JP3110116B2 - High strength magnesium based alloy - Google Patents

High strength magnesium based alloy

Info

Publication number
JP3110116B2
JP3110116B2 JP03344738A JP34473891A JP3110116B2 JP 3110116 B2 JP3110116 B2 JP 3110116B2 JP 03344738 A JP03344738 A JP 03344738A JP 34473891 A JP34473891 A JP 34473891A JP 3110116 B2 JP3110116 B2 JP 3110116B2
Authority
JP
Japan
Prior art keywords
alloy
strength
based alloy
high strength
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03344738A
Other languages
Japanese (ja)
Other versions
JPH05171330A (en
Inventor
健 増本
明久 井上
利介 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP03344738A priority Critical patent/JP3110116B2/en
Priority to EP92121691A priority patent/EP0548875B1/en
Priority to DE69223026T priority patent/DE69223026T2/en
Publication of JPH05171330A publication Critical patent/JPH05171330A/en
Application granted granted Critical
Publication of JP3110116B2 publication Critical patent/JP3110116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、急冷凝固法によって得
られる機械的特性に優れたマグネシウム基合金に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium-based alloy having excellent mechanical properties obtained by a rapid solidification method.

【0002】[0002]

【従来の技術】従来のマグネシウム基合金には、Mg−
Al系、Mg−Al−Zn系、Mg−Th−Zr系、M
g−Th−Zn−Zr系、Mg−Zn−Zr系、Mg−
Zn−Zr−RE(希土類元素)系等の成分系の合金が
知られており、その材料特性に応じて軽量構造部材とし
て広範囲の用途に供されている。また、急冷凝固法によ
って得られる材料としては、特開平3−47941号公
報記載の合金が知られている。
2. Description of the Related Art Conventional magnesium-based alloys include Mg-
Al-based, Mg-Al-Zn-based, Mg-Th-Zr-based, M
g-Th-Zn-Zr system, Mg-Zn-Zr system, Mg-
Component alloys such as Zn-Zr-RE (rare earth elements) are known, and are used in a wide range of applications as lightweight structural members according to their material properties. Further, as a material obtained by the rapid solidification method, an alloy described in JP-A-3-47941 is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記各
種系の従来のマグネシウム基合金は、一般に硬度および
強度が低いのが現状であり、また、上記特開平3−47
941号公報に示される合金は、硬度、引張り強度にお
いては優れているものの、熱的安定性および比強度の点
でさらに改善の余地を残している。
However, at present, the conventional magnesium-based alloys of the above-mentioned various systems generally have low hardness and strength.
The alloy disclosed in No. 941 is excellent in hardness and tensile strength, but leaves room for further improvement in terms of thermal stability and specific strength.

【0004】そこで、本発明は上記に鑑み、高硬度、高
強度、高耐熱性を有し、かつ、軽くて強い材料(高比強
度材料)として有用なマグネシウム基合金を提供するこ
とを目的とするものである。
In view of the above, an object of the present invention is to provide a magnesium-based alloy having high hardness, high strength, and high heat resistance, and useful as a light and strong material (high specific strength material). Is what you do.

【0005】[0005]

【課題を解決するための手段】本発明は、一般式:Mg
aAlbZnc(ただし、a、b、cは原子パーセント
で、80≦a≦92、4≦b≦12、4<c≦12)で
示され、結晶粒が1.0μm以下で、h.c.p.のM
gマトリックスに少なくともMg 7 Zn 3 の金属間化合物
が均一微細に分散している微細結晶組織を有する高強度
マグネシウム基合金である。
According to the present invention, there is provided a compound represented by the general formula: Mg
a Al b Zn c (however, a, b, c are in atomic percentages, 80 ≦ a ≦ 92,4 ≦ b ≦ 12,4 <c ≦ 12) indicated, in the crystal grains 1.0μm or less, h . c. p. M
g At least Mg 7 Zn 3 intermetallic compound in matrix
Is a high strength magnesium-based alloy that have a uniformly and finely dispersed and have a microcrystalline structure.

【0006】[0006]

【0007】上記本発明のマグネシウム基合金におい
て、aを80〜92at%、bを4〜12、cを4〜1
2(ただし4は含まない)の範囲にそれぞれ限定したの
は、固溶限を越えた過飽和固溶体を形成するため、およ
び液体急冷法等を利用した工業的な急冷手段で微細結晶
質からなる合金を得るためである。
In the magnesium-based alloy of the present invention, a is 80 to 92 at%, b is 4 to 12, and c is 4-1.
The reason for limiting each to the range of 2 (but not including 4) is to form a supersaturated solid solution exceeding the solid solubility limit, and to use an alloy made of fine crystalline by an industrial quenching method using a liquid quenching method or the like. To get

【0008】さらに、重要な理由として上記範囲内にす
ることによって、h.c.p.のMgが析出し、この微細
なh.c.p.のMgに対して、さらに微細な少なくとも
MgとZnとが生成する金属間化合物が析出し、これが
均一微細に分散するためである。上記h.c.p.のMg
マトリックスに少なくともMgとZnとが生成する金属
間化合物を均一微細に分散することにより、Mgマトリ
ックスの強化が行え、合金の強度を飛躍的に向上させる
ことができる。なお、上記Mgの量が80at%未満で
非晶質相を少なくとも含むものが得られ、これを特定の
温度で加熱することにより、相を分解することができる
が、このように加熱分解により作製した場合、h.c.
p.のMgと同時もしくはこれより優先的に金属間化合
物が析出し、靭性が低下する。また、Mgの量が80a
t%未満の合金で、冷却速度を小さくすることによって
も上記のものと類似したものが得られるが、冷却状態で
固溶体相にならないとともに化合物粒子の分散したもの
しか得られないため、靭性の低いものしか得られない。
[0008] Further, as an important reason, by setting the content within the above range, Mg of hcp is precipitated. This is because the intermetallic compound generated with Zn precipitates and is uniformly and finely dispersed. Mg of the above hcp
By uniformly and finely dispersing the intermetallic compound generated by at least Mg and Zn in the matrix, the Mg matrix can be strengthened and the strength of the alloy can be dramatically improved. A material containing at least the amorphous phase with an amount of Mg of less than 80 at% is obtained, and the phase can be decomposed by heating this at a specific temperature. H.c.
An intermetallic compound precipitates simultaneously with or preferentially with Mg of p. and the toughness is reduced. Also, if the amount of Mg is 80a
With an alloy of less than t%, by lowering the cooling rate, an alloy similar to the above can be obtained. You can only get things.

【0009】本発明のマグネシウム基合金で、Al元素
は、マグネシウム元素および他の添加元素と安定または
準安定な金属間化合物を形成するとともに微細結晶質相
を安定化させる効果により優れており、展延性を保った
まま強度を向上させる。この他に、Al元素は、耐食性
を向上させる効果を有する。
[0009] In the magnesium-based alloy of the present invention, the Al element is excellent in the effect of forming a stable or metastable intermetallic compound with the magnesium element and other additional elements and stabilizing the fine crystalline phase. Improves strength while maintaining ductility. In addition, the Al element has an effect of improving corrosion resistance.

【0010】Zn元素は、マグネシウム元素および他の
添加元素と安定または準安定な金属間化合物を形成し、
マグネシウムマトリックス(α相)中に均一微細に分散
させ、合金の硬度と強度とを著しく向上させ、高温にお
ける微細結晶質の粗大化を制御させ耐熱性を付与する。
特に、本発明の合金で、機械的特性の改善を行えるMg
7Zn3の金属間化合物を形成できる。
The Zn element forms a stable or metastable intermetallic compound with the magnesium element and other additional elements,
It is uniformly and finely dispersed in a magnesium matrix (α phase) to remarkably improve the hardness and strength of the alloy, control the coarsening of fine crystals at high temperatures, and provide heat resistance.
In particular, the alloy of the present invention can improve the mechanical properties of Mg.
7 An intermetallic compound of Zn 3 can be formed.

【0011】本発明のマグネシウム基合金は、上記組成
を有する合金の溶湯を液体急冷法で急冷凝固することに
より得ることができる。この際の冷却速度は102〜1
6K/secが特に有効である。
The magnesium-based alloy of the present invention can be obtained by rapidly solidifying a molten alloy having the above composition by a liquid quenching method. The cooling rate at this time is 10 2 to 1
0 6 K / sec is particularly effective.

【0012】[0012]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0013】実施例1 高周波溶解炉により所定の成分組成を有する溶融合金3
をつくり、これを図1に示す先端に小孔5(孔径:0.
5mm)を有する石英管に挿入し、加熱溶融した後、そ
の石英管1を銅製ロール2の直上に設置し、回転数30
00〜5000rpmの高速回転下、石英管1内の溶融
合金3をアルゴンガスの加圧下(0.7kg/cm2
により石英管1の小孔5から噴射し、ロール2の表面と
接触させることにより急冷凝固させて合金薄帯4を得
る。
Example 1 A molten alloy 3 having a predetermined component composition in a high-frequency melting furnace
A small hole 5 (hole diameter: 0.
5 mm), and after heating and melting, the quartz tube 1 is placed immediately above the copper roll 2 and the rotation speed is 30.
The molten alloy 3 in the quartz tube 1 was pressurized with argon gas (0.7 kg / cm 2 ) under a high speed rotation of 00 to 5000 rpm.
Is sprayed from the small hole 5 of the quartz tube 1 and rapidly solidified by contact with the surface of the roll 2 to obtain the alloy ribbon 4.

【0014】上記製造条件により表1に示す組成(原子
%)を有する10種の合金薄帯(幅:1mm、厚さ:2
0μm)を得た。
According to the above manufacturing conditions, ten kinds of alloy ribbons (width: 1 mm, thickness: 2) having the composition (atomic%) shown in Table 1
0 μm).

【0015】上記各供試薄帯につき、それぞれX線回折
に付した結果、硬度(Hv)、引張り強度(σf)、破
断伸び(εf)、ヤング率(E)、比強度(σf/ρ)
の機械的特性を測定した結果を表1の右欄に示す。硬度
(Hv)は、25g荷重の微小ビッカース硬度計による
測定値(DPN)であり、比強度は、引張り強度を密度
で割ったものである。また、上記記載の合金について、
TEM観察を行った結果、結晶粒が1.0μm以下で
h.c.p.のMgマトリックスにMgとZnとの金属
間化合物(MgZn)が均一微細に分散したもので
あった。
Each of the test ribbons was subjected to X-ray diffraction. As a result, hardness (Hv), tensile strength (σf), elongation at break (εf), Young's modulus (E), and specific strength (σf / ρ) were obtained.
Are shown in the right column of Table 1. The hardness (Hv) is a value measured by a fine Vickers hardness meter (DPN) under a load of 25 g, and the specific strength is obtained by dividing tensile strength by density. Also, for the alloys described above,
As a result of TEM observation, when the crystal grains were 1.0 μm or less,
h. c. p. And an intermetallic compound of Mg and Zn (Mg 7 Zn 3 ) was uniformly and finely dispersed in the Mg matrix.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示す通り、いずれの試料も硬度Hv
(DPN)は97以上、引張り強度は328(MPa)
以上、破断伸びは1.0(%)以上、ヤング率は30
(GPa)以上、比強度は166以上と優れた機械的特
性を示す。
As shown in Table 1, each sample had a hardness Hv
(DPN) is 97 or more, tensile strength is 328 (MPa)
As described above, the elongation at break is 1.0 (%) or more, and the Young's modulus is 30.
(GPa) or more, and the specific strength is 166 or more, exhibiting excellent mechanical properties.

【0018】また、上記によって得られた結果を基に、
Znの量の変化に伴う引張り強度の変化を調べた。この
結果を、図2に示す。
Further, based on the results obtained above,
A change in tensile strength with a change in the amount of Zn was examined. The result is shown in FIG.

【0019】図2によれば、Znの量6〜8(at%)
の間にて、引張り強度のピークを持ち、これより多量ま
たは少量になるにしたがって、強度が減少していくこと
が分かる。また、上記図2より、Alの添加量は多くな
るほど強度が上昇しているということが分かる。
According to FIG. 2, the amount of Zn is 6 to 8 (at%).
It can be seen that there is a peak in the tensile strength in between, and the strength decreases as the amount becomes larger or smaller than this. In addition, it can be seen from FIG. 2 that the strength increases as the amount of Al added increases.

【0020】[0020]

【発明の効果】以上のように本発明のマグネシウム基合
金は、硬度、強度および耐熱性が高く高力材料、高耐熱
性材料として有用であり、かつ比強度も高く高比強度と
しても有用であり、室温での伸びおよびヤング率の点で
も優れているため、押出し、鍛造などの加工ができると
ともに大きな曲げ加工(塑性加工)にも耐えうる。
As described above, the magnesium-based alloy of the present invention has high hardness, strength and heat resistance and is useful as a high strength material and a high heat resistance material, and has a high specific strength and is useful as a high specific strength. Since they are excellent in elongation at room temperature and Young's modulus, they can be extruded and forged and can withstand large bending (plastic working).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の合金の製造例の説明図である。FIG. 1 is an explanatory view of a production example of an alloy of the present invention.

【図2】実施例合金のZn並びAl量の変化に伴う引張
り強度の変化を示すグラフである。
FIG. 2 is a graph showing a change in tensile strength with a change in the amount of Zn and Al in the alloy of Example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地川内住宅 11−806 (72)発明者 柴田 利介 宮城県仙台市青葉区米ケ袋1丁目5番12 号 (56)参考文献 特開 昭63−282232(JP,A) 特表 平2−503331(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 23/00 - 23/04 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Akihisa Inoue 11-806 Kawauchi House, Sendai-shi, Aoba-ku, Miyagi Prefecture 56) References JP-A-63-282232 (JP, A) JP-T2-503331 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 23/00-23/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式:MgaAlbZnc(ただし、
a、b、cは原子パーセントで、80≦a≦92、4≦
b≦12、4<c≦12)で示され、結晶粒が1.0μ
m以下で、h.c.p.のMgマトリックスに少なくと
もMg 7 Zn 3 の金属間化合物が均一微細に分散している
微細結晶組織を有する高強度マグネシウム基合金。
(1) A general formula: Mg a Al b Zn c (provided that
a, b, and c are atomic percent and 80 ≦ a ≦ 92, 4 ≦
b ≦ 12, 4 <c ≦ 12), and the crystal grains are 1.0 μm.
m or less, h. c. p. At least in the Mg matrix
The Mg 7 Zn 3 intermetallic compound is uniformly and finely dispersed
High strength magnesium-based alloy that having a microcrystalline structure.
JP03344738A 1991-12-26 1991-12-26 High strength magnesium based alloy Expired - Fee Related JP3110116B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03344738A JP3110116B2 (en) 1991-12-26 1991-12-26 High strength magnesium based alloy
EP92121691A EP0548875B1 (en) 1991-12-26 1992-12-21 High-strength magnesium-based alloy
DE69223026T DE69223026T2 (en) 1991-12-26 1992-12-21 High-strength magnesium-based alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03344738A JP3110116B2 (en) 1991-12-26 1991-12-26 High strength magnesium based alloy

Publications (2)

Publication Number Publication Date
JPH05171330A JPH05171330A (en) 1993-07-09
JP3110116B2 true JP3110116B2 (en) 2000-11-20

Family

ID=18371595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03344738A Expired - Fee Related JP3110116B2 (en) 1991-12-26 1991-12-26 High strength magnesium based alloy

Country Status (3)

Country Link
EP (1) EP0548875B1 (en)
JP (1) JP3110116B2 (en)
DE (1) DE69223026T2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046821B (en) * 2008-06-03 2013-03-27 独立行政法人物质·材料研究机构 Mg-base alloy
US9347123B2 (en) 2009-01-19 2016-05-24 National Institute For Materials Science Mg-base alloy
AT521500B1 (en) * 2018-12-18 2020-02-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Process for increasing corrosion resistance of a component formed with a magnesium-based alloy against galvanic corrosion and also a corrosion-resistant component obtainable with it
CN112501467A (en) * 2020-11-25 2021-03-16 安徽军明机械制造有限公司 Preparation method of heat-resistant magnesium-aluminum-zinc alloy casting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
JPH0499244A (en) * 1990-08-09 1992-03-31 Yoshida Kogyo Kk <Ykk> High strength magnesium base alloy

Also Published As

Publication number Publication date
DE69223026D1 (en) 1997-12-11
DE69223026T2 (en) 1998-05-20
EP0548875B1 (en) 1997-11-05
JPH05171330A (en) 1993-07-09
EP0548875A1 (en) 1993-06-30

Similar Documents

Publication Publication Date Title
JP2511526B2 (en) High strength magnesium base alloy
JP2795611B2 (en) High strength aluminum base alloy
US5370839A (en) Tial-based intermetallic compound alloys having superplasticity
US5509978A (en) High strength and anti-corrosive aluminum-based alloy
US5332456A (en) Superplastic aluminum-based alloy material and production process thereof
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
US5021106A (en) Brazeable aluminum alloy sheet and process of making same
JPH07238336A (en) High strength aluminum-base alloy
JP3110117B2 (en) High strength magnesium based alloy
JP3205362B2 (en) High strength, high toughness aluminum-based alloy
JPH0499244A (en) High strength magnesium base alloy
EP0558977B1 (en) High-strength, rapidly solidified alloy
JP3110116B2 (en) High strength magnesium based alloy
JP2865499B2 (en) Superplastic aluminum-based alloy material and method for producing superplastic alloy material
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
US4395464A (en) Copper base alloys made using rapidly solidified powders and method
Chang et al. Rapidly solidified Mg-Al-Zn-rare earth alloys
JPH06316740A (en) High strength magnesium-base alloy and its production
JP3485961B2 (en) High strength aluminum base alloy
EP0540054B1 (en) High-strength and high-toughness aluminum-based alloy
JP2807400B2 (en) High strength magnesium-based alloy material and method of manufacturing the same
JP3273993B2 (en) Method for producing ductile Ni3Al alloy and Ni3Al-B alloy
JPH051346A (en) High strength aluminum-base alloy
JP2798840B2 (en) High-strength aluminum-based alloy integrated solidified material and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees