JP3452335B2 - NiTi-based alloy - Google Patents

NiTi-based alloy

Info

Publication number
JP3452335B2
JP3452335B2 JP19576294A JP19576294A JP3452335B2 JP 3452335 B2 JP3452335 B2 JP 3452335B2 JP 19576294 A JP19576294 A JP 19576294A JP 19576294 A JP19576294 A JP 19576294A JP 3452335 B2 JP3452335 B2 JP 3452335B2
Authority
JP
Japan
Prior art keywords
niti
alloy
yttrium
boron
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19576294A
Other languages
Japanese (ja)
Other versions
JPH0860277A (en
Inventor
満 相場
和行 中筋
昌樹 ▲高▼島
Original Assignee
関東特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東特殊製鋼株式会社 filed Critical 関東特殊製鋼株式会社
Priority to JP19576294A priority Critical patent/JP3452335B2/en
Publication of JPH0860277A publication Critical patent/JPH0860277A/en
Application granted granted Critical
Publication of JP3452335B2 publication Critical patent/JP3452335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、形状記憶合金および超
弾性合金として知られるNiTi基合金の組成に関するもの
であり、疲労寿命および熱間・冷間加工性をさらに改善
した形状記憶合金ならびに超弾性合金としてのNiTi基合
金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the composition of NiTi-based alloys known as shape memory alloys and superelastic alloys. Shape memory alloys and super alloys having further improved fatigue life and hot / cold workability. The present invention relates to a NiTi-based alloy as an elastic alloy.

【0002】[0002]

【従来の技術】NiTi基合金を初めとする形状記憶合金と
呼ばれる合金は、高温相の母相では立方晶構造であるオ
ーステナイト組織を示すが、変態温度 (Ms点) 以下では
単斜晶マルテンサイト組織に変態する。NiTi基合金の組
織がこのマルテンサイト組織になっている場合、外力
(応力) が与えられると容易に見かけ上の塑性変形を示
す。次に、これを変態温度 (Af点) 以上に加熱すると、
元の形状に回復する。一般的に、これは形状記憶効果と
呼ばれ、感温バルブ、サーモスタットなどいろいろな工
業用途で使用されている。
2. Description of the Related Art Alloys called shape memory alloys such as NiTi-based alloys show an austenite structure that is a cubic structure in the parent phase of the high temperature phase, but monoclinic martensite below the transformation temperature (Ms point). Transform into tissue. When the structure of NiTi-based alloy is this martensite structure, external force
When (stress) is applied, it easily shows an apparent plastic deformation. Next, if this is heated above the transformation temperature (Af point),
Restores the original shape. Generally, this is called a shape memory effect, and is used in various industrial applications such as temperature sensitive valves and thermostats.

【0003】また、母相であるオーステナイト組織の状
態で応力を加えると、通常の金属材料では考えられない
ような大きな弾性変形を示すことが良く知られている。
これは超弾性もしくは擬弾性などと呼ばれている。オー
ステナイト組織に応力を加えると応力誘起マルテンサイ
ト変態(SIM変態) が起こり、すべり変態が起こらない応
力範囲では変形歪を変態という結晶構造変化で補うこと
により超弾性が観察され大きな弾性変形を示すのであ
る。この超弾性特性は極めて工業的価値が大きく、眼鏡
部品を初め、歯列矯正ワイヤ、ブラジャーワイヤ、肩パ
ッドワイヤなど変形しにくい素材として多くの用途で使
用されている。
It is also well known that when stress is applied in the state of an austenite structure as a matrix, a large elastic deformation, which cannot be considered by ordinary metal materials, is exhibited.
This is called superelasticity or pseudoelasticity. When stress is applied to the austenite structure, stress-induced martensitic transformation (SIM transformation) occurs, and in the stress range where slip transformation does not occur, superelasticity is observed and a large elastic deformation is observed by supplementing the deformation strain with the crystal structure change called transformation. is there. This superelastic property has a great industrial value and is used in many applications as a material that is difficult to deform such as eyeglass parts, orthodontic wires, brassieres wires, and shoulder pad wires.

【0004】しかし、かかる優れた特性を有する従来の
NiTi基合金にもいくつかの問題点がある。その一つは、
冷間加工性が悪いことである。例えば、ダイス伸線によ
り冷間にて縮径加工を行う場合、おおよそ減面率で30%
の冷間加工により加工性が劣化 (伸び、絞りが極端に低
下) してしまい、それ以上の加工ができなくなってしま
う。したがって、30%の冷間加工を行うたび毎に再結晶
温度以上での熱処理すなわち歪取り焼鈍を行う必要があ
り、結局冷間加工に際しては熱処理を数多く繰り返し行
う必要があった。
However, conventional methods having such excellent characteristics have
NiTi-based alloys also have some problems. One of them is
Cold workability is poor. For example, when reducing the diameter by cold drawing with a die wire, the area reduction rate is approximately 30%.
The cold working deteriorates the workability (extension and drawing are extremely reduced), and further processing cannot be performed. Therefore, it is necessary to perform heat treatment at a recrystallization temperature or higher, that is, strain relief annealing every time 30% cold working is performed, and it is necessary to repeat heat treatment a lot during cold working.

【0005】ステンレス鋼などの金属材料においては75
%以上の冷間加工が可能であるということから考える
と、NiTi基合金は製品コストに占める加工コストの割合
が極めて高い工業材料ということができる。したがっ
て、NiTi基合金の線材・薄板材などは高価格となり、工
業的応用を阻害する最も大きな要因となっている。
75 for metallic materials such as stainless steel
Since it is possible to perform cold working of at least%, it can be said that the NiTi-based alloy is an industrial material that has a very high ratio of processing cost to product cost. Therefore, NiTi-based alloy wires and thin plate materials become expensive, which is the biggest factor that hinders industrial application.

【0006】また、形状記憶合金および超弾性合金は、
大きな変形 (最大8%) を与えても温度を上げたり、応
力を除去することにより元の形状に復帰することが大き
な特徴である。このように一般の金属材料においては使
用することのない大きな歪変形を繰り返し与えられる用
途が多く、その疲労寿命が問題となることが多い。特
に、携帯電話用アンテナ芯材、メガネフレーム、ブラジ
ャーワイヤーなどの超弾性合金としての用途では使用時
に疲労破断することがあり、問題となっている。
Shape memory alloys and superelastic alloys are
A major feature is that even if a large amount of deformation (maximum 8%) is applied, the shape returns to its original shape by raising the temperature or removing the stress. As described above, general metal materials are often used to be repeatedly subjected to large strain deformation that is not used, and the fatigue life thereof often becomes a problem. In particular, when used as a superelastic alloy such as an antenna core material for a mobile phone, a spectacle frame, a brassiere wire, etc., fatigue fracture may occur during use, which is a problem.

【0007】ところで、NiTi基合金の成形加工性、耐衝
撃性を向上させるべく、Y (イットリウム) を0.001 〜
0.5 重量%あるいは50〜800 ppm 含有させたNiTi基合金
が提案されたいる。 (特開昭60−251241号、特公平4−
29727 号) また、NiTi基合金の加工性を向上させるべ
く、B (ボロン) を0.001 〜0.5 重量%あるいは0.1 〜
5at%含有したNiTi基合金あるいはその製造方法が提案
されている。 (特開昭61−295349号、特公平5−33303
号) しかし、これらの合金あるいは製造方法によるNiTi基合
金では、現在使用されているアンテナ芯材、メガネフレ
ーム、ブラジャーワイヤー等で要求される形状回復力を
維持しつつ、繰り返し使用に耐えられる疲労特性をも満
足できるものではなかった。
By the way, in order to improve the formability and impact resistance of the NiTi-based alloy, Y (yttrium) is set to 0.001 to
NiTi-based alloys containing 0.5 wt% or 50 to 800 ppm have been proposed. (JP-A-60-251241, Japanese Patent Publication No. 4-
No. 29727) In addition, in order to improve the workability of NiTi-based alloys, B (boron) is 0.001 to 0.5% by weight or 0.1 to 0.5% by weight.
A NiTi-based alloy containing 5 at% or a manufacturing method thereof has been proposed. (JP-A-61-295349, JP-B-5-33303
However, with these alloys or NiTi-based alloys produced by the manufacturing method, fatigue properties that can withstand repeated use are maintained while maintaining the shape recovery force required for currently used antenna core materials, eyeglass frames, brassier wires, etc. I was not satisfied with it.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
NiTi基合金の上記欠点を解決するため、冷間加工性を大
幅に向上させ製造コストを低減し、同時に疲労特性を改
善させた新規なNiTi基合金を提供することにある。
The object of the present invention is to solve the problems
In order to solve the above-mentioned drawbacks of NiTi-based alloys, it is an object of the present invention to provide a novel NiTi-based alloy that significantly improves cold workability, reduces manufacturing cost, and at the same time improves fatigue properties.

【0009】本発明のより具体的な目的は、700 ℃での
熱間絞り値90%以上、冷間絞り値50%以上、そして疲労
破断回数3000回以上を同時に満足するNiTi基合金を提供
することにある。
A more specific object of the present invention is to provide a NiTi-based alloy which simultaneously satisfies a hot drawing value of 90% or more at 700 ° C., a cold drawing value of 50% or more, and a fatigue fracture number of 3000 or more. Especially.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために、種々検討を重ね、従来のNiTi基本
合金に極微量のY(イットリウム) およびB(ボロン) を同
時に添加することが有効であることを知り、本発明を完
成した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors have conducted various studies, and added a very small amount of Y (yttrium) and B (boron) to a conventional NiTi basic alloy at the same time. The present invention has been completed, knowing that doing is effective.

【0011】ここに、本発明の要旨とするところは、Ni
Ti基合金において、合金の加工性を向上させ、かつ、形
状記憶効果および超弾性特性の機能特性を長時間維持さ
せるべく、合金の疲労特性を向上させたNiTi基合金であ
って、YおよびBを同時添加することによってのみそれ
らの特性を著しく向上させ得るということである。
The gist of the present invention is that Ni is
In a Ti-based alloy, in order to improve the workability of the alloy and to maintain the shape memory effect and the functional characteristics such as superelasticity for a long time, a NiTi-based alloy having improved fatigue characteristics, comprising Y and B That is, their properties can be remarkably improved only by adding at the same time.

【0012】[0012]

【作用】次に、本発明において合金組成を上述のように
限定した理由についてその作用とともに説明する。ま
ず、本発明において、ベースとなるのはNiTi基合金であ
って、これはNiTiの原子%比Ni/Tiが0.9 〜1.1 のもの
で、この比が0.9 未満では形状記憶効果および超弾性特
性の機能特性が低下するからであり、一方1.1 超では熱
間、冷間加工性が低下し、成形加工が困難になるからで
ある。
Next, the reason why the alloy composition is limited as described above in the present invention will be explained together with its function. First, in the present invention, the base is a NiTi-based alloy, which has a NiTi atomic% ratio Ni / Ti of 0.9 to 1.1. When this ratio is less than 0.9, the shape memory effect and superelastic properties are improved. This is because the functional properties are deteriorated, while if it exceeds 1.1, the hot and cold workability is deteriorated and the molding process becomes difficult.

【0013】このNiTi基合金には、必要に応じて、Fe、
Co、V、Cr、Cu、およびNbから成る群から選んだ少なく
とも1種の合金元素を合計20原子%以下含んでいてもよ
い。これらの合金元素は、いずれも上記機能特性を向上
させるために添加するものであって、20原子%超添加さ
れると機能特性を低下させるばかりでなく、加工性をも
低下させる。好ましくは、合計20原子%以下に制限す
る。より好ましくは、5〜15原子%となるような割合で
配合する。
In this NiTi-based alloy, Fe,
At least one alloying element selected from the group consisting of Co, V, Cr, Cu, and Nb may be contained in a total amount of 20 atomic% or less. All of these alloying elements are added to improve the above-mentioned functional characteristics, and if added in excess of 20 atomic%, not only the functional characteristics are deteriorated, but also the workability is deteriorated. Preferably, the total amount is limited to 20 atomic% or less. More preferably, it is blended at a ratio of 5 to 15 atom%.

【0014】本発明によれば、かかるNiTi基合金におい
て微量ボロン添加したものにさらにイットリウムを添加
した場合、高温延性値が大幅に上昇する。これはイット
リウムの添加により結晶粒さらに微細化する効果があ
り、700 ℃以上の高温においても結晶粒の粗大化が防止
できるためであると考えられる。その結果、通常900 ℃
前後で行われる熱間加工温度を1100℃程度まで上昇させ
ることができ、熱間鍛造時のヒート回数を大幅に減少さ
せることができた。また、イットリウムの添加により鍛
造加熱時の表面酸化が極端に低減することがわかり、酸
化ロスによる歩留り低下ならびに表面肌の大幅な改善が
可能となった。これはイットリウムの添加によりさらに
耐熱酸化性が強化されたためであろう。
According to the present invention, when yttrium is further added to the NiTi-based alloy to which a small amount of boron is added, the high temperature ductility value is significantly increased. It is considered that this is because the addition of yttrium has the effect of further refining the crystal grains and preventing coarsening of the crystal grains even at a high temperature of 700 ° C or higher. As a result, typically 900 ° C
The hot working temperature before and after was able to be raised to about 1100 ° C, and the number of heats during hot forging could be greatly reduced. Moreover, it was found that the addition of yttrium significantly reduced the surface oxidation during the forging heating, and it became possible to significantly reduce the surface yield and the yield due to the oxidation loss. This is probably because the addition of yttrium further enhanced the thermal oxidation resistance.

【0015】イットリウム添加量は原子比で0.0005%以
上あればその効果は現れ、0.10%においても同等の効果
が認められた。但し、0.10%を越えるとその効果はなく
なり、さらに鋳塊内に偏析が現れ、変態温度などのばら
つきを生じさせることから上限は0.10%とした。好まし
くは、Y:0.005 〜0.08原子%である。
If the amount of yttrium added is 0.0005% or more in atomic ratio, the effect is exhibited, and even at 0.10%, the same effect is recognized. However, when the content exceeds 0.10%, the effect disappears, and segregation appears in the ingot, which causes variations in transformation temperature and the like, so the upper limit was made 0.10%. Preferably, Y: 0.005-0.08 atomic%.

【0016】また、上述のY含有のNiTi基合金に微量の
ボロンを添加した場合、伸び・絞りなどの延性値は大幅
に向上し、冷間加工性が大幅に向上する。穴ダイス伸
線、スウェージング、プレス圧延、ロール圧延などの冷
間加工において、同等の効果が実証されている。
When a small amount of boron is added to the above Y-containing NiTi-based alloy, the ductility values such as elongation and drawing are greatly improved and the cold workability is greatly improved. Equivalent effects have been demonstrated in cold working such as hole die wire drawing, swaging, press rolling and roll rolling.

【0017】ボロンの添加量は原子比で0.0010%以上あ
ればその効果は現れ、0.050 %においても同等の効果が
認められた。但し、0.050 %を越える添加量では逆に加
工性は低減することより上限は0.050 %とした。好まし
くは、0.005 〜0.03原子%である。
If the amount of boron added is 0.0010% or more in terms of atomic ratio, the effect is exhibited, and even at 0.050%, the same effect is recognized. However, if the addition amount exceeds 0.050%, the workability decreases conversely, so the upper limit was made 0.050%. Preferably, it is 0.005 to 0.03 atomic%.

【0018】さらに、上述の割合の微量ボロンおよびイ
ットリウムの添加により、疲労寿命が大幅に向上する。
かかるイットリウム、ボロンを同時添加したNiTi基合金
と、イットリウム、ボロンを添加していない従来のNiTi
基合金あるいはイットリウム、ボロンを単独添加したNi
Ti基合金における回転曲げ疲労破断回数を比較するとイ
ットリウムおよびボロンの同時添加により疲労寿命を伸
ばす効果が認められる。
Further, the fatigue life is greatly improved by adding the trace amounts of boron and yttrium in the above-mentioned proportions.
NiTi-based alloys with simultaneous addition of yttrium and boron, and conventional NiTi without addition of yttrium and boron
Base alloy or Ni with yttrium or boron added alone
Comparing the number of rotational bending fatigue fractures in Ti-based alloys, the effect of extending the fatigue life by the simultaneous addition of yttrium and boron is recognized.

【0019】[0019]

【実施例】以下に本発明の一実施例を示す。表1に示す
化学組成のNiTi基合金を100 kg真空誘導溶解炉にて溶解
し、溶け落ち後、鋳込み直前に純イットリウムもしくは
ニッケルボロン合金をイットリウム、ボロン原子%でそ
れぞれ0.0005〜0.15%を単独添加、もしくは同時添加し
10分間保持した後、直径250 mmの金型に真空中にて鋳込
んだ。
EXAMPLE An example of the present invention will be described below. NiTi-based alloys with the chemical composition shown in Table 1 are melted in a vacuum induction melting furnace of 100 kg, and pure yttrium or nickel boron alloy is added individually by 0.0005 to 0.15% in yttrium and boron atomic% immediately after casting after melting through. , Or added simultaneously
After holding for 10 minutes, it was cast in a metal mold having a diameter of 250 mm in a vacuum.

【0020】得られた鋳塊は、表面を機械切削加工した
後、1000℃に加熱し、熱間鍛造加工を行い直径60mmのビ
レットとした。次にこの鍛造ビレットの表面に機械切削
加工を施した後、950 ℃で2時間加熱し、熱間ロール圧
延により直径7.4 mmの熱延線材とした。さらに冷間穴ダ
イス伸線加工と700 ℃、20分の焼鈍熱処理を繰り返し、
直径1mmの線材とした。
The surface of the obtained ingot was mechanically cut, heated to 1000 ° C., and hot forged to obtain a billet having a diameter of 60 mm. Next, the surface of this forged billet was subjected to mechanical cutting, heated at 950 ° C. for 2 hours, and hot rolled to obtain a hot rolled wire having a diameter of 7.4 mm. Furthermore, cold hole die wire drawing and annealing heat treatment at 700 ° C for 20 minutes are repeated,
The wire rod has a diameter of 1 mm.

【0021】このようにして得られた冷間加工線材を50
0 ℃、20分の熱処理により直線形状を記憶させた後、疲
労寿命を確認するために、ハンター式回転曲げ疲労試験
機により歪1.5 %にて疲労試験を室温 (25℃) で行っ
た。また、冷間および熱間加工性を比較するため、引張
試験による絞り値を測定した。
[0021] The cold-worked wire rod thus obtained is
After memorizing the linear shape by heat treatment at 0 ° C for 20 minutes, a fatigue test was conducted at room temperature (25 ° C) with a strain of 1.5% by a Hunter type rotary bending fatigue tester to confirm the fatigue life. Moreover, in order to compare cold workability and hot workability, the drawing value by a tensile test was measured.

【0022】なお、ボロンおよびイットリウムを添加し
ないNiTi合金におけるボロンおよびイットリウムの含有
量は化学分析の結果、イットリウムは0.0001%、ボロン
は0.0003%であった。表2は各合金における引張試験に
おける絞り値ならびにハンター式回転曲げ疲労破断回数
を示した。
The content of boron and yttrium in the NiTi alloy to which boron and yttrium were not added was 0.0001% for yttrium and 0.0003% for boron as a result of chemical analysis. Table 2 shows the reduction value in the tensile test and the number of times of Hunter type rotary bending fatigue fracture in each alloy.

【0023】熱間引張試験は700 ℃で実施し、冷間引張
試験は25℃にて行った。また、ハンター式回転曲げ疲労
試験は、線材表面における最大曲げ歪が1.5 %となるよ
うな引張・圧縮歪を繰り返し与える試験であり、25℃の
室温で実施され、その際の破断回数を測定した。
The hot tensile test was carried out at 700 ° C., and the cold tensile test was carried out at 25 ° C. The hunter type rotary bending fatigue test is a test in which tensile / compressive strain is repeatedly applied so that the maximum bending strain on the surface of the wire is 1.5%, and it is carried out at room temperature of 25 ° C, and the number of breaks at that time was measured. .

【0024】また、表3は、実施例において製造したNi
Ti基合金の熱間および冷間加工性、疲労特性ならびに耐
熱酸化性の評価を示したものである。特に、耐酸化性に
ついては950 ℃で2時間 (大気中) 加熱した際のスケー
ル生成状況および肌荒れ状況で評価した。
Table 3 shows the Ni produced in the examples.
It shows evaluation of hot and cold workability, fatigue characteristics and thermal oxidation resistance of Ti-based alloys. In particular, the oxidation resistance was evaluated by the condition of scale formation and the condition of rough skin when heated at 950 ° C. for 2 hours (in air).

【0025】熱間加工性の評価:“○”は絞り値が90%
以上の場合を示し、“×”は90%未満の場合を示す。 冷間加工性の評価:“○”は絞り値が50%以上の場合を
示し、“×”は50%未満の場合を示す。
Evaluation of hot workability: "○" has a reduction value of 90%
The above cases are shown, and “x” shows the case of less than 90%. Evaluation of cold workability: "○" indicates a case where the drawing value is 50% or more, and "x" indicates a case where it is less than 50%.

【0026】疲労特性の評価:“○”は疲労破断回数が
3000回以上の場合を示し、“×”は3000回未満の場合を
示す。 耐熱酸化性の評価:“○”はスケール厚みが薄い場合を
示し、“×”はスケール厚みが厚く、そのスケール剥離
による肌荒れ発生があることを示す。
Evaluation of fatigue characteristics: "○" indicates the number of fatigue fractures
Indicates a case of 3000 times or more, and "x" indicates a case of less than 3000 times. Evaluation of thermal oxidation resistance: “◯” indicates that the scale thickness was thin, and “x” indicates that the scale thickness was thick and that the scale was peeled to cause rough skin.

【0027】表2で明らかなように本発明例である0.00
05〜0.10%のイットリウムおよび0.001 〜0.005 %のボ
ロンを添加した合金No.1〜20においては、添加なしの合
金No.28 、31〜33およびBまたはBと他の1種を添加し
た合金No.25 〜27、30に比較し、700 ℃における熱間絞
り値の大幅な上昇が認められ、その結果、表3に示すよ
うに熱間加工性が改善した。また、本発明範囲を越える
0.15%イットリウムを添加した合金No.29 においては逆
に絞り値が添加なしの合金より低下することがわかる。
As is clear from Table 2, the present invention is 0.00.
In alloy Nos. 1 to 20 added with 05 to 0.10% yttrium and 0.001 to 0.005% boron, alloy No. 28, 31 to 33 without addition and alloy No. B or B and one other addition A large increase in hot drawing value was observed at 700 ° C. as compared with .25 to 27 and 30, and as a result, hot workability was improved as shown in Table 3. Further, it exceeds the scope of the present invention
It can be seen that in alloy No. 29 containing 0.15% yttrium added, conversely, the aperture value is lower than in the alloy without addition.

【0028】さらに表3で明らかなように大気中で950
℃で2時間加熱した際の高温加熱酸化膜の成長が微量イ
ットリウムの添加で抑制され、酸化ロスならびに肌荒れ
防止に効果が認められた。
Further, as is clear from Table 3, 950 in the atmosphere.
The growth of a high temperature heated oxide film when heated at 0 ° C. for 2 hours was suppressed by the addition of a small amount of yttrium, and it was confirmed that the effect of preventing oxidation loss and rough skin was obtained.

【0029】本発明で規定する範囲である0.0005〜0.10
%のイットリウムおよび0.001 〜0.05%のボロンを添加
した合金No.1〜20と、添加していない合金No.28 、31〜
33、ボロンを0.075 %添加した合金No.30 およびYの1
種を添加した合金No.21 〜24、29における室温 (25℃)
における冷間絞り値を比較すると、表2で明らかなよう
に、ボロンを0.001 〜0.05%添加した合金は室温 (25
℃) における絞り値が添加なしおよび0.075 %添加合金
より高値を示している。そして、Yを0.0005〜0.10%を
添加した本発明合金は、Yを同時添加していないものと
比べると、さらに冷間絞り値が向上していることがわか
る。その結果、穴ダイス伸線においては従来NiTi合金で
は50%の減面率での加工が限界であったが、ボロン添加
により75%まで可能となった。スウェージング、プレス
圧延、ロール圧延などの冷間加工においても同等の効果
が認められた。
The range specified in the present invention is 0.0005 to 0.10.
% Yttrium and 0.001 to 0.05% boron alloy No. 1 to 20 and non-added alloy No. 28 and 31 to
33, 1 of alloy No. 30 and Y with 0.075% boron added
Room temperature (25 ℃) in alloy Nos. 21-24 and 29 with seeds added
Comparing the cold drawing values in Table 1, it is clear from Table 2 that the alloy containing 0.001 to 0.05% of boron has room temperature (25
The squeeze value at (℃) is higher than that of the alloy without addition and 0.075% addition alloy. Further, it can be seen that the alloy of the present invention in which 0.0005 to 0.10% of Y is added has a further improved cold drawing value as compared with the alloy in which Y is not added simultaneously. As a result, in the hole die wire drawing, the conventional NiTi alloy had a limit of working at a surface reduction rate of 50%, but it was possible to reach 75% by adding boron. The same effect was observed in cold working such as swaging, press rolling and roll rolling.

【0030】回転曲げ疲労破断寿命の比較においても表
2で明らかなように、イットリウム、ボロンを同時添加
することによって疲労寿命を伸ばす効果があり、両者を
同時添加することによりさらにその効果が顕著となるこ
とがわかる。さらに、Fe、Co、V、Cr、Cu、Nbを少なく
とも1種以上添加したNiTi合金においても、イットリウ
ム、ボロン同時添加により同等の効果が確認された。
Also in the comparison of the rotational bending fatigue rupture life, as is clear from Table 2, the simultaneous addition of yttrium and boron has the effect of extending the fatigue life, and the simultaneous addition of both makes the effect more remarkable. You can see. Further, even in a NiTi alloy containing at least one of Fe, Co, V, Cr, Cu and Nb, the same effect was confirmed by the simultaneous addition of yttrium and boron.

【0031】以上より、イットリウムおよびボロンの微
量同時添加により熱間加工性および耐熱酸化性向上に効
果が現れ、さらに冷間加工性の改善に効果が現れること
が確認された。さらに、イットリウムおよびボロンの同
時添加により疲労特性を向上させることが確認され、そ
の効果は一層顕著となることが実証された。
From the above, it was confirmed that the simultaneous addition of a small amount of yttrium and boron is effective in improving hot workability and thermal oxidation resistance, and further effective in improving cold workability. Further, it was confirmed that the simultaneous addition of yttrium and boron improves the fatigue characteristics, and it was verified that the effect becomes more remarkable.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】本発明によれば、NiTi基合金にイットリ
ウムおよびボロンを同時微量添加することにより、700
℃での熱間絞り値が90%以上である優れた熱間加工性
と、冷間絞り値が50%以上である優れた冷間加工性とを
得ることができ、製造コストの低減を実現させ得る。さ
らに、疲労破断回数が3000回以上である優れた疲労寿命
を得ることも可能となる。しかも、本発明は、ほとんど
すべてのNiTi基合金製品に適用でき、その工業的価値は
極めて大きなものである。
According to the present invention, by simultaneously trace yttrium and boron NiTi based alloy, 700
Excellent hot workability with hot drawing value of 90% or more at ℃
And excellent cold workability with a cold drawing value of 50% or more.
It can be obtained, and the reduction of manufacturing cost can be realized. In addition, it has an excellent fatigue life of over 3000 fatigue breaks.
It is also possible to obtain . Moreover, the present invention can be applied to almost all NiTi-based alloy products, and its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲高▼島 昌樹 栃木県下都賀郡野木町野木1985番地 株 式会社三洋特殊合金内 (56)参考文献 特開 昭63−223137(JP,A) 特開 昭61−210142(JP,A) 特開 昭60−251241(JP,A) 特開 昭61−295349(JP,A) 特開 昭62−10261(JP,A) 特公 平4−29727(JP,B2) 特公 平5−33303(JP,B2)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor ▲ Taka ▼ Masaki Shima               1985 Nogi, Nogi-cho, Shimotsuga-gun, Tochigi Prefecture               In ceremony company Sanyo Special Alloy                (56) References JP-A-63-223137 (JP, A)                 JP-A-61-210142 (JP, A)                 JP-A-60-251241 (JP, A)                 JP-A-61-295349 (JP, A)                 JP 62-10261 (JP, A)                 Japanese Patent Publication 4-29727 (JP, B2)                 Japanese Patent Publication 5-33303 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原子%で、0.0005%以上0.10%以下のY
(イットリウム) 、および0.0010%以上0.050 %以下の
B (ボロン) を同時に含有し、残部が実質的にNiとTiと
から成り、Ni/Ti 原子%比が0.9 〜1.1 であるNiTiであ
る組成を有し、700 ℃での熱間絞り値90%以上、冷間絞
り値50%以上および疲労破断回数3000回以上を満足する
ことを特徴とするNiTi基合金。
1. Y of 0.0005% or more and 0.10% or less in atomic%
(Yttrium) and B (boron) of 0.0010% to 0.050% at the same time, the balance being Ni and Ti, and the Ni / Ti atomic% ratio being 0.9 to 1.1. Yes, and hot at 700 ° C. aperture 90% Hiyakanshibo
A NiTi-based alloy characterized by a tensile strength of 50% or more and a fatigue fracture count of 3000 or more .
【請求項2】 さらに、Fe、Co、V 、Cr、Cu、およびNb
から成る群から選んだ少なくとも1種、合計20原子%以
下を含む請求項1に記載のNiTi基合金。
2. Further, Fe, Co, V 2, Cr, Cu, and Nb.
The NiTi-based alloy according to claim 1, containing at least one element selected from the group consisting of 20 atomic% or less in total.
JP19576294A 1994-08-19 1994-08-19 NiTi-based alloy Expired - Fee Related JP3452335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19576294A JP3452335B2 (en) 1994-08-19 1994-08-19 NiTi-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19576294A JP3452335B2 (en) 1994-08-19 1994-08-19 NiTi-based alloy

Publications (2)

Publication Number Publication Date
JPH0860277A JPH0860277A (en) 1996-03-05
JP3452335B2 true JP3452335B2 (en) 2003-09-29

Family

ID=16346541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19576294A Expired - Fee Related JP3452335B2 (en) 1994-08-19 1994-08-19 NiTi-based alloy

Country Status (1)

Country Link
JP (1) JP3452335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712968A (en) * 2009-11-02 2012-10-03 赛伊斯智能材料公司 Ni-Ti semi-finished products and related methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133171B2 (en) * 2003-06-02 2012-03-13 Karl Storz Endovision, Inc. Wire spring guide for flexible endoscope
DE102004060900A1 (en) * 2004-12-14 2006-06-29 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Nickel-based semi-finished product with cube texture and process for its production
GB2475340B (en) * 2009-11-17 2013-03-27 Univ Limerick Nickel-titanium alloy and method of processing the alloy
JP7156950B2 (en) * 2016-04-20 2022-10-19 フォート ウェイン メタルズ リサーチ プロダクツ,エルエルシー Nickel-titanium-yttrium alloy wire with reduced oxide inclusions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712968A (en) * 2009-11-02 2012-10-03 赛伊斯智能材料公司 Ni-Ti semi-finished products and related methods
US9315880B2 (en) 2009-11-02 2016-04-19 Saes Smart Materials Ni-Ti semi-finished products and related methods

Also Published As

Publication number Publication date
JPH0860277A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
EP2896705B1 (en) Cu-al-mn based alloy exhibiting stable superelasticity and manufacturing process therefor
EP2500443B1 (en) NI-TI semi-finished products and related methods
JP5185613B2 (en) Novel Fe-Al alloy and method for producing the same
EP2995694A1 (en) Cu-Al-Mn-BASED BAR MATERIAL AND PLATE MATERIAL DEMONSTRATING STABLE SUPERELASTICITY, METHOD FOR MANUFACTURING SAID BAR MATERIAL AND PLATE MATERIAL, SEISMIC CONTROL MEMBER IN WHICH SAID BAR MATERIAL AND PLATE MATERIAL ARE USED, AND SEISMIC CONTROL STRUCTURE IN WHICH SEISMIC CONTROL MEMBER IS USED
EP1736560B1 (en) High-strength alpha+beta-type titanium alloy
JP2001020026A (en) Copper-based alloy having shape memory property and superelasticity, member consisting of the alloy, and their manufacture
JP6874246B2 (en) Fe group shape memory alloy material and its manufacturing method
EP2677052B1 (en) Titanium alloy product having high strength and excellent cold rolling property
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
JP3452335B2 (en) NiTi-based alloy
US5501834A (en) Nonmagnetic ferrous alloy with excellent corrosion resistance and workability
JP3907177B2 (en) Fe-based shape memory alloy and manufacturing method thereof
EP3693483A1 (en) Transformation-induced plasticity high-entropy alloy, and manufacturing method therefor
JP4173609B2 (en) Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability
KR102434519B1 (en) Method of manufacturing high strength titanium alloy using ferrochrome and high strength titanium alloy
JP2000169920A (en) Copper base alloy having shape memory characteristic and superelasticity, and its production
JP2886818B2 (en) Method of manufacturing copper alloy for decoration
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JP3085099B2 (en) NiTi-based alloy eyeglass member and method of manufacturing the same
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JP2001247938A (en) Austenitic stainless steel sheet for electronic equipment component
JPH1136024A (en) High-temperature-functioning shape memory alloy, and its production
US4338130A (en) Precipitation hardening copper alloys
JP2003138330A (en) Copper-base alloy and its manufacturing method
JPS6326192B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001031

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees