JP2003138330A - Copper-base alloy and its manufacturing method - Google Patents

Copper-base alloy and its manufacturing method

Info

Publication number
JP2003138330A
JP2003138330A JP2001334816A JP2001334816A JP2003138330A JP 2003138330 A JP2003138330 A JP 2003138330A JP 2001334816 A JP2001334816 A JP 2001334816A JP 2001334816 A JP2001334816 A JP 2001334816A JP 2003138330 A JP2003138330 A JP 2003138330A
Authority
JP
Japan
Prior art keywords
copper
phase
based alloy
alloy
superelasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001334816A
Other languages
Japanese (ja)
Other versions
JP4275334B2 (en
Inventor
Hidekazu Suzuki
秀和 鈴木
Takayuki Okamoto
貴幸 岡本
Masami Wakita
将見 脇田
Kiyohito Ishida
清仁 石田
Ryosuke Kainuma
亮介 貝沼
Yuji Sudo
祐司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2001334816A priority Critical patent/JP4275334B2/en
Publication of JP2003138330A publication Critical patent/JP2003138330A/en
Application granted granted Critical
Publication of JP4275334B2 publication Critical patent/JP4275334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper-base alloy having shape memory characteristics and superelasticity and also having high yield stress even if crystal grains are so coarsened that bamboo structure is developed and also to provide its manufacturing method. SOLUTION: The copper-base alloy has shape memory characteristics and superelasticity and has recrystallized structure where bainitic phase (γ) is precipitated in at least either of austenitic (β) phase and grain boundary. A wire of the copper-base alloy has >=100 Mpa yield stress even in the bamboo structure where the ratio of the average grain size (C) to the diameter (S) of the wire, (C/S), becomes >=1.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,形状記憶特性及び超弾性に優れ
ている銅系合金及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a copper alloy having excellent shape memory characteristics and superelasticity, and a method for producing the same.

【0002】[0002]

【従来技術】従来,形状記憶特性及び超弾性を有する銅
系合金としては,例えば特開2001−20026号公
報に示されるものがある。そして,そこには,Al3〜
10重量%と,Mn5〜20重量%と,Ni,Co,F
e,Ti,ミッシュメタル等の添加元素0.001〜1
0重量%と,残部Cu及び不可避不純物とよりなる組成
物からなり,再結晶組織がオーステナイト(β)相単相
からなる銅系合金が示されている。この銅系合金は,優
れた形状記憶特性及び超弾性を有している。
2. Description of the Related Art Conventionally, as a copper-based alloy having shape memory characteristics and superelasticity, there is, for example, one disclosed in Japanese Patent Laid-Open No. 2001-20026. And there, Al3 ~
10% by weight, Mn 5 to 20% by weight, Ni, Co, F
Additive elements such as e, Ti, misch metal 0.001-1
A copper-based alloy having a composition of 0% by weight and the balance Cu and unavoidable impurities and having a recrystallized structure of an austenite (β) phase single phase is shown. This copper-based alloy has excellent shape memory characteristics and superelasticity.

【0003】ところで,形状記憶特性及び超弾性を有す
る銅系合金においては,特にこれをバネ材として利用す
る場合などには,超弾性の向上を図ることが要求され
る。そして,この超弾性の向上を図ろうとする場合,オ
ーステナイト(β)相の結晶粒を粗大化させることが効
果的である。
By the way, in a copper-based alloy having shape memory characteristics and superelasticity, it is required to improve the superelasticity, especially when it is used as a spring material. In order to improve the superelasticity, it is effective to coarsen the austenite (β) phase crystal grains.

【0004】[0004]

【解決しようとする課題】しかしながら,このようにオ
ーステナイト(β)相結晶粒の粗大化を図ると,部分的
に節部分を形成する,いわゆるバンブー構造が発生す
る。そして,かかるバンブー構造を発生させて上記のよ
うにオーステナイト(β)相結晶粒の増大化を図ると,
銅系合金の降伏応力が低下する。そのため,オーステナ
イト(β)相結晶粒の増大化による超弾性の向上には限
界がある。
[Problems to be Solved] However, when the austenite (β) phase crystal grains are coarsened in this manner, a so-called bamboo structure, in which nodes are partially formed, occurs. Then, when such a bamboo structure is generated to increase the austenite (β) phase crystal grains as described above,
The yield stress of the copper-based alloy decreases. Therefore, there is a limit to improving superelasticity by increasing the number of austenite (β) phase grains.

【0005】本発明は,かかる従来の問題点に鑑み,バ
ンブー構造が発生するほど結晶粒を粗大化させても,高
い降伏応力を有し,形状記憶特性及び超弾性を有する銅
系合金,及びその製造方法を提供しようとするものであ
る。
In view of the above conventional problems, the present invention provides a copper-based alloy having a high yield stress, shape memory characteristics and superelasticity even if the crystal grains are coarsened to the extent that a bamboo structure is generated, and It is intended to provide the manufacturing method.

【0006】[0006]

【課題の解決手段】第1の発明は,形状記憶特性及び超
弾性を有する銅系合金であって,再結晶組織が,オース
テナイト(β)相内又は結晶粒界の少なくともいずれか
に,ベイナイト(γ)相を析出させていることを特徴と
する銅系合金にある(請求項1)。
A first aspect of the present invention is a copper-based alloy having shape memory characteristics and superelasticity, wherein the recrystallization structure is bainite () in at least one of an austenite (β) phase and a grain boundary. The copper-based alloy is characterized in that the γ) phase is precipitated (claim 1).

【0007】本発明においては,再結晶組織が,上記従
来の銅系合金のようにオーステナイト(β)相単相では
なく,オーステナイト(β)相内又は結晶粒界の一方又
は双方に,ベイナイト(γ)相を析出させている。その
ため,形状記憶特性及び超弾性を高くするために結晶粒
を粗大化させてバンブー構造が発生しても,例えば10
0MPa以上という高い降伏応力を得ることができる。
In the present invention, the recrystallized structure is not the austenite (β) phase single phase as in the above-mentioned conventional copper alloys, but bainite () in the austenite (β) phase or in one or both of the grain boundaries. γ) Phase is precipitated. Therefore, even if the crystal grain is coarsened and a bamboo structure is generated in order to improve the shape memory characteristic and superelasticity,
A high yield stress of 0 MPa or more can be obtained.

【0008】本発明において,上記形状記憶特性とは,
ある回復温度以下で変形を加えても,回復温度以上に加
熱すればもとの記憶した形状に戻る現象であり,また超
弾性とは前記回復温度以上で曲げたり伸ばしたりして
も,負荷を除くとゴムのように元の形状に戻る現象であ
る。
In the present invention, the shape memory characteristic is
Even if the material is deformed below a certain recovery temperature, it will return to its original memorized shape when heated above the recovery temperature. Superelasticity means that the load will be applied even if bent or stretched above the recovery temperature. When removed, it is a phenomenon of returning to its original shape like rubber.

【0009】本発明によれば,バンブー構造が発生する
ほど結晶粒を粗大化させても,高い降伏応力を有し,形
状記憶特性及び超弾性を有する銅系合金を提供すること
ができる。
According to the present invention, it is possible to provide a copper-based alloy having a high yield stress, shape memory characteristics and superelasticity even if the crystal grains are coarsened so that a bamboo structure is generated.

【0010】次に,第2発明は,形状記憶特性及び超弾
性を有する銅系合金であって,Al3〜10重量%と,
Mn5〜20重量%と,残部Cu及び不可避不純物とよ
りなる組成物からなり,かつ,再結晶組織が,オーステ
ナイト(β)相内又は結晶粒界の少なくともいずれか
に,ベイナイト(γ)相を析出させていることを特徴と
する銅系合金にある(請求項3)。
Next, the second invention is a copper-based alloy having shape memory characteristics and superelasticity, wherein Al3 to 10% by weight,
It consists of a composition of 5 to 20% by weight of Mn and the balance Cu and unavoidable impurities, and the recrystallization structure precipitates a bainite (γ) phase in at least one of the austenite (β) phase and the grain boundary. The copper-based alloy is characterized by being made (claim 3).

【0011】本第2発明において,Alは3〜10重量
%が必要である。3重量%未満では銅系合金がオーステ
ナイト(β)相を形成し難く,一方10重量%を越える
と銅系合金が脆くなる。なお,更に好ましくはAl6〜
10重量%である。また,Mnは,オーステナイト
(β)相が存在しうる組成範囲を低Al側へ広げ,銅系
合金の冷間加工性を向上させるために必要である。Mn
は5重量%未満では冷間加工性が劣り,かつオーステナ
イト(β)相を形成することが困難となる。一方,20
重量%を越えると形状記憶特性が低下してしまう。な
お,更に好ましくは8〜12重量%である。
In the second invention, 3 to 10% by weight of Al is required. If it is less than 3% by weight, the copper-based alloy is unlikely to form an austenite (β) phase, while if it exceeds 10% by weight, the copper-based alloy becomes brittle. In addition, more preferably Al6 ~
It is 10% by weight. Further, Mn is necessary for expanding the composition range in which the austenite (β) phase can exist to the low Al side and improving the cold workability of the copper alloy. Mn
If less than 5% by weight, cold workability is poor and it becomes difficult to form an austenite (β) phase. On the other hand, 20
If it exceeds 5% by weight, the shape memory property is deteriorated. Further, it is more preferably 8 to 12% by weight.

【0012】本発明においては,再結晶組織が,上記従
来の銅系合金のようにオーステナイト(β)相単相では
なく,オーステナイト(β)相内又は結晶粒界の一方又
は双方に,ベイナイト(γ)相を析出させている。その
ため,形状記憶特性及び超弾性を高くするために結晶粒
を粗大化させてバンブー構造が発生しても,例えば10
0MPa以上という高い降伏応力を得ることができる。
In the present invention, the recrystallized structure is not the austenite (β) phase single phase as in the above-mentioned conventional copper alloys, but bainite () in the austenite (β) phase or in one or both of the grain boundaries. γ) Phase is precipitated. Therefore, even if the crystal grain is coarsened and a bamboo structure is generated in order to improve the shape memory characteristic and superelasticity,
A high yield stress of 0 MPa or more can be obtained.

【0013】したがって,本発明によれば,バンブー構
造が発生するほど結晶粒を粗大化させても,高い降伏応
力を有し,形状記憶特性及び超弾性を有する銅系合金を
提供することができる。
Therefore, according to the present invention, it is possible to provide a copper-based alloy having a high yield stress, shape memory characteristics and superelasticity even if the crystal grains are coarsened so that a bamboo structure is generated. .

【0014】次に,第3発明は,Al3〜10重量%
と,Mn5〜20重量%と,Ni,Co,Fe,Ti,
V,Cr,Si,Nb,Mo,W,Sn,Sb,Mg,
P,Be,Zr,Zn,B,C,Ag及びミッシュメタ
ルの1種又は2種以上よりなる添加元素を,合金全体を
100重量%として,合計で0.001〜10重量%
と,残部Cu及び不可避不純物とよりなる組成物からな
り,かつ,再結晶組織が,オーステナイト(β)相内又
は結晶粒界の少なくともいずれかに,ベイナイト(γ)
相を析出させている,形状記憶特性及び超弾性を有する
銅系合金を製造する方法であって,上記組成物をオース
テナイト(β)相領域となる温度に加熱保持した後,α
相が出ない程度の速度で急冷し,次いで200〜300
℃の範囲において,時効及び変態処理を行なうことを特
徴とする銅系合金の製造方法にある(請求項7)。
Next, the third invention is based on Al3 to 10% by weight.
5-20% by weight of Mn, Ni, Co, Fe, Ti,
V, Cr, Si, Nb, Mo, W, Sn, Sb, Mg,
A total of 0.001 to 10% by weight of an additive element consisting of one or more of P, Be, Zr, Zn, B, C, Ag and misch metal, based on 100% by weight of the entire alloy.
And a balance of Cu and unavoidable impurities, and the recrystallization structure is bainite (γ) in at least one of the austenite (β) phase and the grain boundary.
A method for producing a copper-based alloy having shape memory characteristics and superelasticity in which phases are precipitated, wherein the composition is heated and maintained at a temperature in an austenite (β) phase region,
Quench at a speed that does not produce phases, then 200-300
The method for producing a copper-based alloy is characterized by performing aging and transformation treatment in the range of ° C (claim 7).

【0015】本発明においては,上記組成物をオーステ
ナイト(β)相領域となる温度に加熱保持した後,α相
が出ない程度の速度で急冷し,次いで200〜300℃
の間で時効及び変態処理を行なっている。そのため,再
結晶組織は,オーステナイト(β)相単相ではなく,オ
ーステナイト(β)相内又は結晶粒界の一方又は双方
に,ベイナイト(γ)相を析出させたものとなる。それ
故,結晶粒の粗大化を図ることができると共に,結晶粒
の粗大化によってバンブー構造が発生しても,高い降伏
応力を得ることができる。
In the present invention, the above composition is heated and maintained at a temperature in the austenite (β) phase region, and then rapidly cooled at a rate at which an α phase does not appear, and then 200 to 300 ° C.
Aging and transformation treatment are performed between. Therefore, the recrystallized structure is not the austenite (β) phase single phase, but the bainite (γ) phase precipitated in the austenite (β) phase or in one or both of the grain boundaries. Therefore, the crystal grains can be coarsened, and a high yield stress can be obtained even if a bamboo structure is generated due to the coarsened crystal grains.

【0016】また,本第3発明においては,上記組成物
を用い,これをオーステナイト(β)相領域となる温度
に加熱保持した後,α相が出ない程度の速度で急冷す
る。上記急冷時にα相が出ると形状記憶特性及び超弾性
特性が得られないという問題がある。また,「α相が出
ない程度の速度」とは,例えば8.10重量%Al−1
0.2重量%Mn−0.51重量%Co−残部Cuの場
合には,230℃/秒以上の速度である。
Further, in the third aspect of the present invention, the above composition is used, and the composition is heated and held at a temperature in the austenite (β) phase region, and then rapidly cooled at such a rate that the α phase is not generated. If α phase appears during the rapid cooling, there is a problem that shape memory characteristics and superelasticity characteristics cannot be obtained. Further, "the speed at which the α phase does not appear" means, for example, 8.10 wt% Al-1.
In the case of 0.2 wt% Mn-0.51 wt% Co-balance Cu, the speed is 230 ° C / sec or more.

【0017】また,上記急冷後の時効及び変態処理は,
200〜300℃において行なう。200℃未満では時
効及び変態処理が長くなり,処理コスト上昇という問題
がある。一方,300℃を越えると,析出したベイナイ
ト(γ)相が粗大化し,銅系合金が脆くなることと,処
理の時間範囲が狭くなり,制御が困難となる問題があ
る。なお,上記の時効及び変態処理は,温度が高い程短
時間で良く,例えば,200℃では55〜300分,2
50℃では8〜30分,300℃では1〜5分とするこ
とが好ましい(図1参照)。
The aging and transformation treatments after the quenching are as follows:
It is carried out at 200 to 300 ° C. If the temperature is less than 200 ° C, aging and transformation treatment will be long and there will be a problem that the treatment cost will increase. On the other hand, if the temperature exceeds 300 ° C., the precipitated bainite (γ) phase becomes coarse, the copper alloy becomes brittle, and the time range of the treatment becomes narrow, which makes control difficult. The higher the temperature, the shorter the aging and transformation treatments may be. For example, at 200 ° C., 55 to 300 minutes, 2
It is preferably 8 to 30 minutes at 50 ° C. and 1 to 5 minutes at 300 ° C. (see FIG. 1).

【0018】また,更に好ましくは,時効及び変態処理
は,200〜300℃で,かつ温度(T)℃に対する時
間(t)分が,T=−26Ln(t)+304と,T=
−25Ln(t)+339とで囲まれた範囲において行
なう。図1の実線及び破線は,概略の上記関係式を示し
ている。
More preferably, the aging and transformation treatment is performed at 200 to 300 ° C., and the time (t) minutes with respect to the temperature (T) ° C. is T = −26Ln (t) +304 and T =
It is performed in a range surrounded by −25Ln (t) +339. A solid line and a broken line in FIG. 1 indicate the above-mentioned relational expressions.

【0019】本第3発明においては,上記第2発明に示
したと同様の銅系合金を得ることができる。したがっ
て,本発明によれば,バンブー構造が発生するほど結晶
粒を粗大化させても,高い降伏応力を有し,形状記憶特
性及び超弾性を有する銅系合金及を提供することができ
る。
In the third invention, the same copper-based alloy as shown in the second invention can be obtained. Therefore, according to the present invention, it is possible to provide a copper-based alloy having a high yield stress, shape memory characteristics and superelasticity even if the crystal grains are coarsened so that a bamboo structure is generated.

【0020】[0020]

【発明の実施の形態】上記第1発明において,形状記憶
特性及び超弾性を有する銅系合金としては,例えば,上
記請求項3に示した組成物,或いは,Cu−Zn−A
l,Cu−Al−Niなどがある。また,上記銅系合金
は,オーステナイト(β)相及びベイナイト(γ)相を
発生する銅系合金であり,Cuの他にAl及びMnを含
有していることが好ましい。更には,Al3〜10重量
%,Mn5〜20重量%,残部Cuと不可避不純物から
なるものが好ましい。また,上記再結晶組織におけるベ
イナイト(γ)相は,オーステナイト(β)相内又は結
晶粒界のいずれか一方又は双方に析出しておれば良い。
BEST MODE FOR CARRYING OUT THE INVENTION In the first aspect of the present invention, the copper alloy having shape memory characteristics and superelasticity is, for example, the composition shown in the above item 3 or Cu-Zn-A.
1, Cu-Al-Ni, etc. The copper-based alloy is a copper-based alloy that generates an austenite (β) phase and a bainite (γ) phase, and preferably contains Al and Mn in addition to Cu. Further, it is preferable that Al3 to 10 wt%, Mn to 5 to 20 wt%, and the balance Cu and unavoidable impurities. The bainite (γ) phase in the recrystallized structure may be precipitated in either or both of the austenite (β) phase and the grain boundaries.

【0021】次に,上記ベイナイト(γ)相はベイナイ
ト変態が完全に終了していないことが好ましい(請求項
2)。この場合には,適量のベイナイト(γ)相のため
に,超弾性特性を保持したまま,例えば100MPa以
上という高い降伏応力を得ることができる。
Next, it is preferable that the bainite (γ) phase has not completed bainite transformation (claim 2). In this case, due to the appropriate amount of bainite (γ) phase, a high yield stress of, for example, 100 MPa or more can be obtained while maintaining the superelastic property.

【0022】次に,上記第2発明において,上記不可避
不純物としては,例えばO,Nなどがある。
Next, in the second invention, the unavoidable impurities include, for example, O and N.

【0023】次に,上記銅系合金は,さらにNi,C
o,Fe,Ti,V,Cr,Si,Nb,Mo,W,S
n,Sb,Mg,P,Be,Zr,Zn,B,C,Ag
及びミッシュメタルの1種又は2種以上よりなる添加元
素を,合金全体を100重量%として,合計で0.00
1〜10重量%含有していることが好ましい(請求項
4)。
Next, the above copper-based alloy is further mixed with Ni and C.
o, Fe, Ti, V, Cr, Si, Nb, Mo, W, S
n, Sb, Mg, P, Be, Zr, Zn, B, C, Ag
And an additive element consisting of one or two or more types of misch metal, with the total alloy being 100% by weight, a total of 0.00
It is preferable to contain 1 to 10% by weight (claim 4).

【0024】上記添加元素は,上記列挙した元素の1種
又は2種以上を用いる。その中でNi及び/又はCoが
特に好ましい。これらの元素は冷間加工性を維持したま
ま固溶強化して銅系合金の強度を向上させる効果を発揮
する。上記の添加元素の含有量は,合金全体を100重
量部として,合計で0.001〜10重量%であるのが
好ましく,特に0.001〜5重量%が好ましい。これ
らの元素の合計含有量が10重量%を超えるとマルテン
サイト変態温度が低下し,β単相組織が不安定になる。
As the additive element, one or more of the above-listed elements are used. Among them, Ni and / or Co are particularly preferable. These elements exert the effect of improving the strength of the copper-based alloy by performing solid solution strengthening while maintaining cold workability. The total content of the above-mentioned additional elements is preferably 0.001 to 10% by weight, and more preferably 0.001 to 5% by weight, based on 100 parts by weight of the entire alloy. If the total content of these elements exceeds 10% by weight, the martensitic transformation temperature lowers and the β single phase structure becomes unstable.

【0025】次に,上記のNi,Co,Fe,Sn及び
Sbは,基地組織の強化に有効な元素である。Ni及び
Feの好ましい含有量はそれぞれ0.001〜3重量%
である。Coは,CoAlの形成により析出強化する
が,過剰になると合金の靭性を低下させる。Coの好ま
しい含有量は0.001〜2重量%である。Sn及びS
bの好ましい含有量はそれぞれ0.001〜1重量%で
ある。
Next, the above Ni, Co, Fe, Sn and Sb are effective elements for strengthening the matrix structure. The preferable contents of Ni and Fe are 0.001 to 3% by weight, respectively.
Is. Co strengthens the precipitation by forming CoAl, but if it becomes excessive, it reduces the toughness of the alloy. The preferable content of Co is 0.001 to 2% by weight. Sn and S
The preferable content of b is 0.001 to 1% by weight, respectively.

【0026】Tiは合金特性を阻害する元素であるN及
びOと結合して,酸化物及び窒化物を形成する。また,
Bと複合添加するとボライドを形成し,析出強化に寄与
する。Tiの好ましい含有量は0.001〜2重量%で
ある。
Ti combines with N and O, which are elements that hinder alloy properties, to form oxides and nitrides. Also,
When added together with B, boride is formed and contributes to precipitation strengthening. The preferable content of Ti is 0.001 to 2% by weight.

【0027】W,V,Nb,Mo及びZrは硬さを向上
させて耐摩耗性を向上させる効果を有する。またこれら
の元素はほとんど合金基地に固溶しないので,bcc結
晶として析出し,析出強化に有効である。W,V,N
b,Mo及びZrの好ましい含有量はそれぞれ0.00
1〜1重量%である。
W, V, Nb, Mo and Zr have the effect of improving hardness and wear resistance. Further, since these elements hardly form a solid solution in the alloy matrix, they are precipitated as bcc crystals and are effective for precipitation strengthening. W, V, N
The preferable contents of b, Mo and Zr are each 0.00
It is 1 to 1% by weight.

【0028】Crは耐摩耗性及び耐食性を維持するのに
有効な元素である。Crの好ましい含有量は0.001
〜2重量%である。Siは耐食性を向上させる効果を有
する。Siの好ましい含有量は0.001〜2重量%で
ある。
Cr is an element effective in maintaining wear resistance and corrosion resistance. The preferable content of Cr is 0.001
~ 2% by weight. Si has the effect of improving corrosion resistance. The preferable content of Si is 0.001 to 2% by weight.

【0029】Mgは合金特性を阻害する元素であるN及
びOを除去するとともに,阻害元素であるSを硫化物と
して固定し,熱間加工性や靭性の向上に効果があるが,
多量の添加は粒界偏析を招き,脆化の原因となる。Mg
の好ましい含有量は0.001〜0.5重量%である。
Mg removes N and O, which are elements that hinder alloy properties, and fixes S, which is an hindrance element, as a sulfide, and is effective in improving hot workability and toughness.
Addition of a large amount causes segregation of grain boundaries, which causes embrittlement. Mg
The preferable content of is 0.001 to 0.5% by weight.

【0030】Pは脱酸剤として作用し,靭性向上の効果
を有する。Pの好ましい含有量は0.01〜0.5重量
%である。Beは基地組織を強化する効果を有する。B
eの好ましい含有量は0.001〜1重量%である。
P acts as a deoxidizing agent and has the effect of improving toughness. The preferable content of P is 0.01 to 0.5% by weight. Be has the effect of strengthening the base organization. B
The preferred content of e is 0.001 to 1% by weight.

【0031】Znは形状記憶温度を上昇させる効果を有
する。Znの好ましい含有量は0.001〜5重量%で
ある。B及びCは粒界に偏析し,粒界を強化する効果,
及びボライドやカーバイドを粒界に析出し,結晶粒を微
細化する効果を有する。B及びCの好ましい含有量はそ
れぞれ0.001〜0.5重量%である。
Zn has the effect of raising the shape memory temperature. The preferable content of Zn is 0.001 to 5% by weight. B and C segregate at the grain boundaries, strengthening the grain boundaries,
It also has the effect of precipitating boride and carbide at the grain boundaries and refining the crystal grains. The preferred contents of B and C are 0.001 to 0.5% by weight, respectively.

【0032】Agは冷間加工性を向上させる効果を有す
る。Agの好ましい含有量は0.001〜2重量%であ
る。ミッシュメタルは脱酸剤として作用し,靭性向上の
効果を有する。ミッシュメタルの好ましい含有量は0.
001〜5重量%である。
Ag has the effect of improving cold workability. The preferable content of Ag is 0.001 to 2% by weight. Misch metal acts as a deoxidizer and has the effect of improving toughness. The preferred content of misch metal is 0.
001 to 5% by weight.

【0033】次に,上記銅系合金は線材であり,該線材
は,その線材直径(S)に対する平均結晶粒径(C)の
比(C/S)が1.0以上となるバンブー構造において
も,降伏応力が100Mpa以上で,形状記憶特性及び
超弾性を有することが好ましい(請求項5)。
Next, the copper alloy is a wire rod, and the wire rod has a bamboo structure in which the ratio (C / S) of the average crystal grain size (C) to the wire diameter (S) is 1.0 or more. Also, it is preferable that the yield stress is 100 MPa or more, and that the material has shape memory characteristics and superelasticity (claim 5).

【0034】この場合には,特に降伏応力が100MP
a以上という優れた性質を有し,形状記憶特性及び超弾
性を有する銅系合金の線材を得ることができる。上記線
材直径(S)は単位がμm,平均結晶粒径(C)は単位
がμmである。
In this case, the yield stress is 100 MP.
It is possible to obtain a copper-based alloy wire having excellent properties of a or more and having shape memory characteristics and superelasticity. The wire diameter (S) has a unit of μm, and the average crystal grain size (C) has a unit of μm.

【0035】次に,上記銅系合金は板材であり,該板材
は,その板材厚み(P)に対する平均結晶粒径(C)の
比(C/P)が1.0以上となるバンブー構造において
も,降伏応力が100Mpa以上で,形状記憶特性及び
超弾性を有することが好ましい(請求項6)。この場合
には,上記線材の場合と同様の,銅系合金の板材を得る
ことができる。なお,板材厚み(P)の単位はμmであ
る。
Next, the copper alloy is a plate material, and the plate material has a bamboo structure in which the ratio (C / P) of the average crystal grain size (C) to the plate material thickness (P) is 1.0 or more. Also, it is preferable that the yield stress is 100 MPa or more, and that it has shape memory characteristics and superelasticity (claim 6). In this case, it is possible to obtain a copper-based alloy plate material similar to the case of the wire material. The unit of the plate material thickness (P) is μm.

【0036】次に,第3発明の製造方法においては,降
伏応力100MPa以上で,形状記憶特性及び超弾性を
有する銅系合金を得ることが好ましい(請求項8)。こ
の場合には,優れた降伏応力及び伸びを有する,形状記
憶特性及び超弾性を有する銅系合金を得ることができ
る。
Next, in the manufacturing method of the third invention, it is preferable to obtain a copper alloy having a yield stress of 100 MPa or more and having shape memory characteristics and superelasticity (claim 8). In this case, a copper-based alloy having excellent yield stress and elongation, shape memory characteristics and superelasticity can be obtained.

【0037】[0037]

【実施例】実験例1 8.07重量%Al−9.68重量%Mn−0.51重
量%Co−残部Cuよりなる銅系合金の線材(直径1m
m)を用い,結晶粒を粗大化させるため850℃(オー
ステナイト(β)相領域)で5分間加熱保持し,空冷処
理を4回行ない,850度(オーステナイト(β)相領
域)で5分加熱後水焼入れを行なった。これによりオー
ステナイト(β)相単相とした,焼入れたままの試料1
を多数準備した。
EXAMPLES Experimental Example 1 A wire of a copper-based alloy consisting of 8.07% by weight Al-9.68% by weight Mn-0.51% by weight Co-balance Cu (diameter 1 m
m), heat and hold at 850 ° C. (austenite (β) phase region) for 5 minutes to coarsen the crystal grains, perform air cooling treatment 4 times, and heat at 850 ° C. (austenite (β) phase region) for 5 minutes. Post water quenching was performed. As a result, the sample 1 which was austenite (β) phase single phase, as-quenched
Prepared many.

【0038】次に,上記試料1について,各種温度と時
間において時効及び変態処理を行なった。即ち,上記試
料1を,目的とする時効及び変態処理の温度まで99℃
/分の速度で昇温し,その温度に所定時間等温保持し,
変態を確認し,測定を終了した。変態の開始,終了はD
SC(示差走査熱量測定装置)により測定した。上記各
試料1は23〜25mgとした。
Next, the sample 1 was subjected to aging and transformation treatments at various temperatures and times. That is, the sample 1 is heated to the target aging and transformation temperature of 99 ° C.
The temperature is raised at a rate of / min, and that temperature is kept isothermal for a predetermined time.
The transformation was confirmed and the measurement was completed. The start and end of the transformation is D
It was measured by SC (differential scanning calorimeter). The amount of each sample 1 was 23 to 25 mg.

【0039】上記の時効及び変態処理の等温保持は,2
00,230,250,260,270,280,29
0,300,320,400,500℃をそれぞれ用い
た。なお,320℃以上では,昇温中に変態が開始して
しまうため,変態の開始,終了の時間は測定できなかっ
た。上記時効及び変態処理における,ベイナイト変態T
TT線図を,図1に示す。
The isothermal holding of the above aging and transformation treatment is 2
00, 230, 250, 260, 270, 280, 29
0,300,320,400,500 degreeC was used, respectively. At 320 ° C. or higher, the transformation starts during the temperature rise, so the start and end times of transformation cannot be measured. Bainite transformation T in the above aging and transformation treatment
The TT diagram is shown in FIG.

【0040】図1において,左方線は変態の開始を,右
方線は,変態の終了を示し,黒丸印(●),三角印
(△)は上記各測定の温度を示す。図1より,等温変態
温度が高い程,変態の開始から終了までの時間が早いこ
とが分る。また,高温にすれば時効及び変態処理時間を
短くできるが,ベイナイト(γ)相の析出量の制御が難
しくなる。
In FIG. 1, the left line shows the start of transformation, the right line shows the end of transformation, and the black circles (●) and triangles (Δ) show the temperatures of the above measurements. From FIG. 1, it can be seen that the higher the isothermal transformation temperature, the faster the time from the start of transformation to the end. In addition, although aging and transformation treatment time can be shortened by increasing the temperature, it becomes difficult to control the precipitation amount of bainite (γ) phase.

【0041】次に,上記の各試料1における,ベイナイ
ト(γ)相を観察するため,上記測定後の試料1の断面
を,腐食液によりエッチングし,SEM(走査型電子顕
微鏡)を用いて観察した。そのSEM写真(倍率100
0倍)を,図2及び図3に示す。両図には,上記200
℃〜500℃における各等温の時効及び変態処理温度を
示した。両図より知られるごとく,試料1にはそれぞれ
ベイナイト(γ)相が析出(針状結晶)し,時効及び変
態処理温度が低いほど析出ベイナイト(γ)相が緻密で
あることが分る。また,析出相は,粗大なほど脆くなる
ので,200〜300℃の低温で時効及び変態処理を行
なう方が良い。
Next, in order to observe the bainite (γ) phase in each of the above Samples 1, the cross section of Sample 1 after the above measurement was etched with a corrosive solution and observed using a SEM (scanning electron microscope). did. The SEM photograph (magnification 100
0 times) is shown in FIG. 2 and FIG. Both figures show the above 200
Each isothermal aging and transformation treatment temperature in the range of ℃ to 500 ℃ is shown. As is known from both figures, it can be seen that the bainite (γ) phase is precipitated (acicular crystals) in Sample 1, and the precipitated bainite (γ) phase is denser as the aging and transformation treatment temperatures are lower. Further, the coarser the precipitation phase becomes, the more brittle it becomes. Therefore, it is better to perform the aging and transformation treatment at a low temperature of 200 to 300 ° C.

【0042】また,図4は,上記試料1について,DS
C測定を行なった際の時間とDSC(mw)との関係を
例示している。同図中,Msはマルテンサイト変態開始
温度を,Mfはマルテンサイト変態終了温度を,Asは
マルテンサイト逆変態開始温度を,Afはマルテンサイ
ト逆変態終了温度を示している。そして,この例では,
約250℃からベイナイト変態が開始されていることが
分る。
Further, FIG. 4 shows the DS of the sample 1 above.
The relationship between the time when C measurement is performed and DSC (mw) is illustrated. In the figure, Ms is the martensite transformation start temperature, Mf is the martensite transformation end temperature, As is the martensite reverse transformation start temperature, and Af is the martensite reverse transformation end temperature. And in this example,
It can be seen that the bainite transformation starts at about 250 ° C.

【0043】次に,上記の各温度において時効及び変態
処理した試料1について,その等温変態温度と硬さ(H
v0.1)との関係を図5に示した。上記硬さは,マイ
クロビッカースにより,荷重100gにて3〜5点測定
を行なった。同図より,200〜300℃までの間は,
硬さの低下は余り見られないが,300℃を越えると,
著しく硬さが低下することが分る。なお,200〜25
0℃の間は殆ど同じ硬さを維持していることが分る。
Next, with respect to the sample 1 which was aged and transformed at each of the above temperatures, its isothermal transformation temperature and hardness (H
v0.1) is shown in FIG. The hardness was measured at 3 to 5 points with a load of 100 g using a micro Vickers. From the figure, between 200 and 300 ℃,
Hardness does not decrease so much, but when it exceeds 300 ℃,
It can be seen that the hardness is remarkably reduced. In addition, 200-25
It can be seen that almost the same hardness is maintained at 0 ° C.

【0044】また,析出ベイナイト(γ)相は,上記の
ごとく温度が低いほど緻密で針状析出物も小さい。これ
らのことを考慮すると,析出ベイナイト(γ)相を,転
位や応力誘起マルテンサイト相のピン止め効果として利
用するには,硬さが高い方が良いと考えられるため,変
態量の制御の容易さ,組織の緻密さから考えて200〜
270℃における時効及び変態処理温度がより望まし
い。
The precipitated bainite (γ) phase is denser and the acicular precipitates are smaller as the temperature is lower as described above. Considering these facts, it is considered that higher hardness is better for utilizing the precipitated bainite (γ) phase as a pinning effect for dislocations and stress-induced martensite phases. Therefore, it is easy to control the transformation amount. Considering the minuteness of the organization, 200-
Aging and transformation treatment temperatures at 270 ° C are more desirable.

【0045】次に,図6は,上記試料1について300
℃,3分の時効及び変態処理を行なった本発明にかかる
銅系合金と,上記試料1について200℃,15分の時
効及び変態処理をしたオーステナイト(β)単相の比較
試料1についての,ひずみと応力との引張サイクル特性
を示したものである。同図より,本発明にかかる銅系合
金(実線)は,ひずみ1%以上において100MPa以
上の高い応力を有する。これに対して比較例にかかる銅
系合金(点線)は,ひずみ5%以上において若干100
MPa程度を発揮するにすぎない。このように,本発明
の銅系合金は優れた超弾性を有することが分る。
Next, FIG.
Regarding the copper-based alloy according to the present invention which has been subjected to the aging and transformation treatment at 3 ° C. for 3 minutes and the comparative sample 1 of the austenite (β) single phase which has been subjected to the aging and transformation treatment at 200 ° C. for 15 minutes for the above sample 1, It shows the tensile cycle characteristics of strain and stress. From the figure, the copper alloy according to the present invention (solid line) has a high stress of 100 MPa or more at a strain of 1% or more. On the other hand, the copper-based alloy (dotted line) according to the comparative example has a slight strain of 100% at a strain of 5% or more.
It only exerts about MPa. Thus, it can be seen that the copper alloy of the present invention has excellent superelasticity.

【0046】実験例2 上記実験例1に示した試料1について,曲げ実験を行な
った。上記試料1は,200℃で,15,178分の各
時効及び変態処理を行なった。その結果を図7に示す。
まず,上記曲げ実験は,直線状態で長さ80mm,直径
1mmの銅系合金線材1を,間隔71.5mmに配置し
た固定枠2,2の間に,半径49.5mmの円弧状に曲
げて固定した。線材1が均一に曲がるとすると,ひずみ
は1%に相当する。
Experimental Example 2 A bending experiment was conducted on the sample 1 shown in Experimental Example 1 above. The sample 1 was subjected to each aging and transformation treatment at 200 ° C. for 15,178 minutes. The result is shown in FIG. 7.
First, in the bending experiment, a copper-based alloy wire 1 having a length of 80 mm and a diameter of 1 mm was bent in an arc shape having a radius of 49.5 mm between the fixed frames 2 and 2 arranged at a distance of 71.5 mm. Fixed When the wire rod 1 is bent uniformly, the strain corresponds to 1%.

【0047】同図より知られるとごく,200℃で17
8分の時効及び変態処理をしたものは,局部折れの発生
がなく,一方200℃で15分の時効及び変態処理をし
たものは,局部折れが発生していた。このことより,2
00℃で178分の時効を行う場合には,オーステナイ
ト(β)相内或いは結晶粒界の一方又は双方に,ベイナ
イト(γ)相が析出しているため,局部折れが発生せ
ず,一方200℃で15分の時効を行う場合にはベイナ
イト(γ)相が析出していないため局部折れが発生する
と考えられる。
As is known from FIG.
The specimens that had been aged and transformed for 8 minutes did not have local folds, while those that had been aged and transformed for 15 minutes at 200 ° C had local folds. From this, 2
When aging is performed at 00 ° C for 178 minutes, the bainite (γ) phase is precipitated in the austenite (β) phase or in one or both of the crystal grain boundaries. When aging at 15 ° C. for 15 minutes, it is considered that the bainite (γ) phase is not precipitated, and therefore local breakage occurs.

【0048】次に,図8は結晶粒の粗大化について説明
している。即ち,同図において,(A)に示す銅系合金
線材1について,その結晶粒10の粗大化を図ると,
(B)に示すごとく,粗大化した結晶粒10の間に節が
形成され,銅系合金線材はいわゆるバンブー構造を呈す
る。同図(B)は,線材直径(S)に対する平均結晶粒
子径(C)の比(C/S)が1.0以上であることを示
している。
Next, FIG. 8 explains the coarsening of crystal grains. That is, in the figure, when the crystal grains 10 of the copper-based alloy wire rod 1 shown in FIG.
As shown in (B), a node is formed between the coarsened crystal grains 10, and the copper-based alloy wire has a so-called bamboo structure. FIG. 3B shows that the ratio (C / S) of the average crystal grain diameter (C) to the wire diameter (S) is 1.0 or more.

【0049】本発明は,バンブー構造になっても,上記
のごとく,オーステナイト(β)相内或いは結晶粒界に
ベイナイト(γ)相を析出させ,オーステナイト(β)
単相としないことにより,降伏応力の低下防止を図って
いるものである。
According to the present invention, even if a bamboo structure is formed, as described above, the bainite (γ) phase is precipitated in the austenite (β) phase or at the grain boundary, and the austenite (β) phase is formed.
By not using a single phase, the yield stress is prevented from decreasing.

【0050】実験例3 8.12重量%Al−9.73重量%Mn−0.52重
量%Co−残部Cuよりなる銅系合金の線材(直径1m
m)を用い,実験例1と同様に結晶粒を粗大化させるた
め850℃で5分間加熱保持し,空冷処理を4回行い8
50℃で,5分加熱後,水焼入れを行なった。これによ
りオーステナイト(β)相単相とした,焼入れたままの
試料2〜6を多数準備した。
Experimental Example 3 A wire of a copper-based alloy consisting of 8.12% by weight Al-9.73% by weight Mn-0.52% by weight Co-balance Cu (diameter: 1 m).
m) in the same manner as in Experimental Example 1, in order to coarsen the crystal grains, heat and hold at 850 ° C. for 5 minutes, and perform air cooling treatment 4 times.
After heating at 50 ° C. for 5 minutes, water quenching was performed. As a result, a large number of as-quenched Samples 2 to 6 having an austenite (β) single phase were prepared.

【0051】次に,これらにつき,表1に示すごとく,
各種温度と時間において時効及び変態処理を行った。こ
の処理に当っては,目的とする時効及び変態処理の温度
に設定した炉内に上記線材を投入し,その温度に所定時
間等温保持した。
Next, regarding these, as shown in Table 1,
Aging and transformation treatment were performed at various temperatures and times. In this treatment, the above wire was placed in a furnace set to the temperature of the target aging and transformation treatment, and kept at that temperature for a predetermined time.

【0052】上記処理の後各試料について,上記図6に
示したものと同様に,ひずみと応力との引張サイクル特
性を測定した。これにより,超弾性特性を測定した。そ
の結果を表1に示した。表1より,試料No.3及びN
o.6は,200℃又は300℃における処理時間が長
すぎて,ベイナイト変態が終了し,超弾性特性が得られ
なかった。
After the above treatment, the tensile cycle characteristics of strain and stress of each sample were measured in the same manner as that shown in FIG. With this, superelasticity characteristics were measured. The results are shown in Table 1. From Table 1, sample No. 3 and N
o. In No. 6, the treatment time at 200 ° C. or 300 ° C. was too long, the bainite transformation was completed, and superelastic properties were not obtained.

【0053】[0053]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】実験例1における,ベイナイト変態TTT線
図。
FIG. 1 is a bainite transformation TTT diagram in Experimental Example 1.

【図2】実験例1における,各種時効及び変態処理後の
金属組成を示すSEM写真(倍率1000倍)
FIG. 2 is an SEM photograph (magnification: 1000 times) showing metal compositions after various aging and transformation treatments in Experimental Example 1.

【図3】図2につづく,同様のSEM写真。FIG. 3 is a similar SEM photograph continued from FIG.

【図4】実験例1における,DSC測定の説明図。FIG. 4 is an explanatory diagram of DSC measurement in Experimental Example 1.

【図5】実験例1における,等温変態完了後の硬さを示
す線図。
FIG. 5 is a diagram showing hardness after completion of isothermal transformation in Experimental Example 1.

【図6】実験例1における,応力−ひずみ線図。FIG. 6 is a stress-strain diagram in Experimental Example 1.

【図7】実験例2における,曲げ実験の説明図。FIG. 7 is an explanatory diagram of a bending experiment in Experimental Example 2.

【図8】実験例2における,結晶粒粗大化,バンブー構
造の説明図。
FIG. 8 is an explanatory diagram of crystal grain coarsening and a bamboo structure in Experimental Example 2.

【符号の説明】[Explanation of symbols]

1...銅系合金線材, 10...結晶粒, 1. . . Copper alloy wire rod, 10. . . Crystal grain,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 623 C22F 1/00 623 625 625 630 630L 691 691B 692 692A (72)発明者 岡本 貴幸 愛知県名古屋市緑区鳴海町字上汐田68番地 中央発條株式会社内 (72)発明者 脇田 将見 愛知県名古屋市緑区鳴海町字上汐田68番地 中央発條株式会社内 (72)発明者 石田 清仁 宮城県仙台市青葉区上杉3丁目5番20号 (72)発明者 貝沼 亮介 宮城県名取市倉田字堰根172−15 (72)発明者 須藤 祐司 宮城県仙台市青葉区国見4−4−1 国見 ハイツ1号棟205号─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 623 C22F 1/00 623 625 625 625 630 630L 691 691B 692 692A (72) Inventor Takayuki Okamoto Aichi prefecture 68 Kamishiota, Narumi-cho, Midori-ku, Nagoya City, Chuo-jou Co., Ltd. (72) Inventor, Masami Wakita 68, Kamioshida, Narumi-cho, Midori-ku, Midori-ku, Nagoya, Aichi Prefecture Kiyohito 3-5-20 Uesugi, Aoba-ku, Sendai-shi, Miyagi Prefecture (72) Inventor Ryosuke Kainuma 172-1 Kurane, Kurata, Natori-shi, Miyagi (72) Inventor Yuji Sudo 4-4-Kunimi, Aoba-ku, Sendai-shi, Miyagi Prefecture 1 Kunimi Heights Building No. 205

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 形状記憶特性及び超弾性を有する銅系合
金であって,再結晶組織が,オーステナイト(β)相内
又は結晶粒界の少なくともいずれかに,ベイナイト
(γ)相を析出させていることを特徴とする銅系合金。
1. A copper-based alloy having shape memory characteristics and superelasticity, wherein the recrystallized structure precipitates a bainite (γ) phase in at least one of an austenite (β) phase and a grain boundary. A copper-based alloy characterized by being present.
【請求項2】 請求項1において,上記ベイナイト
(γ)相はベイナイト変態が完全に終了していないこと
を特徴とする銅系合金。
2. The copper-based alloy according to claim 1, wherein the bainite (γ) phase has not completely completed bainite transformation.
【請求項3】 形状記憶特性及び超弾性を有する銅系合
金であって,Al3〜10重量%と,Mn5〜20重量
%と,残部Cu及び不可避不純物とよりなる組成物から
なり,かつ,再結晶組織が,オーステナイト(β)相内
又は結晶粒界の少なくともいずれかに,ベイナイト
(γ)相を析出させていることを特徴とする銅系合金。
3. A copper-based alloy having shape memory characteristics and superelasticity, comprising a composition comprising 3 to 10% by weight of Al, 5 to 20% by weight of Mn, and the balance Cu and unavoidable impurities. A copper-based alloy having a crystal structure in which a bainite (γ) phase is precipitated in at least one of an austenite (β) phase and a grain boundary.
【請求項4】 請求項3において,上記銅系合金は,さ
らにNi,Co,Fe,Ti,V,Cr,Si,Nb,
Mo,W,Sn,Sb,Mg,P,Be,Zr,Zn,
B,C,Ag及びミッシュメタルの1種又は2種以上よ
りなる添加元素を,合金全体を100重量%として,合
計で0.001〜10重量%含有していることを特徴と
する銅系合金。
4. The copper-based alloy according to claim 3, further comprising Ni, Co, Fe, Ti, V, Cr, Si, Nb,
Mo, W, Sn, Sb, Mg, P, Be, Zr, Zn,
A copper-based alloy characterized by containing 0.001 to 10% by weight in total of an additive element consisting of one or more of B, C, Ag and misch metal, based on 100% by weight of the entire alloy. .
【請求項5】 請求項3又は4において,上記銅系合金
は線材であり,該線材は,その線材直径(S)に対する
平均結晶粒径(C)の比(C/S)が1.0以上となる
バンブー構造においても,降伏応力が100Mpa以上
で,形状記憶特性及び超弾性を有することを特徴とする
銅系合金。
5. The copper alloy according to claim 3 or 4, wherein the copper-based alloy is a wire, and the wire has a ratio (C / S) of the average crystal grain size (C) to the wire diameter (S) of 1.0. Even in the above bamboo structure, a copper alloy having a yield stress of 100 MPa or more, shape memory characteristics and superelasticity.
【請求項6】 請求項3又は4において,上記銅系合金
は板材であり,該板材は,その板材厚み(P)に対する
平均結晶粒径(C)の比(C/P)が1.0以上となる
バンブー構造においても,降伏応力が100Mpa以上
で,形状記憶特性及び超弾性を有することを特徴とする
銅系合金。
6. The copper alloy according to claim 3 or 4, wherein the copper alloy is a plate, and the plate has a ratio (C / P) of the average crystal grain size (C) to the plate thickness (P) of 1.0. Even in the above bamboo structure, a copper alloy having a yield stress of 100 MPa or more, shape memory characteristics and superelasticity.
【請求項7】 Al3〜10重量%と,Mn5〜20重
量%と,Ni,Co,Fe,Ti,V,Cr,Si,N
b,Mo,W,Sn,Sb,Mg,P,Be,Zr,Z
n,B,C,Ag及びミッシュメタルの1種又は2種以
上よりなる添加元素を,合金全体を100重量%とし
て,合計で0.001〜10重量%と,残部Cu及び不
可避不純物とよりなる組成物からなり,かつ,再結晶組
織が,オーステナイト(β)相内又は結晶粒界の少なく
ともいずれかに,ベイナイト(γ)相を析出させてい
る,形状記憶特性及び超弾性を有する銅系合金を製造す
る方法であって,上記組成物をオーステナイト(β)相
領域となる温度に加熱保持した後,α相が出ない程度の
速度で急冷し,次いで200〜300℃の範囲におい
て,時効及び変態処理を行なうことを特徴とする銅系合
金の製造方法。
7. Al3-10 wt%, Mn5-20 wt%, Ni, Co, Fe, Ti, V, Cr, Si, N
b, Mo, W, Sn, Sb, Mg, P, Be, Zr, Z
The additive element consisting of one or more of n, B, C, Ag and misch metal is 0.001 to 10 wt% in total, with the total alloy being 100 wt%, and the balance is Cu and unavoidable impurities. A copper alloy having a shape memory property and superelasticity, which is composed of a composition and has a recrystallization structure in which a bainite (γ) phase is precipitated in at least one of an austenite (β) phase and a grain boundary. A method of producing a composition comprising: heating the composition to a temperature in the austenite (β) phase region, quenching the composition at a rate at which an α phase does not appear, and then aging and aging in a range of 200 to 300 ° C. A method for producing a copper-based alloy, which comprises performing a transformation treatment.
【請求項8】 請求項7において,降伏応力100MP
a以上で,形状記憶特性及び超弾性を有する銅系合金を
得ることを特徴とする銅系合金の製造方法。
8. The yield stress of 100 MPa according to claim 7.
a) A method for producing a copper-based alloy, characterized in that the copper-based alloy having shape memory characteristics and superelasticity is obtained.
JP2001334816A 2001-10-31 2001-10-31 Copper-based alloy and manufacturing method thereof Expired - Fee Related JP4275334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334816A JP4275334B2 (en) 2001-10-31 2001-10-31 Copper-based alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334816A JP4275334B2 (en) 2001-10-31 2001-10-31 Copper-based alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003138330A true JP2003138330A (en) 2003-05-14
JP4275334B2 JP4275334B2 (en) 2009-06-10

Family

ID=19149891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334816A Expired - Fee Related JP4275334B2 (en) 2001-10-31 2001-10-31 Copper-based alloy and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4275334B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808106A (en) * 2012-08-24 2012-12-05 李伟 Shape memory alloy
CN103014409A (en) * 2011-09-21 2013-04-03 三菱伸铜株式会社 Cu-Ni-Si base copper alloy having excellent projection welding property, and manufacturing method thereof
KR20140102846A (en) * 2013-02-15 2014-08-25 한국산업기술대학교산학협력단 Shape-memory alloy having excellent cold workability
WO2015137283A1 (en) * 2014-03-14 2015-09-17 古河電気工業株式会社 Cu-Al-Mn-BASED ALLOY MATERIAL, METHOD FOR PRODUCING SAME, AND ROD-LIKE OR SHEET-LIKE MATERIAL USING SAME
CN116005033A (en) * 2022-12-06 2023-04-25 北京科技大学 High super-elasticity Cu-Ni-Ga shape memory alloy microfilament and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336225A (en) * 1989-06-30 1991-02-15 Aichi Steel Works Ltd Metallic thin wire having single crystal chain structure and its manufacture
JPH0762472A (en) * 1993-08-27 1995-03-07 Kiyohito Ishida Copper-based shape memory alloy having high workability and its production
JP2000014764A (en) * 1998-07-03 2000-01-18 Kiyohito Ishida Catheter
JP2000017357A (en) * 1998-06-26 2000-01-18 Kiyohito Ishida Functionally gradient alloy and its production
JP2000169920A (en) * 1998-12-03 2000-06-20 Kiyohito Ishida Copper base alloy having shape memory characteristic and superelasticity, and its production
JP2000345255A (en) * 1998-11-04 2000-12-12 Toto Ltd Cu-Zn-Sn ALLOY HAVING SHAPE MEMORY CHARACTERISTIC AND PRODUCTION OF BRASS ARTIFACT
JP2001020026A (en) * 1999-07-08 2001-01-23 Kiyohito Ishida Copper-based alloy having shape memory property and superelasticity, member consisting of the alloy, and their manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336225A (en) * 1989-06-30 1991-02-15 Aichi Steel Works Ltd Metallic thin wire having single crystal chain structure and its manufacture
JPH0762472A (en) * 1993-08-27 1995-03-07 Kiyohito Ishida Copper-based shape memory alloy having high workability and its production
JP2000017357A (en) * 1998-06-26 2000-01-18 Kiyohito Ishida Functionally gradient alloy and its production
JP2000014764A (en) * 1998-07-03 2000-01-18 Kiyohito Ishida Catheter
JP2000345255A (en) * 1998-11-04 2000-12-12 Toto Ltd Cu-Zn-Sn ALLOY HAVING SHAPE MEMORY CHARACTERISTIC AND PRODUCTION OF BRASS ARTIFACT
JP2000169920A (en) * 1998-12-03 2000-06-20 Kiyohito Ishida Copper base alloy having shape memory characteristic and superelasticity, and its production
JP2001020026A (en) * 1999-07-08 2001-01-23 Kiyohito Ishida Copper-based alloy having shape memory property and superelasticity, member consisting of the alloy, and their manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014409A (en) * 2011-09-21 2013-04-03 三菱伸铜株式会社 Cu-Ni-Si base copper alloy having excellent projection welding property, and manufacturing method thereof
CN102808106A (en) * 2012-08-24 2012-12-05 李伟 Shape memory alloy
KR20140102846A (en) * 2013-02-15 2014-08-25 한국산업기술대학교산학협력단 Shape-memory alloy having excellent cold workability
WO2015137283A1 (en) * 2014-03-14 2015-09-17 古河電気工業株式会社 Cu-Al-Mn-BASED ALLOY MATERIAL, METHOD FOR PRODUCING SAME, AND ROD-LIKE OR SHEET-LIKE MATERIAL USING SAME
JPWO2015137283A1 (en) * 2014-03-14 2017-04-06 古河電気工業株式会社 Cu-Al-Mn alloy material, method for producing the same, and bar or plate material using the same
EP3118338A4 (en) * 2014-03-14 2017-12-27 Furukawa Electric Co. Ltd. Cu-Al-Mn-BASED ALLOY MATERIAL, METHOD FOR PRODUCING SAME, AND ROD-LIKE OR SHEET-LIKE MATERIAL USING SAME
US11118255B2 (en) 2014-03-14 2021-09-14 Furukawa Electric Co., Ltd. Cu-Al-Mn-based alloy material, method of producing the same, and rod material or sheet material using the same
CN116005033A (en) * 2022-12-06 2023-04-25 北京科技大学 High super-elasticity Cu-Ni-Ga shape memory alloy microfilament and preparation method thereof
CN116005033B (en) * 2022-12-06 2024-05-10 北京科技大学 High super-elasticity Cu-Ni-Ga shape memory alloy microfilament and preparation method thereof

Also Published As

Publication number Publication date
JP4275334B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US10400311B2 (en) Wrought material comprising Cu—Al—Mn-based alloy excellent in stress corrosion resistance and use thereof
US10351939B2 (en) Cu—Al—Mn-based alloy exhibiting stable superelasticity and method of producing the same
JP5065904B2 (en) Iron-based alloy having shape memory and superelasticity and method for producing the same
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
US20160060740A1 (en) Cu-AI-Mn-BASED ALLOY ROD AND SHEET EXHIBITING STABLE SUPERELASTICITY, METHOD OF PRODUCING THE SAME, VIBRATION DAMPING MATERIAL USING THE SAME, AND VIBRATION DAMPING STRUCTURE CONSTRUCTED BY USING VIBRATION DAMPING MATERIAL
JP4262414B2 (en) High Cr ferritic heat resistant steel
JPH06511287A (en) Precipitation hardening martensitic stainless steel
EP1340825A2 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP4816642B2 (en) Low alloy steel
WO2018047787A1 (en) Fe-BASED SHAPE MEMORY ALLOY MATERIAL AND METHOD FOR PRODUCING SAME
JP4408386B2 (en) High-strength steel with fine grain structure
WO2021230244A1 (en) Austenitic stainless steel material, method for producing same, and plate spring
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP3907177B2 (en) Fe-based shape memory alloy and manufacturing method thereof
JP2002256395A (en) High strength and low thermal expansion alloy having excellent twisting and alloy wire thereof
JP3169978B2 (en) Precipitation hardening high strength non-magnetic stainless steel
JP2005513273A (en) Precipitation hardening austenitic steel
JP2000017395A (en) Fe SERIES SHAPE MEMORY ALLOY AND ITS PRODUCTION
JP2003138330A (en) Copper-base alloy and its manufacturing method
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JPH11117020A (en) Production of heat resistant parts
JP2000256803A (en) Austenitic stainless steel excellent in high temperature strength and ductility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees