates was subjected to an aging heat treatment at 480 ° C. and 510 ° C. for 8 hours, and then a tensile test was performed. The results are as shown in Table 1, and can be considered as follows from this table.
[0021]
No. 1-4 is an Example which satisfies all the prescription | regulation requirements of this invention, and it has a high value of 1200 MPa level or more, while having an elongation of 5% level or more, and is very excellent in strength and elongation balance. You can see that
[0022]
No. Nos. 5 and 6 are conventional materials. 7 to 16 are comparative examples lacking any of the requirements defined in the present invention. As described below, the ductility is insufficient or the tensile strength is low and the strength / elongation balance is insufficient, which is not suitable for the purpose of the present invention.
[0023]
No. 7,8,9,10: Comparative examples in which the content of V or Cr is outside the specified range, those lacking the amount of these elements have poor cold-rollability, and if too much, the strength after aging treatment is low . No. No. 11 is a comparative example in which the Sn content is insufficient, and the ductility after aging treatment is poor. On the contrary, No. 12 is a comparative example in which the amount of Sn is too large. Although the cold rolling property is good, the strength after the aging treatment is low, and the required level of the present invention is not reached.
[0024]
No. Nos. 13 and 14 are comparative examples in which the Al content is outside the specified range. No. 13, although the cold rolling property is good, the strength after the aging treatment is low, and no Al. No. 14 is poor in cold rolling. Furthermore, no. 15 is a comparative example in which the amount of Mo is insufficient, and the strength and ductility are almost the same as those of the conventional material (No. 5, 6). No. 16 is a comparative example in which the amount of Mo is too large, and the strength after the aging treatment is insufficient.
[0025]
[Table 1]
Figure 0003977956
[0026]
【The invention's effect】
The present invention is configured as described above. By specifying the contents of V, Cr, Sn, Al, and Mo in the β-type titanium alloy, the present invention has ductility that can be cold worked and after annealing. Thus, it is possible to provide a β-type titanium alloy having an excellent strength and elongation balance having a high tensile strength of 1200 MPa level or more. This β-type titanium alloy can be effectively used as a head material of a titanium golf club by utilizing its excellent ductility and strength, as well as the high specific strength and corrosion resistance inherent to the titanium alloy.

Claims (2)

質量%で、V:11〜16%、Cr:2.0〜4.5%、Sn:2.0〜4.0%、Al:2.5〜4.5%、Mo:0.5〜2%を含有し、残部がTiおよび不可避不純物からなることを特徴とする冷間加工性に優れた高強度β型チタン合金。In mass%, V: 11-16%, Cr: 2.0-4.5%, Sn: 2.0-4.0%, Al: 2.5-4.5%, Mo: 0.5- containing 2%, high strength β-type titanium alloy balance and excellent cold workability characterized by Rukoto such Ti and inevitable impurities. ゴルフクラブのヘッド用材料として使用されるものである請求項1に記載の高強度β型チタン合金。  The high-strength β-type titanium alloy according to claim 1, which is used as a golf club head material.
JP06525899A 1999-03-11 1999-03-11 High strength β-type Ti alloy with excellent cold workability Expired - Lifetime JP3977956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06525899A JP3977956B2 (en) 1999-03-11 1999-03-11 High strength β-type Ti alloy with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06525899A JP3977956B2 (en) 1999-03-11 1999-03-11 High strength β-type Ti alloy with excellent cold workability

Publications (2)

Publication Number Publication Date
JP2000256769A JP2000256769A (en) 2000-09-19
JP3977956B2 true JP3977956B2 (en) 2007-09-19

Family

ID=13281720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06525899A Expired - Lifetime JP3977956B2 (en) 1999-03-11 1999-03-11 High strength β-type Ti alloy with excellent cold workability

Country Status (1)

Country Link
JP (1) JP3977956B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632239B2 (en) * 2004-11-01 2011-02-16 株式会社神戸製鋼所 Beta titanium alloy material for cold working
CN111306229A (en) * 2020-03-03 2020-06-19 沈阳和世泰通用钛业有限公司 Small-wire-diameter titanium alloy spring and preparation method and application thereof

Also Published As

Publication number Publication date
JP2000256769A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP3742558B2 (en) Unidirectionally rolled titanium plate with high ductility and small in-plane material anisotropy and method for producing the same
JP2008133531A (en) Beta titanium alloy
JPH027386B2 (en)
JP2010275606A (en) Titanium alloy
WO2005118898A1 (en) Titanium alloy and method of manufacturing titanium alloy material
JPH0641623B2 (en) Controlled expansion alloy
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
JP3977956B2 (en) High strength β-type Ti alloy with excellent cold workability
JPS6043901B2 (en) Non-heat treatment type Al-Mg alloy
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP3541458B2 (en) Ferritic stainless steel with excellent high-temperature salt damage characteristics
JP4202626B2 (en) Titanium alloy for eyeglass frames with excellent cold workability and fatigue strength after brazing
JPS6410584B2 (en)
JP4102224B2 (en) High strength, high ductility β-type titanium alloy
JP2005154850A (en) High strength beta-type titanium alloy
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JP2008106317A (en) beta-TYPE TITANIUM ALLOY
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JP5533352B2 (en) β-type titanium alloy
JPH02228451A (en) Iron-base shape memory alloy
JPH0437149B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

EXPY Cancellation because of completion of term