JP4275334B2 - Copper-based alloy and manufacturing method thereof - Google Patents

Copper-based alloy and manufacturing method thereof Download PDF

Info

Publication number
JP4275334B2
JP4275334B2 JP2001334816A JP2001334816A JP4275334B2 JP 4275334 B2 JP4275334 B2 JP 4275334B2 JP 2001334816 A JP2001334816 A JP 2001334816A JP 2001334816 A JP2001334816 A JP 2001334816A JP 4275334 B2 JP4275334 B2 JP 4275334B2
Authority
JP
Japan
Prior art keywords
mass
phase
copper
based alloy
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334816A
Other languages
Japanese (ja)
Other versions
JP2003138330A (en
Inventor
秀和 鈴木
貴幸 岡本
将見 脇田
清仁 石田
亮介 貝沼
祐司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Original Assignee
Chuo Hatsujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK filed Critical Chuo Hatsujo KK
Priority to JP2001334816A priority Critical patent/JP4275334B2/en
Publication of JP2003138330A publication Critical patent/JP2003138330A/en
Application granted granted Critical
Publication of JP4275334B2 publication Critical patent/JP4275334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は,形状記憶特性及び超弾性に優れている銅系合金及びその製造方法に関する。
【0002】
【従来技術】
従来,形状記憶特性及び超弾性を有する銅系合金としては,例えば特開2001−20026号公報に示されるものがある。
そして,そこには,Al3〜10質量%と,Mn5〜20質量%と,Ni,Co,Fe,Ti,ミッシュメタル等の添加元素0.001〜10質量%と,残部Cu及び不可避不純物とよりなる組成物からなり,再結晶組織がオーステナイト(β)相単相からなる銅系合金が示されている。
この銅系合金は,優れた形状記憶特性及び超弾性を有している。
【0003】
ところで,形状記憶特性及び超弾性を有する銅系合金においては,特にこれをバネ材として利用する場合などには,超弾性の向上を図ることが要求される。
そして,この超弾性の向上を図ろうとする場合,オーステナイト(β)相の結晶粒を粗大化させることが効果的である。
【0004】
【解決しようとする課題】
しかしながら,このようにオーステナイト(β)相結晶粒の粗大化を図ると,部分的に節部分を形成する,いわゆるバンブー構造が発生する。そして,かかるバンブー構造を発生させて上記のようにオーステナイト(β)相結晶粒の増大化を図ると,銅系合金の降伏応力が低下する。
そのため,オーステナイト(β)相結晶粒の増大化による超弾性の向上には限界がある。
【0005】
本発明は,かかる従来の問題点に鑑み,バンブー構造が発生するほど結晶粒を粗大化させても,高い降伏応力を有し,形状記憶特性及び超弾性を有する銅系合金,及びその製造方法を提供しようとするものである。
【0006】
【課題の解決手段】
第1の発明は,形状記憶特性及び超弾性を有し,
Al3〜10質量%と,Mn5〜20質量%と,Co0.001〜2質量%と残部Cu及び不可避不純物とからなる銅系合金であって,
再結晶組織がオーステナイト(β)相内又は結晶粒界の少なくともいずれかにベイナイト(γ)相を析出させており,
また,該銅系合金は線材であり,その線材直径(S)に対する平均結晶粒径(C)の比(C/S)が1.0以上であるバンブー構造において,降伏応力が100MPa以上であることを特徴とするAl−Mn−Co−Cuよりなる銅系合金にある(請求項1)。
【0007】
本第1発明において,Alは3〜10質量%が必要である。3質量%未満では銅系合金がオーステナイト(β)相を形成し難く,一方10質量%を越えると銅系合金が脆くなる。なお,更に好ましくはAl6〜10質量%である。
また,Mnは,オーステナイト(β)相が存在しうる組成範囲を低Al側へ広げ,銅系合金の冷間加工性を向上させるために必要である。Mnは5質量%未満では冷間加工性が劣り,かつオーステナイト(β)相を形成することが困難となる。一方,20質量%を越えると形状記憶特性が低下してしまう。なお,更に好ましくは8〜12質量%である。
また,Coは0.001〜2質量%が必要である。Coは基地組織の強化に有効な元素である(後述の段落「0025」参照)。
本発明においては,再結晶組織が,上記従来の銅系合金のようにオーステナイト(β)相単相ではなく,オーステナイト(β)相内又は結晶粒界の一方又は双方に,ベイナイト(γ)相を析出させている。
そのため,形状記憶特性及び超弾性を高くするために結晶粒を粗大化させてバンブー構造が発生しても,例えば100MPa以上という高い降伏応力を得ることができる。
【0008】
本発明において,上記形状記憶特性とは,ある回復温度以下で変形を加えても,回復温度以上に加熱すればもとの記憶した形状に戻る現象であり,また超弾性とは前記回復温度以上で曲げたり伸ばしたりしても,負荷を除くとゴムのように元の形状に戻る現象である。
【0009】
本発明によれば,バンブー構造が発生するほど結晶粒を粗大化させても,高い降伏応力を有し,形状記憶特性及び超弾性を有するAl−Mn−Co−Cuよりなる,線材の銅系合金を提供することができる。
【0010】
次に,第2発明は,形状記憶特性及び超弾性を有し,
Al3〜10質量%と,Mn5〜20質量%と,Co0.001〜2質量%と残部Cu 及び不可避不純物とからなる銅系合金であって,
再結晶組織がオーステナイト(β)相内又は結晶粒界の少なくともいずれかにベイナイト(γ)相を析出させており,
また,該銅系合金は板材であり,その板材厚み(P)に対する平均結晶粒径(C)の比(C/P)が1.0以上であるバンブー構造において,降伏応力が100MPa以上であることを特徴とするAl−Mn−Co−Cuよりなる銅系合金にある(請求項)。
【0011】
本第2発明において,Alは3〜10質量%が必要である。3質量%未満では銅系合金がオーステナイト(β)相を形成し難く,一方10質量%を越えると銅系合金が脆くなる。なお,更に好ましくはAl6〜10質量%である。
また,Mnは,オーステナイト(β)相が存在しうる組成範囲を低Al側へ広げ,銅系合金の冷間加工性を向上させるために必要である。Mnは5質量%未満では冷間加工性が劣り,かつオーステナイト(β)相を形成することが困難となる。一方,20質量%を越えると形状記憶特性が低下してしまう。なお,更に好ましくは8〜12質量%である。
また,Coは0.001〜2質量%が必要である。Coは基地組織の強化に有効な元素である(後述の段落「0025」参照)。
【0012】
本発明においては,再結晶組織が,上記従来の銅系合金のようにオーステナイト(β)相単相ではなく,オーステナイト(β)相内又は結晶粒界の一方又は双方に,ベイナイト(γ)相を析出させている。
そのため,形状記憶特性及び超弾性を高くするために結晶粒を粗大化させてバンブー構造が発生しても,例えば100MPa以上という高い降伏応力を得ることができる。
【0013】
したがって,本第2発明によれば,バンブー構造が発生するほど結晶粒を粗大化させても,高い降伏応力を有し,形状記憶特性及び超弾性を有するAl−Mn−Co−Cuよりなる,板材の銅系合金を提供することができる。
【0014】
次に,第3発明は,Al3〜10質量%と,Mn5〜20質量%と,Co0.001〜2質量%と,残部Cu及び不可避不純物とよりなる組成物からなる線材又は板材の銅系合金であり,再結晶組織が,オーステナイト(β)相内又は結晶粒界の少なくともいずれかに,ベイナイト(γ)相を析出させており,
上記線材はその線材直径(S)に対する平均結晶粒径(C)の比(C/S)が1.0以上であるバンブー構造において降伏応力が100MPa以上であり,
上記板材はその板材厚み(P)に対する平均結晶粒径(C)の比(C/P)が1.0以上であるバンブー構造において降伏応力が100MPa以上である,形状記憶特性及び超弾性を有する,線材または板材の銅系合金を製造する方法であって,
上記組成物をオーステナイト(β)相領域となる温度に加熱保持した後,α相を出現させない230℃/秒以上の速度で急冷し,次いで200〜300℃の範囲において,時効及び変態処理を行なうことを特徴とするAl−Mn−Co−Cuよりなる銅系合金の製造方法にある(請求項)。
【0015】
本発明においては,上記組成物をオーステナイト(β)相領域となる温度に加熱保持した後,α相を出現させない230℃/秒以上の速度で急冷し,次いで200〜300℃の間で時効及び変態処理を行なっている。
そのため,再結晶組織は,オーステナイト(β)相単相ではなく,オーステナイト(β)相内又は結晶粒界の一方又は双方に,ベイナイト(γ)相を析出させたものとなる。それ故,結晶粒の粗大化を図ることができると共に,結晶粒の粗大化によってバンブー構造が発生しても,高い降伏応力を得ることができる。
【0016】
また,本第3発明においては,上記組成物を用い,これをオーステナイト(β)相領域となる温度に加熱保持した後,α相が出ない程度の速度で急冷する。
上記急冷時にα相が出ると形状記憶特性及び超弾性特性が得られないという問題がある。上記の「α相が出ない程度の速度」とは,例えば8.10質量%Al−10.2質量%Mn−0.51質量%Co−残部Cuの場合には,230℃/秒以上の速度である。
【0017】
また,上記急冷後の時効及び変態処理は,200〜300℃において行なう。200℃未満では時効及び変態処理が長くなり,処理コスト上昇という問題がある。一方,300℃を越えると,析出したベイナイト(γ)相が粗大化し,銅系合金が脆くなることと,処理の時間範囲が狭くなり,制御が困難となる問題がある。
なお,上記の時効及び変態処理は,温度が高い程短時間で良く,例えば,200℃では55〜300分,250℃では8〜30分,300℃では1〜5分とすることが好ましい(図1参照)。
【0018】
また,更に好ましくは,時効及び変態処理は,200〜300℃で,かつ温度(T)℃に対する時間(t)分が,T=−26Ln(t)+304と,T=−25Ln(t)+339とで囲まれた範囲において行なう。図1の実線及び破線は,概略の上記関係式を示している。
【0019】
本第3発明においては,上記第1,第2発明に示したと同様の銅系合金を得ることができる。したがって,本発明によれば,バンブー構造が発生するほど結晶粒を粗大化させても,高い降伏応力を有し,形状記憶特性及び超弾性を有する,線材又は板材のAl−Mn−Co−Cuよりなる銅系合金及を提供することができる。
【0020】
【発明の実施の形態】
上記第1発明において,形状記憶特性及び超弾性を有する銅系合金は,上記のごとくAl−Mn−Co−Cuよりなる銅系合金である
また,上記銅系合金は,オーステナイト(β)相及びベイナイト(γ)相を発生する銅系合金であり,Cuの他にAlMn,Coを含有している。
また,上記再結晶組織におけるベイナイト(γ)相は,オーステナイト(β)相内又は結晶粒界のいずれか一方又は双方に析出しておれば良い。
【0021】
次に,上記ベイナイト(γ)相はベイナイト変態が完全に終了していないことが好ましい。
この場合には,適量のベイナイト(γ)相のために,超弾性特性を保持したまま,例えば100MPa以上という高い降伏応力を得ることができる。
【0022】
次に,上記において,上記不可避不純物としては,例えばO,Nなどがある。
【0023】
次に,上記銅系合金は,さらにNi,Fe,Ti,V,Cr,Si,Nb,Mo,W,Sn,Sb,Mg,P,Be,Zr,Zn,B,C,Ag及びミッシュメタルの1種又は2種以上よりなる添加元素を,合金全体を100質量%として,合計で0.001〜10質量%含有していることが好ましい。
【0024】
上記添加元素は,上記列挙した元素の1種又は2種以上を用いる。
その中でNi及びCoが特に好ましい。これらの元素は冷間加工性を維持したまま固溶強化して銅系合金の強度を向上させる効果を発揮する。
上記の添加元素の含有量は,合金全体を100質量部として,合計で0.001〜10質量%であるのが好ましく,特に0.001〜5質量%が好ましい。これらの元素の合計含有量が10質量%を超えるとマルテンサイト変態温度が低下し,β単相組織が不安定になる。
【0025】
次に,Co,Ni,Fe,Sn及びSbは,基地組織の強化に有効な元素である。Ni及びFeの好ましい含有量はそれぞれ0.001〜3質量%である。Coは,CoAlの形成により析出強化するが,過剰になると合金の靭性を低下させる。Coの含有量は0.001〜2質量%である。Sn及びSbの好ましい含有量はそれぞれ0.001〜1質量%である。
【0026】
Tiは合金特性を阻害する元素であるN及びOと結合して,酸化物及び窒化物を形成する。また,Bと複合添加するとボライドを形成し,析出強化に寄与する。Tiの好ましい含有量は0.001〜2質量%である。
【0027】
W,V,Nb,Mo及びZrは硬さを向上させて耐摩耗性を向上させる効果を有する。またこれらの元素はほとんど合金基地に固溶しないので,bcc結晶として析出し,析出強化に有効である。W,V,Nb,Mo及びZrの好ましい含有量はそれぞれ0.001〜1質量%である。
【0028】
Crは耐摩耗性及び耐食性を維持するのに有効な元素である。Crの好ましい含有量は0.001〜2質量%である。
Siは耐食性を向上させる効果を有する。Siの好ましい含有量は0.001〜2質量%である。
【0029】
Mgは合金特性を阻害する元素であるN及びOを除去するとともに,阻害元素であるSを硫化物として固定し,熱間加工性や靭性の向上に効果があるが,多量の添加は粒界偏析を招き,脆化の原因となる。Mgの好ましい含有量は0.001〜0.5質量%である。
【0030】
Pは脱酸剤として作用し,靭性向上の効果を有する。Pの好ましい含有量は0.01〜0.5質量%である。
Beは基地組織を強化する効果を有する。Beの好ましい含有量は0.001〜1質量%である。
【0031】
Znは形状記憶温度を上昇させる効果を有する。Znの好ましい含有量は0.001〜5質量%である。
B及びCは粒界に偏析し,粒界を強化する効果,及びボライドやカーバイドを粒界に析出し,結晶粒を微細化する効果を有する。B及びCの好ましい含有量はそれぞれ0.001〜0.5質量%である。
【0032】
Agは冷間加工性を向上させる効果を有する。Agの好ましい含有量は0.001〜2質量%である。
ミッシュメタルは脱酸剤として作用し,靭性向上の効果を有する。ミッシュメタルの好ましい含有量は0.001〜5質量%である。
【0033】
次に,上記銅系合金線材の場合,該線材は,その線材直径(S)に対する平均結晶粒径(C)の比(C/S)が1.0以上となるバンブー構造においても,降伏応力が100Ma以上で,形状記憶特性及び超弾性を有する。
【0034】
この場合には,特に降伏応力が100MPa以上という優れた性質を有し,形状記憶特性及び超弾性を有する銅系合金の線材を得ることができる。上記線材直径(S)は単位がμm,平均結晶粒径(C)は単位がμmである。
【0035】
次に,上記銅系合金は板材の場合,該板材は,その板材厚み(P)に対する平均結晶粒径(C)の比(C/P)が1.0以上となるバンブー構造においても,降伏応力が100Ma以上で,形状記憶特性及び超弾性を有する。
この場合には,上記線材の場合と同様の,銅系合金の板材を得ることができる。なお,板材厚み(P)の単位はμmである。
【0036】
次に,第3発明の製造方法においては,降伏応力100MPa以上形状記憶特性及び超弾性を有するAl−Mn−Co−Cuよりなる銅系合金を得る。
この場合には,優れた降伏応力及び伸びを有する,形状記憶特性及び超弾性を有する銅系合金を得ることができる。
【0037】
【実施例】
実験例1
8.07質量%Al−9.68質量%Mn−0.51質量%Co−残部Cuよりなる銅系合金の線材(直径1mm)を用い,結晶粒を粗大化させるため850℃(オーステナイト(β)相領域)で5分間加熱保持し,空冷処理を4回行ない,850度(オーステナイト(β)相領域)で5分加熱後水焼入れを行なった。これによりオーステナイト(β)相単相とした,焼入れたままの試料1を多数準備した。
【0038】
次に,上記試料1について,各種温度と時間において時効及び変態処理を行なった。
即ち,上記試料1を,目的とする時効及び変態処理の温度まで99℃/分の速度で昇温し,その温度に所定時間等温保持し,変態を確認し,測定を終了した。
変態の開始,終了はDSC(示差走査熱量測定装置)により測定した。上記各試料1は23〜25mgとした。
【0039】
上記の時効及び変態処理の等温保持は,200,230,250,260,270,280,290,300,320,400,500℃をそれぞれ用いた。なお,320℃以上では,昇温中に変態が開始してしまうため,変態の開始,終了の時間は測定できなかった。
上記時効及び変態処理における,ベイナイト変態TTT線図を,図1に示す。
【0040】
図1において,左方線は変態の開始を,右方線は,変態の終了を示し,黒丸印(●),三角印(△)は上記各測定の温度を示す。
図1より,等温変態温度が高い程,変態の開始から終了までの時間が早いことが分る。また,高温にすれば時効及び変態処理時間を短くできるが,ベイナイト(γ)相の析出量の制御が難しくなる。
【0041】
次に,上記の各試料1における,ベイナイト(γ)相を観察するため,上記測定後の試料1の断面を,腐食液によりエッチングし,SEM(走査型電子顕微鏡)を用いて観察した。
そのSEM写真(倍率1000倍)を,図2及び図3に示す。両図には,上記200℃〜500℃における各等温の時効及び変態処理温度を示した。
両図より知られるごとく,試料1にはそれぞれベイナイト(γ)相が析出(針状結晶)し,時効及び変態処理温度が低いほど析出ベイナイト(γ)相が緻密であることが分る。また,析出相は,粗大なほど脆くなるので,200〜300℃の低温で時効及び変態処理を行なう方が良い。
【0042】
また,図4は,上記試料1について,DSC測定を行なった際の時間とDSC(mw)との関係を例示している。同図中,Msはマルテンサイト変態開始温度を,Mfはマルテンサイト変態終了温度を,Asはマルテンサイト逆変態開始温度を,Afはマルテンサイト逆変態終了温度を示している。
そして,この例では,約250℃からベイナイト変態が開始されていることが分る。
【0043】
次に,上記の各温度において時効及び変態処理した試料1について,その等温変態温度と硬さ(Hv0.1)との関係を図5に示した。上記硬さは,マイクロビッカースにより,荷重100gにて3〜5点測定を行なった。
同図より,200〜300℃までの間は,硬さの低下は余り見られないが,300℃を越えると,著しく硬さが低下することが分る。なお,200〜250℃の間は殆ど同じ硬さを維持していることが分る。
【0044】
また,析出ベイナイト(γ)相は,上記のごとく温度が低いほど緻密で針状析出物も小さい。これらのことを考慮すると,析出ベイナイト(γ)相を,転位や応力誘起マルテンサイト相のピン止め効果として利用するには,硬さが高い方が良いと考えられるため,変態量の制御の容易さ,組織の緻密さから考えて200〜270℃における時効及び変態処理温度がより望ましい。
【0045】
次に,図6は,上記試料1について300℃,3分の時効及び変態処理を行なった本発明にかかる銅系合金と,上記試料1について200℃,15分の時効及び変態処理をしたオーステナイト(β)単相の比較試料1についての,ひずみと応力との引張サイクル特性を示したものである。
同図より,本発明にかかる銅系合金(実線)は,ひずみ1%以上において100MPa以上の高い応力を有する。
これに対して比較例にかかる銅系合金(点線)は,ひずみ5%以上において若干100MPa程度を発揮するにすぎない。
このように,本発明の銅系合金は優れた超弾性を有することが分る。
【0046】
実験例2
上記実験例1に示した試料1について,曲げ実験を行なった。上記試料1は,200℃で,15,178分の各時効及び変態処理を行なった。
その結果を図7に示す。
まず,上記曲げ実験は,直線状態で長さ80mm,直径1mmの銅系合金線材1を,間隔71.5mmに配置した固定枠2,2の間に,半径49.5mmの円弧状に曲げて固定した。線材1が均一に曲がるとすると,ひずみは1%に相当する。
【0047】
同図より知られるとごく,200℃で178分の時効及び変態処理をしたものは,局部折れの発生がなく,一方200℃で15分の時効及び変態処理をしたものは,局部折れが発生していた。
このことより,200℃で178分の時効を行う場合には,オーステナイト(β)相内或いは結晶粒界の一方又は双方に,ベイナイト(γ)相が析出しているため,局部折れが発生せず,一方200℃で15分の時効を行う場合にはベイナイト(γ)相が析出していないため局部折れが発生すると考えられる。
【0048】
次に,図8は結晶粒の粗大化について説明している。
即ち,同図において,(A)に示す銅系合金線材1について,その結晶粒10の粗大化を図ると,(B)に示すごとく,粗大化した結晶粒10の間に節が形成され,銅系合金線材はいわゆるバンブー構造を呈する。
同図(B)は,線材直径(S)に対する平均結晶粒子径(C)の比(C/S)が1.0以上であることを示している。
【0049】
本発明は,バンブー構造になっても,上記のごとく,オーステナイト(β)相内或いは結晶粒界にベイナイト(γ)相を析出させ,オーステナイト(β)単相としないことにより,降伏応力の低下防止を図っているものである。
【0050】
実験例3
8.12質量%Al−9.73質量%Mn−0.52質量%Co−残部Cuよりなる銅系合金の線材(直径1mm)を用い,実験例1と同様に結晶粒を粗大化させるため850℃で5分間加熱保持し,空冷処理を4回行い850℃で,5分加熱後,水焼入れを行なった。
これによりオーステナイト(β)相単相とした,焼入れたままの試料2〜6を多数準備した。
【0051】
次に,これらにつき,表1に示すごとく,各種温度と時間において時効及び変態処理を行った。この処理に当っては,目的とする時効及び変態処理の温度に設定した炉内に上記線材を投入し,その温度に所定時間等温保持した。
【0052】
上記処理の後各試料について,上記図6に示したものと同様に,ひずみと応力との引張サイクル特性を測定した。
これにより,超弾性特性を測定した。その結果を表1に示した。
表1より,試料No.3及びNo.6は,200℃又は300℃における処理時間が長すぎて,ベイナイト変態が終了し,超弾性特性が得られなかった。
【0053】
【表1】

Figure 0004275334

【図面の簡単な説明】
【図1】 実験例1における,ベイナイト変態TTT線図。
【図2】 実験例1における,各種時効及び変態処理後の金属組成を示すSEM写真(倍率1000倍)
【図3】 図2につづく,同様のSEM写真。
【図4】 実験例1における,DSC測定の説明図。
【図5】 実験例1における,等温変態完了後の硬さを示す線図。
【図6】 実験例1における,応力−ひずみ線図。
【図7】 実験例2における,曲げ実験の説明図。
【図8】 実験例2における,結晶粒粗大化,バンブー構造の説明図。
【符号の説明】
1...銅系合金線材,
10...結晶粒,[0001]
【Technical field】
The present invention relates to a copper alloy excellent in shape memory characteristics and superelasticity and a method for producing the same.
[0002]
[Prior art]
Conventionally, as a copper alloy having shape memory characteristics and superelasticity, for example, there is one disclosed in Japanese Patent Application Laid-Open No. 2001-20026.
Then, there are more and Al3~10 wt%, and Mn5~20 mass%, Ni, Co, Fe, Ti, and additive elements 0.001 to 10 mass%, such as misch metal, the balance being Cu and unavoidable impurities The copper-type alloy which consists of the composition which consists of and consists of an austenite ((beta)) phase single phase is shown.
This copper-based alloy has excellent shape memory characteristics and superelasticity.
[0003]
By the way, in the case of a copper-based alloy having shape memory characteristics and superelasticity, particularly when this is used as a spring material, it is required to improve the superelasticity.
In order to improve this superelasticity, it is effective to coarsen the crystal grains of the austenite (β) phase.
[0004]
[Problems to be solved]
However, when the austenite (β) phase crystal grains are coarsened as described above, a so-called bamboo structure is formed in which a part of a node is partially formed. When such a bamboo structure is generated and the austenite (β) phase crystal grains are increased as described above, the yield stress of the copper-based alloy decreases.
Therefore, there is a limit to the improvement of superelasticity by increasing the austenite (β) phase crystal grains.
[0005]
In view of such conventional problems, the present invention provides a copper-based alloy having a high yield stress, shape memory characteristics and superelasticity, and a method for producing the same, even if the crystal grains become coarse enough to generate a bamboo structure. Is to provide.
[0006]
[Means for solving problems]
The first invention has shape memory characteristics and superelasticity,
A copper-based alloy comprising Al 3 to 10% by mass, Mn 5 to 20% by mass, Co 0.001 to 2% by mass, the balance Cu and inevitable impurities,
The recrystallized structure precipitates a bainite (γ) phase in at least one of the austenite (β) phase and the grain boundary,
Further, the copper alloy is a wire, and in a bamboo structure in which the ratio (C / S) of the average crystal grain size (C) to the wire diameter (S) is 1.0 or more, the yield stress is 100 MPa or more. The copper-based alloy made of Al-Mn-Co-Cu is characterized in that (Claim 1).
[0007]
In the first invention, Al needs to be 3 to 10% by mass. If it is less than 3% by mass, it is difficult for the copper alloy to form an austenite (β) phase, whereas if it exceeds 10% by mass, the copper alloy becomes brittle. In addition, Al6-10 mass% is still more preferable.
Mn is necessary for expanding the composition range in which the austenite (β) phase can exist to the low Al side and improving the cold workability of the copper-based alloy. If Mn is less than 5% by mass, cold workability is inferior and it becomes difficult to form an austenite (β) phase. On the other hand, when it exceeds 20% by mass, the shape memory characteristics are deteriorated. In addition, More preferably, it is 8-12 mass%.
Further, Co is required to be 0.001 to 2% by mass. Co is an element effective for strengthening the base organization (see paragraph “0025” described later).
In the present invention, the recrystallized structure is not an austenite (β) phase single phase as in the above-mentioned conventional copper-based alloys, but within the austenite (β) phase or one or both of the grain boundaries. Is deposited.
Therefore, even if the grain structure is coarsened to increase the shape memory characteristics and superelasticity to generate a bamboo structure, a high yield stress of, for example, 100 MPa or more can be obtained.
[0008]
In the present invention, the shape memory property is a phenomenon in which even if deformation is performed at a temperature below a certain recovery temperature, the shape returns to the original shape when heated to a temperature above the recovery temperature. Superelasticity is a temperature above the recovery temperature. Even if it is bent or stretched, it returns to its original shape like rubber when the load is removed.
[0009]
According to the present invention, even if the crystal grains are coarsened to the extent that a bamboo structure is generated , the copper-based wire material is made of Al—Mn—Co—Cu having high yield stress, shape memory characteristics and superelasticity. Alloys can be provided.
[0010]
Next, the second invention has shape memory characteristics and superelasticity,
A copper-based alloy comprising Al 3 to 10% by mass, Mn 5 to 20% by mass, Co 0.001 to 2% by mass, the balance Cu and inevitable impurities,
The recrystallized structure precipitates a bainite (γ) phase in at least one of the austenite (β) phase and the grain boundary,
Further, the copper-based alloy is a plate material, and the yield stress is 100 MPa or more in a bamboo structure in which the ratio (C / P) of the average crystal grain size (C) to the plate material thickness (P) is 1.0 or more. The copper-based alloy made of Al-Mn-Co-Cu is characterized in that (Claim 2 ).
[0011]
In the second invention, Al needs to be 3 to 10% by mass . If it is less than 3% by mass, it is difficult for the copper alloy to form an austenite (β) phase, whereas if it exceeds 10% by mass , the copper alloy becomes brittle. In addition, Al6-10 mass % is still more preferable.
Mn is necessary for expanding the composition range in which the austenite (β) phase can exist to the low Al side and improving the cold workability of the copper-based alloy. If Mn is less than 5% by mass , cold workability is inferior and it becomes difficult to form an austenite (β) phase. On the other hand, when it exceeds 20% by mass , the shape memory characteristics are deteriorated. In addition, More preferably, it is 8-12 mass %.
Further, Co is required to be 0.001 to 2% by mass. Co is an element effective for strengthening the base organization (see paragraph “0025” described later).
[0012]
In the present invention, the recrystallized structure is not an austenite (β) phase single phase as in the above-mentioned conventional copper-based alloys, but within the austenite (β) phase or one or both of the grain boundaries. Is deposited.
Therefore, even if the grain structure is coarsened to increase the shape memory characteristics and superelasticity to generate a bamboo structure, a high yield stress of, for example, 100 MPa or more can be obtained.
[0013]
Therefore, according to the second aspect of the present invention, even if the crystal grains are coarsened to the extent that the bamboo structure is generated, it is made of Al—Mn—Co—Cu having high yield stress, shape memory characteristics and superelasticity . A copper alloy of a plate material can be provided.
[0014]
Next, the third invention relates to a copper-based alloy of a wire or plate made of a composition comprising Al 3 to 10% by mass , Mn 5 to 20% by mass, Co 0.001 to 2% by mass, the balance Cu and inevitable impurities. And the recrystallized structure precipitates a bainite (γ) phase in at least one of the austenite (β) phase and the grain boundary,
In the bamboo structure in which the ratio (C / S) of the average crystal grain size (C) to the wire diameter (S) is 1.0 or more, the yield stress is 100 MPa or more.
The above plate has a shape memory characteristic and superelasticity in a bamboo structure in which the ratio (C / P) of the average crystal grain size (C) to the plate thickness (P) is 1.0 or more, and the yield stress is 100 MPa or more. , A method of producing a copper-based alloy of wire or plate,
After the above composition is heated and held at a temperature in the austenite (β) phase region, it is rapidly cooled at a rate of 230 ° C./second or more so that the α phase does not appear, and then subjected to aging and transformation treatment in the range of 200 to 300 ° C. The present invention resides in a method for producing a copper-based alloy made of Al-Mn-Co-Cu (claim 3 ).
[0015]
In the present invention, the above composition is heated and held at a temperature that becomes an austenite (β) phase region, and then rapidly cooled at a rate of 230 ° C./second or more so as not to cause the α phase to appear , and then aging and heating at 200 to 300 ° C. Transformation processing is performed.
Therefore, the recrystallized structure is not an austenite (β) phase single phase, but a bainite (γ) phase precipitated in one or both of the austenite (β) phase and the grain boundary. Therefore, the crystal grains can be coarsened, and a high yield stress can be obtained even if a bamboo structure is generated by the coarsening of the crystal grains.
[0016]
In the third aspect of the invention, the above composition is used, heated and held at a temperature in the austenite (β) phase region, and then rapidly cooled at such a rate that no α phase is produced.
If the α phase is generated during the rapid cooling, there is a problem that shape memory characteristics and superelastic characteristics cannot be obtained. Above the "rate that α-phase does not come out", for example in the case of 8.10 mass% Al-10.2 wt% Mn-0.51 mass% Co- balance Cu is more than 230 ° C. / sec Is speed.
[0017]
The aging and transformation treatment after the rapid cooling is performed at 200 to 300 ° C. If it is less than 200 ° C., the aging treatment and the transformation treatment become long, and there is a problem that the treatment cost increases. On the other hand, when the temperature exceeds 300 ° C., the precipitated bainite (γ) phase becomes coarse, the copper alloy becomes brittle, and the processing time range becomes narrow, making it difficult to control.
The above aging and transformation treatment may be performed for a shorter time as the temperature is higher. For example, it is preferably 55 to 300 minutes at 200 ° C, 8 to 30 minutes at 250 ° C, and 1 to 5 minutes at 300 ° C ( (See FIG. 1).
[0018]
More preferably, the aging treatment and the transformation treatment are performed at 200 to 300 ° C., and the time (t) minutes with respect to the temperature (T) ° C. are T = −26Ln (t) +304 and T = −25Ln (t) +339. This is done in the range surrounded by. The solid line and the broken line in FIG.
[0019]
In the third invention, a copper alloy similar to that shown in the first and second inventions can be obtained. Therefore, according to the present invention, Al—Mn—Co—Cu of a wire or plate having high yield stress, shape memory characteristics and superelasticity even when crystal grains become coarse enough to generate a bamboo structure. it is possible to provide a more becomes copper-based alloy及.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the first invention, the copper-based alloy having shape memory properties and superelasticity are copper-based alloy having the above-described as the Al-Mn-Co-Cu.
Further, the copper-based alloy is an austenite (beta) phase and bainite (gamma) copper-based alloy which generates a phase, that contain Al, Mn, and Co in addition to Cu.
Further, the bainite (γ) phase in the recrystallized structure may be precipitated in either or both of the austenite (β) phase and the crystal grain boundary.
[0021]
Next, the bainite (gamma) phase has preferably be bainite transformation is not completely finished.
In this case, because of an appropriate amount of bainite (γ) phase, a high yield stress of, for example, 100 MPa or more can be obtained while maintaining superelastic characteristics.
[0022]
Next, Oite above SL, as the unavoidable impurities, for example O, N, and the like.
[0023]
Next, the copper-based alloy further includes Ni , Fe , Ti, V, Cr, Si, Nb, Mo, W, Sn, Sb, Mg, P, Be, Zr, Zn, B, C, Ag, and Misch metal. one or more than consisting additive elements of, as 100% by mass of the entire alloy, have preferred to contain 0.001 to 10 mass% in total.
[0024]
As the additive element, one or more of the elements listed above are used.
Of these, Ni and Co are particularly preferred. These elements exhibit the effect of improving the strength of the copper alloy by solid solution strengthening while maintaining cold workability.
The content of the additive elements, as 100 parts by mass of the entire alloy is preferably from 0.001 to 10 mass% in total, especially 0.001 to 5% by mass. If the total content of these elements exceeds 10% by mass , the martensitic transformation temperature decreases and the β single-phase structure becomes unstable.
[0025]
Next, Co , Ni, Fe, Sn and Sb are effective elements for strengthening the base structure. The preferable contents of Ni and Fe are 0.001 to 3% by mass, respectively. Co is strengthened by precipitation due to the formation of CoAl, but when it is excessive, the toughness of the alloy is lowered. Containing Yuryou of Co is 0.001 mass%. The preferred contents of Sn and Sb are 0.001 to 1% by mass, respectively.
[0026]
Ti combines with N and O, which are elements that impede alloy properties, to form oxides and nitrides. Further, when added in combination with B, boride is formed and contributes to precipitation strengthening. The preferable content of Ti is 0.001 to 2% by mass .
[0027]
W, V, Nb, Mo and Zr have the effect of improving hardness and improving wear resistance. Further, since these elements hardly dissolve in the alloy matrix, they precipitate as bcc crystals and are effective for precipitation strengthening. Preferable contents of W, V, Nb, Mo and Zr are 0.001 to 1% by mass, respectively.
[0028]
Cr is an effective element for maintaining wear resistance and corrosion resistance. The preferable content of Cr is 0.001 to 2% by mass .
Si has the effect of improving the corrosion resistance. The preferable content of Si is 0.001 to 2% by mass .
[0029]
Mg removes N and O, which are elements that hinder the alloy properties, and fixes S, which is an inhibitory element, as a sulfide, which is effective in improving hot workability and toughness. It causes segregation and causes embrittlement. A preferable content of Mg is 0.001 to 0.5 mass %.
[0030]
P acts as a deoxidizer and has the effect of improving toughness. The preferable content of P is 0.01 to 0.5% by mass .
Be has the effect of strengthening the base organization. The preferable content of Be is 0.001 to 1% by mass .
[0031]
Zn has the effect of increasing the shape memory temperature. The preferable content of Zn is 0.001 to 5% by mass .
B and C segregate at the grain boundaries and have the effect of strengthening the grain boundaries, and the effect of precipitating boride and carbide at the grain boundaries to refine the crystal grains. The preferable content of B and C is 0.001 to 0.5% by mass, respectively.
[0032]
Ag has the effect of improving cold workability. The preferable content of Ag is 0.001 to 2% by mass .
Misch metal acts as a deoxidizer and has the effect of improving toughness. The preferred content of misch metal is 0.001 to 5 mass %.
[0033]
Then, if the copper based alloy of the wire, is該線material, even in the bamboo structure ratio of the mean crystal grain size (C) for the wire diameter (S) (C / S) is 1.0 or more, the yield in stress 100M P a higher, that having a shape memory property and superelasticity.
[0034]
In this case, it is possible to obtain a copper alloy wire having excellent properties such as yield stress of 100 MPa or more, and having shape memory characteristics and superelasticity. The wire diameter (S) has a unit of μm, and the average crystal grain size (C) has a unit of μm.
[0035]
Next, the copper-based alloy For plate, the plate material, even in the bamboo structure ratio of the average grain size for the plate thickness (P) (C) (C / P) is 1.0 or more, the yield in stress 100M P a higher, that having a shape memory property and superelasticity.
In this case, it is possible to obtain a copper-based alloy plate similar to the case of the wire. The unit of plate thickness (P) is μm.
[0036]
Then, in the manufacturing method of the third aspect of the present invention, Ru obtain a yield stress 100MPa or more shape memory properties and copper-based alloy consisting of Al-Mn-Co-Cu having superelastic.
In this case, it is possible to obtain a copper-based alloy having shape memory characteristics and superelasticity having excellent yield stress and elongation.
[0037]
【Example】
Experimental example 1
In order to coarsen the crystal grains using a copper alloy wire (diameter: 1 mm) composed of 8.07 mass % Al-9.68 mass % Mn-0.51 mass % Co-balance Cu, austenite (β ) Phase region) for 5 minutes, air-cooled 4 times, heated at 850 degrees (austenite (β) phase region) for 5 minutes and then water quenched. As a result, a number of as-quenched samples 1 having a single austenite (β) phase were prepared.
[0038]
Next, the sample 1 was subjected to aging and transformation treatment at various temperatures and times.
That is, the sample 1 was heated up to a target aging and transformation temperature at a rate of 99 ° C./min, kept at that temperature for a predetermined time, confirmed transformation, and the measurement was completed.
The start and end of transformation were measured by DSC (Differential Scanning Calorimetry). Each said sample 1 was 23-25 mg.
[0039]
200, 230, 250, 260, 270, 280, 290, 300, 320, 400, and 500 ° C. were used for isothermal maintenance of the above aging and transformation treatment. It should be noted that at 320 ° C. or higher, transformation starts during the temperature rise, and thus the transformation start and end times could not be measured.
A bainite transformation TTT diagram in the above aging and transformation treatment is shown in FIG.
[0040]
In FIG. 1, the left line indicates the start of transformation, the right line indicates the end of transformation, and black circles (●) and triangles (Δ) indicate the temperatures of the above measurements.
As can be seen from FIG. 1, the higher the isothermal transformation temperature, the faster the time from the start to the end of the transformation. In addition, aging and transformation treatment time can be shortened by increasing the temperature, but it becomes difficult to control the amount of precipitation of the bainite (γ) phase.
[0041]
Next, in order to observe the bainite (γ) phase in each of the samples 1, the cross section of the sample 1 after the above measurement was etched with a corrosive solution and observed using a SEM (scanning electron microscope).
The SEM photograph (magnification 1000 times) is shown in FIG. 2 and FIG. In both figures, the isothermal aging and transformation treatment temperatures at 200 ° C. to 500 ° C. are shown.
As can be seen from both figures, it can be seen that bainite (γ) phase is precipitated (needle crystals) in Sample 1, and the precipitated bainite (γ) phase is denser as the aging and transformation treatment temperatures are lower. Further, since the precipitated phase becomes brittle as it becomes coarser, it is better to perform aging and transformation treatment at a low temperature of 200 to 300 ° C.
[0042]
FIG. 4 exemplifies the relationship between the time when DSC measurement is performed and DSC (mw) for the sample 1. In the figure, Ms represents the martensite transformation start temperature, Mf represents the martensite transformation end temperature, As represents the martensite reverse transformation start temperature, and Af represents the martensite reverse transformation end temperature.
And in this example, it turns out that the bainite transformation is started from about 250 degreeC.
[0043]
Next, FIG. 5 shows the relationship between the isothermal transformation temperature and the hardness (Hv0.1) of Sample 1 that has been subjected to aging and transformation treatment at each of the above temperatures. The hardness was measured at 3 to 5 points with a load of 100 g using Micro Vickers.
From the figure, it can be seen that there is not much decrease in hardness between 200 and 300 ° C., but the hardness decreases remarkably when it exceeds 300 ° C. In addition, it turns out that the almost same hardness is maintained between 200-250 degreeC.
[0044]
In addition, the precipitation bainite (γ) phase is denser and the acicular precipitates are smaller as the temperature is lower as described above. Considering these facts, it is considered that the harder is better to use the precipitated bainite (γ) phase as a pinning effect for dislocations and stress-induced martensite phases. In view of the denseness of the structure, an aging temperature and a transformation temperature at 200 to 270 ° C. are more desirable.
[0045]
Next, FIG. 6 shows a copper alloy according to the present invention in which the sample 1 was subjected to aging and transformation treatment at 300 ° C. for 3 minutes, and austenite in which the sample 1 was subjected to aging and transformation treatment at 200 ° C. for 15 minutes. (Β) The tensile cycle characteristics of strain and stress for the single-phase comparative sample 1 are shown.
From the figure, the copper-based alloy (solid line) according to the present invention has a high stress of 100 MPa or more at a strain of 1% or more.
On the other hand, the copper-based alloy (dotted line) according to the comparative example only exhibits about 100 MPa at a strain of 5% or more.
Thus, it can be seen that the copper-based alloy of the present invention has excellent superelasticity.
[0046]
Experimental example 2
A bending experiment was performed on Sample 1 shown in Experimental Example 1. Sample 1 was subjected to aging and transformation treatment at 200 ° C. for 15,178 minutes.
The result is shown in FIG.
First, in the bending experiment, a copper-based alloy wire 1 having a length of 80 mm and a diameter of 1 mm in a straight state is bent into an arc shape having a radius of 49.5 mm between fixed frames 2 and 2 arranged at an interval of 71.5 mm. Fixed. If the wire 1 is bent uniformly, the strain corresponds to 1%.
[0047]
As can be seen from the figure, there was no local breakage in the case of aging and transformation for 178 minutes at 200 ° C, while local breakage in the case of aging and transformation for 15 minutes at 200 ° C. Was.
Therefore, when aging is performed at 200 ° C. for 178 minutes, local breakage occurs because the bainite (γ) phase is precipitated in the austenite (β) phase or one or both of the grain boundaries. On the other hand, when aging is performed at 200 ° C. for 15 minutes, it is considered that local breakage occurs because the bainite (γ) phase is not precipitated.
[0048]
Next, FIG. 8 explains the coarsening of crystal grains.
That is, in the figure, with respect to the copper alloy wire 1 shown in (A), when the crystal grains 10 are coarsened, as shown in (B), nodes are formed between the coarsened crystal grains 10, The copper-based alloy wire has a so-called bamboo structure.
FIG. 5B shows that the ratio (C / S) of the average crystal particle diameter (C) to the wire diameter (S) is 1.0 or more.
[0049]
As described above, the present invention reduces the yield stress by precipitating the bainite (γ) phase in the austenite (β) phase or in the grain boundary, and not forming the austenite (β) single phase as described above. It is intended to prevent it.
[0050]
Experimental example 3
In order to coarsen crystal grains in the same manner as in Experimental Example 1 using a copper alloy wire (diameter: 1 mm) made of 8.12 mass % Al-9.73 mass % Mn-0.52 mass % Co-balance Cu The mixture was heated and held at 850 ° C. for 5 minutes, air-cooled 4 times, heated at 850 ° C. for 5 minutes, and then water-quenched.
As a result, a large number of as-quenched samples 2 to 6 having a single austenite (β) phase were prepared.
[0051]
Next, as shown in Table 1, these were subjected to aging and transformation at various temperatures and times. In this treatment, the wire was put into a furnace set to the target aging and transformation temperature, and kept at that temperature for a predetermined time.
[0052]
For each sample after the above treatment, the tensile cycle characteristics of strain and stress were measured in the same manner as shown in FIG.
This measured the superelastic properties. The results are shown in Table 1.
From Table 1, Sample No. 3 and no. In No. 6, the treatment time at 200 ° C. or 300 ° C. was too long, the bainite transformation was completed, and no superelastic characteristics were obtained.
[0053]
[Table 1]
Figure 0004275334

[Brief description of the drawings]
1 is a bainite transformation TTT diagram in Experimental Example 1. FIG.
FIG. 2 is an SEM photograph showing the metal composition after various aging and transformation treatments in Experimental Example 1 (magnification 1000 times).
FIG. 3 is a similar SEM photograph following FIG.
4 is an explanatory diagram of DSC measurement in Experimental Example 1. FIG.
5 is a diagram showing hardness after completion of isothermal transformation in Experimental Example 1. FIG.
6 is a stress-strain diagram in Experimental Example 1. FIG.
7 is an explanatory diagram of a bending experiment in Experimental Example 2. FIG.
8 is an explanatory diagram of crystal grain coarsening and bamboo structure in Experimental Example 2. FIG.
[Explanation of symbols]
1. . . Copper alloy wire,
10. . . Crystal grains,

Claims (3)

形状記憶特性及び超弾性を有し,
Al3〜10質量%と,Mn5〜20質量%と,Co0.001〜2質量%と残部Cu及び不可避不純物とからなる銅系合金であって,
再結晶組織がオーステナイト(β)相内又は結晶粒界の少なくともいずれかにベイナイト(γ)相を析出させており,
また,該銅系合金は線材であり,その線材直径(S)に対する平均結晶粒径(C)の比(C/S)が1.0以上であるバンブー構造において,降伏応力が100MPa以上であることを特徴とするAl−Mn−Co−Cuよりなる銅系合金。
It has shape memory characteristics and superelasticity,
A copper-based alloy comprising Al 3 to 10% by mass, Mn 5 to 20% by mass, Co 0.001 to 2% by mass, the balance Cu and inevitable impurities,
The recrystallized structure precipitates a bainite (γ) phase in at least one of the austenite (β) phase and the grain boundary,
Further, the copper alloy is a wire, and in a bamboo structure in which the ratio (C / S) of the average crystal grain size (C) to the wire diameter (S) is 1.0 or more, the yield stress is 100 MPa or more. A copper-based alloy made of Al-Mn-Co-Cu .
形状記憶特性及び超弾性を有し,
Al3〜10質量%と,Mn5〜20質量%と,Co0.001〜2質量%と残部Cu及び不可避不純物とからなる銅系合金であって,
再結晶組織がオーステナイト(β)相内又は結晶粒界の少なくともいずれかにベイナイト(γ)相を析出させており,
また,該銅系合金は板材であり,その板材厚み(P)に対する平均結晶粒径(C)の比(C/P)が1.0以上であるバンブー構造において,降伏応力が100MPa以上であることを特徴とするAl−Mn−Co−Cuよりなる銅系合金。
It has shape memory characteristics and superelasticity,
A copper-based alloy comprising Al 3 to 10% by mass, Mn 5 to 20% by mass, Co 0.001 to 2% by mass, the balance Cu and inevitable impurities,
The recrystallized structure precipitates a bainite (γ) phase in at least one of the austenite (β) phase and the grain boundary,
Further, the copper-based alloy is a plate material, and the yield stress is 100 MPa or more in a bamboo structure in which the ratio (C / P) of the average crystal grain size (C) to the plate material thickness (P) is 1.0 or more. A copper-based alloy made of Al-Mn-Co-Cu .
Al3〜10質量%と,Mn5〜20質量%と,Co0.001〜2質量%と,残部Cu及び不可避不純物とよりなる組成物からなる線材又は板材の銅系合金であり,再結晶組織が,オーステナイト(β)相内又は結晶粒界の少なくともいずれかに,ベイナイト(γ)相を析出させており,
上記線材はその線材直径(S)に対する平均結晶粒径(C)の比(C/S)が1.0以上であるバンブー構造において降伏応力が100MPa以上であり,
上記板材はその板材厚み(P)に対する平均結晶粒径(C)の比(C/P)が1.0以上であるバンブー構造において降伏応力が100MPa以上である,
形状記憶特性及び超弾性を有する,線材または板材の銅系合金を製造する方法であって,
上記組成物をオーステナイト(β)相領域となる温度に加熱保持した後,α相を出現させない230℃/秒以上の速度で急冷し,次いで200〜300℃の範囲において,時効及び変態処理を行なうことを特徴とするAl−Mn−Co−Cuよりなる銅系合金の製造方法
It is a copper-based alloy of a wire or plate made of a composition comprising Al 3 to 10% by mass, Mn 5 to 20% by mass, Co 0.001 to 2% by mass, the balance Cu and inevitable impurities, and the recrystallized structure is A bainite (γ) phase is precipitated in at least one of the austenite (β) phase and the grain boundary;
In the bamboo structure in which the ratio (C / S) of the average crystal grain size (C) to the wire diameter (S) is 1.0 or more, the yield stress is 100 MPa or more.
The plate material has a yield stress of 100 MPa or more in a bamboo structure in which the ratio (C / P) of the average crystal grain size (C) to the plate material thickness (P) is 1.0 or more.
A method of manufacturing a copper alloy of wire or plate having shape memory characteristics and superelasticity,
After the above composition is heated and held at a temperature in the austenite (β) phase region, it is rapidly cooled at a rate of 230 ° C./second or more so that the α phase does not appear, and then subjected to aging and transformation treatment in the range of 200 to 300 ° C. The manufacturing method of the copper type alloy which consists of Al-Mn-Co-Cu characterized by this.
JP2001334816A 2001-10-31 2001-10-31 Copper-based alloy and manufacturing method thereof Expired - Fee Related JP4275334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334816A JP4275334B2 (en) 2001-10-31 2001-10-31 Copper-based alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334816A JP4275334B2 (en) 2001-10-31 2001-10-31 Copper-based alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003138330A JP2003138330A (en) 2003-05-14
JP4275334B2 true JP4275334B2 (en) 2009-06-10

Family

ID=19149891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334816A Expired - Fee Related JP4275334B2 (en) 2001-10-31 2001-10-31 Copper-based alloy and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4275334B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014409B (en) * 2011-09-21 2016-04-06 三菱伸铜株式会社 The Cu-Ni-Si series copper alloy of projection welding excellent and manufacture method thereof
CN102808106B (en) * 2012-08-24 2015-04-22 戴初发 Shape memory alloy
KR20140102846A (en) * 2013-02-15 2014-08-25 한국산업기술대학교산학협력단 Shape-memory alloy having excellent cold workability
WO2015137283A1 (en) * 2014-03-14 2015-09-17 古河電気工業株式会社 Cu-Al-Mn-BASED ALLOY MATERIAL, METHOD FOR PRODUCING SAME, AND ROD-LIKE OR SHEET-LIKE MATERIAL USING SAME
CN116005033A (en) * 2022-12-06 2023-04-25 北京科技大学 High super-elasticity Cu-Ni-Ga shape memory alloy microfilament and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336225A (en) * 1989-06-30 1991-02-15 Aichi Steel Works Ltd Metallic thin wire having single crystal chain structure and its manufacture
JP3335224B2 (en) * 1993-08-27 2002-10-15 清仁 石田 Method for producing high formability copper-based shape memory alloy
JP4339940B2 (en) * 1998-07-03 2009-10-07 清仁 石田 Catheter and manufacturing method thereof
JP3344946B2 (en) * 1998-06-26 2002-11-18 清仁 石田 Functionally graded alloy and method for producing the same
JP2000345255A (en) * 1998-11-04 2000-12-12 Toto Ltd Cu-Zn-Sn ALLOY HAVING SHAPE MEMORY CHARACTERISTIC AND PRODUCTION OF BRASS ARTIFACT
JP2000169920A (en) * 1998-12-03 2000-06-20 Kiyohito Ishida Copper base alloy having shape memory characteristic and superelasticity, and its production
JP3300684B2 (en) * 1999-07-08 2002-07-08 清仁 石田 Copper-based alloy having shape memory characteristics and superelasticity, member made of the same, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003138330A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP4996468B2 (en) High heat resistance, high strength Co-based alloy and method for producing the same
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
WO2014042160A1 (en) Cu-al-mn based alloy material exhibiting stable superelasticity and manufacturing process therefor
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP2004035974A (en) PRECIPITATION STRENGTHENING TYPE Co-Ni-BASED HEAT RESISTANT ALLOY AND MANUFACTURING METHOD THEREFOR
JP3559681B2 (en) Steam turbine blade and method of manufacturing the same
JP3564304B2 (en) Heat treatment method for Ni-base heat-resistant alloy
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP5144269B2 (en) High-strength Co-based alloy with improved workability and method for producing the same
JPS5834129A (en) Heat-resistant metallic material
JP4275334B2 (en) Copper-based alloy and manufacturing method thereof
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
KR910008004B1 (en) Memorial alloy with high strength & the making method
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP2000169920A (en) Copper base alloy having shape memory characteristic and superelasticity, and its production
JP2004190060A (en) Heat-resistant alloy for engine valve
JP2001158943A (en) Heat resistant bolt
JPH06293929A (en) Beta titanium alloy wire and its production
Kim et al. Microstructures and mechanical behavior of Ti-(38+ x) Ni-12Cu (at%)(x= 0∼ 3) alloys
JPS6013050A (en) Heat-resistant alloy
JP2573499B2 (en) TiNiCuV quaternary shape memory alloy
JP7009928B2 (en) Fe—Ni based alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees