JPH0499244A - High strength magnesium base alloy - Google Patents

High strength magnesium base alloy

Info

Publication number
JPH0499244A
JPH0499244A JP2209159A JP20915990A JPH0499244A JP H0499244 A JPH0499244 A JP H0499244A JP 2209159 A JP2209159 A JP 2209159A JP 20915990 A JP20915990 A JP 20915990A JP H0499244 A JPH0499244 A JP H0499244A
Authority
JP
Japan
Prior art keywords
matrix
crystalline phase
elements
alloy
strength magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2209159A
Other languages
Japanese (ja)
Inventor
Kazuo Aikawa
相川 和夫
Katsuyuki Takeya
竹谷 桂之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP2209159A priority Critical patent/JPH0499244A/en
Priority to EP91113280A priority patent/EP0470599A1/en
Publication of JPH0499244A publication Critical patent/JPH0499244A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent

Abstract

PURPOSE:To manufacture an Mg base alloy excellent in corrosion resistance as well as hardness and strength by superrapidly cooling the molten metal of an alloy having a specified compsn. essentially consisting of Mg. CONSTITUTION:The molten metal 3 of an Mg base alloy having a compsn. expressed by general formulae [I] to [IV] [in the formulae, X denotes >= two kinds among Cu, Ni, Sn and Zn, M denotes one or >= two kinds among Al, Si and Ca and Ln denotes one or >= two kinds among Y, La, Ce, Nd and Sm or misch metal, and as for the value of (a) to (e), by atomic %, 40<=a<=95, 5<=b<=60, 1<=c<=35, 1<=d<=25 and 3<=e<=25 are regulated] is poured into a silica tube 1, is dropped from a small opening 5 at the lower part on a rapidly rotating cooling roll 2 made of copper and is solidified into the shape of a thin sheet 4. The Mg base alloy constituted of a crystalline phase of which various intermetallic compounds are finely dispersed into an Mg matrix and an amorphous phase contg. Mg and other incorporated elements and excellent in hardness, strength and corrosion resistance can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、硬度および強度に優れ、かつ、耐食性に優れ
たマグネシウム基合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnesium-based alloy that has excellent hardness and strength as well as excellent corrosion resistance.

[従来の技術] 従来、この種の非晶質合金としては、特願平1−179
139号に記載される非晶質マグネシウム基合金が出願
されているが、いずれも高強度化を促進するために非晶
質単相化を狙ったものである。
[Prior Art] Conventionally, this type of amorphous alloy has been disclosed in Japanese Patent Application No. 1-179.
The amorphous magnesium-based alloy described in No. 139 has been applied for, but all of them are aimed at forming an amorphous single phase in order to promote high strength.

[発明が解決しようとする課題j しかしなから、上記特願平1−179]39号に記載の
非晶質マグネシウム基合金は、高強度及び高硬度などを
示す優れた合金であり、高力材料として優れているが、
合金材料における非晶質相と結晶質相との割合に着目す
ることにより、さらに強度及び硬度の改良の余地を残し
ている。
[Problems to be Solved by the Invention] However, the amorphous magnesium-based alloy described in the above-mentioned Japanese Patent Application No. 1-179] is an excellent alloy exhibiting high strength and high hardness, and has high strength. Although it is an excellent material,
By focusing on the ratio of amorphous phase to crystalline phase in the alloy material, there is still room for further improvement in strength and hardness.

そこで本発明は上記に鑑み、非晶質相と結晶質相とに着
目することにより、さらに硬度、及び強度を向上するよ
うなマグネシウム基合金を提供することを目的としたも
のである。
In view of the above, an object of the present invention is to provide a magnesium-based alloy that further improves hardness and strength by focusing on the amorphous phase and the crystalline phase.

[課題を解決するだめの手段〕 本発明は一般式: M g −X b [但し、X ; Cu SN t s S n SZ 
nから選ばれる2種以上の元素、 a、bは原子パーセントで 40≦ a ≦95 5≦b≦60] で示される組成を有し、M gのマトリックス中にマト
リックス元素又は/及び上記元素により構成される種々
の金属間化合物を微細に分散して構成される結晶質相と
Mg元素とM元素とを含んでマトリックスを構成する非
晶質相とからなる高力マグネシウム基合金であって、前
記結晶質相と非晶質相とを体積率で結晶質相を多く含有
してなることを特徴とする高力マグネシウム合金。
[Means for Solving the Problems] The present invention has the following general formula: M g -X b [However, X; Cu SN t s S n SZ
two or more elements selected from n, a and b have a composition shown in atomic percent as follows: 40≦a≦95 5≦b≦60], and the matrix element and/or the above elements are present in the matrix of Mg. A high-strength magnesium-based alloy consisting of a crystalline phase formed by finely dispersing various intermetallic compounds and an amorphous phase containing Mg elements and M elements and forming a matrix, A high-strength magnesium alloy characterized in that the crystalline phase and the amorphous phase contain a large volume fraction of the crystalline phase.

または一般式: Mg、X= Ma [但し、X:Cu、、Ni、、5nSZnから選ばれる
1種または2種以上の元素、M+AI、Si、Caから
選ばれる1種または2種以上の元素、 a、cSdは原子パーセントで 40≦ a ≦95 1≦ C≦35 1≦ d ≦ 25コ て示される組成を有し、Mgのマトリックス中にマトリ
ックス元素又は/及び上記元素により構成される種々の
金属間化合物を微細に分散して構成される結晶質相とM
g元素とM元素とを含んでマトリックスを構成する非晶
質相とからなる高力マグネシウム基合金であって、前記
結晶質相と非晶質相とを体積率で結晶質相を多く含有し
てなることを特徴とする高力マグネシウム合金。
Or general formula: Mg, a, cSd has a composition expressed as 40≦a≦95 1≦C≦35 1≦d≦25 in atomic percent, and contains various metals composed of the matrix element and/or the above elements in the Mg matrix. A crystalline phase composed of finely dispersed intermediate compounds and M
A high-strength magnesium-based alloy consisting of an amorphous phase containing G element and M element and constituting a matrix, the crystalline phase and the amorphous phase containing a large amount of the crystalline phase in terms of volume ratio. A high-strength magnesium alloy that is characterized by its properties.

または一般式+Mg、)(、ln。or general formula +Mg, )(, ln.

[但し、X:Cu、Ni、Sn、Znから選ばれる1種
または2種以上の元素、Ln:Y。
[However, X: one or more elements selected from Cu, Ni, Sn, and Zn; Ln: Y.

La、Ce、Nd、Smから選ばれる1種または2種以
上の元素、または希土類元素の集合体であるミツシュメ
タル(Mm) aSc、 eは原子パーセントで 40≦ a ≦95 1≦ C≦35 3≦e≦25] で示される組成を有し、Mgのマトリックス中にマトリ
ックス元素又は/及び上記元素により構成される種々の
金属間化合物を微細に分散して構成される結晶質相とM
g元素とM元素とを含んでマトリックスを構成する非晶
質相とからなる高力マグネシウム基合金であって、前記
結晶質相と非晶質相とを体積率で結晶質相を多く含有し
てなることを特徴とする高力マグネシウム合金。
Mitsushmetal (Mm) is an aggregate of one or more elements selected from La, Ce, Nd, and Sm, or rare earth elements aSc, e is atomic percent 40≦a≦95 1≦C≦35 3≦ e≦25], and a crystalline phase composed of a matrix element and/or various intermetallic compounds composed of the above elements finely dispersed in a matrix of Mg;
A high-strength magnesium-based alloy consisting of an amorphous phase containing G element and M element and constituting a matrix, the crystalline phase and the amorphous phase containing a large amount of the crystalline phase in terms of volume ratio. A high-strength magnesium alloy that is characterized by its properties.

さらには一般式+ M、g 、 X eMa L n 
Furthermore, the general formula + M, g, X eMa L n
.

[但し、X:Cu、Ni、5nSZnから選ばれる1種
または2種以上の元素、M:Al、Sl、Caから選ば
れる1種または2種以上の元素、L n : Y s 
L a SCe SN d % S mから選ばれる1
種または2種以上の元素または希土類元素の集合体であ
るミツシュメタル(M m )  、 40≦ a ≦95 1≦ C≦35 1≦ d ≦25 3≦e ≦25〕 で示される組成を有し、Mgのマトリックス中にマトリ
ックス元素又は/及び上記元素により構成される種々の
金属間化合物を微細に分散して構成される結晶質相とM
g元素とM元素とを含んでマトリックスを構成する非晶
質相とからなる高力マグネシウム基合金であって、前記
結晶質相と非晶質相とを体積率で結晶質相を多く含有し
てなることを特徴とする高力マグネシウム合金である。
[However, X: one or more elements selected from Cu, Ni, and 5nSZn, M: one or more elements selected from Al, Sl, and Ca, L n : Y s
1 selected from L a SCe SN d % S m
Mitsushmetal (M m ), which is a species or an aggregate of two or more elements or rare earth elements, has a composition shown as follows: 40≦a≦95 1≦C≦35 1≦d≦25 3≦e≦25], A crystalline phase constituted by finely dispersing matrix elements and/or various intermetallic compounds constituted by the above elements in a matrix of Mg;
A high-strength magnesium-based alloy consisting of an amorphous phase containing G element and M element and constituting a matrix, the crystalline phase and the amorphous phase containing a large amount of the crystalline phase in terms of volume ratio. This is a high-strength magnesium alloy that is characterized by its properties.

上記組成で示される元素の内、La5Ce、Nd、Sm
はそれらを主成分とする複合体であるミツシュメタル(
Mm)で置き換えることができる。
Among the elements shown in the above composition, La5Ce, Nd, Sm
Mitsushmetal (
Mm).

なお、ここでいうMmはCe40〜50%、L a 2
0〜25%、残部は他の希土類元素からなり、許容範囲
の不純物(Mg、A ISS i。
In addition, Mm here is Ce40~50%, L a 2
0-25%, the remainder consisting of other rare earth elements, with acceptable impurities (Mg, AISS i.

Fe等)を含む複合体である。Mmは他のLn元素の一
元素とほぼ1対1(原子%)の割合で置き換えることが
できるとともに、安価であり実際の合金元素Lnの供給
源として紅済的効果が大きい。
It is a complex containing Fe, etc.). Mm can be substituted with one of the other Ln elements at a ratio of approximately 1:1 (atomic %), is inexpensive, and has a great economical effect as a source of the actual alloying element Ln.

本発明のマグネシウム基合金は、上記組成を有する合金
の溶湯を液体急冷法で急冷凝固することにより得ること
ができる。この液体急冷法とは、溶融した合金を急速に
冷却させる方法をいい、例えば単ロール法、双ロール法
、回転液中紡糸法などが特に有効であり、これらの方法
では104〜10’ K/sec程度の冷却速度が得ら
れる。この単ロール法、双ロール法等により薄帯材料を
製造するには、ノズル孔を通して約300〜1100D
Orpの範囲の一定速度で回転している直径30〜30
00a+a+の例えば銅あるいは鋼製のロールに溶湯を
噴出する。
The magnesium-based alloy of the present invention can be obtained by rapidly solidifying a molten alloy having the above composition using a liquid quenching method. This liquid quenching method refers to a method of rapidly cooling a molten alloy, and for example, a single roll method, a twin roll method, a spinning method in a rotating liquid, etc. are particularly effective. A cooling rate on the order of seconds is obtained. To produce a ribbon material by this single roll method, double roll method, etc., a diameter of approximately 300 to 1100 D is passed through the nozzle hole.
Diameter 30-30 rotating at a constant speed in the range of Orp.
The molten metal is spouted onto a roll made of copper or steel, for example, 00a+a+.

これにより幅が約1〜’300 tatrで厚さが約5
〜50071mの各種薄帯材料を容易に得ることができ
る。また、回転液中紡糸法により細線材料を製造するに
は、ノズル孔を通じ、アルゴンガス背圧にて、約50〜
500rpmで回転するドラム内に遠心力により保持さ
れた深さ約1〜10cmの溶液冷媒層中に溶湯を噴出し
て、細線材料を容易に得ることができる。この際のノズ
ルからの噴出溶湯と溶液冷媒面とのなす角度は、約60
〜90度、噴出溶湯と溶液冷媒面の相対速度比は約0.
7〜0,9であることが好ましい。
This makes the width about 1 to '300 tatr and the thickness about 5
Various ribbon materials with a length of ~50071 m can be easily obtained. In addition, in order to produce a fine wire material by spinning in a rotating liquid, about 50~
A fine wire material can be easily obtained by spouting the molten metal into a solution refrigerant layer with a depth of about 1 to 10 cm held by centrifugal force in a drum rotating at 500 rpm. At this time, the angle between the molten metal spouted from the nozzle and the surface of the solution refrigerant is approximately 60
~90 degrees, the relative velocity ratio between the jetted molten metal and the solution refrigerant surface is approximately 0.
It is preferable that it is 7-0.9.

なお、本発明の合金は上記と同様の方法で冷却速度のみ
を上記より多少上げ、まず非晶質合金を得て、これを結
晶化温度の近傍(結晶化温度±100℃)で加熱し結晶
化させることによっても得ることができる。ここである
一部の合金においては前記結晶化温度より100℃低い
値よりさらに低い温度でできる場合がある。
The alloy of the present invention is produced using the same method as above, only the cooling rate is slightly higher than the above, to first obtain an amorphous alloy, which is then heated near the crystallization temperature (crystallization temperature ±100°C) to crystallize it. It can also be obtained by converting In some alloys, crystallization can be performed at a temperature lower than 100° C. below the crystallization temperature.

また、上記方法によらずスパッタリング法によって薄膜
を、さらに高圧ガス噴出法などの各種アトマイズ法やス
プレー法及びメカニカルアロイ法、メカリカルブライン
ディング法などにより急冷粉末を得ることができる。
In addition, a thin film can be obtained by a sputtering method, and a rapidly cooled powder can be obtained by various atomizing methods such as a high-pressure gas blowing method, a spray method, a mechanical alloying method, a mechanical blinding method, etc., without using the above-mentioned method.

上記請求項(1)の一般式で示される本発明のマグネシ
ウム基合金において、原子パーセントでaを40〜95
%の範囲に、また、bを5〜60%の範囲にそれぞれ限
定したのは、その範囲から外れると固溶限を超えた過飽
和固溶体を形成しにくくなり、又、非晶質化しにくくな
るために、前記液体急冷等を利用した工業的な急冷手段
では本発明の特性をもった合金を得ることができなくな
るからである。
In the magnesium-based alloy of the present invention represented by the general formula of claim (1) above, a is 40 to 95 in atomic percent.
% range and b to a range of 5 to 60%, respectively, because if it deviates from these ranges, it becomes difficult to form a supersaturated solid solution exceeding the solid solubility limit, and it becomes difficult to become amorphous. In addition, it is impossible to obtain an alloy having the characteristics of the present invention using industrial quenching means such as the above-mentioned liquid quenching.

上記請求項(2)の一般式で示される本発明のマグネシ
ウム基合金において、原子%でaを40〜95%の範囲
に、また、Cを1〜35%、dを1〜25%の範囲にそ
れぞれ限定したのは、その範囲から外れると固溶限を超
えた過飽和固溶体を形成しにくくなり、又、非晶質化し
にくくなるために、前記液体急冷等を利用した工業的な
急冷手段では、本発明の特性を持った合金を得ることが
できなくなるからである。
In the magnesium-based alloy of the present invention represented by the general formula of claim (2) above, a is in the range of 40 to 95% in atomic %, C is in the range of 1 to 35%, and d is in the range of 1 to 25%. The reason for this limitation is that if it deviates from these ranges, it becomes difficult to form a supersaturated solid solution that exceeds the solid solubility limit, and it becomes difficult to become amorphous. This is because it becomes impossible to obtain an alloy having the characteristics of the present invention.

また、上記請求項(3)の一般式で示される本発明のマ
グネシウム基合金において、原子96でaを40〜95
%、Cを1〜35%、eを3〜25%の範囲にそれぞれ
限定したのは、上記と同様にその範囲から外れると固溶
限を超えた過飽和固溶体を形成しにくくなり、又、一部
非晶質化しにくくなるために、前記液体急冷などを利用
した工業的な急冷手段では、本発明の目的の特性を持っ
たの合金を得ることができなくなるからである。
Further, in the magnesium-based alloy of the present invention represented by the general formula of claim (3) above, a is 96 and a is 40 to 95.
%, C to 1 to 35%, and e to 3 to 25%.As mentioned above, if it deviates from these ranges, it becomes difficult to form a supersaturated solid solution that exceeds the solid solubility limit. This is because the alloy becomes difficult to partially become amorphous, making it impossible to obtain an alloy having the characteristics aimed at by the present invention by industrial quenching means such as the liquid quenching described above.

また、上記請求項(4)の一般式で示される本発明のマ
グネシウム基合金において、原子%でaを40〜95%
、Cを1〜35%、dをi −25%、eを3〜25%
の範囲にそれぞれ限定したのは、上記と同様に、その範
囲から外れると固溶限を超えた過飽和固溶体を形成しに
くくなり、又、非晶質化しにくくなるために、前記液体
急冷などを利用した工業的な急冷手段では、本発明の目
的の特性を持った合金を得ることができなくなるからで
ある。
Further, in the magnesium-based alloy of the present invention represented by the general formula of claim (4) above, a is 40 to 95% in atomic %.
, C 1-35%, d i -25%, e 3-25%
The reason for limiting each range to these ranges is that, as mentioned above, if it deviates from the range, it becomes difficult to form a supersaturated solid solution that exceeds the solid solubility limit, and it becomes difficult to become amorphous. This is because an alloy having the desired characteristics of the present invention cannot be obtained using industrial quenching means.

X元素はCuSNi、5nSZnより選ばれる元素であ
り、本発明の合金を製造する条件下にあっては、微細結
晶質相を安定化させる効果および非晶質形成能を向上せ
しめる効果により優れており、そのほかに展延性を保っ
たまま強度を向上させる効果を併せ持つ。
Element X is an element selected from CuSNi and 5nSZn, and under the conditions for producing the alloy of the present invention, it has an excellent effect of stabilizing the fine crystalline phase and improving the ability to form an amorphous phase. In addition, it has the effect of improving strength while maintaining malleability.

また、M元素は、AI、S i、Caから選ばれる元素
であり、本発明の微細結晶質相においては、マグネシウ
ム元素および他の添加元素と安定または準安定な金属間
化合物を形成し、マグネシウムマトリックス(α相)中
に均一微細に分散させ、合金の硬度と強度とを著しく向
上させ、高温における微細結晶質の粗大化を抑制させ、
耐熱性を付与する。非晶質相においては、比較的高温に
おける非晶質の安定性を付与する。上記元素のうち、A
I、Ca元素は耐食性を向上させる効果を持ち、またS
i元素は合金溶湯の湯流れ性を向上させる効果を持つ。
In addition, the M element is an element selected from AI, Si, and Ca, and in the fine crystalline phase of the present invention, it forms a stable or metastable intermetallic compound with the magnesium element and other additive elements, and the M element is an element selected from AI, Si, and Ca. It is uniformly and finely dispersed in the matrix (α phase), significantly improving the hardness and strength of the alloy, and suppressing the coarsening of fine crystals at high temperatures.
Provides heat resistance. The amorphous phase provides amorphous stability at relatively high temperatures. Among the above elements, A
I, Ca elements have the effect of improving corrosion resistance, and S
The i element has the effect of improving the flowability of the molten alloy.

Ln元素はY、La、 Ce、Nd、Smから選ばれる
元素又は希土類元素の集合体であるMmであり、微細結
晶質相においては、該Ln元素をMg−X系、Mg−X
−M系に加えることにより微細組織をさらに安定させ、
より大きな硬度の改善を可能にする。非晶質相において
は、前記X元素と共存させることにより、より優れた非
晶質形成能を向上させる効果を発揮する。
The Ln element is Mm, which is an element selected from Y, La, Ce, Nd, and Sm, or an aggregate of rare earth elements.
- Further stabilizes the microstructure by adding it to the M system,
Enables greater hardness improvement. In the amorphous phase, by making it coexist with the above-mentioned X element, it exhibits the effect of improving the ability to form a more excellent amorphous phase.

本発明のマグネシウム基合金は、結晶化温度近傍(Tx
±100℃)において、超塑性現象を示すので、容易に
押出し加工やプレス加工、熱間鍛造等の加工を行うこと
ができる。
The magnesium-based alloy of the present invention has a temperature near the crystallization temperature (Tx
Since it exhibits a superplastic phenomenon at temperatures (±100°C), it can be easily processed by extrusion, press working, hot forging, etc.

したがって、薄帯、線、板状あるいは粉末状の形態で得
られた本発明のマグネシウム基合金をTX ±1.00
℃の温度範囲で押出し加工、プレス加工、熱間鍛造等に
付することにより、バルク材を製造することができる。
Therefore, the magnesium-based alloy of the present invention obtained in the form of a ribbon, wire, plate or powder has a TX ±1.00
Bulk materials can be manufactured by subjecting the material to extrusion, press working, hot forging, etc. in the temperature range of °C.

さらに、本発明のマグネシウム基合金は高度の粘さを有
し、大きな曲げ可能なものもある。
Furthermore, the magnesium-based alloys of the present invention have a high degree of viscosity and some are highly bendable.

[実施例] 高周波溶解炉により所定の成分組成を有する溶融合金3
をつくり、これを第1図に示す先端に小孔5(孔径: 
(1,5m5)を有する石英管lに装入し、加熱“溶解
した後、その石英管1を銅製ロール2の直上に設置し、
回転数500Orpmの高速回転下、石英管1内の溶融
合金3をアルゴンガスの加圧下(0,7kg/c+n2
)により石英管1の小孔5から噴射し、銅製ロール2の
表面と接触させることにより急冷凝固させて合金薄帯4
を得る。
[Example] Melted alloy 3 having a predetermined composition using a high-frequency melting furnace
A small hole 5 (hole diameter:
(1.5 m5), and after heating and melting, the quartz tube 1 was placed directly above the copper roll 2,
Under high-speed rotation at a rotational speed of 500 rpm, the molten alloy 3 in the quartz tube 1 was heated under pressure of argon gas (0.7 kg/c+n2
) is injected from the small hole 5 of the quartz tube 1 and brought into contact with the surface of the copper roll 2 to rapidly solidify the alloy ribbon 4.
get.

上記製造条件により表に示す組成(原子%)を有する7
種の合金薄帯(幅:1■、厚さ二2oμm)を得て、こ
れら各供試帯につき硬度と引張り強度とを測定し、表の
右欄に示す結果を得た。
7 having the composition (atomic %) shown in the table under the above manufacturing conditions
A variety of alloy thin strips (width: 1 .mu.m, thickness: 2 .mu.m) were obtained, and the hardness and tensile strength of each sample strip were measured, and the results shown in the right column of the table were obtained.

尚、上記により得られた合金薄帯をTEMにより観察し
た結果、微細結晶質相と非晶質相とにより構成され、か
つ体積率で微細結晶質相を多く含んでいることが確認さ
れた。
As a result of observing the alloy ribbon obtained above using a TEM, it was confirmed that it was composed of a fine crystalline phase and an amorphous phase, and contained a large amount of the fine crystalline phase in terms of volume percentage.

硬度(Hv)は、25g荷重の微小ビッカース硬度計に
よる測定値(D P N)である。
Hardness (Hv) is a measured value (D P N) using a micro Vickers hardness meter with a load of 25 g.

表中に示すとおり、いずれの試料も硬度Hv (DPN
)が185以上を示し、市販のマグネシウム基合金の硬
度Hv (DPN)60〜90の2.0〜3.0倍であ
り、また引張強度においては、本発明のいずれの試料も
630MPa以上を示し、従来のマグネシウム基合金の
うち、もっとも高いものが400MPaであるのに対し
て、約1.5倍以上であり、これらのことより本発明の
合金が硬度、強度に優れた材料であることが判る。
As shown in the table, all samples have hardness Hv (DPN
) is 185 or more, which is 2.0 to 3.0 times the hardness Hv (DPN) of commercially available magnesium-based alloys of 60 to 90, and in terms of tensile strength, all samples of the present invention show 630 MPa or more. , which is about 1.5 times higher than that of the highest of conventional magnesium-based alloys, which is 400 MPa. From these facts, the alloy of the present invention is a material with excellent hardness and strength. I understand.

表 [発明の効果コ 以上のように本発明のマグメジウム基合金は、従来最も
優れたものと評価されていた同種市販の合金に較べて2
.0倍以上の硬度と1゜5倍以上の引張強度を有し、押
出し加工などの加工ができるので、産業上の種々の用途
において、優れた効果を発揮することができる。
Table [Effects of the Invention] As described above, the magmedium-based alloy of the present invention has a 2.
.. It has a hardness of 0 times or more and a tensile strength of 1.5 times or more, and can be processed such as extrusion, so it can exhibit excellent effects in a variety of industrial applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明合金を急冷凝固して薄帯をつくる時に
使用した単ロール装置の説明図である。 1・・・石英管、2・・・銅製ロール、3・・・溶融合
金、4・・・急冷薄帯、5・・・小孔 特許出願人  吉田工業株式会社 代理人 弁理士 小 松 秀 岳
FIG. 1 is an explanatory diagram of a single roll device used to rapidly solidify the alloy of the present invention to form a ribbon. 1... Quartz tube, 2... Copper roll, 3... Molten alloy, 4... Quenched ribbon, 5... Small hole patent applicant Yoshida Kogyo Co., Ltd. agent Patent attorney Takeshi Komatsu

Claims (4)

【特許請求の範囲】[Claims] (1)一般式:Mg_aX_b [但し、X:Cu、Ni、Sn、Znから選ばれる2種
以上の元素、 a、bは原子パーセントで 40≦a≦95 5≦b≦60] で示される組成を有し、Mgのマトリックス中にマトリ
ックス元素又は/及び上記元素により構成される種々の
金属間化合物を微細に分散して構成される結晶質相とM
g元素とM元素とを含んでマトリックスを構成する非晶
質相とからなる高力マグネシウム基合金であって、前記
結晶質相と非晶質相とを体積率で結晶質相を多く含有し
てなることを特徴とする高力マグネシウム合金。
(1) General formula: Mg_aX_b [However, X: two or more elements selected from Cu, Ni, Sn, and Zn, a and b are atomic percentages of 40≦a≦95 5≦b≦60] and a crystalline phase composed of finely dispersed matrix elements and/or various intermetallic compounds composed of the above elements in a Mg matrix;
A high-strength magnesium-based alloy consisting of an amorphous phase containing G element and M element and constituting a matrix, the crystalline phase and the amorphous phase containing a large amount of the crystalline phase in terms of volume ratio. A high-strength magnesium alloy that is characterized by its properties.
(2)一般式:Mg_aX_cM_d [但し、X:Cu、Ni、Sn、Znから選ばれる1種
または2種以上の元素、M:Al、Si、Caから選ば
れる1種または2種以上の元素、 a、c、dは原子パーセントで 40≦a≦95 1≦c≦35 1≦d≦25] で示される組成を有し、Mgのマトリックス中にマトリ
ックス元素又は/及び上記元素により構成される種々の
金属間化合物を微細に分散して構成される結晶質相とM
g元素とM元素とを含んでマトリックスを構成する非晶
質相とからなる高力マグネシウム基合金であって、前記
結晶質相と非晶質相とを体積率で結晶質相を多く含有し
てなることを特徴とする高力マグネシウム合金。
(2) General formula: Mg_aX_cM_d [However, X: one or more elements selected from Cu, Ni, Sn, and Zn; M: one or more elements selected from Al, Si, and Ca; a, c, and d have a composition shown in atomic percent as follows: 40≦a≦95 1≦c≦35 1≦d≦25], and various elements constituted by the matrix element or/and the above elements in the Mg matrix. A crystalline phase composed of finely dispersed intermetallic compounds and M
A high-strength magnesium-based alloy consisting of an amorphous phase containing G element and M element and constituting a matrix, the crystalline phase and the amorphous phase containing a large amount of the crystalline phase in terms of volume ratio. A high-strength magnesium alloy that is characterized by its properties.
(3)一般式:Mg_aX_cLn_e [但し、X:Cu、Ni、Sn、Znから選ばれる1種
または2種以上の元素、Ln:Y、La、Ce、Nd、
Smから選ばれる1種または2種以上の元素、または希
土類元素の集合体であるミッシュメタル(Mm)、 a、c、eは原子パーセントで 40≦a≦95 1≦c≦35 3≦e≦25] で示される組成を有し、Mgのマトリックス中にマトリ
ックス元素又は/及び上記元素により構成される種々の
金属間化合物を微細に分散して構成される結晶質相とM
g元素とM元素とを含んでマトリックスを構成する非晶
質相とからなる高力マグネシウム基合金であって、前記
結晶質相と非晶質相とを体積率で結晶質相を多く含有し
てなることを特徴とする高力マグネシウム合金。
(3) General formula: Mg_aX_cLn_e [However, X: one or more elements selected from Cu, Ni, Sn, and Zn, Ln: Y, La, Ce, Nd,
Misch metal (Mm) is an aggregate of one or more elements selected from Sm or rare earth elements, a, c, and e are atomic percentages of 40≦a≦95 1≦c≦35 3≦e≦ 25] A crystalline phase consisting of a matrix element and/or various intermetallic compounds constituted by the above elements finely dispersed in an Mg matrix;
A high-strength magnesium-based alloy consisting of an amorphous phase containing G element and M element and constituting a matrix, the crystalline phase and the amorphous phase containing a large amount of the crystalline phase in terms of volume ratio. A high-strength magnesium alloy that is characterized by its properties.
(4)一般式:Mg_aX_cM_dLn_e[但し、
X:Cu、Ni、Sn、Znから選ばれる1種または2
種以上の元素、M:Al、Si、Caから選ばれる1種
または2種以上の元素、Ln:Y、La、Ce、Nd、
Smから選ばれる1種または2種以上の元素または希土
類元素の集合体であるミッシュメタル(Mm)、 40≦a≦95 1≦c≦35 1≦d≦25 3≦e≦25] で示される組成を有し、Mgのマトリックス中にマトリ
ックス元素又は/及び上記元素により構成される種々の
金属間化合物を微細に分散して構成される結晶質相とM
g元素とM元素とを含んでマトリックスを構成する非晶
質相とからなる高力マグネシウム基合金であって、前記
結晶質相と非晶質相とを体積率で結晶質相を多く含有し
てなることを特徴とする高力マグネシウム合金。
(4) General formula: Mg_aX_cM_dLn_e [however,
X: One or two selected from Cu, Ni, Sn, and Zn
More than one element, M: one or more elements selected from Al, Si, Ca, Ln: Y, La, Ce, Nd,
Misch metal (Mm), which is an aggregate of one or more elements selected from Sm or rare earth elements, is represented by 40≦a≦95 1≦c≦35 1≦d≦25 3≦e≦25] A crystalline phase composed of finely dispersed matrix elements and/or various intermetallic compounds composed of the above elements in a Mg matrix;
A high-strength magnesium-based alloy consisting of an amorphous phase containing G element and M element and constituting a matrix, the crystalline phase and the amorphous phase containing a large amount of the crystalline phase in terms of volume ratio. A high-strength magnesium alloy that is characterized by its properties.
JP2209159A 1990-08-09 1990-08-09 High strength magnesium base alloy Pending JPH0499244A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2209159A JPH0499244A (en) 1990-08-09 1990-08-09 High strength magnesium base alloy
EP91113280A EP0470599A1 (en) 1990-08-09 1991-08-07 High strength magnesium-based alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209159A JPH0499244A (en) 1990-08-09 1990-08-09 High strength magnesium base alloy

Publications (1)

Publication Number Publication Date
JPH0499244A true JPH0499244A (en) 1992-03-31

Family

ID=16568300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209159A Pending JPH0499244A (en) 1990-08-09 1990-08-09 High strength magnesium base alloy

Country Status (2)

Country Link
EP (1) EP0470599A1 (en)
JP (1) JPH0499244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002649A (en) * 2010-09-16 2011-04-06 无锡南理工科技发展有限公司 High-toughness magnesium based block body metal glass composite material and preparation method thereof
JP2020056085A (en) * 2018-10-03 2020-04-09 日立化成株式会社 Magnesium alloy member, powder material, and method for producing magnesium alloy member

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552110A (en) * 1991-07-26 1996-09-03 Toyota Jidosha Kabushiki Kaisha Heat resistant magnesium alloy
JP2911267B2 (en) * 1991-09-06 1999-06-23 健 増本 High strength amorphous magnesium alloy and method for producing the same
JP3110116B2 (en) * 1991-12-26 2000-11-20 健 増本 High strength magnesium based alloy
AU666268B2 (en) * 1993-12-03 1996-02-01 Toyota Jidosha Kabushiki Kaisha Heat resistant magnesium alloy
JP3745177B2 (en) * 1999-11-18 2006-02-15 Ykk株式会社 Surface-cured amorphous alloy molded article and method for producing the same
DK174490B1 (en) * 2001-03-13 2003-04-14 Forskningsct Risoe Process for the preparation of blanks with fine contours by shaping and crystallizing amorphous alloys
JP5540415B2 (en) * 2008-06-03 2014-07-02 独立行政法人物質・材料研究機構 Mg-based alloy
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
GB2537576A (en) 2014-02-21 2016-10-19 Terves Inc Manufacture of controlled rate dissolving materials
CN106460133B (en) 2014-04-18 2019-06-18 特维斯股份有限公司 The particle of electro-chemical activity for controllable rate dissolution tool being formed in situ
GB201413327D0 (en) * 2014-07-28 2014-09-10 Magnesium Elektron Ltd Corrodible downhole article
CN109504884B (en) * 2019-01-10 2020-07-28 吉林大学 Multi-element small-quantity high-strength plastic magnesium alloy and large-reduction-quantity short-flow preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ230311A (en) * 1988-09-05 1990-09-26 Masumoto Tsuyoshi High strength magnesium based alloy
JP2511526B2 (en) * 1989-07-13 1996-06-26 ワイケイケイ株式会社 High strength magnesium base alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002649A (en) * 2010-09-16 2011-04-06 无锡南理工科技发展有限公司 High-toughness magnesium based block body metal glass composite material and preparation method thereof
JP2020056085A (en) * 2018-10-03 2020-04-09 日立化成株式会社 Magnesium alloy member, powder material, and method for producing magnesium alloy member

Also Published As

Publication number Publication date
EP0470599A1 (en) 1992-02-12

Similar Documents

Publication Publication Date Title
JP2511526B2 (en) High strength magnesium base alloy
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
JPH0499244A (en) High strength magnesium base alloy
JPH0579750B2 (en)
US5336342A (en) Copper-iron-zirconium alloy having improved properties and a method of manufacture thereof
JPH07116546B2 (en) High strength magnesium base alloy
JPH01127641A (en) High tensile and heat-resistant aluminum-based alloy
JPH0532464B2 (en)
JPH07238336A (en) High strength aluminum-base alloy
US5714018A (en) High-strength and high-toughness aluminum-based alloy
JP2705996B2 (en) High strength magnesium based alloy
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
US5221376A (en) High strength magnesium-based alloys
JPS6237335A (en) Aluminum alloy having high corrosion resistance and strength
US4395464A (en) Copper base alloys made using rapidly solidified powders and method
US4402745A (en) New iron-aluminum-copper alloys which contain boron and have been processed by rapid solidification process and method
JPH06316740A (en) High strength magnesium-base alloy and its production
JP2583718B2 (en) High strength corrosion resistant aluminum base alloy
JP3485961B2 (en) High strength aluminum base alloy
EP0540054B1 (en) High-strength and high-toughness aluminum-based alloy
JPH05311359A (en) High strength aluminum base alloy and its composite solidified material
JPH0693394A (en) Aluminum-base alloy with high strength and corrosion resistance
JPH05171330A (en) High strength magnesium-base alloy
JPH051346A (en) High strength aluminum-base alloy
JPH06256878A (en) High tensile strength and heat resistant aluminum base alloy