JPH05171330A - High strength magnesium-base alloy - Google Patents

High strength magnesium-base alloy

Info

Publication number
JPH05171330A
JPH05171330A JP3344738A JP34473891A JPH05171330A JP H05171330 A JPH05171330 A JP H05171330A JP 3344738 A JP3344738 A JP 3344738A JP 34473891 A JP34473891 A JP 34473891A JP H05171330 A JPH05171330 A JP H05171330A
Authority
JP
Japan
Prior art keywords
strength
alloy
magnesium
compsn
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3344738A
Other languages
Japanese (ja)
Other versions
JP3110116B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Toshisuke Shibata
利介 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP03344738A priority Critical patent/JP3110116B2/en
Priority to DE69223026T priority patent/DE69223026T2/en
Priority to EP92121691A priority patent/EP0548875B1/en
Publication of JPH05171330A publication Critical patent/JPH05171330A/en
Application granted granted Critical
Publication of JP3110116B2 publication Critical patent/JP3110116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent

Abstract

PURPOSE:To obtain a high strength magnesium-base alloy having a fine crystal line compsn. and excellent in hardness, tensile strength, heat stability and spe cific strength by specifying the compsn. constituted of Mg, Al and Zn. CONSTITUTION:The objective high strength magnesium base alloy has a fine crystalline compsn. shown by the general formula: MgaAlbZnc (where, by atom, 80<=a<=92%, 4<=b<=12% and 4<=c<=12% and is obtd. by executing rapid solidification on a high speed rotating roller or the like. This alloy has about <=1.0mum grain size and has a structure in which intermetallic compounds of at least Mg7Zn3 are uniformly and finely dispersed into an Mg matrix of h.c.p. This magnesium alloy has high hardness, high strength and high heat resistance and is useful as a lightweight and strong material (high specific strength material).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、急冷凝固法によって得
られる機械的特性に優れたマグネシウム基合金に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium-based alloy excellent in mechanical properties obtained by a rapid solidification method.

【0002】[0002]

【従来の技術】従来のマグネシウム基合金には、Mg−
Al系、Mg−Al−Zn系、Mg−Th−Zr系、M
g−Th−Zn−Zr系、Mg−Zn−Zr系、Mg−
Zn−Zr−RE(希土類元素)系等の成分系の合金が
知られており、その材料特性に応じて軽量構造部材とし
て広範囲の用途に供されている。また、急冷凝固法によ
って得られる材料としては、特開平3−47941号公
報記載の合金が知られている。
2. Description of the Related Art A conventional magnesium-based alloy is Mg-
Al-based, Mg-Al-Zn-based, Mg-Th-Zr-based, M
g-Th-Zn-Zr system, Mg-Zn-Zr system, Mg-
Zn-Zr-RE (rare earth element) -based and other component-based alloys are known, and are used in a wide range of applications as lightweight structural members depending on their material properties. Further, as a material obtained by the rapid solidification method, an alloy described in JP-A-3-47941 is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記各
種系の従来のマグネシウム基合金は、一般に硬度および
強度が低いのが現状であり、また、上記特開平3−47
941号公報に示される合金は、硬度、引張り強度にお
いては優れているものの、熱的安定性および比強度の点
でさらに改善の余地を残している。
However, the conventional magnesium-based alloys of the various types described above generally have low hardness and strength, and the above-mentioned JP-A-3-47.
Although the alloy shown in Japanese Patent Publication No. 941 is excellent in hardness and tensile strength, there is room for further improvement in terms of thermal stability and specific strength.

【0004】そこで、本発明は上記に鑑み、高硬度、高
強度、高耐熱性を有し、かつ、軽くて強い材料(高比強
度材料)として有用なマグネシウム基合金を提供するこ
とを目的とするものである。
In view of the above, the present invention has an object to provide a magnesium-based alloy having high hardness, high strength, high heat resistance, and useful as a light and strong material (high specific strength material). To do.

【0005】[0005]

【課題を解決するための手段】本発明は、一般式:Mg
aAlbZnc(ただし、a、b、cは原子パーセント
で、80≦a≦92、4≦b≦12、4<c≦12)で
示される微細結晶質組成を有する高強度マグネシウム基
合金である。
The present invention has the general formula: Mg
a Al b Zn c (where a, b, and c are atomic percentages, 80 ≦ a ≦ 92, 4 ≦ b ≦ 12, 4 <c ≦ 12), a high-strength magnesium-based alloy having a fine crystalline composition Is.

【0006】上記一般式に示される合金系において、
h.c.p.のMgマトリックスに少なくともMg7Zn3
の金属間化合物が均一微細に分散している組織であるも
のが好ましい。
In the alloy system represented by the above general formula,
at least Mg 7 Zn 3 in the Mg matrix of hcp
It is preferable that the intermetallic compound has a structure in which the intermetallic compound is uniformly dispersed.

【0007】上記本発明のマグネシウム基合金におい
て、aを80〜92at%、bを4〜12、cを4〜1
2(ただし4は含まない)の範囲にそれぞれ限定したの
は、固溶限を越えた過飽和固溶体を形成するため、およ
び液体急冷法等を利用した工業的な急冷手段で微細結晶
質からなる合金を得るためである。
In the above magnesium-based alloy of the present invention, a is 80 to 92 at%, b is 4 to 12 and c is 4-1.
Each of the ranges of 2 (not including 4) is limited to the formation of a supersaturated solid solution exceeding the solid solution limit, and an alloy made of fine crystalline by an industrial quenching means using a liquid quenching method or the like. Is to obtain.

【0008】さらに、重要な理由として上記範囲内にす
ることによって、h.c.p.のMgが析出し、この微細
なh.c.p.のMgに対して、さらに微細な少なくとも
MgとZnとが生成する金属間化合物が析出し、これが
均一微細に分散するためである。上記h.c.p.のMg
マトリックスに少なくともMgとZnとが生成する金属
間化合物を均一微細に分散することにより、Mgマトリ
ックスの強化が行え、合金の強度を飛躍的に向上させる
ことができる。なお、上記Mgの量が80at%未満で
非晶質相を少なくとも含むものが得られ、これを特定の
温度で加熱することにより、相を分解することができる
が、このように加熱分解により作製した場合、h.c.
p.のMgと同時もしくはこれより優先的に金属間化合
物が析出し、靭性が低下する。また、Mgの量が80a
t%未満の合金で、冷却速度を小さくすることによって
も上記のものと類似したものが得られるが、冷却状態で
固溶体相にならないとともに化合物粒子の分散したもの
しか得られないため、靭性の低いものしか得られない。
Further, as an important reason, by setting the content within the above range, Mg of hcp is precipitated, and fine Mg of at least Mg is added to the fine Mg of hcp. This is because the intermetallic compound which is formed with Zn is deposited and is dispersed uniformly and finely. Mg of hcp above
By uniformly and finely dispersing an intermetallic compound that produces at least Mg and Zn in the matrix, the Mg matrix can be strengthened and the strength of the alloy can be dramatically improved. It should be noted that the above Mg content of less than 80 at% and at least an amorphous phase is obtained, and the phase can be decomposed by heating this at a specific temperature. If you do, h.c.
At the same time as or preferentially with Mg of p., an intermetallic compound precipitates and the toughness decreases. In addition, the amount of Mg is 80a
An alloy of less than t% can be obtained by reducing the cooling rate to be similar to the above, but the toughness is low because it does not become a solid solution phase in the cooled state and only compound particles are dispersed. You can only get things.

【0009】本発明のマグネシウム基合金で、Al元素
は、マグネシウム元素および他の添加元素と安定または
準安定な金属間化合物を形成するとともに微細結晶質相
を安定化させる効果により優れており、展延性を保った
まま強度を向上させる。この他に、Al元素は、耐食性
を向上させる効果を有する。
In the magnesium-based alloy of the present invention, the Al element is excellent in that it forms a stable or metastable intermetallic compound with the magnesium element and other additive elements and stabilizes the fine crystalline phase. Improves strength while maintaining ductility. In addition to this, the Al element has the effect of improving the corrosion resistance.

【0010】Zn元素は、マグネシウム元素および他の
添加元素と安定または準安定な金属間化合物を形成し、
マグネシウムマトリックス(α相)中に均一微細に分散
させ、合金の硬度と強度とを著しく向上させ、高温にお
ける微細結晶質の粗大化を制御させ耐熱性を付与する。
特に、本発明の合金で、機械的特性の改善を行えるMg
7Zn3の金属間化合物を形成できる。
Zn element forms a stable or metastable intermetallic compound with magnesium element and other additive elements,
It is uniformly and finely dispersed in a magnesium matrix (α phase) to remarkably improve the hardness and strength of the alloy, control coarsening of fine crystalline material at high temperature, and impart heat resistance.
In particular, the alloys of the present invention provide Mg with improved mechanical properties.
An intermetallic compound of 7 Zn 3 can be formed.

【0011】本発明のマグネシウム基合金は、上記組成
を有する合金の溶湯を液体急冷法で急冷凝固することに
より得ることができる。この際の冷却速度は102〜1
6K/secが特に有効である。
The magnesium-based alloy of the present invention can be obtained by rapidly solidifying a melt of the alloy having the above composition by a liquid quenching method. The cooling rate at this time is 10 2 to 1
0 6 K / sec is particularly effective.

【0012】[0012]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below based on examples.

【0013】実施例1 高周波溶解炉により所定の成分組成を有する溶融合金3
をつくり、これを図1に示す先端に小孔5(孔径:0.
5mm)を有する石英管に挿入し、加熱溶融した後、そ
の石英管1を銅製ロール2の直上に設置し、回転数30
00〜5000rpmの高速回転下、石英管1内の溶融
合金3をアルゴンガスの加圧下(0.7kg/cm2
により石英管1の小孔5から噴射し、ロール2の表面と
接触させることにより急冷凝固させて合金薄帯4を得
る。
Example 1 Molten alloy 3 having a predetermined composition by a high frequency melting furnace
1. Make a small hole 5 (hole diameter: 0.
(5 mm) and then heated and melted, the quartz tube 1 is placed right above the copper roll 2 and the rotation speed is 30.
Under high speed rotation of 00 to 5000 rpm, the molten alloy 3 in the quartz tube 1 is pressurized with argon gas (0.7 kg / cm 2 ).
The alloy ribbon 4 is obtained by spraying from the small holes 5 of the quartz tube 1 and contacting the surface of the roll 2 for rapid solidification.

【0014】上記製造条件により表1に示す組成(原子
%)を有する10種の合金薄帯(幅:1mm、厚さ:2
0μm)を得た。
Under the above manufacturing conditions, 10 kinds of alloy ribbons (width: 1 mm, thickness: 2) having the composition (atomic%) shown in Table 1
0 μm) was obtained.

【0015】上記各供試薄帯につき、それぞれX線回折
に付した結果、硬度(Hv)、引張り強度(σf)、破
断伸び(εf)、ヤング率(E)、比強度(σf/ρ)
の機械的特性を測定した結果を表1の右欄に示す。硬度
(Hv)は、25g荷重の微小ビッカース硬度計による
測定値(DPN)であり、比強度は、引張り強度を密度
で割ったものである。また、上記記載の合金について、
TEM観察を行った結果、結晶粒が1.0μm以下で
h、c、pのMgマトリックスにMgとZnまたはAl
との金属間化合物(Mg7Zn3、Al2Mg3)が均一微
細に分散したものであった。
As a result of subjecting each of the above-mentioned thin ribbons to X-ray diffraction, hardness (Hv), tensile strength (σf), elongation at break (εf), Young's modulus (E), specific strength (σf / ρ)
The right column of Table 1 shows the results of measuring the mechanical properties of The hardness (Hv) is a value (DPN) measured by a micro Vickers hardness meter with a load of 25 g, and the specific strength is the tensile strength divided by the density. Further, for the alloys described above,
As a result of TEM observation, when the crystal grains were 1.0 μm or less, Mg and Zn or Al were added to the Mg matrix of h, c and p.
And an intermetallic compound (Mg 7 Zn 3 , Al 2 Mg 3 ) was uniformly dispersed.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示す通り、いずれの試料も硬度Hv
(DPN)は97以上、引張り強度は328(MPa)
以上、破断伸びは1.0(%)以上、ヤング率は30
(GPa)以上、比強度は166以上と優れた機械的特
性を示す。
As shown in Table 1, each sample had a hardness Hv.
(DPN) 97 or more, tensile strength 328 (MPa)
As described above, the elongation at break is 1.0 (%) or more and the Young's modulus is 30.
(GPa) or more and specific strength of 166 or more, showing excellent mechanical properties.

【0018】また、上記によって得られた結果を基に、
Znの量の変化に伴う引張り強度の変化を調べた。この
結果を、図2に示す。
Further, based on the results obtained above,
The change in tensile strength with the change in the amount of Zn was investigated. The result is shown in FIG.

【0019】図2によれば、Znの量6〜8(at%)
の間にて、引張り強度のピークを持ち、これより多量ま
たは少量になるにしたがって、強度が減少していくこと
が分かる。また、上記図2より、Alの添加量は多くな
るほど強度が上昇しているということが分かる。
According to FIG. 2, the amount of Zn is 6 to 8 (at%).
It can be seen that there is a peak of tensile strength between the two, and the strength decreases as the amount increases or decreases. Further, it can be seen from FIG. 2 that the strength increases as the added amount of Al increases.

【0020】[0020]

【発明の効果】以上のように本発明のマグネシウム基合
金は、硬度、強度および耐熱性が高く高力材料、高耐熱
性材料として有用であり、かつ比強度も高く高比強度と
しても有用であり、室温での伸びおよびヤング率の点で
も優れているため、押出し、鍛造などの加工ができると
ともに大きな曲げ加工(塑性加工)にも耐えうる。
INDUSTRIAL APPLICABILITY As described above, the magnesium-based alloy of the present invention has high hardness, strength and heat resistance and is useful as a high-strength material and a high heat-resistant material, and also has high specific strength and high specific strength. Since it is also excellent in terms of elongation at room temperature and Young's modulus, it can be subjected to processing such as extrusion and forging, and can endure large bending processing (plastic processing).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合金の製造例の説明図である。FIG. 1 is an explanatory diagram of a production example of an alloy of the present invention.

【図2】実施例合金のZn並びAl量の変化に伴う引張
り強度の変化を示すグラフである。
FIG. 2 is a graph showing changes in tensile strength with changes in Zn content and Al content in example alloys.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地川内住宅11 −806 (72)発明者 柴田 利介 宮城県仙台市青葉区米ケ袋1丁目5番12号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihisa Inoue Kawauchi Muzen, Aoba-ku, Sendai-shi, Miyagi 11-806 (72) Inventor Ryosuke Shibata 1-5-12 Yonegabukuro, Aoba-ku, Sendai-shi, Miyagi

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式:MgaAlbZnc(ただし、
a、b、cは原子パーセントで、80≦a≦92、4≦
b≦12、4<c≦12)で示される微細結晶質組成を
有する高強度マグネシウム基合金。
1. A general formula: Mg a Al b Zn c (where
a, b, c are atomic percentages, and 80 ≦ a ≦ 92, 4 ≦
A high-strength magnesium-based alloy having a fine crystalline composition represented by b ≦ 12, 4 <c ≦ 12).
【請求項2】 h.c.p.のMgマトリックスに少なく
ともMg7Zn3の金属間化合物が均一微細に分散してい
る組織である請求項1又は2記載の高強度マグネシウム
基合金。
2. The high-strength magnesium-based alloy according to claim 1, which has a structure in which at least an intermetallic compound of Mg 7 Zn 3 is uniformly and finely dispersed in an Mg matrix of hcp.
JP03344738A 1991-12-26 1991-12-26 High strength magnesium based alloy Expired - Fee Related JP3110116B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03344738A JP3110116B2 (en) 1991-12-26 1991-12-26 High strength magnesium based alloy
DE69223026T DE69223026T2 (en) 1991-12-26 1992-12-21 High-strength magnesium-based alloys
EP92121691A EP0548875B1 (en) 1991-12-26 1992-12-21 High-strength magnesium-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03344738A JP3110116B2 (en) 1991-12-26 1991-12-26 High strength magnesium based alloy

Publications (2)

Publication Number Publication Date
JPH05171330A true JPH05171330A (en) 1993-07-09
JP3110116B2 JP3110116B2 (en) 2000-11-20

Family

ID=18371595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03344738A Expired - Fee Related JP3110116B2 (en) 1991-12-26 1991-12-26 High strength magnesium based alloy

Country Status (3)

Country Link
EP (1) EP0548875B1 (en)
JP (1) JP3110116B2 (en)
DE (1) DE69223026T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148093A1 (en) * 2008-06-03 2009-12-10 独立行政法人物質・材料研究機構 Mg-BASE ALLOY
WO2010082669A1 (en) * 2009-01-19 2010-07-22 独立行政法人物質・材料研究機構 Mg-BASE ALLOY
CN112501467A (en) * 2020-11-25 2021-03-16 安徽军明机械制造有限公司 Preparation method of heat-resistant magnesium-aluminum-zinc alloy casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521500B1 (en) * 2018-12-18 2020-02-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Process for increasing corrosion resistance of a component formed with a magnesium-based alloy against galvanic corrosion and also a corrosion-resistant component obtainable with it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
JPH0499244A (en) * 1990-08-09 1992-03-31 Yoshida Kogyo Kk <Ykk> High strength magnesium base alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148093A1 (en) * 2008-06-03 2009-12-10 独立行政法人物質・材料研究機構 Mg-BASE ALLOY
US8313692B2 (en) 2008-06-03 2012-11-20 National Institute For Materials Science Mg-based alloy
JP5540415B2 (en) * 2008-06-03 2014-07-02 独立行政法人物質・材料研究機構 Mg-based alloy
WO2010082669A1 (en) * 2009-01-19 2010-07-22 独立行政法人物質・材料研究機構 Mg-BASE ALLOY
JP5586027B2 (en) * 2009-01-19 2014-09-10 独立行政法人物質・材料研究機構 Mg-based alloy
US9347123B2 (en) 2009-01-19 2016-05-24 National Institute For Materials Science Mg-base alloy
CN112501467A (en) * 2020-11-25 2021-03-16 安徽军明机械制造有限公司 Preparation method of heat-resistant magnesium-aluminum-zinc alloy casting

Also Published As

Publication number Publication date
JP3110116B2 (en) 2000-11-20
DE69223026D1 (en) 1997-12-11
EP0548875B1 (en) 1997-11-05
EP0548875A1 (en) 1993-06-30
DE69223026T2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
JP2511526B2 (en) High strength magnesium base alloy
JP2795611B2 (en) High strength aluminum base alloy
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
JPH0673513A (en) Production of aluminum-base alloy material having high strength and heat resistance
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
JPH07238336A (en) High strength aluminum-base alloy
JPH07116546B2 (en) High strength magnesium base alloy
EP0470599A1 (en) High strength magnesium-based alloys
JP3110117B2 (en) High strength magnesium based alloy
Afsharnaderi et al. Microstructure evolution and mechanical properties of the AZ91 magnesium alloy with Sr and Ti additions in the as-cast and as-aged conditions
JP3205362B2 (en) High strength, high toughness aluminum-based alloy
EP0558977B1 (en) High-strength, rapidly solidified alloy
JP2705996B2 (en) High strength magnesium based alloy
JPH093610A (en) Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
Okayasu et al. Mechanical Properties of Cast Al-Mg 5 Alloy Produced by Heated Mold Continuous Casting
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JPH05171330A (en) High strength magnesium-base alloy
JPH0637695B2 (en) Corrosion resistant aluminum base alloy
Webster Properties and microstructure of aluminum-copper-magnesium-lithium alloys
Yang et al. Effect of Ce Microalloying on Microstructure and Mechanical Properties of Extruded Mg–10Gd–0.5 Zr Alloy
Chang et al. Rapidly solidified Mg-Al-Zn-rare earth alloys
JP3485961B2 (en) High strength aluminum base alloy
JPH0356295B2 (en)
JPH05125499A (en) Aluminum-base alloy having high strength and high toughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees