JP2000169920A - Copper base alloy having shape memory characteristic and superelasticity, and its production - Google Patents

Copper base alloy having shape memory characteristic and superelasticity, and its production

Info

Publication number
JP2000169920A
JP2000169920A JP34443598A JP34443598A JP2000169920A JP 2000169920 A JP2000169920 A JP 2000169920A JP 34443598 A JP34443598 A JP 34443598A JP 34443598 A JP34443598 A JP 34443598A JP 2000169920 A JP2000169920 A JP 2000169920A
Authority
JP
Japan
Prior art keywords
copper
based alloy
weight
crystal orientation
single phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34443598A
Other languages
Japanese (ja)
Inventor
Kiyohito Ishida
清仁 石田
Ryosuke Kainuma
亮介 貝沼
Yuji Sudo
祐司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34443598A priority Critical patent/JP2000169920A/en
Publication of JP2000169920A publication Critical patent/JP2000169920A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a copper base alloy having high shape memory characteristics and superelasticity wile maintaining excellent workability. SOLUTION: This copper base alloy, which has shape memory characteristics and superelasticity and whose crystal structure is the recrystallized texture in which the crystal orientation of βsingle phase is arranged, is produced by executing forming by cold working including annealing, solution heat treatment, quenching and aging treatment, and the cold working is executed at the total working ratio after the final annealing so as to control the abundance ratio in the specified crystal orientation of the βsingle phase in the working direction measured by an electron back scattering pattern method to >=2.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は銅系合金及びその製
造方法に関し、特に形状記憶特性及び超弾性に優れた銅
系合金及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy and a method for producing the same, and more particularly, to a copper alloy having excellent shape memory characteristics and superelasticity and a method for producing the same.

【0002】[0002]

【従来の技術】TiNi合金、銅系合金等の形状記憶合
金は、マルテンサイト変態の逆変態に付随して顕著な形
状記憶効果及び超弾性を示すことが良く知られている。
なかでもTiNi合金は生活環境温度近辺で優れた機能
を持つことから、電子レンジのダンパー、エアコン風向
制御、炊飯器蒸気調圧弁、建築用の換気口、携帯電話の
アンテナ、眼鏡フレーム等の幅広い分野で実用化されて
いる。TiNiは、銅系合金に比して繰り返し特性、耐
食性等多くの点で優れているが、コストが銅系合金の1
0倍以上であり、その点でより低コストの合金が望まれ
ている。
2. Description of the Related Art It is well known that shape memory alloys such as TiNi alloys and copper-based alloys exhibit a remarkable shape memory effect and superelasticity accompanying the reverse transformation of martensitic transformation.
Above all, TiNi alloy has excellent functions in the vicinity of living environment temperature, so it is used in a wide range of fields such as microwave oven damper, air conditioner wind direction control, rice cooker steam pressure regulating valve, ventilator for construction, mobile phone antenna, eyeglass frame, etc. Has been put to practical use. TiNi is superior to copper-based alloys in many aspects such as repetition characteristics and corrosion resistance, but is less expensive than copper-based alloys.
There is a need for alloys that are 0 times or more, and in that respect lower cost.

【0003】そのような要望の中で、コスト的に有利な
銅系形状記憶合金についての実用化研究がなされてき
た。しかし、銅系合金には冷間加工性の悪いものが多
く、実用化への障害となっている。そこで、本発明者ら
は冷間加工性に優れたβ単相構造のCu−Al−Mn系
形状記憶合金について先に提案した(特開平7-62472
号)。
[0003] In response to such a demand, research into practical use of a copper-based shape memory alloy which is advantageous in terms of cost has been made. However, many copper-based alloys have poor cold workability, which hinders practical application. Then, the present inventors have previously proposed a Cu-Al-Mn-based shape memory alloy having a β single phase structure excellent in cold workability (Japanese Patent Laid-Open No. 7-62472).
issue).

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の方法で
製造したCu−Al−Mn系形状記憶合金の特性、特に
超弾性が十分ではなく、90%以上の形状回復を示す最
大与ひずみは2〜3%程度である。その理由として、溶
体化処理後の焼入れは900℃もの高温から行うため
に、結晶粒の成長が避けられず、さらに特定の結晶方位
が得られないことが挙げられる。
However, the characteristics of the Cu-Al-Mn-based shape memory alloy produced by the conventional method, particularly the superelasticity is not sufficient, and the maximum applied strain showing a shape recovery of 90% or more is 2%. About 3%. The reason is that quenching after the solution treatment is performed at a temperature as high as 900 ° C., so that the growth of crystal grains cannot be avoided and a specific crystal orientation cannot be obtained.

【0005】従って、本発明の目的は、これらの問題を
解決し、優れた加工性を維持しながら、高い形状記憶特
性及び超弾性を持つ銅系合金、及びその製造方法を提供
することである。
Accordingly, it is an object of the present invention to solve these problems and to provide a copper-based alloy having high shape memory characteristics and superelasticity while maintaining excellent workability, and a method for producing the same. .

【0006】[0006]

【課題を解決するための手段】上記課題を鑑み鋭意研究
の結果、本発明者らは結晶組織中のβ単相の結晶方位を
揃えることにより、形状記憶特性及び超弾性が大きく向
上することを発見し、また、冷間加工時の加工率及び溶
体化処理がβ単相の結晶方位の揃え具合に関係している
ことを発見し、本発明を完成した。
Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventors have found that the shape memory characteristics and superelasticity are greatly improved by aligning the crystal orientation of the β single phase in the crystal structure. The inventors have found that the working ratio and the solution treatment during the cold working are related to the degree of alignment of the crystal orientation of the β single phase, and have completed the present invention.

【0007】すなわち、本発明の銅系合金は、形状記憶
及び超弾性を有し、実質的にβ単相からなる銅系合金で
あり、結晶組織は前記β単相の結晶方位が揃っている再
結晶集合組織であることを特徴とする。
That is, the copper-based alloy of the present invention is a copper-based alloy having shape memory and superelasticity and substantially consisting of a β single phase, and has a crystal structure in which the β single phase has the same crystal orientation. It has a recrystallized texture.

【0008】また上記銅系合金を製造する本発明の方法
は、焼鈍を含む冷間加工により成形し、溶体化処理、焼
入れ及び時効処理を行って、実質β単相からなる銅系合
金を製造し、電子背面散乱パターン法によって測定され
た前記加工方向における前記β単相の特定結晶方位の存
在頻度が2.0 以上になるような最終焼鈍後の合計加工率
で前記冷間加工を行うことを特徴とする。
In the method of the present invention for producing a copper-based alloy, a copper-based alloy substantially consisting of a single β phase is produced by cold working including annealing, solution treatment, quenching and aging treatment. The cold working is performed at a total working ratio after final annealing such that the frequency of existence of the specific crystal orientation of the β single phase in the working direction measured by an electron backscattering pattern method is 2.0 or more. And

【0009】[0009]

【発明の実施の形態】本発明の銅系合金は、実質的にβ
単相からなり、β単相の<110>、<100>等の特
定の結晶方位が圧延又は伸線などの冷間加工方向に揃え
た再結晶集合組織になっている。電子背面散乱パターン
(electron back scattering pattern)法で測定された
合金組織の結晶方位の存在頻度で表せば、本発明の銅系
合金の加工方向における特定結晶方位の存在頻度は2.0
以上であり、好ましくは2.5 以上である。以下は本発明
の銅系合金について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The copper-based alloy of the present invention has a substantially β
It is composed of a single phase, and has a recrystallized texture in which specific crystal orientations such as <110> and <100> of the β single phase are aligned with a cold working direction such as rolling or drawing. When expressed by the frequency of the crystal orientation of the alloy structure measured by the electron back scattering pattern method, the frequency of the specific crystal orientation in the working direction of the copper-based alloy of the present invention is 2.0.
Or more, preferably 2.5 or more. Hereinafter, the copper-based alloy of the present invention will be described in detail.

【0010】[1] 銅系合金の組成 本発明の銅系合金は高温でβ相(体心立方)単相に、低
温でβ+α(面心立方)の2相組織になる合金であり、
少なくともCu及びAlを含有している。本発明の銅系
合金の好ましい具体例として、3〜10重量%のAl、
及び5〜20重量%のMnを含有し、残部Cuと不可避
的不純物からなる組成が挙げられる。
[1] Composition of Copper-Based Alloy The copper-based alloy of the present invention is an alloy having a two-phase structure of β phase (body-centered cubic) at a high temperature and β + α (face-centered cubic) at a low temperature.
It contains at least Cu and Al. As preferred specific examples of the copper-based alloy of the present invention, 3 to 10% by weight of Al,
And Mn in an amount of 5 to 20% by weight, the balance being Cu and inevitable impurities.

【0011】Al元素の含有量が3重量%未満では、β
単相を形成できず、また10重量%を超えると極めて脆
くなる。Al元素の含有量はMn元素の組成によって変
化するが、好ましいAl元素の含有量は6〜10重量%で
ある。
When the content of the Al element is less than 3% by weight, β
A single phase cannot be formed, and if it exceeds 10% by weight, it becomes extremely brittle. Although the content of the Al element varies depending on the composition of the Mn element, the preferable content of the Al element is 6 to 10% by weight.

【0012】Mn元素を含有することにより、β相の存
在範囲が低Al側へ広がり、冷間加工性が著しく向上す
るので、成形加工が容易になる。Mn元素の添加量が5
重量%未満では満足な加工性が得られず、かつβ単相の
領域を形成することができない。またMn元素の添加量
が20重量%を超えると、十分な形状回復特性が得られ
ない。好ましいMnの含有量は8〜12重量%である。
By containing the Mn element, the range of existence of the β phase is widened toward the low Al side, and the cold workability is remarkably improved, thereby facilitating the forming process. Mn element addition amount is 5
If the amount is less than about 30% by weight, satisfactory workability cannot be obtained, and a β single phase region cannot be formed. If the amount of the Mn element exceeds 20% by weight, sufficient shape recovery characteristics cannot be obtained. The preferred Mn content is 8 to 12% by weight.

【0013】上記組成のCu−Al−Mn合金は熱間加
工性及び冷間加工性に富み、冷間で20%〜90%又は
それ以上の加工率が可能になり、従来困難であった極細
線、箔、パイプ等に容易に成形加工することができる。
[0013] The Cu-Al-Mn alloy having the above composition is rich in hot workability and cold workability, and enables a work ratio of 20% to 90% or more in a cold state, and has been difficult to achieve in the past. It can be easily formed into wire, foil, pipe, etc.

【0014】上記成分元素以外に、本発明の銅系合金は
さらに、Ni、Co、Fe、Ti、V、Cr、Si、N
b、Mo、W、Sn、Mg、P、Be、Sb、Cd、A
s、Zr、Zn、B、C、Ag及びミッシュメタルから
なる群より選ばれた1種又は2種以上を含有することが
できる。その中でも特にNi及び/又はCoが好まし
い。これらの元素は冷間加工性を維持したまま結晶粒を
微細化して銅系合金の強度を向上させる効果を発揮す
る。これらの添加元素の含有量は合計で0. 001〜1
0重量%であるのが好ましく、特に0.001 〜5重量%が
好ましい。これら元素の含有量が10重量%を超えると
マルテンサイト変態温度が低下し、β単相組織が不安定
になる。
In addition to the above component elements, the copper alloy of the present invention further comprises Ni, Co, Fe, Ti, V, Cr, Si, N
b, Mo, W, Sn, Mg, P, Be, Sb, Cd, A
One or more selected from the group consisting of s, Zr, Zn, B, C, Ag and misch metal can be contained. Among them, Ni and / or Co are particularly preferable. These elements exhibit the effect of refining the crystal grains while maintaining the cold workability and improving the strength of the copper-based alloy. The total content of these additional elements is 0.001-1.
It is preferably 0% by weight, particularly preferably 0.001 to 5% by weight. When the content of these elements exceeds 10% by weight, the martensitic transformation temperature decreases and the β single phase structure becomes unstable.

【0015】Ni、Co、Fe、Snは基地組織の強化
に有効な元素である。Ni、Feの好ましい含有量はそ
れぞれ0.001 〜3重量%である。CoはまたCoAlの
形成により結晶粒を微細化するが、過剰になると合金の
靭性を低下させる。Coの好ましい含有量は0.001 〜2
重量%である。Snの好ましい含有量は0.001 〜1重量
%である。
Ni, Co, Fe and Sn are effective elements for strengthening the base structure. The preferred contents of Ni and Fe are 0.001 to 3% by weight, respectively. Co also refines the crystal grains by forming CoAl, but excessively decreases the toughness of the alloy. The preferred content of Co is 0.001 to 2
% By weight. The preferred content of Sn is 0.001 to 1% by weight.

【0016】Tiは阻害元素であるN及びOと結合し酸
窒化物を形成する。またBとの複合添加によってボライ
ドを形成し、結晶粒を微細化し、形状回復率を向上させ
る。Tiの好ましい含有量は0.001 〜2重量%である。
[0016] Ti combines with the inhibitory elements N and O to form oxynitride. In addition, boron is formed by addition of B in combination to refine the crystal grains and improve the shape recovery rate. The preferred content of Ti is 0.001-2% by weight.

【0017】V、Nb、Mo、Zrは硬さを高める効果
を有し、耐摩耗性を向上させる。またこれらの元素はほ
とんど基地に固溶しないので、bcc結晶として析出
し、結晶粒の微細化に有効である。V、Nb、Mo、Z
rの好ましい含有量はそれぞれ0.001 〜1重量%であ
る。
V, Nb, Mo, and Zr have the effect of increasing hardness and improve wear resistance. Further, since these elements hardly form a solid solution in the matrix, they precipitate as bcc crystals, and are effective in refining crystal grains. V, Nb, Mo, Z
The preferable content of r is 0.001 to 1% by weight.

【0018】Crは耐摩耗性及び耐食性を維持するのに
有効な元素である。Crの好ましい含有量は0.001 〜2
重量%である。
Cr is an element effective for maintaining wear resistance and corrosion resistance. The preferred content of Cr is 0.001 to 2
% By weight.

【0019】Siは耐食性を向上させる効果を有する。
Siの好ましい含有量は0.001 〜2重量%である。
Si has the effect of improving corrosion resistance.
The preferred content of Si is 0.001 to 2% by weight.

【0020】Wは基地にほとんど固溶しないので、析出
強化の効果がある。Wの好ましい含有量は0.001 〜1重
量%である。
Since W hardly forms a solid solution in the matrix, it has the effect of strengthening precipitation. The preferred content of W is 0.001 to 1% by weight.

【0021】Mgは阻害元素であるN及びOを除去する
とともに、阻害元素であるSを硫化物として固定し、熱
間加工性や靭性の向上に効果があるが、多量の添加は粒
界偏析を招き、脆化の原因となる。Mgの好ましい含有
量は0.001 〜0.5 重量%である。
Mg removes the inhibitory elements N and O and fixes the inhibitory element S as a sulfide, which is effective in improving hot workability and toughness. And cause embrittlement. The preferred content of Mg is 0.001 to 0.5% by weight.

【0022】Pは脱酸剤として作用し、靭性向上の効果
を有する。Pの好ましい含有量は0.01〜0.5 重量%であ
る。
P acts as a deoxidizing agent and has an effect of improving toughness. The preferred content of P is 0.01-0.5% by weight.

【0023】Be、Sb、Cd、Asは基地組織を強化
する効果を有する。Be、Sb、Cd、Asの好ましい
含有量はそれぞれ0.001 〜1重量%である。
Be, Sb, Cd, As have the effect of strengthening the base organization. The preferred contents of Be, Sb, Cd, and As are each 0.001 to 1% by weight.

【0024】Znは形状記憶処理温度を上昇させる効果
を有する。Znの好ましい含有量は0.001 〜5重量%で
ある。
Zn has the effect of increasing the shape memory processing temperature. The preferred content of Zn is 0.001 to 5% by weight.

【0025】B、Cは結晶組織を微細化する効果があ
る。特にTi、Zrとの複合添加が好ましい。B、Cの
好ましい含有量は0.001 〜0.5 重量%である。
B and C have the effect of refining the crystal structure. Particularly, a composite addition with Ti and Zr is preferable. The preferred content of B and C is 0.001 to 0.5% by weight.

【0026】Agは冷間加工性向上させる効果がある。
Agの好ましい含有量は0.001 〜2重量%である。
Ag has the effect of improving cold workability.
The preferred content of Ag is 0.001 to 2% by weight.

【0027】ミッシュメタルは結晶粒を微細化する効果
を有する。ミッシュメタルの好ましい含有量は0.001 〜
5重量%である。
Misch metal has an effect of making crystal grains fine. The preferred content of misch metal is 0.001 ~
5% by weight.

【0028】[2] 銅系合金の製造方法 (a) 銅合金の成形 上記組成の銅合金を溶解鋳造し、熱間圧延、冷間圧延、
プレス等の成形加工法により所望の形状に成形するが、
本発明において溶体化処理直前の成形加工は冷間圧延、
冷間伸線等の冷間加工で行なう。冷間加工を行うことに
より、得られる銅系合金のβ単相の結晶方位が揃うよう
になり、形状記憶特性及び超弾性が向上する。
[2] Production method of copper alloy (a) Molding of copper alloy A copper alloy having the above composition is melted and cast, and hot rolling, cold rolling,
It is molded into a desired shape by a molding method such as pressing,
In the present invention, the forming process immediately before the solution treatment is cold rolling,
Performed by cold working such as cold drawing. By performing cold working, the crystal orientation of the β single phase of the obtained copper-based alloy becomes uniform, and the shape memory characteristics and superelasticity are improved.

【0029】合金組織の配向性を高めるためには、最終
焼鈍後の合計加工率が高いほどよいが、その下限につい
ては合金の組成によって異なる。本発明では、電子背面
散乱パターン法により測定されたβ単相の<110>又
は<100>等の特定結晶方位の存在頻度と形状記憶特
性、超弾性特性との関係から、存在頻度の値を目安に合
計加工率を決めることができる。例えば、加工方向にお
けるβ単相の特定結晶方位の存在頻度2.0 以上にする場
合、Cu82.2重量%、Al8.1 重量%、Mn9.7 重量%
の組成を有する合金では合計加工率を50%以上、Cu8
0.4重量%、Al8. 0重量%、Mn9. 5重量%、Ni2.1
重量%の組成を有する合金では合計加工率を30%以上
にする必要がある。最終焼鈍後の合計加工率が低いと合
金組織の結晶方位が揃わず、形状記憶特性及び超弾性の
向上が得られない。
In order to increase the orientation of the alloy structure, the higher the total working ratio after the final annealing, the better, but the lower limit depends on the alloy composition. In the present invention, the value of the frequency of occurrence is determined from the relationship between the frequency of existence of a specific crystal orientation such as <110> or <100> of the β single phase measured by the electron backscattering pattern method and the shape memory property and the superelastic property. The total processing rate can be determined as a guide. For example, when the frequency of the specific crystal orientation of the β single phase in the processing direction is 2.0 or more, Cu 82.2% by weight, Al 8.1% by weight, Mn 9.7% by weight
Alloy having a composition of 50% or more, Cu8
0.4% by weight, Al 8.0% by weight, Mn 9.5% by weight, Ni2.1
For alloys having a composition of weight%, the total processing rate needs to be 30% or more. If the total working ratio after the final annealing is low, the crystal orientation of the alloy structure is not uniform, and the improvement in shape memory characteristics and superelasticity cannot be obtained.

【0030】冷間加工はα相が存在する結晶組織で行う
必要がある。加工性の良いα相を存在させることによ
り、高い冷間加工率が実現でき、それにより結晶方位が
揃いやすくなる。α相の好ましい体積分率が20体積%以
上である。
The cold working needs to be performed on the crystal structure in which the α phase exists. The presence of the α phase having good workability can realize a high cold work rate, thereby making it easy to make the crystal orientation uniform. The preferred volume fraction of the α phase is 20% by volume or more.

【0031】(b) 溶体化処理 次にβ単相域温度に加熱し、結晶組織をβ単相に変態さ
せる溶体化処理を行う。
(B) Solution treatment Next, a solution treatment for heating to a β single phase region temperature to transform the crystal structure into a β single phase is performed.

【0032】本発明の好ましい態様として、溶体化処理
後にβ+αの2相域温度に冷却して再度溶体化処理を行
う。このように、二回又は二回以上溶体化処理を行うこ
とにより、形状記憶特性及び超弾性の著しい向上が見ら
れる。これは一度生じたβ相を冷却させてβ+αの2相
とすることにより、析出したα相が核となり、次の溶体
化処理で生成されるβ相がすべり変形の起きにくい結晶
方位に優先的に成長することによるものと考えられる。
In a preferred embodiment of the present invention, after the solution treatment, the solution is cooled to the temperature of the two-phase region of β + α and the solution treatment is performed again. As described above, by performing the solution treatment twice or more than twice, remarkable improvements in shape memory characteristics and superelasticity can be seen. This is because the β phase formed once is cooled to form two phases β + α, and the precipitated α phase becomes a nucleus, and the β phase generated in the next solution treatment has priority over the crystal orientation in which slip deformation is unlikely to occur. It is thought to be due to growth.

【0033】β単相域温度及びβ+αの2相域温度は合
金成分によって異なるが、好ましいβ単相域温度は700
〜950 ℃であり、好ましいβ+αの2相域温度は400 〜
850℃である。β単相域温度での保持時間は0.1 分間以
上であれば良いが、保持時間が15分間を超えても更なる
効果の向上が得られないので、保持時間が0.1 〜15分間
であるのが好ましい。
Although the β single phase zone temperature and the β + α two phase zone temperature differ depending on the alloy components, the preferred β single phase zone temperature is 700
950 ° C., and the preferred β + α two-phase temperature is 400-
850 ° C. The holding time at the β single phase region temperature may be at least 0.1 minute, but if the holding time exceeds 15 minutes, no further improvement in the effect can be obtained, so the holding time should be 0.1 to 15 minutes. preferable.

【0034】なお、最終溶体化処理を行う前に、室温に
て5〜20%程度の歪みを与えるスキンパスを行うことも
できる。スキンパスを行うことにより、合金組織の結晶
方位がより揃いやすくなるので好ましい。
Before the final solution treatment, a skin pass for giving a strain of about 5 to 20% at room temperature may be performed. The skin pass is preferable because the crystal orientation of the alloy structure can be more easily made uniform.

【0035】また、溶体化処理は応力をかけながら熱処
理を行う、いわゆるテンション・アニーリングで行うこ
ともできる。テンション・アニーリングを行うことによ
り、合金の記憶形状を精密に制御できるようになる。
The solution treatment may be performed by so-called tension annealing in which heat treatment is performed while applying stress. By performing the tension annealing, the memory shape of the alloy can be precisely controlled.

【0036】(c) 焼入れ 最後に溶体化処理した合金を急冷して、β単相状態を凍
結させる。急冷は水などの冷媒に入れるか、強制空冷に
よって行うことができる。冷却速度が小さいと、α相の
析出が生じてしまい、β単相の結晶構造を維持できなく
なる。冷却速度は50℃/秒以上であるのが好ましい。
(C) Quenching Finally, the solution-treated alloy is rapidly cooled to freeze the β single phase state. The quenching can be carried out by putting into a cooling medium such as water or by forced air cooling. If the cooling rate is low, precipitation of the α phase occurs, and the crystal structure of the β single phase cannot be maintained. The cooling rate is preferably at least 50 ° C./sec.

【0037】(d) 時効処理 時効処理は300 ℃未満、好ましくは100 〜250 ℃の温度
で行う。加熱温度が低過ぎると、β相は不安定であり、
室温で放置しておくとマルテンサイト変態温度が変化す
る場合がある。逆に加熱温度が300 ℃以上であるとα相
の析出が起こり、形状記憶特性や超弾性が著しく低下す
る。
(D) Aging treatment The aging treatment is performed at a temperature of less than 300 ° C., preferably 100 to 250 ° C. If the heating temperature is too low, the β phase is unstable,
If left at room temperature, the martensitic transformation temperature may change. Conversely, if the heating temperature is higher than 300 ° C., precipitation of the α phase occurs, and the shape memory characteristics and superelasticity are significantly reduced.

【0038】時効処理時間は銅系合金の組成により異な
るが、1〜300分間が好ましく、5〜200分間が特
に好ましい。時効処理時間が1分間未満では時効の効果
が得られず、また時効処理時間が300分間を超える
と、組織が粗大化してしまい、材料としての機械的特性
が不充分になる。
The aging time varies depending on the composition of the copper-based alloy, but is preferably 1 to 300 minutes, particularly preferably 5 to 200 minutes. If the aging treatment time is less than 1 minute, the effect of aging cannot be obtained, and if the aging treatment time exceeds 300 minutes, the structure becomes coarse and the mechanical properties as a material become insufficient.

【0039】[3] 銅系合金の特性 (1)結晶組織 本発明の銅系合金の結晶組織は、実質的にβ単相からな
り、β単相の<110>又は<100>方向等の特定結
晶方位が揃った再結晶集合組織である。本発明の方法で
は冷間加工により結晶方位を付与しており、β単相の<
110>又は<100>方向を圧延又は伸線などの冷間
加工方向に揃えている。合金組織の結晶方位は電子背面
散乱パターン法で測定することができ、結晶方位の揃え
具合を表す存在頻度を求めることができる。例えば加工
方向における<110>の存在頻度は、結晶方位が理論
上完全にランダムになっている場合における加工方向に
向いている<110>の存在頻度を1と仮定したときの
存在率であり、値が大きいほど結晶方位がより揃ってい
ることを表す。本発明の銅系合金の加工方向における特
定結晶方位の存在頻度は2.0 以上であり、好ましくは2.
5 以上である。
[3] Properties of Copper-Based Alloy (1) Crystal Structure The crystal structure of the copper-based alloy of the present invention substantially consists of a β single phase, and the β single phase has a <110> or <100> direction or the like. It is a recrystallized texture with a specific crystal orientation. In the method of the present invention, the crystal orientation is given by cold working, and the β single phase <
The <110> or <100> direction is aligned with a cold working direction such as rolling or drawing. The crystal orientation of the alloy structure can be measured by the electron backscattering pattern method, and the frequency of occurrence indicating the degree of alignment of the crystal orientation can be obtained. For example, the frequency of occurrence of <110> in the processing direction is the rate of occurrence when assuming that the frequency of occurrence of <110> oriented in the processing direction is 1 when the crystal orientation is theoretically completely random, The larger the value, the more uniform the crystal orientation. The existence frequency of the specific crystal orientation in the processing direction of the copper-based alloy of the present invention is 2.0 or more, preferably 2.
5 or more.

【0040】(2)超弾性 このような結晶方位の揃った本発明の銅系合金は、従来
の銅系合金に比べて著しく優れた超弾性を有する。変形
解放後の形状回復率が90%以上の与ひずみは少なくと
も3%である。特に、溶体化を2回以上行った場合、変
形解放後の形状回復率が90%以上の与ひずみは少なく
とも5%である。
(2) Superelasticity The copper-based alloy of the present invention having such a uniform crystal orientation has superelasticity which is remarkably superior to that of a conventional copper-based alloy. The applied strain having a shape recovery rate of 90% or more after deformation release is at least 3%. In particular, when the solution treatment is performed twice or more, the applied strain at which the shape recovery rate after deformation release is 90% or more is at least 5%.

【0041】(3)形状記憶特性 本発明の銅系合金は優れた形状記憶特性を有し、形状回
復率は95%以上であり、実質的に100%である。
(3) Shape Memory Characteristics The copper-based alloy of the present invention has excellent shape memory characteristics, and the shape recovery rate is 95% or more, substantially 100%.

【0042】[0042]

【実施例】実施例1〜3及び比較例1 Cu80.4重量%、Al8. 0重量%、Mn9. 5重量%、N
i2.1 重量%の組成を有する銅合金を溶解し、平均14
0℃/分の冷却速度で凝固して、直径20mmのビレッ
トを作製した後、850℃で熱間圧延し、さらに中間焼
鈍を行いながら冷間圧延をして、長さ100mm、幅1
0mm、厚さ0.2mmの板材を得た。最終焼鈍後の合
計加工率は表1に示す。最終焼鈍はともに600 ℃×10分
間であり、最終加工時のα相体積分率は70%であった。
得られた板材を900℃で15分間の溶体化処理した
後、氷水中へ投入して急冷し、ついで200℃で15分
間の時効処理を行い、銅系合金からなる板材を得た。
Examples 1 to 3 and Comparative Example 1 Cu 80.4% by weight, Al 8.0% by weight, Mn 9.5% by weight, N
i2.1 Dissolve a copper alloy having a composition by weight of 14% by weight
After solidifying at a cooling rate of 0 ° C./min to produce a billet having a diameter of 20 mm, hot rolling was performed at 850 ° C., and further cold rolling was performed while performing intermediate annealing to obtain a length of 100 mm and a width of 1 mm.
A plate material having a thickness of 0 mm and a thickness of 0.2 mm was obtained. Table 1 shows the total working ratio after the final annealing. The final annealing was both at 600 ° C. for 10 minutes, and the α-phase volume fraction at the time of final processing was 70%.
After the obtained plate material was subjected to a solution treatment at 900 ° C. for 15 minutes, it was put into ice water and rapidly cooled, and then subjected to an aging treatment at 200 ° C. for 15 minutes to obtain a plate material made of a copper-based alloy.

【0043】得られた板材に対して、電子背面散乱パタ
ーンの測定及び応力−ひずみ相関図を以下の方法に従っ
て求めた。
With respect to the obtained plate material, the measurement of the electron backscattering pattern and the stress-strain correlation diagram were obtained according to the following methods.

【0044】(1) 電子背面散乱パターン 電子背面散乱パターン測定装置(商品名:Orientation
Imaging Microscope、TSL社製)を用いて、得られた
板材の圧延方向におけるβ相の結晶方位の存在頻度を測
定した。図1には実施例2で得られた板材、図2には比
較例1の板材の圧延方向における各結晶方位の存在頻度
を等高線で示した逆極点図である。実施例2の図1では
等高線が<110>方向に集まっており、<110>方
向が圧延方向に揃っていることを示している。圧延方向
における<110>の存在頻度は5.0であった。一
方、比較例1の図2では、結晶方位がほぼランダムに分
散しており、圧延方向における<110>の存在頻度は
1.5であった。実施例1〜3及び比較例1の板材の圧
延方向における<110>の存在頻度を表1に合せて示
す。
(1) Electron backscattering pattern Electron backscattering pattern measuring device (trade name: Orientation
Using an Imaging Microscope (manufactured by TSL), the frequency of the β-phase crystal orientation in the rolling direction of the obtained sheet material was measured. FIG. 1 is an inverse pole figure showing the frequency of each crystal orientation in the rolling direction of the sheet material obtained in Example 2 and FIG. 2 by contour lines in FIG. In FIG. 1 of Example 2, the contour lines are gathered in the <110> direction, which indicates that the <110> direction is aligned with the rolling direction. The existence frequency of <110> in the rolling direction was 5.0. On the other hand, in FIG. 2 of Comparative Example 1, the crystal orientations were almost randomly dispersed, and the frequency of <110> presence in the rolling direction was 1.5. Table 1 also shows the frequencies of <110> present in the rolling directions of the sheet materials of Examples 1 to 3 and Comparative Example 1.

【0045】(2) 超弾性における形状回復率 得られた板材の応力−ひずみ相関図をそれぞれ作成し
た。図3には実施例2の板材の与ひずみ6%での応力−
ひずみ相関図、図4には比較例1の与ひずみ6%での応
力−ひずみ相関図をそれぞれ示した。応力−与ひずみ相
関図から次式で超弾性における形状回復率を計算した: 形状回復率(%)=100×(与ひずみ−残留ひずみ)
/与ひずみ 与ひずみ4%での形状回復率を表1に合せて示す。
(2) Shape recovery rate in superelasticity A stress-strain correlation diagram of the obtained sheet material was prepared. FIG. 3 shows the stress at a given strain of 6% of the sheet material of Example 2.
FIG. 4 shows a stress-strain correlation diagram of Comparative Example 1 at an applied strain of 6%. The shape recovery rate in superelasticity was calculated from the stress-strain relationship diagram by the following equation: shape recovery rate (%) = 100 × (grant-residual strain)
/ Strain The shape recovery ratio at a strain of 4% is shown in Table 1.

【0046】 表1 実施例1〜3及び比較例1における加工条件及びその特性 最終焼鈍後の 圧延方向における 与ひずみ4%での例No. 合計加工率(%) <110> の存在頻度 形状回復率(%) 実施例1 30 2.8 90 実施例2 50 5.0 97 実施例3 75 5.2 97 比較例1 20 1.0 82Table 1 Working Conditions and Properties in Examples 1 to 3 and Comparative Example 1 Example No. Total Working Rate (%) at 110 % Strain in Rolling Direction after Final Annealing Recovery of Presence Frequency Shape of <110> Rate (%) Example 1 30 2.8 90 Example 2 50 5.0 97 Example 3 75 5.2 97 Comparative Example 1 20 1.0 82

【0047】表1からわかるように、最終焼鈍後の合計
加工率が30%以上の実施例1〜3では、圧延方向におけ
る<110>存在頻度が2.0 以上であり、<110>が
圧延方向に揃っていることを示している。また、形状回
復率がいずれも90%以上である。しかし、最終焼鈍後
の合計加工率が20%の比較例1では、圧延方向におけ
る<110>存在頻度が1.5であり、<110>の方
向がほぼランダムであることを示している。形状回復率
が82%で、90%未満であった。これらの結果は、高
い最終焼鈍後合計加工率が銅系合金中の結晶方位を揃わ
せ、よって超弾性を向上させたことを証明している。
As can be seen from Table 1, in Examples 1 to 3 in which the total working ratio after the final annealing was 30% or more, the frequency of <110> in the rolling direction was 2.0 or more, and <110> was It shows that they are complete. Further, the shape recovery rates are all 90% or more. However, in Comparative Example 1 in which the total working ratio after the final annealing was 20%, the <110> frequency in the rolling direction was 1.5, indicating that the <110> direction was almost random. The shape recovery rate was 82%, which was less than 90%. These results demonstrate that the high total post-annealing work ratio aligned the crystallographic orientation in the copper-based alloy and thus improved the superelasticity.

【0048】実施例4及び比較例2 Cu82.2重量%、Al8.1 重量%、Mn9.7 重量%の組
成を有する銅合金を溶解し、平均140℃/分の冷却速
度で凝固して、直径20mmのビレットを作製した後、
850℃で熱間圧延し、さらに中間焼鈍を行いながら冷
間圧延をして、長さ100mm、幅10mm、厚さ0.
2mmの板材を得た。最終焼鈍温度はともに600 ℃であ
り、最終加工時のα相体積分率は70%であった。最終焼
鈍後の合計加工率は表2に示す。得られた板材を900
℃で15分間の溶体化処理した後、氷水中へ投入して急
冷し、ついで200℃で15分間の時効処理を行い、銅
系合金からなる板材を得た。
Example 4 and Comparative Example 2 A copper alloy having a composition of 82.2% by weight of Cu, 8.1% by weight of Al and 9.7% by weight of Mn was melted and solidified at an average cooling rate of 140 ° C./min. After making a billet with a diameter of 20 mm,
Hot rolling is performed at 850 ° C., and further cold rolling is performed while performing intermediate annealing to obtain a length of 100 mm, a width of 10 mm, and a thickness of 0.1 mm.
A 2 mm plate was obtained. The final annealing temperature was 600 ° C., and the α-phase volume fraction at the time of final processing was 70%. Table 2 shows the total working ratio after the final annealing. 900 obtained plate material
After a solution treatment at 15 ° C. for 15 minutes, the mixture was put into ice water and rapidly cooled, and then subjected to an aging treatment at 200 ° C. for 15 minutes to obtain a plate material made of a copper-based alloy.

【0049】得られた板材に対して、実施例1と同じ方
法で電子背面散乱パターン及び応力−ひずみ相関図を求
め、圧延方向における<110>の存在頻度及び与ひず
み3%での形状回復率を表2に合せて示す。
An electron backscattering pattern and a stress-strain correlation diagram were obtained for the obtained sheet material in the same manner as in Example 1, and the frequency of <110> existing in the rolling direction and the shape recovery rate at 3% applied strain were determined. Are shown in Table 2.

【0050】 表2 実施例4及び比較例2における加工条件及びその特性 最終焼鈍後の 圧延方向における 与ひずみ3%での例No. 合計加工率(%) <110> の存在頻度 形状回復率(%) 実施例4 50 2.3 90 比較例2 30 1.3 81[0050] Table 2 Example 4 and processing conditions in Comparative Example 2 and Example No. Total working ratio at given strain of 3% in the rolling direction after the properties final annealing (%) occurrence frequency shape recovery ratio of <110> ( %) Example 4 50 2.3 90 Comparative Example 2 30 1.3 81

【0051】表2からわかるように、最終焼鈍後の合計
加工率が50%の実施例2では、圧延方向における<11
0>存在頻度が2以上であり、<110>が圧延方向に
揃っており、形状回復率が90%であった。しかし、最
終焼鈍後の合計加工率が30%の比較例2では、圧延方
向における<110>存在頻度が1.3であり、<11
0>の方向がほぼランダムであることを示している。形
状回復率が81%であった。
As can be seen from Table 2, in Example 2 in which the total working ratio after the final annealing was 50%, <11 in the rolling direction.
0> existence frequency was 2 or more, <110> was aligned in the rolling direction, and the shape recovery rate was 90%. However, in Comparative Example 2 in which the total working ratio after the final annealing was 30%, the frequency of <110> existing in the rolling direction was 1.3, and <11>
0> direction is almost random. The shape recovery rate was 81%.

【0052】実施例5〜8及び比較例3 実施例3と同じ銅合金を用いて、実施例3と同じ方法で
熱間圧延、さらに中間焼鈍を行いながら冷間圧延をし
て、長さ100mm、幅10mm、厚さ0.2mmの板
材を得た。ただし、最終焼鈍は表3に示す温度に加熱し
た後焼入れしており、表3に示すような合金組織中のα
相体積分率を調節した。最終焼鈍後の合計加工率はいず
れも75%であった。得られた板材を900℃で15分
間の溶体化処理した後、氷水中へ投入して急冷し、つい
で200℃で15分間の時効処理を行い、銅系合金から
なる板材を得た。得られた銅系合金の圧延方向における
β単相の<110>方向の存在頻度及び与ひずみ4%での
形状回復率(%)を実施例3と同じ方法で測定し、表3
に合せて示す。
Examples 5 to 8 and Comparative Example 3 Using the same copper alloy as in Example 3, hot rolling was performed in the same manner as in Example 3, and further cold rolling was performed while performing intermediate annealing to obtain a length of 100 mm. A plate material having a width of 10 mm and a thickness of 0.2 mm was obtained. However, in the final annealing, quenching was performed after heating to the temperature shown in Table 3, and α in the alloy structure as shown in Table 3
The phase volume fraction was adjusted. The total working ratio after the final annealing was 75% in all cases. After the obtained plate material was subjected to a solution treatment at 900 ° C. for 15 minutes, it was put into ice water and rapidly cooled, and then subjected to an aging treatment at 200 ° C. for 15 minutes to obtain a plate material made of a copper-based alloy. The frequency of existence of the β single phase in the <110> direction in the rolling direction of the obtained copper-based alloy and the shape recovery rate (%) at 4% applied strain were measured in the same manner as in Example 3.
It is shown along with.

【0053】 表3 実施例5〜8及び比較例3における加工条件及びその特性 最終焼鈍 最終加工時 圧延方向における 与ひずみ4%での例No. 温度(℃) α相体積分率(%) <110> の存在頻度 形状回復率(%) 実施例5 550 80 4.4 95 実施例6 600 70 3.9 97 実施例7 700 45 4.3 95 実施例8 800 18 3.0 95 比較例3 900 0 1.5 82Table 3 Processing conditions and characteristics in Examples 5 to 8 and Comparative example 3 Final annealing Final processing Example with 4% applied strain in rolling direction No. Temperature (° C.) α-phase volume fraction (%) < occurrence frequency shape recovery ratio of 110> (%) example 5 550 80 4.4 95 example 6 600 70 3.9 97 example 7 700 45 4.3 95 example 8 800 18 3.0 95 Comparative example 3 900 0 1.5 82

【0054】表3からわかるように、最終焼鈍後の成形
加工時にα相の含有量が得られる銅系合金の超弾性に影
響を及ぼしている。α相体積分率が18%以上の実施例
5〜8では、圧延方向における<110>存在頻度が2
以上で、<110>が圧延方向に揃っており、また形状
回復率がいずれも90%以上である。しかし、α相が実
質的に存在しない比較例3では圧延方向における<11
0>存在頻度が1.5で、ランダムに近い状態であり、
形状回復率が82%と低かった。
As can be seen from Table 3, the content of the α phase at the time of forming after the final annealing affects the superelasticity of the obtained copper-based alloy. In Examples 5 to 8 in which the α phase volume fraction was 18% or more, the frequency of <110> in the rolling direction was 2
As described above, <110> is aligned in the rolling direction, and the shape recovery rates are all 90% or more. However, in Comparative Example 3 where substantially no α phase was present, <11 in the rolling direction
0> Existence frequency is 1.5, almost random,
The shape recovery rate was as low as 82%.

【0055】実施例9、10 表4に示す組成を有する銅合金を実施例2と同じ方法で
長さ100mm、幅10mm、厚さ0.2mmの板材を
得た。ただし、最終焼鈍温度は600℃であり、最終焼
鈍後の合計加工率はいずれも50%であった。得られた
板材を900℃で5分間溶体化処理した後800℃以下
に空冷し、さらに900℃で15分間の溶体化処理した
後、氷水中へ投入して急冷し、ついで200℃で15分
間の時効処理を行い、銅系合金からなる板材を得た。
Examples 9 and 10 A copper alloy having the composition shown in Table 4 was obtained in the same manner as in Example 2 to obtain a plate material having a length of 100 mm, a width of 10 mm and a thickness of 0.2 mm. However, the final annealing temperature was 600 ° C., and the total working ratio after the final annealing was 50% in each case. The obtained plate material was subjected to a solution treatment at 900 ° C. for 5 minutes, air-cooled to 800 ° C. or less, further subjected to a solution treatment at 900 ° C. for 15 minutes, rapidly poured into ice water, and then rapidly cooled at 200 ° C. for 15 minutes. Was performed to obtain a plate material made of a copper-based alloy.

【0056】 表4 実施例9及び10の銅系合金の組成(重量%) 例No. Cu Al Mn Co Ni Cr 実施例9 81.2 8.1 10.2 0.5 実施例10 79.0 7.8 9.3 2.1 1.8Table 4 Composition (% by weight) of the copper-based alloys of Examples 9 and 10 Example No. Cu Al Mn Co Ni Cr Example 9 81.2 8.1 10.2 0.5 Example 10 79.0 7.8 9.3 2.1 1.8

【0057】得られた銅系合金の圧延方向における結晶
方位の存在頻度を実施例2と同じ方法で測定した。図5
には実施例9で得られた板材の電子背面散乱パターンの
測定結果である逆極点図を示す。図5からわかるように
等高線が<100>方向に集まっており、<100>方
向が圧延方向に揃っていることを示している。圧延方向
における<100>の存在頻度は4.5であった。
The frequency of the crystal orientation in the rolling direction of the obtained copper alloy was measured in the same manner as in Example 2. FIG.
19 shows an inverse pole figure which is a measurement result of an electron backscattering pattern of the plate material obtained in Example 9. As can be seen from FIG. 5, the contour lines are gathered in the <100> direction, indicating that the <100> direction is aligned with the rolling direction. The frequency of <100> present in the rolling direction was 4.5.

【0058】得られた板材について、変形解放後の形状
回復率を実施例2と同じ方法で測定し、表5に示す。な
お、溶体化処理を一回のみ行って製造した板材の形状回
復率も比較のために合わせて示す。
With respect to the obtained plate material, the shape recovery rate after the deformation was released was measured in the same manner as in Example 2, and the results are shown in Table 5. The shape recovery rate of a plate manufactured by performing the solution treatment only once is also shown for comparison.

【0059】 表5 実施例9及び10で得られた銅系合金の形状回復率 二回溶体化での 溶体化一回のみの 例No. 与ひずみ(%) 形状回復率(%) 形状回復率(%) 実施例9 7 98 83 実施例10 6 90 52Table 5 Shape recovery rate of copper-based alloys obtained in Examples 9 and 10 Example of only one solution heat treatment in double solution heat No. Strain (%) Shape recovery rate (%) Shape recovery rate (%) Example 9 7 98 83 Example 10 6 90 52

【0060】表5からわかるように、溶体化処理2回行
うことにより、得られた板材の超弾性がいずれも著しく
向上した。
As can be seen from Table 5, the superelasticity of each of the obtained sheet materials was significantly improved by performing the solution treatment twice.

【0061】実施例10 表6に示す試料No. 1〜4の組成を有する銅系合金を溶
解し、平均140℃/分の冷却速度で凝固して、直径2
0mmのビレットを作製した後、850℃で熱間圧延
し、さらに中間焼鈍を行いながら冷間圧延をして、長さ
100mm、幅10mm、厚さ0.2mmの板材を得
た。ただし、最終焼鈍の条件は600℃×10分間であ
り、最終焼鈍後の合計加工率はいずれも50%であっ
た。得られた板材を900℃で15分熱処理した後、氷
水中へ投入して急冷し、ついで200℃で15分間時効
処理を行い、銅系合金からなる板材を得た。
Example 10 A copper alloy having the composition of Sample Nos. 1 to 4 shown in Table 6 was melted and solidified at an average cooling rate of 140 ° C./min.
After producing a 0-mm billet, it was hot-rolled at 850 ° C., and further cold-rolled while performing intermediate annealing to obtain a plate material having a length of 100 mm, a width of 10 mm, and a thickness of 0.2 mm. However, the condition of the final annealing was 600 ° C. × 10 minutes, and the total working ratio after the final annealing was 50% in each case. The obtained sheet material was heat-treated at 900 ° C. for 15 minutes, poured into ice water and rapidly cooled, and then subjected to aging treatment at 200 ° C. for 15 minutes to obtain a sheet material made of a copper-based alloy.

【0062】得られた板材を液体窒素中において直径2
0mmの丸棒に巻きつけ、液体窒素から取り出した後、
曲がった曲率半径R0 を測定した。次に曲がった板材を
200℃に加熱し、形状回復を起こさせた後、板材の曲
率半径R1 を測定した。式:形状回復率(%)=100
×(R1 −R0 )/R1 により形状記憶による形状回復
率を計算した。形状回復率を表6に合せて示す。
The obtained plate was placed in liquid nitrogen with a diameter of 2
After wrapped around a 0 mm round bar and taken out of liquid nitrogen,
The radius of curvature R 0 of the bending was measured. Next, the bent plate was heated to 200 ° C. to recover the shape, and then the radius of curvature R 1 of the plate was measured. Formula: Shape recovery rate (%) = 100
× (R 1 −R 0 ) / R 1 was used to calculate the shape recovery rate due to shape memory. The shape recovery rate is also shown in Table 6.

【0063】 表6 銅系合金の組成及び形状記憶による形状回復率 組成(重量%) 形状記憶による 試料No. Cu Al Mn その他 形状回復率(%) 1 82.2 8.1 9.7 95 2 79.0 7.8 9.3 Ni:2.1 Cr:1.8 100 3 81.2 8.1 10.2 Co:0.5 100 4 80.4 8.0 9.5 Ni:2.1 100Table 6 Composition of copper-based alloy and shape recovery rate by shape memory Composition (% by weight) Sample No. Cu Al Mn by shape memory Other shape recovery rate (%) 1 82.2 8.1 9.7 95 2 79.0 7.8 9.3 Ni: 2.1 Cr: 1.8 100 3 81.2 8.1 10.2 Co: 0.5 100 4 80.4 8.0 9.5 Ni: 2.1 100

【0064】表6から分かるように、本発明の銅系合金
は形状回復率が95%以上であり、優れた形状記憶特性
を有している。
As can be seen from Table 6, the copper-based alloy of the present invention has a shape recovery ratio of 95% or more and has excellent shape memory characteristics.

【0065】[0065]

【発明の効果】以上詳述した通り、本発明の銅系合金は
β単相の特定結晶方位を揃えたものであり、従来のもの
に比べて形状記憶特性及び超弾性を著しく向上させてい
る。また、本発明の方法で上記銅系合金を容易に製造す
ることができる。さらに、本発明の銅系合金は加工性に
優れているため、多様な形状に安価に形成することがで
きる。
As described in detail above, the copper-based alloy of the present invention has a β single phase in which the specific crystal orientation is aligned, and has significantly improved shape memory characteristics and superelasticity as compared with conventional ones. . Further, the copper-based alloy can be easily manufactured by the method of the present invention. Further, since the copper-based alloy of the present invention has excellent workability, it can be formed in various shapes at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例2の銅系合金板材の圧延方向における
β単相の結晶方位の存在頻度を等高線で示す逆極点図で
ある。
FIG. 1 is an inverse pole figure showing, with contour lines, the frequency of the presence of a β single phase crystal orientation in the rolling direction of the copper alloy sheet material of Example 2.

【図2】 比較例1の銅系合金板材の圧延方向における
β単相の結晶方位の存在頻度を等高線で示す逆極点図で
ある。
FIG. 2 is an inverse pole figure showing, with contour lines, the frequency of existence of a β single phase crystal orientation in the rolling direction of the copper alloy sheet material of Comparative Example 1.

【図3】 実施例2の銅系合金板材の応力−ひずみ相関
図である。
FIG. 3 is a stress-strain correlation diagram of the copper alloy sheet material of Example 2.

【図4】 比較例1の銅系合金板材の応力−ひずみ相関
図である。
FIG. 4 is a stress-strain correlation diagram of the copper alloy sheet material of Comparative Example 1.

【図5】 実施例9の銅系合金板材の圧延方向における
β単相の結晶方位の存在頻度を等高線で示す逆極点図で
ある。
FIG. 5 is an inverse pole figure showing the frequency of the β single phase crystal orientation in the rolling direction of the copper alloy sheet material of Example 9 by contour lines.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630L 686 686B 693 693A 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630L 686 686B 693 693A 694 694A

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 形状記憶特性及び超弾性を有し、実質的
にβ単相からなる銅系合金において、結晶組織は前記β
単相の結晶方位が揃っている再結晶集合組織であること
を特徴とする銅系合金。
1. A copper alloy having shape memory characteristics and superelasticity and substantially consisting of a β single phase, wherein the crystal structure is
A copper-based alloy having a recrystallized texture in which the crystal orientation of a single phase is uniform.
【請求項2】 請求項1に記載の銅系合金において、冷
間加工により成形されており、前記β単相の特定結晶方
位が前記冷間加工の加工方向に揃っていることを特徴と
する銅系合金。
2. The copper-based alloy according to claim 1, which is formed by cold working, and wherein the specific crystal orientation of the β single phase is aligned with the working direction of the cold working. Copper alloy.
【請求項3】 請求項2に記載の銅系合金において、電
子背面散乱パターン法によって測定された前記加工方向
における前記β単相の特定結晶方位の存在頻度が2.0 以
上であることを特徴とする銅系合金。
3. The copper-based alloy according to claim 2, wherein the frequency of the specific crystal orientation of the β single phase in the processing direction measured by an electron backscattering pattern method is 2.0 or more. Copper alloy.
【請求項4】 請求項2又は3に記載の銅系合金におい
て、前記特定の結晶方位は<110>又は<100>方
向であることを特徴とする銅系合金。
4. The copper-based alloy according to claim 2, wherein the specific crystal orientation is a <110> or <100> direction.
【請求項5】 請求項1〜4のいずれかに記載の銅系合
金において、3〜10重量%のAlと、5〜20重量%
のMnと、残部Cu及び不可避不純物とからなる組成を
有することを特徴とする銅系合金。
5. The copper alloy according to claim 1, wherein 3 to 10% by weight of Al and 5 to 20% by weight.
A copper-based alloy characterized by having a composition consisting of Mn, the balance being Cu and unavoidable impurities.
【請求項6】 請求項5に記載の銅系合金において、さ
らにNi、Co、Fe、Ti、V、Cr、Si、Nb、
Mo、W、Sn、Mg、P、Be、Sb、Cd、As、
Zr、Zn、B、C、Ag及びミッシュメタルからなる
群より選ばれた1種以上を合計で0. 001〜10重量
%含有することを特徴とする銅系合金。
6. The copper-based alloy according to claim 5, further comprising Ni, Co, Fe, Ti, V, Cr, Si, Nb,
Mo, W, Sn, Mg, P, Be, Sb, Cd, As,
A copper-based alloy comprising 0.001 to 10% by weight in total of one or more selected from the group consisting of Zr, Zn, B, C, Ag and misch metal.
【請求項7】 焼鈍を含む冷間加工により成形し、溶体
化処理、焼入れ及び時効処理を行って、実質β単相から
なる銅系合金を製造する方法において、電子背面散乱パ
ターン法によって測定された前記加工方向における前記
β単相の特定結晶方位の存在頻度が2.0 以上になるよう
な最終焼鈍後の合計加工率で前記冷間加工を行うことを
特徴とする銅系合金の製造方法。
7. A method for producing a copper-based alloy consisting essentially of β single phase by forming by cold working including annealing, performing solution treatment, quenching, and aging treatment, and measuring by an electron backscattering pattern method. The method of manufacturing a copper-based alloy, wherein the cold working is performed at a total working ratio after final annealing such that the frequency of the specific crystal orientation of the β single phase in the working direction is 2.0 or more.
【請求項8】 請求項7に記載の銅系合金の製造方法に
おいて、前記溶体化処理後、β+αの2相温度域に冷却
させて再度溶体化処理を行うことを特徴とする銅系合金
の製造方法。
8. The method for producing a copper-based alloy according to claim 7, wherein after the solution treatment, the solution is cooled to a two-phase temperature range of β + α and the solution treatment is performed again. Production method.
【請求項9】 請求項8に記載の銅系合金の製造方法に
おいて、前記溶体化処理を2回以上行うことを特徴とす
る銅系合金の製造方法。
9. The method for producing a copper-based alloy according to claim 8, wherein the solution treatment is performed twice or more.
【請求項10】 請求項7〜9のいずれかに記載の銅系合
金の製造方法において、冷間加工時の結晶組織における
α相の体積分率を20%以上にすることを特徴とする銅系
合金の製造方法。
10. The method for producing a copper-based alloy according to claim 7, wherein the volume fraction of the α phase in the crystal structure at the time of cold working is set to 20% or more. Production method of base alloy.
【請求項11】 請求項7〜10のいずれかに記載の銅系合
金の製造方法において、前記銅系合金は3〜10重量%
のAlと、5〜20重量%のMnと、残部Cu及び不可
避不純物とからなる組成を有し、前記最終焼鈍後の合計
加工率は50%以上であることを特徴とする銅系合金の
製造方法。
11. The method for producing a copper-based alloy according to claim 7, wherein the copper-based alloy is 3 to 10% by weight.
Of a copper-based alloy having a composition comprising Al, 5 to 20% by weight of Mn, a balance of Cu and inevitable impurities, and a total working ratio after the final annealing is 50% or more. Method.
【請求項12】 請求項11に記載の銅系合金の製造方法に
おいて、前記銅系合金はさらにNi及び/又はCoを含
有し、前記最終焼鈍後の合計加工率は30%以上である
ことを特徴とする銅系合金の製造方法。
12. The method for producing a copper-based alloy according to claim 11, wherein the copper-based alloy further contains Ni and / or Co, and a total working ratio after the final annealing is 30% or more. Characteristic copper-based alloy production method.
【請求項13】 請求項11又は12に記載の銅系合金の製造
方法において、さらにFe、Ti、V、Cr、Si、N
b、Mo、W、Sn、Mg、P、Be、Sb、Cd、A
s、Zr、Zn、B、C、Ag及びミッシュメタルから
なる群から選ばれた1種以上を合計で0. 001〜10
重量%含有することを特徴とする銅系合金の製造方法。
13. The method for producing a copper-based alloy according to claim 11 or 12, further comprising: Fe, Ti, V, Cr, Si, and N.
b, Mo, W, Sn, Mg, P, Be, Sb, Cd, A
at least one selected from the group consisting of s, Zr, Zn, B, C, Ag and misch metal in a total of 0.001 to 10
What is claimed is: 1. A method for producing a copper-based alloy, comprising:
JP34443598A 1998-12-03 1998-12-03 Copper base alloy having shape memory characteristic and superelasticity, and its production Pending JP2000169920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34443598A JP2000169920A (en) 1998-12-03 1998-12-03 Copper base alloy having shape memory characteristic and superelasticity, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34443598A JP2000169920A (en) 1998-12-03 1998-12-03 Copper base alloy having shape memory characteristic and superelasticity, and its production

Publications (1)

Publication Number Publication Date
JP2000169920A true JP2000169920A (en) 2000-06-20

Family

ID=18369249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34443598A Pending JP2000169920A (en) 1998-12-03 1998-12-03 Copper base alloy having shape memory characteristic and superelasticity, and its production

Country Status (1)

Country Link
JP (1) JP2000169920A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003964A (en) * 2000-06-27 2002-01-09 Chiba Inst Of Technology Copper alloy long body such as wire, band and strip having high flexural fatigue characteristic, and manufacturing method therefor
JP2003138330A (en) * 2001-10-31 2003-05-14 Chuo Spring Co Ltd Copper-base alloy and its manufacturing method
WO2011152009A1 (en) * 2010-05-31 2011-12-08 社団法人 日本銅センター Copper-based alloy and structural material comprising same
WO2014042160A1 (en) 2012-09-16 2014-03-20 国立大学法人東北大学 Cu-al-mn based alloy material exhibiting stable superelasticity and manufacturing process therefor
KR20140102846A (en) * 2013-02-15 2014-08-25 한국산업기술대학교산학협력단 Shape-memory alloy having excellent cold workability
JP2016539488A (en) * 2013-11-01 2016-12-15 キナルコ, インコーポレーテッドKinalco, Inc. Shape memory alloy conductor that resists plastic deformation
CN106460098A (en) * 2014-03-14 2017-02-22 古河电气工业株式会社 Cu-Al-Mn-based alloy material, method for producing same, and rod-like or sheet-like material using same
CN116043061A (en) * 2023-01-18 2023-05-02 中南大学 Elastic copper alloy and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003964A (en) * 2000-06-27 2002-01-09 Chiba Inst Of Technology Copper alloy long body such as wire, band and strip having high flexural fatigue characteristic, and manufacturing method therefor
JP2003138330A (en) * 2001-10-31 2003-05-14 Chuo Spring Co Ltd Copper-base alloy and its manufacturing method
JP5837487B2 (en) * 2010-05-31 2015-12-24 一般社団法人日本銅センター Copper-based alloy and structural material using the same
WO2011152009A1 (en) * 2010-05-31 2011-12-08 社団法人 日本銅センター Copper-based alloy and structural material comprising same
US20130087074A1 (en) * 2010-05-31 2013-04-11 Japan Copper Development Association Copper-based alloy and structural material comprising same
EP2896705A4 (en) * 2012-09-16 2016-07-13 Univ Tohoku Cu-al-mn based alloy material exhibiting stable superelasticity and manufacturing process therefor
JP2014058737A (en) * 2012-09-16 2014-04-03 Tohoku Univ Cu-Al-Mn BASED ALLOY MATERIAL EXHIBITING STABLE SUPERELASTICITY AND ITS MANUFACTURING METHOD
WO2014042160A1 (en) 2012-09-16 2014-03-20 国立大学法人東北大学 Cu-al-mn based alloy material exhibiting stable superelasticity and manufacturing process therefor
US10351939B2 (en) 2012-09-16 2019-07-16 Tohoku University Cu—Al—Mn-based alloy exhibiting stable superelasticity and method of producing the same
KR20140102846A (en) * 2013-02-15 2014-08-25 한국산업기술대학교산학협력단 Shape-memory alloy having excellent cold workability
JP2016539488A (en) * 2013-11-01 2016-12-15 キナルコ, インコーポレーテッドKinalco, Inc. Shape memory alloy conductor that resists plastic deformation
EP3063308A4 (en) * 2013-11-01 2018-04-04 Kinalco, Inc. Shape memory alloy conductor resists plastic deformation
CN106460098A (en) * 2014-03-14 2017-02-22 古河电气工业株式会社 Cu-Al-Mn-based alloy material, method for producing same, and rod-like or sheet-like material using same
CN106460098B (en) * 2014-03-14 2019-01-08 古河电气工业株式会社 Cu-Al-Mn system alloy material and its manufacturing method and the bar or plate for having used the alloy material
US11118255B2 (en) 2014-03-14 2021-09-14 Furukawa Electric Co., Ltd. Cu-Al-Mn-based alloy material, method of producing the same, and rod material or sheet material using the same
CN116043061A (en) * 2023-01-18 2023-05-02 中南大学 Elastic copper alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3300684B2 (en) Copper-based alloy having shape memory characteristics and superelasticity, member made of the same, and method of manufacturing the same
JP5065904B2 (en) Iron-based alloy having shape memory and superelasticity and method for producing the same
EP2896705B1 (en) Cu-al-mn based alloy exhibiting stable superelasticity and manufacturing process therefor
KR102237789B1 (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
JPS6159390B2 (en)
JP3335224B2 (en) Method for producing high formability copper-based shape memory alloy
JP3907177B2 (en) Fe-based shape memory alloy and manufacturing method thereof
JP2000169920A (en) Copper base alloy having shape memory characteristic and superelasticity, and its production
JP2000017395A (en) Fe SERIES SHAPE MEMORY ALLOY AND ITS PRODUCTION
JP2005298952A (en) Damping material and its production method
JP3447830B2 (en) Invar alloy wire and method of manufacturing the same
JP4984198B2 (en) Low thermal expansion alloy
JP4275334B2 (en) Copper-based alloy and manufacturing method thereof
JPS5942741B2 (en) Semi-hard magnetic alloy and its manufacturing method
JP3452335B2 (en) NiTi-based alloy
JPH1136024A (en) High-temperature-functioning shape memory alloy, and its production
JPH08199238A (en) Production of wire rod of high strength and low thermal expansion alloy
JP3344946B2 (en) Functionally graded alloy and method for producing the same
KR102604458B1 (en) Commercially pure titanium having high strength and high uniform ductility and method of manufacturing the same
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP2929680B2 (en) Coil spring and manufacturing method thereof
JPS6213427B2 (en)
JPS622027B2 (en)
JPS5935978B2 (en) shape memory titanium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050701

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070820

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071219