JPS6213427B2 - - Google Patents

Info

Publication number
JPS6213427B2
JPS6213427B2 JP7836879A JP7836879A JPS6213427B2 JP S6213427 B2 JPS6213427 B2 JP S6213427B2 JP 7836879 A JP7836879 A JP 7836879A JP 7836879 A JP7836879 A JP 7836879A JP S6213427 B2 JPS6213427 B2 JP S6213427B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
alloy
strength
present
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7836879A
Other languages
Japanese (ja)
Other versions
JPS563651A (en
Inventor
Takeshi Masumoto
Akihisa Inoe
Tetsuo Minemura
Yoshuki Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7836879A priority Critical patent/JPS563651A/en
Publication of JPS563651A publication Critical patent/JPS563651A/en
Publication of JPS6213427B2 publication Critical patent/JPS6213427B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は強度とねばさと延性を有したL12型金
属間化合物材料及びその製造法に関するものであ
る。 溶融状態からの超急冷法を各種の合金に適用す
る試みは数多く行なわれており、平衡相とは異な
つた新しい非平衡相が見い出されている。特に鉄
鋼材料に注目した場合、通常の加工、熱処理では
脆くて実用に供し得なかつた極高炭素鋼材にねば
さと強度を付加することを可能にした非晶質合金
鋼は溶融状態からの超急冷法によつて得られた新
しい非平衡相材料として特筆なものである。Fe
―X―C系(XとしてCr,Mo,Wのいずれか一
種又は二種以上の組み合わせ)非晶質合金鋼は破
断応力が350Kg/mm2、ヴイツカース硬さ1100DPN
であり、通常の合金鋼に比べ強度、硬さが高く、
かつねばさも金時に兼ね備えた優れた機械的性質
を有する材料で、その表面は金属光択を有してい
る。又、その製造も溶融状態から瞬時にしてなさ
れ、何ら複雑な工程を必要としない。しかしなが
ら、非晶質合金鋼は溶融状態の原子構造を非平衡
相として室温まで凍結・凝固させたものである
為、その形成には大きな冷却速度を必要とする。
それ故、テープ状の連続体を得る遠心急冷法、ロ
ール急冷法で作製される非晶質合金鋼テープの最
大厚さは30μm程度であり、それ以上の厚さを得
ることは著しく困難であつた。又、作製時の冷却
条件が悪い場合、結晶質が混在し、非晶質合金鋼
の大きな特徴の一つであるねばさを著しく低下さ
せる。このように、非晶質合金鋼はその形状(厚
さ)に制限があり、かつその製造条件に厳密さを
必要とする欠点があつた。更に、得られたテープ
状の材料の寸法精度(表面の凹凸、厚さ)を上げ
る為、通常行なわれている冷間圧延を施すことが
困難である。それ故、厳密な寸法精度が要求され
る製品に対し、非晶質合金鋼を適用することが難
しかつた。 そこで、本発明者らは非晶質合金鋼の優れた特
徴をそこなうことなく上記の問題点を解決する為
に、新しい非平衡結晶質合金材料の開発を検討し
た。 最近、有用性が各方面から注目されているL12
型金属間化合物Ni3Alについてその特有な脆さが
硼素の微量添加によつて改善されている。しかし
ながら、硼素等を添加したL12型金属間化合物
Ni3Alの強度は低く強度材料としては使用できな
い。又、Al量が原子比で(以下atと略す)23%以
下のNi―Al系合金は硼素を添加しなくてもNi3Al
とNiの共存したねばい材料が得られるが、やは
りその強度は低い。 以上のような点にかんがみて、本発明者らは上
記のL12型金属間化合物Ni3Alにねばさと延性と強
度を同時に付加することを試み、さらに前述の非
晶質合金鋼で問題となつている諸点を解決するこ
とによつて新しい高強靭材料を開発した。 すなわち、本発明者らはNi―Al系に対して各
種の元素を加えた種々の合金について溶融状態か
らの急冷を行なつた。その結果、Fe―Ni―Al―
C系合金がねばさと延性と強度の総てを満足した
L12型金属間化合物からなる新しい非平衡結晶質
材料であることを見い出した。又、Niの一部又
は全部をMnで置換しても、更に種々の元素を上
記の合金系に添加しても、ともにねばさを損うこ
となく強度を増加しうることをも見い出した。そ
して、非晶質合金鋼で問題になつていた試料厚
さ、形成条件、試料寸法精度等に関しても解決す
ることができた。 以下、本発明の詳細について説明する。 平衡状態図によればNi―Al2元系合金は室温に
おいて重量比で(以下wtと略す)約12〜15wt%
Al量の範囲でNi3Alであり、約4〜12wt%Al量の
範囲ではNi3AlとNiの共存で、約4wt%Al量以下
の範囲ではAlを固溶したNi固溶体である。この
2元系Ni―Al合金を溶融状態からの急冷法を用
いて検討した結果、12wt%Al量以上の組成にお
いてはL12型金属間化合物Ni3Alが形成されたがも
ろくて実用に供し得る材料とはならなかつた。一
方、4〜12wt%Al量の組成のNi―Al合金はNi3Al
とNiの共存の組織であり、ねばさを有するがそ
の強度は破断応力50Kg/mm2以下にすぎなかつた。
又、4wt%Al量以下の場合、Ni3Alは得られず、
Ni中にAlが固溶した面心立方相であつた。そこ
で本発明者らは上記の4〜12wt%Al量の組成範
囲のねばいNi―Al合金に種々の元素を添加しそ
の強度を増加することを試みた。先ず、面心立方
構造のNiと全率固溶体を形成し、かつNiに比べ
価格的に安いFeに注目し、Niの一部をFeで置換
した合金について溶融状態からの急冷を行なつ
た。その結果、Niの一部をFeで置換することは
可能であるが、Feの固溶体硬化は僅かに認めら
れるのみで、破断応力は60Kg/mm2程度にすぎなか
つた。又、組織はNi固溶体とL12型金属間化合物
の共存したものであつた。そこでFe―Ni―Al系
合金に炭素の侵入型元素を加え、固溶体硬化を増
加させることを検討した。侵入型元素の固溶体硬
化は置換型元素の場合よりも大きく強度の増加を
はかる上で侵入型元素の添加は有効である。しか
し、通常これらの元素の固溶限が小さいために、
各種の化合物が析出して材料のねばさを損なつて
しまう。すなわち通常の製造法においては、Fe
―Ni―Al系合金に多量の炭素を固溶させること
は困難であり、炭化物として析出して脆くする。
しかし、溶融状態からの急冷操作により固溶限を
拡張させるために多量の炭素を固溶させることが
できた。その結果、多量の炭素の固溶は著しい固
溶体硬化を付与させることができた。このよう
に、溶融状態からの急冷により、Fe―Ni―Al系
合金に炭素を多量に固溶させた結果、特定の組成
範囲のFe―Ni―Al―C系合金において、ねばさ
と延性を損うことなく強度の増加をはかることに
成功した。又、上記材料の組織はほぼL12型金属
間化合物単相であることを見い出した。 以上のようにして、ねばさと延性と強度を付加
した新しいL12型合属間化合物材料を発明した。 次に、本発明の合金組成の限定理由を述べる。 本発明のFe―Ni―Al―C系合金において、Al
はL12型金属間化合物を形成するのに不可欠の元
素であり、その必要な組成範囲は4〜12wt%で
ある。4wt%以下の場合、Alはマトリツクス中に
固溶してL12型金属間化合物を形成しない。ま
た、12wt%以上の場合はL12型金属間化合物を形
成するが、ねばさが著しく小さくもろい。それ
故、4〜12wt%Al量の範囲でのみねばいL12型金
属間化合物材料が得られる。炭素の主なる作用は
固溶体硬化による強度の増加であり、この作用の
有効な組成範囲は0.2〜2.6wt%C量である。
2.6wt%以上のC量の場合、溶融状態からの急冷
によつてもセメンタイトFe3Cの析出を防ぐこと
が困難であり、Fe3Cが粒界等に析出してねばさ
を著しく損なう。一方、0.2wt%以下の場合、炭
素の固溶体硬化がほとんど認められない。又、炭
素の他の作用は溶湯の融点を下げ、その粘性を小
さくして炭素の溶融状態からの急冷効果を高める
作用があるが、0.2wt%以下の場合には、その作
用が十分ではなく、合金を急冷する効果がほとん
どなくなる。更に、他の作用として、面心立方構
造を安定化し、L12型金属間化合物を形成し易す
くするが、0.2wt%以下の場合、その作用は不十
分である。このように炭素が0.2〜2.6wt%の範囲
でのみねばさと強度を有したL12型金属間化合物
を溶融状態からの急冷により容易に得ることがで
きる。 次に、4〜12wt%Alおよび0.2〜2.6%Cを有す
るFe―Ni―Al―C系合金において、本発明のL12
型金属間化合物が得られるNi量は5〜70wt%の
組成範囲である。5wt%以下の場合は炭化物を形
成し易すくなり、その結果ねばさを著しく損な
う。一方、70wt%以上の場合、炭素の固溶度が
減少し、Fe3Cを形成してそのねばさを損なう。 又、上記のAl,C,Niの各組成範囲において
残部はFeである。Feの作用の一つは置換型固溶
による固溶体硬化である。他の作用としては、炭
素を多量にマトリツクス中に固溶させる効果があ
る。すなわちFeを含まないNi―Al―C系合金で
は炭素はマトリツクスから排除され、Ni3C又は
黒鉛として粒界に析出して合金のねばさを著しく
損わされる。又、Niの一部をFeで置換すること
は材料費の低減に有利である。 かくして、上記の組成範囲のAl,C,Niと残
部Feからなる合金は溶融状態から急冷すること
により、ねばさと延性と強度を同時に兼ね添えた
L12型金属間化合物からなる新しい材料である。 更に、上記合金中のNiの一部又は総てをMnで
置換できる。NiとMnの総量が5〜70wt%の組成
範囲においてやはり上記の合金系と同様の組織と
機械的性質を有したL12型金属間化合物が得られ
る。 上記のFe―X―Al―C系合金(XはNi又はMn
のいずれか一種又は二種でその総量が5〜70wt
%)において、添加元素としてCr,Mo,Wの一
種又は二種以上の組み合わせを加えた場合、その
添加元素の総量が7wt%以下の場合に得られる
L12型金属間化合物のねばさと延性を損うことな
く強度の増大をはかることができる。なお、その
総量が7wt%以上の場合には炭化物の析出が著し
くなり、ねばさと延性が著しく損なわれる。 さらに、Ni又はMnの一種又は二種の組み合わ
せであるX元素の一部を最大45wt%までの範囲
のCoで置換することも可能である。Co量が45wt
%以上の場合、得られるL12型金属間化合物のね
ばさと延性は損なわれてしまう。なお、Ni又は
Mnの一種又は二種の組み合わせとCoからなるX
元素においてもX元素の総量は5〜70wt%の範
囲にする必要があり、その範囲外の場合、得られ
るL12型金属間化合物のねばさと延性は損なわれ
てしまう。 なお、上記総ての合金系において添加元素とし
てTa,Zr,Nb,Ti,Siの少なくとも1つが総量
で2wt%以下含まれていても、又、通常の工業材
料中に存在する程度の不純物例えばB,P,
As,S等が少量含まれていても本発明を達成す
るのに何ら支障をきたすものではない。 上記の各成分範囲からなる本発明材料は溶融状
態からの急冷のままでL12型金属間化合物を有し
た組織であり、炭素の侵入型元素あるいはFe,
Cr,Mo,W,Co等の置換型元素の固溶体硬化に
よつてねばさと延性を損うことなく強度を付加さ
れた新しいL12型金属間化合物である。 次に本発明のL12型金属間化合物材料の製造法
について説明する。 上述の如く、調整した組成の合金を雰囲気中も
しくは真空中で加熱溶融し、溶融後、液体状態か
ら急冷する。なお、上記合金の調整に際して通常
の工業的原料を用いても何ら支障なく、その純度
等に何ら特別な制限はない。液体状態からの急冷
の方法は従来行なわれている各種の液体急冷法が
可能であるが、得られる急冷材の形状の点から金
属からなる回転ロールを用いた片ロール法あるい
は多ロール法、もしくは遠心急冷法のいずれかを
用いるのが望ましい。上記の急冷法を用いる場
合、大気中、雰囲気中、真空中のいずれであつて
も本発明の遂行に何ら支障はない。又、上記の各
種の急冷法を実施するに際して本発明の合金は非
晶質合金鋼のような大きな急冷速度を必要としな
い為、比較的小型の装置を用いても容易に作るこ
とができる。一例として片ロール法の場合を述べ
ると、同一材質の同一径のロールを用いた場合本
発明の合金は非晶質合金の製造に比べ約1/5〜1/1
0の回転数で形成できる。すなわち、非晶質合金
鋼では30μm以上の厚い試料を形成するのが困難
であつたのに比べ、本発明は100〜400μmの厚い
試料を形成することができる。又非晶質合金鋼が
冷却条件のわずかな変動により結晶質相の混在を
生じ合金のねばさを著しく損なうのに比べ、本発
明の材料は結晶質であるので冷却条件が多少変動
しても本発明を遂行する上で何ら支障がない。こ
れらの点は製造上極めて有利な特徴である。さら
に、本発明の材料を製造する他の方法として、溶
融状態の合金をノズル孔等を介して水等の室温で
液体の媒体中に直接噴出する方法も可能である。
本発明の材料は上記のそれぞれの方法により直接
得られ、何ら特別な後処理工程を必要とはしな
い。又、得られた急冷材は銀白色の金属光択を有
している。本発明の急冷材は非晶質合金鋼と較べ
て冷間圧延等の加工を行うことが容易であり、材
料の厚さの精度、表面凹凸の調整を行うことがで
きる。なお、急冷材の断面形状は直径0.02〜0.4
mmのほぼ円形、あるいは厚さ0.02〜0.4mm、幅0.2
〜40mmの矩形が装置上望ましい寸法であるが、装
置を大規模化した場合、形状寸法に特別な制限は
ない。線あるいは板状の急冷材の長さは任意に選
ぶことができる。以上の製造法で得られた材料は
急冷状態のままで本発明の目的を達成しており、
寸法精度を高める為冷間圧延を行う場合以外は何
ら特別な後処理工程を必要としない。上記の製造
法はその製造速度が数百m/secにも達し、高速
で生産することが可能であり、更に従来加工が困
難であつたL12型金属間化合物の線あるいは板状
のテープあるいは粉末などの材料は極めて単純な
工程で提供するものである。高速化、工程の単純
さは本発明の材料を製造するのに際して、製造費
の低減、省エネルギーといつた効果をももたら
す。 上記の製造法にもとづいて作つた本発明のL12
金属間化合物の一例としてFe―20wt%Ni―8wt
%Al―2.0wt%Cの組成からなる合金の急冷材の
透過電顕写真(倍率16500倍)と電子線回折スポ
ツトをそれぞれ第1図、第2図に示した。従来の
製造法により作つた上記組成合金の組織は炭化物
とフエライトとの混合相であるが、本発明による
合金の組織は第2図から明らかなように面心立方
の規則格子スポツトを有した組織になつている。
すなわち第1図の組織はL12型金属間化合物Ni3Al
と同じ規則格子であり、成分的に(Fe,Ni)3Al
である。更に、第1図において、粒界、粒内とも
に炭化物等の析出は認められず、炭素は総てこの
規則格子相中に固溶している。第1図、第2図は
本発明の一例を示したものであるが、特許請求範
囲中の総ての組成および合金においても同様であ
る。第1図においてその結晶粒径の大きさは約
2.0μmであるが、本発明のL12型金属間化合物に
おいてその結晶粒径には何ら特別の制限はない。 上記の組織を有した本発明のL12型金属間化合
物材料は以下に述べるような優れた機械的性質を
有したものである。従来のL12型金属間化合物
Ni3Alはもろくて延性がなかつたのに比べ、本発
明のL12型金属間化合物材料は厚さ100〜400μm
の板状断面を有した試料においても完全密着曲げ
可能で、かつ、50%以上の冷間圧延も可能なねば
い延性に富んだ材料である。又、従来のL12型金
属間化合物Ni3AlにB等を添加しねばさと延性を
付加した従来のL12金属間化合物Ni3Alの強度は降
伏応力約20Kg/mm2、破断応力約80Kg/mm2であつ
た。これに比べ、本発明のL12型金属間化合物材
料はFe―Ni―Al―C系合金で降伏応力95〜175
Kg/mm2(破断応力もほぼ同値)であり。強度に優
れた材料である。その硬さが350〜650DPNであ
る。なお、引張り伸びは5〜30%であり、加工硬
化をほほとんど伴なわない。このような強度、硬
さの増加は面心立方規則格子中に固溶した炭素又
はFeの固溶体硬化によるところが大である。更
に、Cr,Mo,W等の一種又は二種以上の組み合
わせの元素を添加した場合、その総量が7wt%以
下の範囲においてはそのねばさ、延性を損うこと
なく強度、硬さを更に増加することができ、最高
降伏応力及び破断応力が約170Kg/mm2、最高硬さ
約680DPNに達する。又、Ti,Zr,Nb,Ta,Si
等の一種又は二種以上の組み合わせの元素を添加
した場合も、その総量が2wt%以下の範囲におい
ては上記の添加元素とほぼ同様の効果が得られ
る。Coを添加した場合も、Co量が45wt%以下で
かつ、Ni又はMnのいずれか一種又は二種とCoの
総量が5〜70wt%の範囲においてねばさ、延性
を損うことなく強度、硬さを更に増加することが
でき、最高降伏応力及び破断応力が約170Kg/
mm2、最高硬さ約680DPNとなる。 以上のように、本発明のL12型金属間化合物材
料はNi3Alと同じ規則格子構造を有した組織であ
り、その機械的性質は完全密着曲げや冷間圧延が
可能なねばく、かつ延性にも富んでいる。強度は
Fe,Co,Cr,Mo,W,Ti,Zr,Nb,Ta,Si,
C等の固溶体硬化により、ねばさと延性を損うこ
となく最高降伏応力および破断応力が約170Kg/
mm2、最高硬さが約680DPNと非常に優れた機械的
性質を有したL12型金属間化合物材料である。 次に本発明の実施例について説明する。 実施例 1 Fe―X―Al―C(XとしてNi又はMnのいずれ
か一種又は二種)系の合金系において第3図に示
した片ロール急冷法を用いて液体状態から急冷を
行ない、約100μm厚さ、幅5mm、長さ3000mmの
連続した板状の急冷材を得た。なお、ロール直径
は200mm、材質は工具鋼、回転数は1000r.p.mで
あり、大気中で行つた。Fe―X―Al―C系合金
の組成の一例及びFe―X―Al―C系合金にCo,
Cr,W,Mo等の添加元素を加えた組成の一例を
表に示す。これら急冷材の透過電顕による観察及
び電子線回折の結果は第1,2図とほぼ同様であ
り、いずれの組成においてもL12型金属間化合物
であつた。又、いずれの組成の合金も約100μm
の厚さで180゜完全密着曲げが可能であつた。そ
の機械的性質は表に示したようである。なお、製
造法は片ロール急冷法に限定する理由はなく、そ
の製造条件、急冷材形状等も本実施例に限定され
ない。又、表に示した各組成は本発明の一例を示
したにすぎず、特許請求範囲の各組成範囲内にお
いて、上記と同
The present invention relates to an L1 2 type intermetallic compound material having strength, toughness, and ductility, and a method for producing the same. Many attempts have been made to apply the ultra-quenching method from the molten state to various alloys, and a new non-equilibrium phase, which is different from the equilibrium phase, has been discovered. Particularly when focusing on steel materials, amorphous alloy steel is made possible by ultra-rapid cooling from the molten state, which makes it possible to add toughness and strength to ultra-high carbon steel materials that are too brittle to be put to practical use through normal processing and heat treatment. This is noteworthy as a new non-equilibrium phase material obtained by this method. Fe
-X-C series (X is any one of Cr, Mo, W or a combination of two or more) amorphous alloy steel has a breaking stress of 350Kg/mm 2 and a Witzkers hardness of 1100DPN.
It has higher strength and hardness than normal alloy steel,
It is a material with excellent mechanical properties that are both tough and sticky, and its surface has a metallic coating. Moreover, its production can be done instantly from the molten state, and no complicated processes are required. However, since amorphous alloy steel has an atomic structure in a molten state that is frozen and solidified to room temperature as a non-equilibrium phase, a high cooling rate is required for its formation.
Therefore, the maximum thickness of an amorphous alloy steel tape produced by centrifugal quenching or roll quenching to obtain a tape-like continuous body is approximately 30 μm, and it is extremely difficult to obtain a thickness greater than that. Ta. Furthermore, if the cooling conditions during production are poor, crystalline materials will be present, which will significantly reduce the toughness, which is one of the major characteristics of amorphous alloy steel. As described above, amorphous alloy steel has the disadvantage that its shape (thickness) is limited and its manufacturing conditions require strictness. Furthermore, in order to improve the dimensional accuracy (surface irregularities, thickness) of the obtained tape-shaped material, it is difficult to perform the usual cold rolling. Therefore, it has been difficult to apply amorphous alloy steel to products that require strict dimensional accuracy. Therefore, the present inventors investigated the development of a new non-equilibrium crystalline alloy material in order to solve the above problems without impairing the excellent characteristics of amorphous alloy steel. Recently, the usefulness of L1 2 has been attracting attention from various quarters.
The unique brittleness of the Ni 3 Al type intermetallic compound has been improved by adding a small amount of boron. However, L1 type 2 intermetallic compounds doped with boron etc.
Ni 3 Al has low strength and cannot be used as a strength material. In addition, Ni-Al alloys with an Al content of 23% or less in atomic ratio (hereinafter abbreviated as at) can produce Ni 3 Al without adding boron.
Although a sticky material in which Ni and Ni coexist is obtained, its strength is still low. In view of the above points, the present inventors attempted to add toughness, ductility, and strength to the above-mentioned L1 2 type intermetallic compound Ni 3 Al, and further solved the problems encountered with the above-mentioned amorphous alloy steel. A new high-strength material was developed by solving various problems. That is, the present inventors conducted rapid cooling from a molten state on various alloys in which various elements were added to the Ni--Al system. As a result, Fe―Ni―Al―
C-based alloy satisfies all requirements for toughness, ductility, and strength.
We discovered that L1 is a new non-equilibrium crystalline material consisting of type 2 intermetallic compounds. It has also been found that even if part or all of Ni is replaced with Mn, and even if various elements are added to the above alloy system, strength can be increased without impairing toughness. In addition, we were able to solve problems with sample thickness, forming conditions, sample dimensional accuracy, etc. that had been a problem with amorphous alloy steel. The details of the present invention will be explained below. According to the equilibrium phase diagram, the Ni-Al binary alloy has a weight ratio (hereinafter abbreviated as wt) of approximately 12 to 15 wt% at room temperature.
It is Ni 3 Al in the range of Al content, Ni 3 Al and Ni coexist in the range of about 4 to 12 wt% Al content, and Ni solid solution containing Al in the range of about 4 wt% Al content or less. As a result of examining this binary Ni-Al alloy using a rapid cooling method from a molten state, it was found that L1 2 type intermetallic compound Ni 3 Al was formed in compositions with an Al content of 12 wt% or more, but it was too brittle to be used for practical use. It was not a material that could be obtained. On the other hand, a Ni-Al alloy with a composition of 4 to 12 wt% Al contains Ni 3 Al
It has a structure in which Ni and Ni coexist, and although it has tenacity, its strength is only below the breaking stress of 50 kg/mm 2 .
In addition, if the amount of Al is less than 4wt%, Ni 3 Al cannot be obtained,
It was a face-centered cubic phase in which Al was dissolved in Ni. Therefore, the present inventors attempted to increase the strength of the sticky Ni--Al alloy having a composition range of 4 to 12 wt% Al by adding various elements. First, we focused on Fe, which forms a complete solid solution with Ni in a face-centered cubic structure and is cheaper than Ni, and rapidly cooled from a molten state an alloy in which part of the Ni was replaced with Fe. As a result, although it was possible to partially replace Ni with Fe, only a slight solid solution hardening of Fe was observed, and the breaking stress was only about 60 Kg/mm 2 . In addition, the structure was one in which Ni solid solution and L12 type intermetallic compound coexisted. Therefore, we investigated adding carbon interstitial elements to Fe-Ni-Al alloys to increase solid solution hardening. The solid solution hardening of interstitial elements is greater than that of substitutional elements, and the addition of interstitial elements is effective in increasing the strength. However, because the solid solubility limit of these elements is usually small,
Various compounds precipitate and impair the tenacity of the material. In other words, in normal manufacturing methods, Fe
- It is difficult to incorporate a large amount of carbon into a Ni-Al alloy as a solid solution, and it precipitates as carbides, making it brittle.
However, by rapidly cooling the material from the molten state, a large amount of carbon could be dissolved in solid solution to extend the solid solubility limit. As a result, the solid solution of a large amount of carbon was able to impart significant solid solution hardening. As described above, rapid cooling from the molten state causes a large amount of carbon to be dissolved in the Fe-Ni-Al alloy, resulting in loss of toughness and ductility in the Fe-Ni-Al-C alloy in a specific composition range. We succeeded in increasing the strength without any damage. We also found that the structure of the above material is almost a single phase of L1 2 type intermetallic compound. As described above, we have invented a new L1 2 type intermetallic compound material that has added tenacity, ductility, and strength. Next, the reasons for limiting the alloy composition of the present invention will be described. In the Fe-Ni-Al-C alloy of the present invention, Al
is an essential element for forming the L12 type intermetallic compound, and its necessary composition range is 4 to 12 wt%. At 4wt% or less, Al is dissolved in the matrix and does not form an L12 type intermetallic compound. In addition, when the content is 12 wt% or more, an L1 2 type intermetallic compound is formed, but it is extremely sticky and brittle. Therefore, a sticky L1 type 2 intermetallic material is obtained only in the range of 4 to 12 wt% Al. The main effect of carbon is to increase strength through solid solution hardening, and the effective composition range for this effect is 0.2 to 2.6 wt% C content.
In the case of a C content of 2.6 wt% or more, it is difficult to prevent the precipitation of cementite Fe 3 C even by rapid cooling from a molten state, and Fe 3 C precipitates at grain boundaries etc., significantly impairing the toughness. On the other hand, at 0.2 wt% or less, solid solution hardening of carbon is hardly observed. In addition, other effects of carbon are to lower the melting point of the molten metal, reduce its viscosity, and enhance the rapid cooling effect of carbon from the molten state, but if it is less than 0.2wt%, this effect is not sufficient. , the effect of rapidly cooling the alloy is almost eliminated. Furthermore, as another effect, it stabilizes the face-centered cubic structure and facilitates the formation of L1 2 type intermetallic compounds, but this effect is insufficient when the amount is less than 0.2 wt%. As described above, an L1 2 type intermetallic compound having toughness and strength in a carbon content range of 0.2 to 2.6 wt% can be easily obtained by rapid cooling from a molten state. Next, in the Fe-Ni-Al-C alloy having 4 to 12 wt% Al and 0.2 to 2.6% C, L1 2 of the present invention
The amount of Ni from which the type intermetallic compound is obtained is in the composition range of 5 to 70 wt%. If it is less than 5wt%, carbides are likely to form, resulting in a significant loss of stickiness. On the other hand, when it is 70 wt% or more, the solid solubility of carbon decreases, forming Fe 3 C and impairing its stickiness. Further, in each of the above composition ranges of Al, C, and Ni, the remainder is Fe. One of the effects of Fe is solid solution hardening due to substitutional solid solution. Another effect is to dissolve a large amount of carbon into the matrix. In other words, in Ni--Al--C alloys that do not contain Fe, carbon is excluded from the matrix and precipitated as Ni 3 C or graphite at grain boundaries, significantly impairing the toughness of the alloy. Furthermore, replacing a portion of Ni with Fe is advantageous in reducing material costs. In this way, an alloy consisting of Al, C, and Ni in the above composition range with the remainder Fe can be rapidly cooled from a molten state to simultaneously exhibit toughness, ductility, and strength.
L1 is a new material consisting of type 2 intermetallic compound. Furthermore, part or all of the Ni in the above alloy can be replaced with Mn. In a composition range in which the total amount of Ni and Mn is 5 to 70 wt%, an L12 type intermetallic compound having the same structure and mechanical properties as the above-mentioned alloy system can be obtained. The above Fe-X-Al-C alloy (X is Ni or Mn
Any one or both of the following, the total amount of which is 5 to 70wt
%), when one or a combination of two or more of Cr, Mo, and W are added as additive elements, the total amount of the added elements is 7wt% or less.
It is possible to increase the strength of L1 type 2 intermetallic compounds without compromising their toughness and ductility. Note that if the total amount is 7 wt% or more, precipitation of carbides becomes significant, and toughness and ductility are significantly impaired. Furthermore, it is also possible to partially replace the element X, which is one or a combination of two of Ni or Mn, with Co in a range of up to 45 wt%. Co amount is 45wt
% or more, the stickiness and ductility of the resulting L1 2 type intermetallic compound will be impaired. In addition, Ni or
X consisting of one or a combination of two Mn and Co
Regarding the elements, the total amount of the X element must be in the range of 5 to 70 wt%, and if it is outside this range, the stickiness and ductility of the L1 2 type intermetallic compound obtained will be impaired. In addition, even if at least one of Ta, Zr, Nb, Ti, and Si is included as an additive element in all of the above alloy systems in a total amount of 2 wt% or less, impurities such as those present in ordinary industrial materials may be present. B, P,
Even if small amounts of As, S, etc. are contained, this does not pose any problem in achieving the present invention. The material of the present invention comprising the above-mentioned component ranges has a structure having L1 type 2 intermetallic compounds even after being rapidly cooled from the molten state, and has an interstitial element of carbon or Fe,
This is a new L12 type intermetallic compound that has added strength without sacrificing toughness and ductility through solid solution hardening of substitutional elements such as Cr, Mo, W, and Co. Next, a method for manufacturing the L1 2 type intermetallic compound material of the present invention will be explained. As described above, an alloy having an adjusted composition is heated and melted in an atmosphere or in a vacuum, and after being melted, it is rapidly cooled from a liquid state. It should be noted that there is no problem in using ordinary industrial raw materials when preparing the above alloy, and there are no special restrictions on their purity or the like. Various conventional liquid quenching methods are available for quenching from a liquid state, but from the viewpoint of the shape of the quenched material obtained, single roll method using rotating metal rolls, multi-roll method, or It is preferable to use one of the centrifugal quenching methods. When the above-mentioned rapid cooling method is used, there is no problem in carrying out the present invention whether it is in the air, atmosphere, or vacuum. Further, when performing the various quenching methods described above, the alloy of the present invention does not require a high quenching rate unlike amorphous alloy steel, so it can be easily produced using relatively small equipment. Taking the single roll method as an example, when using rolls made of the same material and having the same diameter, the alloy of the present invention is approximately 1/5 to 1/1 that of manufacturing an amorphous alloy.
It can be formed at a rotation speed of 0. That is, while it is difficult to form a thick sample of 30 μm or more with amorphous alloy steel, the present invention can form a thick sample of 100 to 400 μm. Also, unlike amorphous alloy steel, which causes a mixture of crystalline phases and significantly impairs the tenacity of the alloy due to slight variations in cooling conditions, the material of the present invention is crystalline, so even slight variations in cooling conditions There is no problem in carrying out the present invention. These points are extremely advantageous features in terms of manufacturing. Furthermore, as another method for manufacturing the material of the present invention, it is also possible to directly inject the molten alloy into a liquid medium at room temperature, such as water, through a nozzle hole or the like.
The materials of the invention are obtained directly by the respective methods described above and do not require any special post-treatment steps. Moreover, the obtained quenching material has a silvery white metal color. The quenched material of the present invention is easier to process, such as cold rolling, than amorphous alloy steel, and the accuracy of the material thickness and surface roughness can be adjusted. The cross-sectional shape of the quenching material is 0.02 to 0.4 in diameter.
Approximately circular in mm, or 0.02 to 0.4 mm thick, 0.2 mm wide
Although a rectangular shape of ~40 mm is a desirable size for the device, there is no particular restriction on the shape and size when the device is scaled up. The length of the wire or plate-shaped quenching material can be arbitrarily selected. The material obtained by the above manufacturing method achieves the object of the present invention even in a rapidly cooled state.
No special post-processing process is required except when cold rolling is performed to improve dimensional accuracy. The above manufacturing method has a manufacturing speed of several hundred m/sec, making it possible to produce at high speed. Furthermore, it is possible to produce wires or plate-shaped tapes or tapes of L1 and 2 type intermetallic compounds, which were previously difficult to process. Materials such as powders are provided through extremely simple processes. The increased speed and simplicity of the process also bring about effects such as lower manufacturing costs and energy savings when manufacturing the material of the present invention. L1 2 of the present invention manufactured based on the above manufacturing method
An example of an intermetallic compound is Fe-20wt%Ni-8wt
A transmission electron micrograph (magnification: 16,500 times) and electron beam diffraction spots of a rapidly cooled alloy having a composition of %Al-2.0wt%C are shown in Figures 1 and 2, respectively. The structure of the alloy with the above composition made by the conventional manufacturing method is a mixed phase of carbide and ferrite, but the structure of the alloy according to the present invention is a structure having face-centered cubic regular lattice spots, as is clear from FIG. It's getting old.
In other words, the structure in Figure 1 is L1 2 type intermetallic compound Ni 3 Al
It has the same regular lattice as (Fe, Ni) 3 Al
It is. Furthermore, in FIG. 1, no precipitation of carbides or the like is observed either at the grain boundaries or within the grains, and all carbon is solidly dissolved in this ordered lattice phase. Although FIGS. 1 and 2 show an example of the present invention, the same applies to all compositions and alloys within the scope of the claims. In Figure 1, the grain size is approximately
Although the crystal grain size is 2.0 μm, there is no particular restriction on the crystal grain size of the L1 2 type intermetallic compound of the present invention. The L1 2 type intermetallic compound material of the present invention having the above structure has excellent mechanical properties as described below. Conventional L1 type 2 intermetallic compound
Compared to Ni 3 Al, which was brittle and non-ductile, the L1 type 2 intermetallic material of the present invention has a thickness of 100 to 400 μm.
It is a material with high tenacity and ductility that allows complete tight bending even in samples with a plate-like cross section, and can be cold-rolled by more than 50%. Furthermore, the strength of the conventional L1 2 intermetallic compound Ni 3 Al, which is made by adding B etc. to the conventional L1 2 type intermetallic compound Ni 3 Al to add toughness and ductility, is approximately 20 Kg/mm 2 in yield stress and approximately 80 Kg in breaking stress. / mm2 . In comparison, the L1 type 2 intermetallic compound material of the present invention is a Fe-Ni-Al-C alloy with a yield stress of 95 to 175.
Kg/mm 2 (breaking stress is also approximately the same value). It is a material with excellent strength. Its hardness is 350~650DPN. Note that the tensile elongation is 5 to 30%, with almost no work hardening. Such increases in strength and hardness are largely due to solid solution hardening of carbon or Fe dissolved in the face-centered cubic regular lattice. Furthermore, if one or a combination of two or more elements such as Cr, Mo, and W are added, the strength and hardness will further increase without impairing the tenacity and ductility as long as the total amount is 7wt% or less. The maximum yield stress and breaking stress reach approximately 170Kg/mm 2 and the maximum hardness reaches approximately 680DPN. Also, Ti, Zr, Nb, Ta, Si
Even when one or a combination of two or more of the following elements are added, substantially the same effect as the above-mentioned additive elements can be obtained as long as the total amount is 2 wt% or less. Even when Co is added, strength and hardness can be improved without impairing tenacity and ductility as long as the amount of Co is 45 wt% or less and the total amount of one or both of Ni or Mn and Co is in the range of 5 to 70 wt%. The maximum yield stress and breaking stress are approximately 170Kg/
mm 2 and maximum hardness of approximately 680DPN. As described above, the L1 2 type intermetallic compound material of the present invention has a structure with the same regular lattice structure as Ni 3 Al, and its mechanical properties are tough and capable of complete tight bending and cold rolling. It is also highly ductile. The strength is
Fe, Co, Cr, Mo, W, Ti, Zr, Nb, Ta, Si,
By solid solution hardening such as C, the maximum yield stress and breaking stress are approximately 170Kg/
mm 2 and a maximum hardness of approximately 680 DPN, it is an L1 2 type intermetallic compound material with excellent mechanical properties. Next, examples of the present invention will be described. Example 1 A Fe-X-Al-C (X is either Ni or Mn or both) alloy system was rapidly cooled from a liquid state using the one-roll quenching method shown in Figure 3, and approximately A continuous plate-shaped rapidly cooled material with a thickness of 100 μm, a width of 5 mm, and a length of 3000 mm was obtained. The roll diameter was 200 mm, the material was tool steel, the rotation speed was 1000 rpm, and the test was carried out in the atmosphere. An example of the composition of Fe-X-Al-C alloy and Fe-X-Al-C alloy with Co,
An example of a composition with added elements such as Cr, W, and Mo is shown in the table. The results of transmission electron microscopy and electron beam diffraction of these quenched materials were almost the same as those shown in Figures 1 and 2, and both compositions were L1 2 type intermetallic compounds. Also, the thickness of alloys of any composition is approximately 100 μm.
180° complete contact bending was possible with a thickness of . Its mechanical properties are shown in the table. There is no reason to limit the manufacturing method to the single-roll quenching method, and the manufacturing conditions, shape of the quenching material, etc. are not limited to those in this example. Furthermore, each composition shown in the table merely shows an example of the present invention, and within each composition range of the claims, the same compositions as above may be used.

【表】【table】

【表】 様の結果が得られた。 実施例 2 Fe―X―Al―C(XとしてNi又はMnのいずれ
か一種又は二種)系の合金系を第4図の装置を用
いて急冷した。図に示すように液体状態の合金を
冷却媒体中へノズルをかいして直接噴出させ、直
径0.1mm、長さ3000mmの連続した線状の急冷線材
を得た。第4図で冷却媒体はNaClを過飽和に含
んだ水溶液中に粉砕した氷を入れたものである。
透明石英製のノズルから合金の溶湯を約0.2Kg/
mm2の圧力で噴出させた。得られた急冷材の透過電
顕による観察及び電子線回折の結果は第1,2図
の場合とほぼ同様であり、いずれの組成において
もL12型金属間化合物が形成されていた。又、い
ずれの組成を持つ約0.1mm径の急冷材も180゜完全
密着曲げが可能であり、その機械的性質は表に示
した値とほぼ同様であつた。なお、本製造法にお
いて、冷却媒体の種類、ノズルの材質、噴出圧力
等の製造条件及び急冷材形状も本実施例に限定さ
れない。又、表に示した組成は本発明の一例を示
したものであり、特許請求範囲の各組成におい
て、上記と同様の結果が得られる。 実施例 3 実施例1で得られた本発明の金属間化合物材料
を冷間圧延した。最大圧下率は約90%であつた。
圧延後の試料は圧延前の急冷材と同様180゜完全
密着曲げが可能であつた。又、圧延後の試料の機
械的性質は加工硬化による若干の硬化が認められ
る程度で、ほぼ急冷材と同等であつた。冷間圧延
の効果の一列として、急冷材の表面あらさ(幅方
向3〜5μm、長さ方向2〜4μm)を圧延によ
り幅方向及び長さ方向とも0.05〜0.1μm程度に
平滑にすることができた。又、急冷材の厚さの寸
法精度も圧下率を調整することにより0.05〜0.1
μmの精度にすることができた。このように本発
明のL12型金属間化合物は従来のNi3Alでは困難で
あつた冷間圧延等の塑性加工を可能にしたもので
あり、急冷材のねばさ、機械的性質を損なうこと
なく、後加工を行うことができる。 実施例 4 実施例1,2及び3で得られた本発明の金属間
化合物を種々の温度に保持し焼戻しを行なつた。
その結果、500℃、1hの焼き戻し後でも、急冷材
と同様なねばい材料であつた。又、Cr,Mo,W
等の元素を添加した合金系では600℃1hの焼き戻
しを行なつても急冷材と同様のねばい材料であつ
た。また、上記の各焼戻し処理を行なつてもその
機械的性質は急冷材とほぼ同様で大きく損なわれ
ることはなかつた。なお、上記の熱処理温度以上
ではL12型金属間化合物は相分解するのでねばさ
は損われる。従つて、本発明の金属間化合物材料
は約600℃、1h以下の焼戻しによつては何ら脆化
しない材料である。 実施例 5 実施例1,2によつて得られた本発明の急冷材
において特にCo量が20〜40wt%、C量が0.2〜
1.6wt%で他の成分が特許請求範囲内であるFe―
Ni―Al―Co―C系の急冷材について、その磁性
特性を測定した。 これらの合金は半硬質磁気特性を有していた。
例えば本発明のFe―20wt%Ni―8wt%Al―0.8wt
%C―30wt%Co合金は600℃、1時間の時効を施
した結果、その保磁力が210Oe、磁束密度が
3.5KGであつた。
The results shown in [Table] were obtained. Example 2 A Fe--X--Al--C (X is either Ni or Mn or both) alloy system was rapidly cooled using the apparatus shown in FIG. As shown in the figure, the liquid alloy was directly jetted into the cooling medium through a nozzle to obtain a continuous linear quenched wire with a diameter of 0.1 mm and a length of 3000 mm. In FIG. 4, the cooling medium is a supersaturated aqueous solution containing crushed ice.
Approximately 0.2 kg of molten alloy is poured through a transparent quartz nozzle.
It was ejected at a pressure of mm 2 . The results of transmission electron microscopy and electron beam diffraction of the obtained quenched material were almost the same as those shown in FIGS. 1 and 2, and L1 2 type intermetallic compounds were formed in both compositions. In addition, the rapidly cooled material with a diameter of about 0.1 mm having any composition could be bent completely in close contact by 180 degrees, and its mechanical properties were almost the same as the values shown in the table. In addition, in this manufacturing method, the manufacturing conditions such as the type of cooling medium, the material of the nozzle, the ejection pressure, and the shape of the quenching material are not limited to those in this example. Furthermore, the compositions shown in the table are examples of the present invention, and results similar to those described above can be obtained with each composition in the claims. Example 3 The intermetallic compound material of the present invention obtained in Example 1 was cold rolled. The maximum reduction rate was approximately 90%.
The rolled sample could be bent completely in close contact by 180°, similar to the quenched material before rolling. In addition, the mechanical properties of the sample after rolling were approximately the same as those of the rapidly cooled material, with only slight hardening due to work hardening being observed. As one of the effects of cold rolling, the surface roughness of the rapidly cooled material (3 to 5 μm in the width direction and 2 to 4 μm in the length direction) can be smoothed to about 0.05 to 0.1 μm in both the width and length directions by rolling. Ta. In addition, the dimensional accuracy of the thickness of the rapidly cooled material can be adjusted to 0.05 to 0.1 by adjusting the rolling reduction rate.
We were able to achieve an accuracy of μm. As described above, the L1 2 type intermetallic compound of the present invention enables plastic working such as cold rolling, which was difficult with conventional Ni 3 Al, and does not impair the toughness and mechanical properties of the rapidly cooled material. Post-processing can be performed without any need for post-processing. Example 4 The intermetallic compounds of the present invention obtained in Examples 1, 2, and 3 were tempered while being maintained at various temperatures.
As a result, even after tempering at 500°C for 1 hour, it remained a sticky material similar to the quenched material. Also, Cr, Mo, W
In the case of alloys containing the following elements, even after tempering at 600°C for 1 hour, the material remained as sticky as the rapidly cooled material. Furthermore, even after the above-mentioned tempering treatments were performed, the mechanical properties were almost the same as those of the quenched material and were not significantly impaired. Note that at temperatures above the above heat treatment temperature, the L1 2 type intermetallic compound undergoes phase decomposition and its tenacity is impaired. Therefore, the intermetallic compound material of the present invention is a material that does not become brittle at all when tempered at about 600° C. for 1 hour or less. Example 5 In particular, in the quenching materials of the present invention obtained in Examples 1 and 2, the Co content was 20 to 40 wt% and the C content was 0.2 to 0.2.
Fe with 1.6wt% and other components within the claimed range
The magnetic properties of Ni-Al-Co-C-based quenched materials were measured. These alloys had semi-hard magnetic properties.
For example, the present invention Fe-20wt%Ni-8wt%Al-0.8wt
As a result of aging the %C-30wt%Co alloy at 600℃ for 1 hour, its coercive force was 210Oe and the magnetic flux density was
It was 3.5KG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明Fe―20wt%Ni―8wt%Al―
2.0wt%Cの金属間化合物材料の透過電顕写真
(16500倍)、第2図は電子線回折像、第3図は片
ロール法の原理を示す構成図、第4図は溶湯を冷
却媒体中へ直接噴出する方法の原理を示す概略図
である。 1…ノズル、2…溶融金属、3…急冷材、4…
ロール、5…加熱源、6…液体冷却媒体。
Figure 1 shows the present invention Fe-20wt%Ni-8wt%Al-
Transmission electron micrograph (16500x) of intermetallic compound material with 2.0wt%C, Figure 2 is an electron diffraction image, Figure 3 is a block diagram showing the principle of the single roll method, Figure 4 is a diagram showing the molten metal as a cooling medium. FIG. 2 is a schematic diagram illustrating the principle of the direct injection method; 1... Nozzle, 2... Molten metal, 3... Quenching material, 4...
Roll, 5...Heating source, 6...Liquid cooling medium.

Claims (1)

【特許請求の範囲】 1 重量比で、NiおよびMnの少なくとも1つが
総量で5〜70%、Alが4〜12%、炭素が0.2〜2.6
%および残部鉄からなる合金であり、L12型金属
間化合物として構成されていることを特徴とする
高強靭金属間化合物材料。 2 重量比で、NiおよびMnの少なくとも1つが
総量で5〜70%、Alが4〜12%、炭素が0.2〜2.6
%、CrとMoとWの少なくとも1つが総量で7%
以下、残部鉄からなる合金であり、L12型金属間
化合物として構成されていることを特徴とする高
強靭金属間化合物材料。 3 重量比で、NiおよびMnの少なくとも1つと
45%以下のCoとを総量で5〜70%、Alが4〜12
%、炭素が0.2〜2.6%、残部鉄からなる合金であ
り、L12型金属間化合物として構成されているこ
とを特徴とする高強靭金属間化合物材料。 4 重量比で、NiおよびMnの少なくとも1つが
5〜70%、Alが4〜12%、炭素が0.2〜2.6%、Ti
とZrとNbとTaとSiの少なくとも1つが総量で2
%以下、残部が鉄からなる合金であり、L12型金
属間化合物として構成されていることを特徴とす
る高強靭金属間化合物材料。 5 重量比で、NiおよびMnの少なくとも1つを
総量で5〜70%、Alを4〜12%、炭素を0.2〜2.6
%、残部鉄からなる合金の溶湯を、良熱伝導性の
部材で構成された回転体の円周面に注湯すること
を特徴とする高強靭金属間化合物材料の製造法。
[Claims] 1. In weight ratio, at least one of Ni and Mn is 5 to 70% in total, Al is 4 to 12%, and carbon is 0.2 to 2.6%.
A high-strength intermetallic compound material, which is an alloy consisting of % iron and the balance is iron, and is configured as an L1 2 type intermetallic compound. 2 In terms of weight ratio, the total amount of at least one of Ni and Mn is 5 to 70%, Al is 4 to 12%, and carbon is 0.2 to 2.6%.
%, at least one of Cr, Mo and W is 7% in total
The following is a high-strength intermetallic compound material characterized by being an alloy consisting of iron in the balance and being configured as an L1 2 type intermetallic compound. 3 At least one of Ni and Mn in weight ratio
45% or less Co and 5 to 70% in total, Al 4 to 12
%, carbon in 0.2 to 2.6%, and the balance being iron, and is a high-strength intermetallic compound material characterized by being configured as an L1 2 type intermetallic compound. 4 In terms of weight ratio, at least one of Ni and Mn is 5 to 70%, Al is 4 to 12%, carbon is 0.2 to 2.6%, Ti
and at least one of Zr, Nb, Ta, and Si in a total amount of 2
A high-strength intermetallic compound material characterized in that it is an alloy with the balance consisting of iron and is configured as an L1 2 type intermetallic compound. 5 In terms of weight ratio, the total amount of at least one of Ni and Mn is 5 to 70%, Al is 4 to 12%, and carbon is 0.2 to 2.6%.
%, the balance being iron, is poured onto the circumferential surface of a rotating body made of a member with good thermal conductivity.
JP7836879A 1979-06-20 1979-06-20 High toughness intermetallic compound material and its manufacture Granted JPS563651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7836879A JPS563651A (en) 1979-06-20 1979-06-20 High toughness intermetallic compound material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7836879A JPS563651A (en) 1979-06-20 1979-06-20 High toughness intermetallic compound material and its manufacture

Publications (2)

Publication Number Publication Date
JPS563651A JPS563651A (en) 1981-01-14
JPS6213427B2 true JPS6213427B2 (en) 1987-03-26

Family

ID=13660058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7836879A Granted JPS563651A (en) 1979-06-20 1979-06-20 High toughness intermetallic compound material and its manufacture

Country Status (1)

Country Link
JP (1) JPS563651A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478791A (en) * 1982-11-29 1984-10-23 General Electric Company Method for imparting strength and ductility to intermetallic phases
JPS59162254A (en) * 1983-03-01 1984-09-13 Takeshi Masumoto Fe alloy material of superior workability
WO2015099221A1 (en) 2013-12-26 2015-07-02 주식회사 포스코 Steel sheet having high strength and low density and method of manufacturing same

Also Published As

Publication number Publication date
JPS563651A (en) 1981-01-14

Similar Documents

Publication Publication Date Title
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
CN101812646B (en) High-speed steel alloy casting process used for roll
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
JPH07116546B2 (en) High strength magnesium base alloy
JPH0499244A (en) High strength magnesium base alloy
CA1231559A (en) Iron-base alloy materials having excellent workability
JP2911708B2 (en) High-strength, heat-resistant, rapidly solidified aluminum alloy, its solidified material, and its manufacturing method
EP0093487B1 (en) Nickel-based alloy
JP4332647B2 (en) High-strength amorphous alloy and method for producing the same
JP3205362B2 (en) High strength, high toughness aluminum-based alloy
JPS6179724A (en) Manufacture of thin plate of high-silicon iron alloy
US4473402A (en) Fine grained cobalt-chromium alloys containing carbides made by consolidation of amorphous powders
JPS6213427B2 (en)
JPS6237335A (en) Aluminum alloy having high corrosion resistance and strength
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JPS6411704B2 (en)
US4430115A (en) Boron stainless steel powder and rapid solidification method
US4402745A (en) New iron-aluminum-copper alloys which contain boron and have been processed by rapid solidification process and method
JPH0549739B2 (en)
JPH0693393A (en) Aluminum-base alloy with high strength and corrosion resistance
CN111394636A (en) High-strength high-plasticity high-entropy alloy with martensite phase transformation and preparation method thereof
JPH05311359A (en) High strength aluminum base alloy and its composite solidified material
JPH1060527A (en) Production of steel having high young's modulus
US4400212A (en) Cobalt-chromium alloys which contain carbon and have been processed by rapid solidification process and method
JPH0147540B2 (en)